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0. Introduction
We consider non-Markovian processes/random walks,
that is, processes/random walks whose future behavior
depends not only on the present state but also their past
history.

In general, stochastic processes that lack Markovian
property are tough to study, but on some fractal spaces,
rigorous and interesting results have been obtained.
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Markovian vs. Non-Markovian
Markovian　　　　 non-Markovian
A Simple random walk　 A self-avoiding walk
jumps to one of the nearest　　cannot visit any sites
sites with equal probability.　　　more than once.　　　
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Definition of ‘standard’ self-avoiding walk (SAW) on Zd:

For each fixed n, consider the set of all n-step self-　
avoiding paths on Zd starting from O, that is,
(w(0),w(1), · · · ,w(n)) satisfying w(0) = O, w(i) ∈ Zd,
|w(i) − w(i − 1)| = 1, i = 1, 2, · · · ,n, w(i) , w( j), i , j.
Assign equal probability to each n-step path.

O

w(2) n = 7

w(1)

w(7)

SAW originated in chemistry as a model of long
polymers (1950’s, 1960’s).
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Two basic questions

(1) How far does an n-step walk go on average?

w(n): the location after n-steps,
| w(n) |：Euclidian distance from O.

O

|w(n)| n = 6

Mean square displacement　 E[|w(n)|2] ∼ ?　n→∞
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If the mean square displacement shows a power
behavior like E[|w(n)|2] ∼ n2ν,　n→∞,
we call ν the displacement exponent .

cf. Simple random walk on Zd

　　E[|w(n)|2] = n, ν = 1/2.

As we will see later, the same exponent ν governs the
short time behavior of the scaling limit.
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(2) Scaling limit (the limit as the edge length a→ 0)
Does the scaling limit exist? (Does the SAW converge to
any limit process as a→ 0?)
If yes, what is the limit process like?

a

cf. The simple random walk on (aZ)d converges to the
d-dimensional Brownian motion as a→ 0.
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SAW on Zd

displacement exponent　 　　　scaling limit
　　　(See also Sec. 4)
d = 1　　ν = 1　　　　　　　　　　 trivial
d = 2　　ν = 3

4 　　　　　　　 　　 SLE8/3

d = 3　　ν = 0.5876 · · ·　　　　　　　?
d = 4　　ν = 1

2+(log correction) 　　BM
d ≥ 5　　ν = 1

2　　　　　　　　　BM　 (Hara, Slade)　

blue : conjectures.

Low dimensions are extremely tough!　

=⇒What about SAW on fractals?
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　displacement exponent　　　　scaling limit
d = 1　　ν = 1　　　　　　　　　　 trivial
Sierpinski gasket
dH = 1.58 ν = log 2/ logλSAW = 0.798 · · ·　SA process
　　λSAW = (7 −

√
5)/2

d = 2　　ν = 3
4 　　　　　　　 　　 SLE8/3

d = 3　　ν = 0.5876 · · ·　　　　　　　?
d = 4　　ν = 1

2+(log correction) 　　BM
d ≥ 5　　ν = 1

2　　　　　　　　　BM　 (Hara, Slade)　
Though low-dimentional, results on the scaling limit of
the SAW on the Sierpinski gasket have been obtained.

Next section→ A new kind of non-Markovian random
walk introduced in 1980.
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1. Loop-erased random walk

A simple random walk on a graph
jumps to a nearest neighbor site with equal probability.

　

O
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1. Loop-erased random walk

From a simple random walk on a graph, erase loops
chronologically→ Loop-erased random walk.

　

O
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1. Loop-erased random walk

From a simple random walk on a graph, erase loops
chronologically→ Loop-erased random walk.

　

O
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1. Loop-erased random walk

From a simple random walk on a graph, erase loops
chronologically→ Loop-erased random walk.

　

O

　
We’ve got a loop. 　
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1. Loop-erased random walk

From a simple random walk on a graph, erase loops
chronologically→ Loop-erased random walk.

　

O

We erased the loop! 　
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1. Loop-erased random walk

From a simple random walk on a graph, erase loops
chronologically→ Loop-erased random walk.

　

O

　
Start anew.
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1. Loop-erased random walk

From a simple random walk on a graph, erase loops
chronologically→ Loop-erased random walk.

　

O
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1. Loop-erased random walk

From a simple random walk on a graph, erase loops
chronologically→ Loop-erased random walk.

　

O

LERW (introduced by G. Lawler, 1980) does not
intersect with itself (self-avoiding), but has a different
distribution from the standard SAW.
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Results concerning LERW on Zd (2000～) by
Lawler, Schramm, Werner, Kozma, Kenyon, Masson,
Shiraishi, Suzuki, · · ·
　　growth exponent　　 scaling limit (edge length→ 0)
d = 2　α−1 = 4/5,　　　　SLE2 curve
d = 3　 ∃α−1, α−1 = 0.617 · · ·，∃ a scaling limit．
d ≥ 4　α−1 = 1/2　　　　 Brownian motion
α: growth exponent　(believed : ν = α−1)
Mn : number of steps from O to the circle of radius n.

