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0. Introduction

We consider non-Markovian processes/random walks,
that Is, processes/random walks whose future behavior

depends not only on the present state but also their past
nistory.

n general, stochastic processes that lack Markovian
oroperty are tough to study, but on some fractal spaces,
rigorous and interesting results have been obtained.




Markovian vs. Non-Markovian

Markovian non-Markovian

A Simple random walk A self-avoiding walk
jumps to one of the nearest cannot visit any sites
sites with equal probabillity. more than once.

.....................................................................................................................................................

---------------------------------------------------------------------------------------------------------------------



Definition of ‘standard’ self-avoiding walk (SAW) on Z*:

For each fixed n, consider the set of all n-step self-
avoiding paths on Z“ starting from O, that is,
(w(0), w(1),---,w(n)) satisfying w(0) = O, w(i) € Z¢,
w(@)—w@i@-1)|=1,i=1,2,---,n, w@) # w(j), 1 # .
Assign equal probability to each n-step path.

.................................................................................

..............................

...................................

SAW originated in chemistry as a model of long

polymers (1950’s, 1960’s).
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Two basic guestions

(1) How far does an n-step walk go on average?

w(n): the location after n-steps,
| w(n) | Euclldlan dlstance from O.

---------------------------------------------------------------------------------

....................................

...............................

Mean square displacement  E[lw(n)]?!] ~ ? n — oo



If the mean square displacement shows a power
behavior like E[|w(n)]?] ~ n¥’, n — oo,
we call v the displacement exponent .

cf. Simple random walk on Z*
E[lwm|? ] =n,v=1/2.

As we will see later, the same exponent v governs the
short time behavior of the scaling limit.



(2) Scaling limit (the limit as the edge length a — 0)
Does the scaling limit exist? (Does the SAW converge to
any limit process as a — 07?)

If yes, what Is the limit process like?

.........................................................................
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cf. The simple random walk on (aZ)? converges to the
d-dimensional Brownian motion as a — 0.



SAW on Z“

displacement exponent scaling limit
(See also Sec. 4)
d=1 v=1 trivial
d=2 v=3 SLEg)3
d=23 v =0.5876--- ?
d=4 v = 3+(log correction) BM
d>5 v=3 BM (Hara, Slade)

blue : conjectures.
Low dimensions are extremely tough!

—> What about SAW on fractals?
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displacement exponent scaling limit
d=1 v=1 trivial
Sierpinski gasket
dy =158 v =log?2/log Asaw = 0.798--- SA process
Asaw = (7 V5)/2

d=2 V=7 SLE8/3

d=3 V= O 5876 - - ?

d=4 V= 2+(Iog correctlon) BM

d>5 v=3 BM (Hara, Slade)

Though low-dimentional, results on the scaling limit of
the SAW on the Sierpinski gasket have been obtained.

— A new kind of non-Markovian random
walk introduced in 1980.
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1. Loop-erased random walk

A simple random walk on a graph
jumps to a nearest neighbor site with equal probabillity.

......................................
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1. Loop-erased random walk

From a simple random walk on a graph, erase loops
chronologically — Loop-erased random walk.

......................................
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1. Loop-erased random walk

From a simple random walk on a graph, erase loops
chronologically — Loop-erased random walk.
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1. Loop-erased random walk

From a simple random walk on a graph, erase loops
chronologically — Loop-erased random walk.

...............................

.............................

We’ve got a loop.
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1. Loop-erased random walk

From a simple random walk on a graph, erase loops
chronologically — Loop-erased random walk.

.........................................
......................................

We erased the loop!
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1. Loop-erased random walk

From a simple random walk on a graph, erase loops
chronologically — Loop-erased random walk.

......................................

Start anew.
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1. Loop-erased random walk

From a simple random walk on a graph, erase loops
chronologically — Loop-erased random walk.

......................................
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1. Loop-erased random walk

From a simple random walk o

n a graph, erase loops

chronologically — Loop-erased random walk.

......................................

LERW (introduced by G. Law
Intersect with itself (self-avoio

er, 1980) does not
Ing), but has a different

distribution from the standarc

18

SAW.



