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Main goal

Present some applied problems (mainly in Economics and Finance)
which can be naturally formulated as stochastic control problems
in infinite dimensional spaces and briefly discuss how they can be
approached and, sometimes, solved.

We will focus on the Dynamic Programming Approach.
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Overview
• Two introductory models with solution:

– Optimal consumption in growth models;

– Pricing/hedging contingent claims.

• Related infinite dimensional problems:

– Growth and optimal investments with age structure;

– Pricing and hedging in delay/path dependent financial models
and in forward mortality models.

– Optimal portfolio and optimal advertising with history depen-
dent dynamics.

• Discussion on the solution methods.

• An example of results: models with delay.
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Two introductory models:

optimal consumption in growth models and

pricing/hedging contingent claims
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STARTING PROBLEM 1: OPTIMAL
CONSUMPTION (RAMSEY GROWTH MODEL)

• State equation:
(

x0(t) = fP (x(t))° c(t) =: i(t), t > 0

x(0) = x0 > 0,

where, at time t ∏ 0, c(t) is the consumption rate (the control),
x(t) is the capital stock (the state), fP : [0,+1) °! [0,+1) is
the per capita production function (usually increasing and
concave). xx0,c(·)(t) denotes the unique solution at time t.

• Constraints c(·) ∏ 0, x(·) ∏ 0, (sometimes also x0(·) ∏ 0).

• Problem: Maximize the intertemporal utility

J(x0; c(·)) :=
Z 1

0
e°Ωtu(c(t))dt

where Ω > 0, and u(·) : [0,+1) °! R is increasing and concave.

For example u(c) = uæ(c) :=
c1°æ°1
1°æ for æ > 0.
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Stochastic variants:

• (see e.g. [Malliaris-Brock ’82, Morimoto ’10]) add a white noise
term æx(t)Ẇ (t) in the state equation.

(

dx(t) = [fP (x(t))° c(t)]dt+ æx(t)dW (t), t > 0

x(0) = x0 > 0,

• (see e.g. [Constantinides ’90, Obstfeld ’94]) add a new con-
trol Æ(t) (investment in ”risky” asset) and a white noise term
æÆ(t)Ẇ (t) in the state equation. fP is linear.

(

dx(t) = [rx(t) + (µ° r)Æ(t)° c(t)]dt+ æÆ(t)dW (t), t > 0

x(0) = x0 > 0,

In both cases the goal is to maximize the expected value of the
functional J above.

NOTE: in the two models above also Levy noise can be used
[Steger 05, Posch-Walde ’11].
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DYNAMIC PROGRAMMING (DP1 - EASY)

• Consider the problem for generic initial datum x and define the
value function

V (x0) = sup
c(·) admissible at x0

J(x0; c(·)).

• Prove that the value function satisfies a functional equation
which is the so called Dynamic Programming Principle (DPP).

V (x0) = sup
c(·) admissible at x0

Ω

Z t

0
e°Ωsu(c(s))ds+ e°ΩtV (xx0,c(·)(t))

æ

.

• Write the PDE version of the DPP, the so called Hamilton-
Jacobi-Bellman equation (HJB). If the value function V is
smooth, then it solves the HJB equation.
But we do not know ex ante that V is smooth!
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DYNAMIC PROGRAMMING (DP2 - HARD)

• Prove that the associated HJB equation has a classical solution
v (possibly, but not necessarily, v = V ).

• Use the fact that v solves the HJB equation to prove, via the
so called Verification Theorem that:

– v = V and

– there exist a (possibly unique) optimal control strategy c§ in
feedback form, i.e. c§(t) = G(x§(t)) where x§ is the associated
state trajectory and G (the feedback map) depends on the
derivative of v.

For the stochastic variants the procedure is the same. Methods of
proof are more difficult and HJB is different as it contains a second
order term (by Ito Formula). See the lectures of prof. Oksendal.
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DP APPROACH FOR THE STARTING PROBLEM 1
• The associated HJB equation is

Ωv(x) = fP (x)v
0(x) +H0(v

0(x)), x > 0 (1)

where

H0(p) := sup
c∏0

{°cp+ u(c)}

with the boundary condition v(0) = 0. We call G0(p) the argmax
of the Hamiltonian (G0(p) =

n

p°
1
æ

o

when u = uæ and p > 0).

In the stochastic case, by Ito formula, the function H0 also
depends on v00. E.g. in the first variant we simply add 1

2æ
2x2v00(x).