Mn ∼ nα.
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Remark
The displacement exponent

O

|w(n)|
E[|w(n)|2] ∼ n2ν

The growth exponent　α 　

O B

E[Mn] ∼ nα
n

Mn : steps to ∂B

　
Next section→What about LERW on a fractal graph?
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2. Pre-Sierpinski gaskets

△Oab : a unit triangle.
pre-Sierpinski gasket FN : a graph with edge length 2−N.
　

F1

a

bO O b

a

F2
O b

a

F3

1
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1

a

O b

2−N

　

pre-Sierpinski gasket FN : a graph with edge length 2−N.
　
Sierpinski gasket　 F = ∪∞N=1FN (closure) 　a fractal

We are interested in the limit of the loop-erased random
walks on FN as the edge length δ = 2−N → 0 (scaling
limit).
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3. Erasing-larger-loops-first rule (ELLF)

ZN : a simple random walk on FN, starting at O and
stopped at a. We condition that it has no loops of
diameter 1 (ex. no return trip O→ b→ O etc.).

O b

a

F3

Erase loops from its path.
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On F1 we erase loops chronologically.

a

O b

F1 a

O b

w
LwL

1

2

3

4

5

a

O b

a

O b

w
LwL

1

3

2
4

5

L: the loop-erasing operator.
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On FN, N ≥ 2→ Erasing-larger-loops-first rule
(ELLF)　not chronological

O b

a

F3

Erase loops with diameter in [1/2, 1) =⇒ Erase loops
with diameter in [1/4, 1/2) =⇒ Erase loops with diameter
in [1/8, 1/4) =⇒ · · · →　Recursions　
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On FN, N ≥ 2→ Erasing-larger-loops-first rule
(ELLF)

O b

a

F3

Erase loops with diameter in [1/2, 1) =⇒ Erase loops
with diameter in [1/4, 1/2) =⇒ Erase loops with diameter
in [1/8, 1/4) =⇒ · · · →　Recursions　

26



On FN, N ≥ 2→ Erasing-larger-loops-first rule
(ELLF)

O b

a

F3

Erase loops with diameter in [1/2, 1) =⇒ Erase loops
with diameter in [1/4, 1/2) =⇒ Erase loops with diameter
in [1/8, 1/4) =⇒ · · · →　Recursions　
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On FN, N ≥ 2→ Erasing-larger-loops-first rule
(ELLF)

O b

a

F3

Erase loops with diameter in [1/2, 1) =⇒ Erase loops
with diameter in [1/4, 1/2) =⇒ Erase loops with diameter
in [1/8, 1/4) =⇒ · · · →　Recursions for the generating
functions of the number of steps. (See Appendix.)
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Thm. 1. (Shinoda-Teufl-Wagner, H-Mizuno 2014)

YN : LERW on FN. λLERW = (20 +
√

205)/15 = 2.2878 . . .

YN(λN
LERW t )→ Y(t) uniformly in t a.s. as N→∞. (The

scaling limit exists.) (steps interpreted as ‘time’)

Y is almost surely self-avoiding. (Not obvious)

ELLF LERW
d
= ‘standard’ LERW. (Not obvious)

　HM (ELLF)　　　STW (chronological erasing)
　　　　　　　　　　use of uniform spanning tree

Next section→ELLF is applicable to other kinds of
walks.
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4. Erasing loops from self-repelling walks

To construct a self-repelling walk on F1 × 2, consider
paths O→ a, not visiting b, c, d on the way.
Penalty u for sharp turns and returns to O (0 ≤ u ≤ 1).

O b

a

w

u

u u

uu u

no u

N(w) = 6, L(w) = 8

L(w) = no. of steps

c

d

P1[w] = uN(w)xL(w)−1
u ,　xu > 0;

∑
P1[w] = 1 .

A natural generalization, for u = 1 gives the simple RW :
P[w] = ( 1

4 )L(w)−1 , x1 = 1/4.
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We can define a one-parameter family of self-repelling
walks on FN × 2 recursively.

u = 1→ the simple random walk.
u = 0→ a self-avoiding walk with the same
displacement exponent ν as that for the standard SAW.

This model of self-repelling walks interpolates the simple
random walk and SAW continuously.
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Thm. 2 (Hambly, T. Hattori, K.H. 2002)
The scaling limit Z(t) exists. (BM for u = 1)
(a special feature) ∀s > 0,
∃C1 = C1(u, s),C2 = C2(u, s) > 0

C1 ≤ lim inf
t→0

E[|Z(t)|s]
tνs

≤ lim sup
t→0

E[|Z(t)|s]
tνs

≤ C2.

ν = f (u) is a continuous function in u,
f (0) = νSAW = log 2/ logλSAW, f (1) = log 2/ log 5.
ν is equal to the displacement exponent for the
self-repelling walk (edge length=1).
cf. ν is either 1 or 1/2 for some models of self-repelling
walks on Z.
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5. Main Theorems

Self-repelling walks + erasing-larger-loops-first rule
→ a new one-parameter family of ‘self-avoiding’ walks.

