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Self-similar Markov processes (ssMp)

Definition
A strong Markov process (X; : t > 0) on R with RCLL paths, with
probabilities Py, x € R, is a ssMp if there exists an index o € (0, 00) such

that, for all ¢ > 0 and x € R,
(cXic—a 1 t > 0) under Py
is equal in law to

(Xt : t > 0) under Pg.

Definition
pssMp if sample paths are positve and absorbed at the origin.
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This is a small tour through some Markov process theory along the
example of self-similar processes.

We discuss

Examples
——

results for ssMps SDEs

Note: Goal of these lectures is an SDE point of view (inspired by work of
Maria-Emilia, Amaury, Zenghu & friends) rather than the stable process
point of view of Kyp & friends.
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Warning: We do NOT arrive at the most general results for ssMps.

Our journey is the destination!

Our journey goes through ideas from stochastic calculus and many
examples towards one particular result for ssMps.
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Content

Examples and Brownian SDEs
Lamperti's representation for pssMps and generators
Examples

Lamperti SDE and Jump Diffusions
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Content

@ Examples and Brownian SDEs

@ Lamperti's representation for pssMps and generators
@ Examples
°

Lamperti SDE and Jump Diffusions
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Several Examples of ssMps

@ Brownian motion (Bt) is a ssMp with index 2
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Several Examples of ssMps

@ Brownian motion (Bt) is a ssMp with index 2

o stopped Brownian motion (B:1(7,>y)) is @ pssMp with index 2
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Several Examples of ssMps

@ Brownian motion (Bt) is a ssMp with index 2
o stopped Brownian motion (B:1(7,>y)) is @ pssMp with index 2
@ Bessel processes of dimension 0 - Bes(d) - i.e. solutions of

6—11
dXt—TZdt—l—dBt

give pssMp with index 2.
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Several Examples of ssMps

@ Brownian motion (B;) is a ssMp with index 2
o stopped Brownian motion (B:1(7,>y)) is @ pssMp with index 2

@ Bessel processes of dimension 0 - Bes(d) - i.e. solutions of

0—11

give pssMp with index 2.
o squared-Bessel processes of dimension § - Bes?(J) - i.e. solutions of

dXt - (5 dt + 2 vV XtdBt

give pssMps with index 1.

Leif Déring Self-Similar Markov Processes (and SDEs) 7. August 2015 7/ 64



Several Examples of ssMps

@ Brownian motion (B;) is a ssMp with index 2
o stopped Brownian motion (B:1(7,>y)) is @ pssMp with index 2

@ Bessel processes of dimension 0 - Bes(d) - i.e. solutions of

0—11

give pssMp with index 2.

o squared-Bessel processes of dimension § - Bes?(J) - i.e. solutions of
dXt == (5 dt + 2 vV XtdBt

give pssMps with index 1.

@ Brownian motion conditioned to be positive (BT) is a pssMp with
index 2
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How to check Self-Similarity?

There is no general approach!

For (B:) show that scaled process is also a BM.

°
o For (Bt1(t,>¢)) consider the joint process (B, infs<; Bt).
@ Show the process is “limit" of self-similar processes.

°

For the SDE examples use SDEs Theory.
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Self-Similarity for Bes?(9)
tc!
Xpe1 = C (xo +otct +/ 2/ Xs st>
0
t
=cXp + o0t + C/ 24/ X1 d(BSC—l)
0

t
= cXp + It +/ 2v/cXee-1 d(v/cBge1)
0

t
=: CX0-|-6t—|—/ 2/ cXge—1 dW,.
0
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Self-Similarity for Bes?(9)
te!
Xpe1 = C (xo + 6tc 1 +/ 2/ Xs st>
0
t
=cXp + 0t + C/ 2/ Xse—1 d(Bge-1)
0

t
= cXp + It +/ 2v/cXee-1 d(v/cBge1)
0

t
=: CX0-|-5t-|-/ 2/ cXge—1 dW,.
0

Hence, (X¢) and (cX;-1) both satisfy the same SDE
dXt == 6dt + 2 \V XtdBt

driven by some Brownian motions.
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Self-Similarity for Bes?(9)
te!
Xpe1 = C (xo + 6tc 1 +/ 2/ Xs st>
0
t
=cXp + 0t + C/ 2/ Xse—1 d(Bge-1)
0

t
= cXp + It +/ 2v/cXee-1 d(v/cBge1)
0

t
=: CX0-|-5t-|-/ 2/ cXge—1 dW,.
0

Hence, (X¢) and (cX;-1) both satisfy the same SDE
dXt == 6dt + 2 \V XtdBt

driven by some Brownian motions.