• The value function V is the unique classical (C1) solution of
the HJB equation above satisfying a suitable growth condition
at infinity. When fP is linear and u = uæ, V can be computed
explicitly: V (x) = Ax1°æ, for given A 2 R.
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• The feedback map G associated with V is given by

G(x) := G0(V
0(x)),

≥

G(x) = V 0(x)°
1
æ if u = uæ

¥

.

So, substituting c(t) = G(x(t)) in the state equation we get the
Closed Loop Equation (CLE)

(

x0(t) = fP (x(t))°G(x(t)),

x(0) = x0 > 0,

which admits a unique solution x§(·).

• The feedback strategy c§(t) := G(x§(t)) is admissible and is the
unique optimal strategy.

Note: we need V 2 C1 to well define the optimal feedback
map G. This is false in general (e.g. when fP is not concave).

In the stochastic case, if the diffusion coefficient depends on the
control (e.g. in the second variant), then also the second derivative
V 00 needed to define G.
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STARTING PROBLEM 2: PRICING/HEDGING OF
EUROPEAN CONTINGENT CLAIMS

Consider a market with two assets: a risk free asset U which has
the deterministic dynamics

dUt = rUt dt U0 = 1

and a stock price x, with the dynamics

dxt = µ(t, xt)xt dt+ ∫(t, xt)xt dBt x0 = y0 2 R+ (2)
with µ, ∫ : [0, T ] £ R °! R deterministic functions and B standard
Wiener process generating a filtration Ft.

For any given g : R °! R, consider the two problems:

1. find a “fair price” ºt at time t of the claim g(xT );

2. find a self-financing portfolio strategy: processes hU and hx such
that (defining V = hUU + hx):

• dVt = hU,t dUt + hx,t dxt (self-financing condition);

• VT = g(xT ) (replicability condition).
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The Risk Neutral Valuation Formula

Standard arguments based on absence of arbitrage conditions imply
(see prof. Eberlein lectures)

ºt = e°r(T°t)EQ
h

g(x0,y
0

T
)
Ø

Ø

Ø

Ft

i

where Q is the (unique) equivalent martingale measure of the mar-
ket, y0 is the initial condition for x and x

s,y
t is the solution of (2)

with initial condition xs = y.
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The solution of a Kolmogorov PDE
gives the price function

Under suitable differentiability conditions on the coefficients of the
stock dynamics and on g it can be proved (as in the lectures of prof.
Beck for the case of the heat equation) that the function

u(s, y0) = e°r(T°s)EQ
h

g(xs,y
0

T
)
i

solves the Kolmogorov-type equation
8

>

>

<

>

>

:

@tu+ rx@xu+ 1
2∫

2(t, x)@2xxu° ru = 0

u(T, x) = g(x)

(3)

When ∫ is constant this is the well known Black-Scholes equation.
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The solution of a Kolmogorov PDE
gives the hedging strategy

The hedging strategy can be found via BSDE. Nevertheless, once
having the solution of (3), an explicit form is given by

hU,t =
u(t, x0,y

0

t )° x
0,y0

t @y0u(t, x
0,y0

t )

Ut

hx,t = @y0u(t, x
0,y0

t ).

(4)

With this formulae it is possible to compute, explicitly or numerically,
the price and the hedging strategy of a given contingent claim.

Remark: the process hU can be constructed once we have hx.
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General Message 1:

To solve the optimal control problem
AND

to solve the pricing/hedging problem,

using “Dynamic Programming”,

we have to solve an “upper level" Partial
Differential Equation (PDE) in “classical sense"

where the “space” variable lies in the state space
of the problem.
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Related infinite dimensional problems 1:

economic growth and optimal investments
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GROWTH AND DELAY 1: TIME-TO-BUILD
(Asea-Zak ’99, Bambi ’08, Bambi-Fabbri-Gozzi ’12,

Bambi-Gozzi-Licandro ’14)

• State equation:
(

x0(t) = fP (x(t° d))° c(t), t > 0

x(t) = x0(t), t 2 [°d, 0]

Again at time t ∏ 0, c(t) is the consumption rate (control), x(t)

is the capital stock (state). fP : [0,+1) °! [0,+1) is increasing
and concave (per capita production function).

xx0(·),c(·)(t) denotes the unique solution at time t.

New feature: d is the time-to build: this gives a state equation
with delay in the state.

• Constraints c(·) ∏ 0, x(·) ∏ 0, (sometimes also x0(·) ∏ 0).
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• Problem: Maximize
Z 1

0
e°Ωtu(c(t))dt

where Ω > 0, and u(·) : [0,+1) °! R is increasing and concave.

For example u(c) = uæ(c) :=
c1°æ°1
1°æ for æ > 0.