Results concerning LERW on Z“# (2000~) by
Lawler, Schramm, Werner, Kozma, Kenyon, Masson,

Shiraishi, Suzuki, - - -

growth exponent scaling limit (edge length — 0)
d=2 a ! =4/5, SLE, curve
d=3 Hda!,a!=0.617---, Ja scaling limit.
d>4 a1=1/2 Brownian motion

a: growth exponent  (believed : v = a™1)
M,, : number of steps from O to the circle of radius .

Mn ~ Tla.
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Remark

The dlsplacement exponent
,,,,,,, ,,,,,,, ,,,,,,, _| Ellw(n)P] ~

The growth exponent o

— What about LERW on a fractal graph?
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2. Pre-Sierpinski gaskets

AQOab . a unit triangle.
pre-Sierpinski gasket Fy : a graph with edge length 27V

a a a

N B A
SRR

O g 0
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a

53
[Endn

pre-Sierpinski gasket Fy : a graph with edge length 27V,

Sierpinski gasket F = UY_ Fy (closure) a fractal

We are interested in the limit of the loop-erased random
walks on Fy as the edge length 6 = 27N — 0 (scaling
limit).
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3. Erasing-larger-loops-first rule (ELLF)

Zy - a simple random walk on Fy, starting at O and
stopped at 2. We condition that it has no loops of

diameter 1 (ex. no return trip O - b — O etc.).
a

O f b

Erase loops from its path.

23



On F; we erase loops chronologically.

a

L: the loop-erasing operator.
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On Fy, N > 2 — Erasing-larger-loops-first rule

(ELLF) not chronological
a

O b

Erase loops with diameter in [1/2,1) = Erase loops
with diameter in [1/4,1/2) = Erase loops with diameter
in[1/8,1/4) = --- —» Recursions
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On Fy, N > 2 — Erasing-larger-loops-first rule

(ELLF)
a

O f b

Erase loops with diameter in [1/2,1) = Erase loops
with diameter in [1/4,1/2) = Erase loops with diameter
in[1/8,1/4) = --- —» Recursions
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On Fy, N > 2 — Erasing-larger-loops-first rule

(ELLF)
a

O p b

Erase loops with diameter in [1/2,1) = Erase loops
with diameter in [1/4,1/2) = Erase loops with diameter
in[1/8,1/4) = --- —» Recursions
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On Fy, N > 2 — Erasing-larger-loops-first rule

(ELLF)
a

O f b

Erase loops with diameter in [1/2,1) = Erase loops
with diameter in [1/4,1/2) = Erase loops with diameter
in[1/8,1/4) = --- — Recursions for the generating
functions of the number of steps. (See Appendix.)
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Thm. 1. (Shinoda-Teufl-Wagner, H-Mizuno 2014)
Yy : LERW on Fy. Argrw = (20 + V205)/15 = 2.2878...

YN(/\LERW t)— Y(t) uniformly int a.s. as N — oo. (The
scaling limit exists.)

Y Is almost surely self-avoiding. (Not obvious)

ELLF LERW < ‘standard’ LERW. (Not obvious)
HM (ELLF) STW (chronological erasing)
use of uniform spanning tree

—ELLF Is applicable to other kinds of
walks.
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4. Erasing loops from self-repelling walks

To construct a self-repelling walk on F; X 2, consider
paths O — a, not visiting b, ¢, d on the way.
Penalty u for sharp turns and returnsto O (0 < u <1).

N(w) =6, L(w) = 8
L(w) = no. of steps

d O T b

NOo u
Pq[w] = uN(w)xﬁ(w)_l, x, >0; ). Pilw]=1.
A natural generalization, for u = 1 gives the simple RW :

Plwl = ()7 m =1/4.



We can define a one-parameter family of self-repelling
walks on Fy X 2 recursively.

u =1 — the simple random walk.
u = 0 — a self-avoiding walk with the same
displacement exponent v as that for the standard SAW.

This model of self-repelling walks interpolates the simple
random walk and SAW continuously.
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Thm. 2 (Hambly, T. Hattori, K.H. 2002)
The scaling limit Z(t) exists. (BM for u = 1)
(a special feature) Vs > 0,

dC, = Cl(u, S), C, = Cz(u, S) > ()

€, < liming FIZ0)]

o EIZ0F]

< lim su < (Cs.
tVS

v = f(u) IS a continuous function in u,

f(0) =vsaw =log2/log Asaw, f(1) =log?2/logb.

v IS equal to the displacement exponent for the
self-repelling walk (edge length=1).

cf. vis either 1 or 1/2 for some models of self-repelling
walks on Z.
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5. Main Theorems

Self-repelling walks + erasing-larger-loops-first rule
— a new one-parameter family of ‘self-avoiding’ walks.