Why does this imply Bes?(d) is ssMp? — Need some SDE theory.
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1dim SDE Theory
Consider the 1dim SDE

dXt = a(Xt)dt + O'(Xt)dBt, XO S R,
driven by a BM.

Notation (Solutions)

@ A (weak) solution is a stochastic process satisfying almost surely the
integrated version

t

t
xt:xo+/ a(Xs)ds+/ o(X.)dBs, Xo € R.
0 0

@ A solution is called strong if it is adapted to the filtration generated
by the driving noise (B).

Reference e.g. Karatzas/Shreve
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1dim SDE Theory

Question: Which SDEs can you solve explicitly?
Roughly everything that comes from 1to's formula calculations.

Exercise: Play around with the exponential function to solve

dXt = aXtdt + O'XtdBt.

Example: Which SDE is solved by X; = B3
— blackboard?
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1dim SDE Theory
Consider the SDE

dXt = a(Xt)dt —+ O'(Xt)dBt, XO S R.

Notation (Uniqueness)

@ We say weak uniqueness holds if any two weak solutions have the
same law.

@ We say pathwise uniqueness holds if any two weak solutions are
indistinguishable.
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1dim SDE Theory
Consider the SDE

dXt = a(Xt)dt + O'(Xt)dBt, XO e R.

Notation (Uniqueness)

@ We say weak uniqueness holds if any two weak solutions have the
same law.

@ We say pathwise uniqueness holds if any two weak solutions are
indistinguishable.

Example: Tanaka's SDE
dXt = sign(Xt)dBt

has a weak solution, has no strong solution, weak uniqueness holds,
pathwise uniqueness is wrong. sign is a bad function!

— blackboard
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1dim SDE Theory

If a and o are Lipschitz, then there is a unique strong solution.

Theorem (Ito) J

Proof: Fixpoint theorem in good process space — constructive.
Problem: No interesting function is globally Lipschitz.
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1dim SDE Theory

If a and o are Lipschitz, then there is a unique strong solution.

Theorem (Itd) J

Proof: Fixpoint theorem in good process space — constructive.
Problem: No interesting function is globally Lipschitz.

Theorem

If a and o are locally Lipschitz and grow at most linearly, then there is a
unique strong solution.

Problem: Many interesting functions are not locally Lipschitz.
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1dim SDE Theory

If a and o are Lipschitz, then there is a unique strong solution.

Theorem (Itd) J

Proof: Fixpoint theorem in good process space — constructive.
Problem: No interesting function is globally Lipschitz.

Theorem

If a and o are locally Lipschitz and grow at most linearly, then there is a
unique strong solution.

Problem: Many interesting functions are not locally Lipschitz.

Theorem (Strook/Varadhan) J

If a and o are bounded and continuous, then there is a weak solution.
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1dim SDE Theory

Pathwise uniqueness implies weak uniqueness.

Theorem J
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1dim SDE Theory
Theorem J

Pathwise uniqueness implies weak uniqueness.

Weak existence and pathwise uniqueness imply strong existence.

Theorem J
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1dim SDE Theory

Theorem
Pathwise uniqueness implies weak uniqueness.

Theorem
Weak existence and pathwise uniqueness imply strong existence.

Theorem
Weak uniqueness implies strong Markov and Feller properties.
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1dim SDE Theory

Theorem

Pathwise uniqueness implies weak uniqueness.

Theorem

Weak existence and pathwise uniqueness imply strong existence.

Theorem
Weak uniqueness implies strong Markov and Feller properties.

Theorem (Yamada/Watanabe - Brownian case)

If ais locally Lipschitz and o is locally %—Hb’lder, then pathwise uniqueness
holds.

v

— blackboard

Note: Apply same strategy whenever you have an It formula!

Leif Déring Self-Similar Markov Processes (and SDEs) 7. August 2015 14 / 64



1dim SDE Theory

Remarks:
@ To prove pathwise uniqueness there is a strategy!