Thm. 3 (H-Ogo-Otsuka 2015)　scaling limit
Xu

N : Loop-erased self-repelling walk on FN × 2 (edge
length 2−N).
2 < ∃λu < 3 (a continuous function of u) ;
Xu

N(λN
u t)→ Xu(t) unif. in t a.s as N→∞.

(The scaling limit exists.)
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Thm. 4 (H-Ogo-Otsuka 2015)　path properties
1) Xu is almost surely self-avoiding.
2) Hausdorff dimension of the sample path :
d(u) = logλu/ log 2 > 1 a.s..
3) ∀s > 0, ∃C3 = C3(u, s),C4 = C4(u, s) > 0

C3 ≤ lim inf
t→0

E[|X(t))|s]
tνs

≤ lim sup
t→0

E[|X(t))|s]
tνs

≤ C4,

where ν = 1/d(u), a continuous function of u.

(λu : the time-scaling factor　　Xu
N(λN

u t)→ Xu(t))
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Summary

We applied ELLF to a family of self-repelling walks to
obtain a new family of self-avoiding walks interpolating
LERW and the ‘standard’ SAW, and studied their scaling
limits.
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Appendix
a

O bF1

a

O b

w1

Two conditioned simple random walks on FN from O to a.
PN : the path measure of SRW not via b.
P′N : the path measure of SRW via b.

For example, P1[w1] = (
1
2

)2(
1
4

)4/(
1
2

). ← Conditioned　　
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Loop erasure from the simple random walk on F1

(chronological).

　

w Lw = w′

−→

a

O b
F1

a

O b

L : Loop-erasing operator.
P̂1 = P1 ◦ L−1, P̂′1 = P′1 ◦ L−1 : LERW measures
( P̂1[w′] is the probability to get a path w′ as a result of
loop-erasure.) Infinitely many paths result in a same path by L.

These probabilities can be calculated directly by hand.
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P̂1 = P1 ◦ L−1
1 : LERW measure (SRW not via b) 　

　 w1 w2 w3 w4 w5

w6 w7 w8 w9 w10

P̂1[w1] =
1
2
, P̂1[w2] = P̂1[w3] =

2
15
,

P̂1[w4] = P̂1[w5] = P̂1[w6] =
1
30
, P̂1[w7] =

2
15
,

P̂1[wi] = 0, i = 8, 9, 10.
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P̂′1 = P′1 ◦ L−1
1 : LERW measure (SRW via b) 　

　 w1 w2 w3 w4 w5

w6 w7 w8 w9 w10

P̂′1[w1] =
1
9
, P̂′1[w2] = P̂′1[w3] =

11
90
,

P̂′1[w4] = P̂′1[w5] = P̂′1[w6] =
2
45
, 　 (b can be erased)

P̂′1[w7] =
8
45
, P̂′1[w8] =

2
9
, P̂′1[w9] = P̂′1[w10] =

1
18
.
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Generating functions

ŴN : The set of loopless paths on FN from O to a. For a
path w ∈ ŴN, count the numbers of 2−N - sized triangles
w passes through:

Type 1

Type 2

s1(w) = ♯{triangles of Type 1}, s2(w) = ♯{triangles of Type 2}

Random variables
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s1(w) = ♯{Type 1}, s2(w) = ♯{Type 2}

s1(w) = 2, s2(w) = 3

O

a

b

Number of steps : L(w) = s1(w) + 2s2(w)
(In other words, the ‘time’ it takes to go O→ a if jumps
occur at integer times.)
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P̂N = PN ◦ L−1, P̂′N = P′N ◦ L−1 : LERW path measures
Define generating functions by

ΦN(x, y) =
∑

w∈ŴN

P̂N(w) xs1(w) ys2(w),

ΘN(x, y) =
∑

w∈ŴN

P̂′N(w) xs1(w) ys2(w), x, y ≥ 0.

Type 1

Type 2

s1(w) = ♯{2−N-triangles of Type 1}, s2(w) = ♯{Type 2}.
The ELLF rule leads to the following recursions.
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Recursions

ΦN+1(x, y) = Φ1(ΦN(x, y),ΘN(x, y)).

ΘN+1(x, y) = Θ1(ΦN(x, y),ΘN(x, y)), N ∈N.

Φ1(x, y) =
1
30

(15x2 + 8xy + y2 + 2x2y + 4x3).

Θ1(x, y) =
1
45

(5x2 + 11xy + 2y2 + 14x2y + 8x3 + 5xy2).
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Mean matrix of the number of triangles

M =

 ∂
∂xΦ1(1, 1) ∂

∂yΦ1(1, 1)
∂
∂xΘ1(1, 1) ∂

∂yΘ1(1, 1)

 = [ 9
5

2
5

26
15

13
15

]
The larger eigenvalue

λLERW =
1
15

(20 +
√

205) = 2.2878 . . . .

This number determines the time-scaling factor, the
growth exponent, the exponent for short time behavior
and the path Hausdorff dimension.
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Kolmogorov extension theorem
+ the limit theorem of branching processes
+ recursions
=⇒ the scaling limit and ν.
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