Goal: repeat the DP program as above. Note: here the prob-
lem is path dependent °! infinite dimensional initial condition!

• Extension/Variant 1.(Federico-Gozzi-Goldys ’10). More general
dependence on the past: fp(·) depends on an integral of the
whole path with respect to a given positive measure µ on [°d, 0):

fP

µ

Z 0

°d
x(t+ ª)dµ(ª)

∂

.

In the above case µ = ±°d.
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• Extension/Variant 2. (Kydland-Prescott ’82, Bambi-Di Girolami-
Federico-Gozzi ’14). Since the quantity i(t) := fp(x(t))°c(t) rep-
resents the investments one can, in a more realistic way, put the
delay on the investment writing it as an integral of the whole
path with respect to a given positive measure µ on [°d, 0).

x0(t) =
µ

Z 0

°d
i(t+ ª)dµ(ª)

∂

.

Here we have delay in the control.

• Extension/Variant 3. (Augeraud-Bambi-Gozzi ’14). Habit for-
mation: delay appears in the functional J only. Here we have
delay in the control.

• Extension/Variant 4. (Bambi-Gozzi work in preparation).
Stochastic case of the all above. Here we may have delay in
the state and/or in the control.
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GROWTH AND DELAY 2: VINTAGE CAPITAL
(Boucekkine et al ’04, Fabbri-Gozzi ’08,

Boucekkine-Fabbri-Gozzi ’10)
• State equation:

(

x0(t) = i(t)° i(t° d)), t > 0

x(0) = x0, i(t) = i0(t), t 2 [°d, 0)

At time t ∏ 0, i(t) is the investment rate (control), x(t) is the
capital stock (state).

xx0(·),c(·)(t) denotes the unique solution at time t.

New feature: d is the time-to-scrap: this gives a state equation
with delay in the control.

• Constraints: for every t ∏ 0, c(t) := fP (x(t)) ° i(t) ∏ 0 where
fP : [0,+1) °! [0,+1) is the per capita production function.
Moreover x(·) ∏ 0.

• The functional to maximize is the same.
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GROWTH AND DELAY 3: GROWTH AND WEALTH
DISTRIBUTION (Boucekkine-Fabbri-Gozzi ’13)

• State equation: the same as in case 2 but with different mean-
ing: at time t ∏ 0, i(t) is the birth rate (control), x(t) is the
number of individuals (state).

New feature: d is the time-to-live: this gives a state equation
with delay in the control.

• Constraints: for every t ∏ 0, c(t) := a°b
i(t)
x(t)

2 [0, a] where a, b > 0.
Moreover x(·) ∏ 0.

• The functional to maximize is
Z 1

0
e°Ωtu(c(t))x(t)∞dt

where Ω > 0, ∞ 2 (0, 1), and u(·) : [0,+1) °! R is increasing and
concave. ∞ measures the degree of altruism.
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GROWTH 4: SPATIAL GROWTH
(Boucekkine-Camacho-Fabbri ’13)

• State equation:
8

<

:

@
@tx(t, ª) =

@2

@ª2
x(t, ª) + fP (x(t, ª)° c(t, ª), t > 0, ª 2 [0, 1]

x(0) = x0(ª), x(t, ª) = 0 if ª = 0, 1.

At time t ∏ 0, ª 2 [0, 1], c(t, ª) is the consumption rate (control),
x(t, ª) is the capital stock (state) and fP : [0,+1) °! [0,+1) is
the per capita production function.

xx0(·),c(·,·)(t, ª) denotes the unique solution at time t and space ª.

New feature: the variable ª denotes the space: this gives a state
equation in infinite dimension.

• Constraints: for every t ∏ 0, c(t) ∏ 0. Moreover x(·) ∏ 0.

• Same functional to maximize but with integration also in ª.
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INVESTMENTS WITH VINTAGE CAPITAL
(Barucci-Gozzi ’99, Feichtinger-Hartl-Kort-Veliov ’06,

Faggian-Gozzi ’09)
• State equation:

(

@
@tx(t, s) =

@
@sx(t, s)° ±x(t, s) + i1(t, s)), t > 0, s 2 [0, s̄]

x(0, s) = x0(s), s 2 [0, s̄], x(t, 0) = i0(t), t ∏ 0

At time t ∏ 0, and vintage s, i(t, s) is the investment rate (con-
trol) in capital of vintage s, x(t, s) is the capital stock (state).

xx0(·),i0(·),i1(·)(t, s) denotes the unique solution.

New feature: age structure in the capital and investment:
°! first order PDE.