@ There is no general strategy to prove weak uniqueness!

This is a strange problem: Only know how to proceed in the harder case.

Leif Déring Self-Similar Markov Processes (and SDEs) 7. August 2015 15 / 64



1dim SDE Theory

Remarks:
@ To prove pathwise uniqueness there is a strategy!

@ There is no general strategy to prove weak uniqueness!

This is a strange problem: Only know how to proceed in the harder case.

Note: All results (in law) extend to general stochastic equations (Kurtz).
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1dim SDE Theory

Remarks:
@ To prove pathwise uniqueness there is a strategy!

@ There is no general strategy to prove weak uniqueness!

This is a strange problem: Only know how to proceed in the harder case.
Note: All results (in law) extend to general stochastic equations (Kurtz).

Note: Pathwise uniqueness results differ for different noise; proofs usually
same strategy but ugly.
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Question

How would you construct a positive strong solution for
dXy = odt + 24/ XedBy, Xo =0,
for 6 > 07 For 6 <07

Note that
@ a =/ is Lipschitz
o o(x) =2y/x is 3-Hdlder

so pathwise uniqueness holds.
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A Counterexample

The SDE
dX; = |X:|%dB;,  Xo =0,

has precisely one solution X; =0 if § > %
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A Counterexample

The SDE
dXt |Xt| dBt, XO == 0,
has precisely one solution X; =0 if § > %

For 8 < 5 L there are infinitely many solutions.
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A Counterexample

The SDE

dX; = |X¢|PdB:, Xo =0,
has precisely one solution X; =0 if § > %
For 5 < % there are infinitely many solutions.

The equation has only one solution X € S where

S = {(Xt)tzo . / l(sto) ds =0 3.5.}
0

Very hard and due to Bass/Burdy/Chen.
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Another Counterexample

The SDE
dXy = 3X}3dt + 3X?/2dB,, Xo =0, (1)
has infinitely many solutions (both real and non-negative).

But: The SDE has only one positve solution in S.
— blackboard
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Another Counterexample

The SDE
dXy = 3X}3dt + 3X?/2dB,, Xo =0, (1)

has infinitely many solutions (both real and non-negative).

But: The SDE has only one positve solution in S.
— blackboard

Question: Can you relate all solutions to the solutions in §7

Leif Déring Self-Similar Markov Processes (and SDEs) 7. August 2015 18 / 64



A Consequence to Self-Similarity
Uniqueness holds for

dXt - 6dt + 2\/ XtdBt,

hence, solutions are strong Markov and (X;) £ (cXye-1), so Bes?(6) is a
ssMp with index 1.
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A Consequence to Self-Similarity
Uniqueness holds for

dXt - 6dt + 2\/ XtdBt,

hence, solutions are strong Markov and (X;) £ (cXye-1), so Bes?(6) is a
ssMp with index 1.

Remark: Same argument shows that interesting positive solution to SDE
(1) defines a ssMp. Or, use
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A Consequence to Self-Similarity
Uniqueness holds for

dXt - 6dt + 2\/ XtdBt,

hence, solutions are strong Markov and (X;) £ (cXye-1), so Bes?(6) is a
ssMp with index 1.

Remark: Same argument shows that interesting positive solution to SDE
(1) defines a ssMp. Or, use

Lemma

In general, suppose (X;) is a pssMp with index «, then (X{) is a pssMp
with index 1.

Proof:
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A Consequence to Self-Similarity
Uniqueness holds for

dXt = 6dt + 2\/ XtdBt,

hence, solutions are strong Markov and (X;) = £ (cXpe-1), s0 Bes?(6) is a
ssMp with index 1.

Remark: Same argument shows that interesting positive solution to SDE
(1) defines a ssMp. Or, use

Lemma

In general, suppose (X;) is a pssMp with index «, then (X{) is a pssMp
with index 1.

Proof: Set Y = X%, then

(Cytcfl)tzo = ((Cl/axtc*l) )t>0 (( Vex t(cl/e)—e )a)tzo = (Yt)tZO
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To remember for later

Solutions to
dXt - 5dt + 2\/ XtdBt,

for a ssMp that is NOT absorbed at zero if only if § > 0. Recall, a pssMp
is by definition absorbed at 0.
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A discontinuous ssMp

Definition

A Lévy process (X;) is called (strictly) a-stable if it is also a self-similar
Markov process.
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A discontinuous ssMp

Definition
A Lévy process (X;) is called (strictly) a-stable if it is also a self-similar
Markov process.