Thm. 3 (H-Ogo-Otsuka 2015) scaling limit

XY, - Loop-erased seli-repelling walk on Fyy X 2 (edge
length 27N).

2 < dA, < 3 (a continuous function of u) ;

X (Ayt) = X*(t) unif. int a.s as N — oo.

(The scaling limit exists.)
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Thm. 4 (H-Ogo-Otsuka 2015) path properties
1) X" i1s almost surely self-avoiding.

2) Hausdorff dimension of the sample path :
d(u) =logA,/log2 >1 a.s..

3) Ys > 0, 3C3 = Cg(u, S), C4 = C4(u, S) > (0

. ElIX®O)F] b E[|1X(#))’]

Cz; < limin < limsu s

t—0

<
t—0 tvs B C4’

where v = 1/d(u), a continuous function of u.

(Ay : the time-scaling factor X% (A)t) — X!(t))
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Summary

We applied ELLF to a family of self-repelling walks to
obtain a new family of self-avoiding walks interpolating

LERW and the ‘standard’ SAW, and studied their scaling
limits.
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Appendix

a

o b

Two conditioned simple random walks on Fy from O to a.
Py : the path measure of SRW not via b.

P}, : the path measure of SRW via b.

For example, P;[wq] = (%)2(%)4/(%). < Conditioned
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Loop erasure from the simple random walk on F;
(chronological).

L : Loop-erasing operator.
Py =PioL™!, P} =P, oL : LERW measures

( P1[w’] is the probability to get a path w’ as a result of
loop-erasure.) Infinitely many paths result in a same path by L.

These probabilities can be calculated directly by hand.
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Py =Py oL7! : LERW measure (SRW not via b)

1 4 R 2

Pqlwq] = > Pqlw,] = Pqlws] = 5/
Pi[ws] = Pilws] = Prlws] = o, Pilws] = —
1l = F1|W5s] = 1w6—30, 1 7—15,

Pi[w;1=0,i=8,9,10.
39






Generating functions

Wy : The set of loopless paths on Fy from O to a. For a
path w € Wy, count the numbers of 27N - sized triangles
w passes through:

M -
, ,
, .
.
.
. S * S
e i)
................
.
.
.
.
.
.
.
.

s1(w) = #{triangles of Type 1}, s»(w) = #{triangles of Type 2}

Random variables
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s1(w) = #{Type 1}, sp(w) = {Type 2}

s1(w) = 2, sy(w) =

.........

................

Number of steps : L(w) = s1(w) + 2s5(w)
(In other words, the ‘time’ it takes to go O — a If jJumps
occur at integer times.)
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Py =PyolL™, P} =P oL : LERW path measures
Define generating functions by

Oy (x,y) = Z Pr(w) x1®) y2@),

we WN

On(x, y) = Z P (w) 01 @) 422@) e > 0.

ZUEWN

s1(w) = #{27N-triangles of Type 1}, s,(w) = #{Type 2}.
The ELLF rule leads to the following recursions.
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Recursions

CI)N+1(x/ ]/) — CDl ((DN(XI y)/ ®N(x/ y))
®N+1(x, y) = O, ((DN(.’X?, y), @N(x, y))/ N € IN.

1
D(x,y) = %(15x2 + 8xy + y* + 2x°y + 4x°).

1
O1(x, y) = E(5x2 + 11xy + 2y* + 14x*y + 8x° + 5xy?).
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Mean matrix of the number of triangles

50D £O(L1)

M =
i %@)1(1/ 1) 3%/@1(1/ 1) |

[l
g I
7= [l

The larger eigenvalue

1
Aerw = 72(20 + V205) = 2.2878... ..

This number determines the time-scaling factor, the
growth exponent, the exponent for short time behavior
and the path Hausdorff dimension.
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Kolmogorov extension theorem

+ the limit theorem of branching processes
+ recursions

— the scaling limit and v.
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