• Constraints: for every t ∏ 0, s 2 [0, s̄], x(t, s) ∏ 0

• The functional to maximize is the profit.
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AGE STRUCTURED AND SPATIAL DIFFUSION

MODELS IN EMISSION CONTROL AND MANAGING

OF RENEWABLE RESOURCES

(e.g. Anita-Iannelli ’98, Georgiev-Margenov-Veliov ’05,
Behringer-Upmann ’14)

Models of this kind, may contain both the age structure (e.g in
finding the optimal harvesting of a fish population) and the space
diffusion (e.g. in controlling the emissions of pollutant over the
space).

They have been investigated only in few special cases.
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Related infinite dimensional problems 2:

Pricing and Hedging:

delay/path dependent models and

forward interest rate/mortality models
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Path dependent stock dynamics
(Hobson-Rogers 1998, Foschi-Pascucci 2007)

Let U as before. For x assume the dynamics (d > 0 given)
8

>

>

<

>

>

:

dxt = µ
≥

t, xt, (xs)s2[t°d,t)

¥

xt dt+ æ
≥

t, xt, (xs)s2[t°d,t)

¥

xt dBt

x0 = y0 xs = y1s for s 2 [°d, 0).

(5)
where (for fixed p ∏ 2)

• µ : [0, T ]£R£L2 (°d, 0;R) °! R and ∫ : [0, T ]£R£L2 (°d, 0;R) °!
R+ are measurable functions;

• y0 2 Lp (≠,F0,P;R+);

• y1 2 Lp
°

≠,F0,P;L2(°d, 0;R+)
¢

.Call y = (y0, y1).
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Consider a path-dependent claim
g : R£ L2(°d, 0;R) °! R

and consider again the two problems:

1. find a “fair price” ºt at time t of the derivative g
≥

x
0,y
T

, (x0,ys )s2[T°d,T )

¥

;

2. find a self-financing portfolio strategy (hU, hx).

The price process is still given by the Risk Neutral Valuation Formula

ºt = e°r(T°t)EQ
h

g
≥

x
0,y
T

, (x0,ys )s2[T°d,T )

¥

Ø

Ø

Ø

Ft

i

(6)

where Q is the unique martingale measure.
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Forward mortality rates
(Bauer-Benth-Kiesel 2012, Tappe-Weber ’14)

Let µt(ø, x) be the force of mortality for an x-year old individual at
time t in ø years.

Following e.g. [Bauer-Benth-Kiesel, 2012] a good model for µt is
the following

(

dµt =
h

@
@øµt ° @

@xµt + Æt

i

dt+ ædWt, t > 0, s 2 [0, s̄]

µ0 given for (ø, x) 2 [0,+1)2,
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To take account of newborn cohort effects Bauer and Biffis (paper
in preparation) propose to add the boundary condition

dµt(ø, 0) = Btµt(ø, 0)dt+£tdZt.

where Zt is another Brownian motion, possibly correlated with Wt.

This is a stochastic PDE with boundary noise term that can be
treated adapting the tools introduced by [Da Prato-Zabczyk 2002]
(see also Bonaccorsi-Mastrogiacomo 2010])

Also here, for insurance purposes, one is interested to solve an
associated pricing/hedging problem.
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Related infinite dimensional problem 3:

Optimal portfolio with execution delay and

Optimal advertising with memory effects
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OPTIMAL PORTFOLIO WITH
EXECUTION DELAY

The state equation is

dx(t) = b0º(t° d)dt+ æº(t° d)dB(t)

x(0) = ¥0, º(s) = º0(s) s 2 [°d, 0),

We want to maximize the functional

E [U (x(T )) dt] ,

over the set of the admissible strategies. i.e. the ones that keep

the wealth x(·) positive.

Problem under study with G. Fabbri, S. Federico and H. Pham.

Other Optimal Portfolio problems with delay/path dependent terms
are studied in [Federico, 2010], [Biffis-Gozzi-Prosdocimi, in progress],
[Gozzi-Prosdocimi-Sekine, in progress].
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OPTIMIZING THE GOODWILL’S RETURNS
The state equation is

dx(t) =

∑

a0x(t) +

Z 0

°d
a1(ª)x(t+ ª)dª + b0c(t) +

Z 0

°d
b1(ª)c(t+ ª)dª

∏

dt

+ ædB(t)

x(0) = ¥0, x(s) = ¥1(s), c(s) = c0(s) s 2 [°d, 0),

We want to maximize the functional

E

"

Z T

0
l0 (x(t), c(t)) dt

#

,

over the set of the admissible strategies.

Problem studied with C. Marinelli and now (work in progress) with
F. Masiero.
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General Message 2:

Optimal control models dealing with key applied

issues like:

- delay/path dependency,

- age structure,

- spatial heterogeneity

carry state variables (initial conditions) belonging

naturally to infinite dimensional spaces.

Hence they can be rewritten and studied as

optimal control of infinite dimensional systems.
33



How?

Discussion on the solution method

(using Dynamic Programming)



Step 1
Rewrite the state equations as ODE or SDE in a suitable infinite
dimensional (Hilbert) space with a new state variable called X(·).
The general form is of this type

(

X 0(s) = AX(s) + F (X(s), c(s)) +ß(X(s), c(s))dW (s),

X(t) = x 2 H,

• H is a suitable Hilbert space (the new state space) depending
on the specific problem.

• c(·) : [t, T ] °! C is the control (C is the control space, a Polish
space in general).

• The operator A is a linear differential operator (e.g. the Lapla-
cian in the case of spatial growth or the first derivative in the
case of age structure equations).

• W is a cylindrical Wiener process, possibly defined in a different
Hilbert space •.

• The functions F and ß depends on the nonlinear drift and dif-
fusion coefficients.
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Step 2

Similarly one rewrites the objective functional in the following gen-
eral form (© = 0 if T = +1)

J(t, x; c(·)) := IE

"

Z T

t
L(t,X(t), c(t))dt+ ©(X(T ))

#

The one defines the value function V (t, x) as function of the initial
data (t, x) and writes the corresponding HJB equation (Kolmogorov
equation in the case of pricing/hedging)

The general form of the HJB is of this type
(

@
@tV (t, x) +

D

Ax, @
@xV (t, x)

E

+H
≥

t, x, @
@xV (t, x), @2

@x2
V (t, x)

¥

,

V (T, x) = ©(x), x 2 H,

where the Hamiltonian H is defined as

H(t, x, p,Q) := sup
c2C

Ω

F (x, c), p+
1

2
ß(x, c)Qß§(x, c)

æ
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Step 3

“Solving” the HJB equation, finding, possibly, solutions with “enough
regularity” to prove the Verification Theorem and to write the op-
timal feedback map and the closed loop equation, as in the first
example.

The theory is more complicated but is doable, in some cases with
satisfaction (e.g. explicit solutions).

All the problems presented above are open in their general
setting. However one can treat many cases already interesting
for the applications.
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HJB EQUATION: WHICH KIND OF SOLUTIONS?
• If the value function is smooth (say C1 in time and space),

then it solves the HJB equation. However this argument is only
formal: in general the value function is not smooth.

• Even if the value function is smooth, it is difficult to prove
directly regularity results for the value function going beyond
the continuity.

• A good concept of solution in the context of HJB equations
seems to be the concept of viscosity solution (see e.g. [Crandall-
Ishii-Lions, 1992], [Fabbri-Gozzi-Swiech 2015]). It does not re-
quire regularity (classical or generalized) for the definition of
solution and can be used also in infinite dimension. But regu-
larity results are very rare in this context.
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To find results on existence of ”smooth” solutions to the HJB equa-
tion one can use various approaches heavily depending on the un-
derlying problem (see [Fabbri-Gozzi-Swiech 2015] for a survey).

• Explicit solutions (see e.g. [Fabbri-Gozzi, 2008] or [Biffis-Gozzi
Prosdocimi, 2015])

• Convex regularization approach (see e.g. [Barbu-Da Prato, 1980]).

• Regularization of viscosity solutions (see e.g. [Federico-Goldys-
Gozzi, 2010]). Only deterministic.

• Perturbation approach based on smoothing properties of suitable
transition semigroups (see e.g. Cannarsa-Da Prato, 1992] or
[Goldys-Gozzi, 2006]). Only stochastic.

• Using BSDEs (see e.g. [Fuhrman-Tessitore 2006]). Only stochas-
tic.
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QUESTION

What precise results can be proved and what is the use of them in
the applied models?

ANSWER

We show some results in the case of delay/path dependent equations

Then we also give an overview of future targets.
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Short introduction to delay equations

and to their infinite dimensional

representation.
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DELAY EQUATIONS

A Differential Delay Equation (DDE) is a Differential Equation in
which the knowledge of the future depends also on the past of the
state:

x0(t) = f
≥

x(t), x(t+ ª)|ª2[°d,0)

¥

.

In general for stating the evolution of the system such an equation
requires as initial datum the knowledge of the whole past trajectory

x(·)|[°d,0].

Thus the problem is basically infinite-dimensional.
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DELAY EQUATIONS: FINITE-DIMENSIONAL
REPRESENTATION 1: A SPECIAL CASE

There are some special case for which the evolution of the system
can be reduced to a finite dimensional system, which is clearly more
treatable. For example:

x0(t) = f

µ

x(t),

Z 0

°1
e∏ªx(t+ ª)dª

∂

, ∏ ∏ 0.

In this case the variable

y(t) :=

Z 0

°1
e∏ªx(t+ ª)dª

contains sufficient information for the evolution of the system, which
could be rewritten as a 2-dimensional system

(

x0(t) = f (x(t), y(t)) ,

y0(t) = °∏y(t) + x(t).
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DELAY EQUATIONS: THE FINITE-DIMENSIONAL
REPRESENTATION 2: RESULTS

Various papers treat this subject, for example

[Elsanosi-Oksendal-Sulem ’00], [Larssen-Risebro ’03],

[Bauer-Rieder 05], [Federico-Oksendal ’11], [Federico-Tankov ’14].

In particular in the last one (with first ideas in the fourth one) is
is given a complete characterization of when the finite dimensional
representation is possible. This is given in terms of invariant sub-
spaces of the operator A defined later.
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DELAY EQUATIONS: THE INFINITE DIMENSIONAL
REPRESENTATION

A classical approach to treat Differential Delay Equations (DDE’s),
consists in rewriting them as Ordinary Differential Equations (ODE’s)
in a suitable infinite dimensional space. Here we choose an Hilbert
space (R£L2). Another common choice is C0 (Banach nonreflexive
space).

The idea behind this approach is to consider as state not only the
present, but also the past, i.e. to define a new state variable repre-
senting the present and the past of the old state variable.
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Consider

H = R£ L2([°d, 0];R)
and denote by ¥ = (¥0, ¥1(·)) the generic element of this space.

We want to write an ODE in H which is, at least formally, the
infinite-dimensional counterpart of our one-dimensional DDE. More
precisely we want that the solution X(t) of the ODE in H is such
that

X(t) := (X0(t), X1(t)) =
≥

x(t), x(t+ ·)|·2[°d,0]

¥

,

where x(t) is the solution of the original DDE:

x0(t) = f
≥

x(t), x(t+ ª)|ª2[°d,0)

¥

. (7)

The equation for X0(·) come from (7), while the equation for X1(·)
come from the fact that at each t X1(t) is the past of X0(t) i.e.

X1(t)(ª) = X0(t+ ª).
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The equation in H is

X 0(t) = AX(t) + F (X(t)),

where

• A is a first order operator that generates a semigroup of shift
operators moving the past:

D(A) =
n

¥ 2 H
Ø

Ø ¥1(·) 2 W 1,2([°d, 0];R), ¥0 = ¥1(0)
o

,

A : D(A) Ω H °! H

(¥0, ¥1(·)) 7°! (0, ¥01(·)).

- On the first component A does not act;
- On the second component A is the first derivative.

The role of the boundary condition in D(A): ¥0 = ¥1(0) forces
the past to follow the present.
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• F is the counterpart of f in the DDE:

F : D(F ) Ω H °! H,

(¥0, ¥1(·)) 7°! °

f(¥0, ¥1(·)), 0
¢

.

D(F ) must be a subspace of H where f is well-defined.

For example if

f(¥0, ¥1(·)) = fP (¥(°d)),

(like in the time to build model), then we may choose

D(F )) = W 1,2([°d, 0];R)
or

D(F )) = C0([°d, 0];R)
.
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DELAY IN THE CONTROL: THE INFINITE
DIMENSIONAL REPRESENTATION

• Take a controlled DDE with delay in the control

x0(t) = f
≥

x(t), x(t+ ª)|ª2[°d,0), c(t+ ª)|ª2[°d,0)

¥

.

• Also in this case it is possible to rewrite the equation as a con-
trolled ODE in a suitable infinite dimensional space (see e.g.
Ichikawa 1982) with linearity in the control and with unbounded
control operator.

• In the linear case (see e.g Vinter-Kwong) the rewriting can be
simplified. allowing bounded control operators if the delay de-
pendence in the control is non atomic.
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Some results for a special

optimal control problem with delay terms.
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THE CONTROL PROBLEM

- State equation:
8

>

<

>

:

x0(t) = rx(t) + f0

µ

x(t),

Z 0

°d
x(t+ ª)a(ª)dª

∂

° c(t) +ædW (t),

x(0) = ¥0, x(s) = ¥1(s), s 2 [°d, 0).

• a(ª)dª is a positive Radon measure on [-d,0). Some results will
hold when we assume also that a 2 W 1,2([°d, 0];R), a(·) > 0 on
(°d, 0] and a(°d) = 0;

• f0 : R+ £ R ! R is concave, Lipschitz, nondecreasing on the
second variable and f0(0, 0) ∏ 0.
(f0 can be extended to a Lipschitz continuous function on R2.)

• state constraint: x(·) ∏ 0;

• control constraint: c(·) ∏ 0.
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- Optimization problem: Maximize, over the set
Cad(¥) =

©

c(·) 2 L1
loc([0,+1);R+) | x(·; ¥, c(·)) ∏ 0

™

,

the functional
Z +1

0
e°Ωt£U1(c(t)) + U2(x(t))

§

dt,

where

• Ω > 0;

• U1, U2 utility functions bounded from above
(we may require weaker conditions relating the growth of U1, U2

to Ω).

• U1 satisfying Inada’s conditions: U 0
1(0

+) = +1, U 0
1(+1) = 0;

• for most of the results it can be U2 ¥ 0.
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INFINITE-DIMENSIONAL REPRESENTATION

We pass from the one-dimensional DDE to an infinite-dimensional
DE (without delay): we define the Hilbert space

H = R£ L2([°d, 0];R).
The new state variable in this space is

X(t) = (X0(t), X1(t)) 2 H.

Formally we want

X0(t) = x(t); X1(t)(ª) = x(t+ ª), for a.e. ª 2 [°d, 0].
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Define

• the closed unbounded operator

A : D(A) Ω H ! H,

where

D(A) =
©

(¥0, ¥1(·)) 2 H
Ø

Ø ¥1(·) 2 W 1,2([°d, 0];R), ¥0 = ¥1(0)
™

;

and A maps

D(A) 3 (¥0, ¥1(·)) 7! (r¥0, ¥
0
1(·)).

NOTE: A is the generator of a C0-semigroup SA(·) on H.
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• the nonlinear map

F : H ! H,

µ

¥0
¥1(·)

∂

7!
µ

f(¥0, ¥1(·))
0

∂

:=

√

f0

≥

¥0,
R 0
°d a(ª)¥1(ª)dª

¥

0

!

.

NOTE: F is defined on the whole space H and is Lipschitz
continuous as an application from H to H.



Define the infinite-dimensional ODE in the space H

(

X 0(t) = AX(t) + F (X(t))° c(t)n̂ +ßdW (t),

X(0) = ¥ = (¥0, ¥1(·)) 2 H,

where n̂ = (1, 0) 2 H.

(i) The role of A in the equation.

A(X0(t), X1(t)) = (rX0(t), X1(t)
0(·)).

-On the first component A carries the linear part of the evolution
of the present.
-On the second component A moves the past as a shift.

(ii) The role of the boundary condition in D(A). The boundary
condition forces the past to follow the present, i.e. the last point
of the past has to follow the same evolution of the present.
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MILD SOLUTIONS AND EQUIVALENCE

Proposition 1 For any ¥ 2 H and c(·) 2 L1
loc

([0,+1);R), the equa-
tion

(

X 0(t) = AX(t) + F (X(t))° c(t)n̂ +ßdW (t),

X(0) = ¥ = (¥0, ¥1(·)) 2 H,

admits a unique mild solution X(·), i.e.

X(t) = SA(t)¥+

Z t

0
SA(t° ø)F (X(ø))dø +

Z t

0
c(ø)SA(t° ø)n̂ dø +WA(t).

Moreover

X(t) =
≥

X0(t), X1(t)(ª)|ª2[°d,0]

¥

=
≥

x(t), x(t+ ª)|ª2[°d,0]

¥

,

where x(·) is the unique solution of the one-dimensional delay equa-
tion.
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HJB EQUATION

Formally the HJB equation for the problem is

Ωv(¥) = hA¥,rv(¥)i+ f(¥)v¥0(¥) + U2(¥0) +H(v¥0(¥)) +
1

2
Trßß§v¥¥;

(8)
this requires in particular ¥ 2 D(A).

In order to allow ¥ 2 H we can rewrite it as

Ωv(¥) = h¥, A§rv(¥)i+ f(¥)v¥0(¥) + U2(¥0) +H(v¥0(¥)) +
1

2
Trßß§v¥¥;

requiring more regularity on the gradient of v.

Here H is the sup-Legendre transform of U1, i.e.

H(p) := sup
c∏0

(U1(c)° cp) , p > 0.

Note that H depends only on the “present” component of the
gradient of v.
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Regular solutions to the HJB equation.
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HJB EQUATION: WHICH KIND OF SOLUTIONS?
• If the value function is smooth (say C1 in time and space),

then it solves the HJB equation. However this argument is only
formal: in general the value function is not smooth.

• Even if the value function is smooth, it is difficult to prove
directly regularity results for the value function going beyond
the continuity.

• A possible strategy is to find results on existence of ”smooth”
solutions to the HJB equation. However classical PDEs theory
does not adapt to PDEs of HJB type in general even in finite
dimension. Some results are found in [Barbu-Da Prato, 1980]
with a convex regularization approach that cannot be used here.

• A good concept of solution in the context of HJB equations
seems to be the concept of viscosity solution (Crandall and
Lions, ’80). It does not require regularity (classical or general-
ized) for the definition of solution and can be used also in infinite
dimension. But regularity results are very rare in this context.
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Our case: f linear, U1 = uæ, u2 = 0:
In this case, both in the deterministic and in the stochastic case, we
can find an explicit solution v of the HJB equation (8) under some
restrictions on the data. This is very good as the DP approach can
be fully developed finding optimal feedback strategies.
For example in the papers [Bambi-Fabbri-Gozzi, ET, (2012)] (de-
terministic), [Biffis-Gozzi-Prosdocimi, in progress] (stochastic) the
linear case is fully solved explaining applied issues (like the so-called
consumption smoothing) that could not be treated with other tech-
niques. Here is easy to see that

v(¥0, ¥1) = ∫

µ

Z 0

°d
esª¥1(s)ds+ ¥0

∂1°æ

but the hard part is to prove that this is is indeed the value function
and to find optimal feedbacks. Hardness comes mainly from the
constraints.

Similar results were obtained in the other cases mentioned above
(delay in the control, age structure, spatial growth).
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f nonlinear:

In general we do not know whether there exists a classical solution
of the HJB equation or not. Our approach in this case (developed
in the papers [Federico-Gozzi-Goldys, SICON (2010)], [Federico-
Gozzi-Goldys, SICON (2011)] and generalized in [Federico-Tacconi
(2013)] in the case with delay in the control) is the following:

• Prove that the value function is a viscosity solution (possibly
but not necessarily unique) of the HJB equation.

• Prove, by using this viscosity property, that the value function
is indeed smooth and so it is a ”regular enough” solution.

• Use the fact that the value function is a ”regular enough” solu-
tion of the HJB equation to prove a verification theorem giving
an optimal strategy for the problem.

Other approaches are found e.g. in [Gozzi-Masiero, in progress],
[Gozzi-Prosdocimi-Sekine, in progress].
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FUTURE TARGETS (DETERMINISTIC CASE)

• Numerical:

– To analyze the behavior (convergence, rate of convergence)
of numerical schemes for this problem. See e.g. [Falcone et
al, 2010]

• Theoretical:

– Find other examples with explicit solutions, e.g. when con-
straints are binding. (See e.g. [Boucekkine-Gozzi-Rosestolato,
work in progress]).

– Study the properties of the optimal strategies when explicit
solutions are not available (dynamics of infinite dimensional
systems: equilibriums, stability, attractors, etc.). (See e.g.
[Bambi-Gozzi-Licandro, JET ’14]).
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FUTURE TARGETS: STOCHASTIC CASE

To treat the case when a finite dimensional (additive or multiplica-
tive) white noise is added to the state equation: various projects/works
in progress with Biffis, Federico, Masiero, Pham, Rosestolato, Russo,
Swiech, Touzi on the applied models listed above and on theoretical
results.
The main problems here are:

• the HJB is now degenerate second order (fully nonlinear if the
control is in the diffusion coefficient, semilinear otherwise);

• If there is delay in the control the HJB equation does not satisfy
the so-called “structure condition” needed e.g. to use the BSDE
approach to the problem.

• the verification theorem is much harder even in finite dimension.
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Work in progress on this:

• Biffis, Federico, G., Prosdocimi, on optimal portfolio choices
with retirement.

• Fabbri, Federico, G., Pham, on optimal portfolio with execution
delay.

• G., Masiero, on the case with delay in control„ regularity for
HJB (with possible application to advertising models, see e.g.
the work of Marinelli).

• Di Girolami, Federico, G., Russo, Rosestolato, Swiech on gen-
eral regularity theorems and verification theorems.

• Cosso, Federico, G., Rosestolato, Touzi on the use of path de-
pendent calculus (introduced by Dupire) to solve the associated
Kolmogorov and HJB equations in the viscosity sense.
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General Message 3:

We can solve satisfactorily
some infinite dimensional PDEs

AND
use the result to solve the applied problem above

Hence infinite dimensional problems are not
impossible. They are possible

(sometimes difficult).

Technique should studied and adapted
carefully for each case
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THANKS A LOT FOR YOUR ATTENTION.
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