@ Theorem: o € (0,2]. [ =2 — BM, exclude this.]
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A discontinuous ssMp

Definition
A Lévy process (X;) is called (strictly) a-stable if it is also a self-similar
Markov process.

@ Theorem: o € (0,2]. [ =2 — BM, exclude this.]
o Theorem: Characteristic exponent W() := — log E(e!?%1) satisfies

W(0) = 107G gog) + e TGy ), BER,

where p = Po(X; > 0).
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A discontinuous ssMp

Definition
A Lévy process (X;) is called (strictly) a-stable if it is also a self-similar
Markov process.

@ Theorem: o € (0,2]. [ =2 — BM, exclude this.]

0X1) satisfies

@ Theorem: Characteristic exponent W(6) := — logE(e
() = 101G gog) + e G yg), OER

where p = Po(X; > 0).
@ Theorem: Assume jumps in both directions, then

Ml+a) 1

T ‘X|1+a

MN(dx) = ( (sin(rap)lxsoy + sin(waﬁ)l{x<o})) dx
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Content

@ Examples and Brownian SDEs

@ Lamperti's representation for pssMps and generators
@ Examples
°

Lamperti SDE and Jump Diffusions
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Notation

o Let (&) a Lévy process which is killed and sent to the cemetery state
—o00 at an independent and exponentially distributed random time
with rate in g € [0, 00).
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Notation

o Let (&) a Lévy process which is killed and sent to the cemetery state
—o00 at an independent and exponentially distributed random time
with rate in g € [0, 00).

o Sometimes write £ if started in x, but always & = £(0).
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Notation

o Let (&) a Lévy process which is killed and sent to the cemetery state
—o00 at an independent and exponentially distributed random time
with rate in g € [0, 00).

o Sometimes write £ if started in x, but always & = £(0).

@ Define the integrated exponential Lévy process

t
Iy = / eaﬁsds, t >0,
0

and its limit | := limgpoo Ig.
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Notation

o Let (&) a Lévy process which is killed and sent to the cemetery state
—o00 at an independent and exponentially distributed random time
with rate in g € [0, 00).

o Sometimes write £ if started in x, but always & = £(0).

@ Define the integrated exponential Lévy process

t
Iy = / eaﬁsds, t >0,
0

and its limit | := limgpoo Ig.

@ Define the inverse of the increasing process /:
o(t) =inf{s >0: /s > t}, t>0.

As usual, we work with the convention inf ) = .
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Lamperti transform for POSITIVE ssMp
Theorem (Part (i))

If XX, x >0, is a pssMp with index «, then it can be represented as
follows. For x > 0,

XEX) = Xexp{f(p(x—at)}v t < Ty,

and & is a (possibly killed) Lévy process.
Furthermore, () = xI,, where () = inf{t >0 : Xt(X) < 0}.

Leif Déring Self-Similar Markov Processes (and SDEs) 7. August 2015 24 / 64




Lamperti transform for POSITIVE ssMp
Theorem (Part (i))

If XX, x >0, is a pssMp with index «, then it can be represented as
follows. For x > 0,

XEX) = Xexp{&p(x—at)}v t < Ty,

and & is a (possibly killed) Lévy process.
Furthermore, C(X) = x%[,, where C(X) =inf{t >0: Xt(x) < 0}.

Note: Using £(°8%) = ¢ 4 log x, one can also write

Xt(x) = exp{fgz’tg)x)}, t< Tp.

Note: First version more common, but second version shows better what
happens.
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Lamperti transform for POSITIVE ssMp

Theorem (Part (ii))

Conversely, suppose  is a given (possibly killed) Lévy process. For each
x > 0, define

Xt(X) = XeXP{§<p(x—at)}1(t<xaloo)v t>0.

Then X defines a pssMp, up to its absorption time at the origin.
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For a Lévy process & either
(0) ¢ is killed
a) limgoo §¢ = +00 ass.

(a)
(b) limgoo & = —00 aus.
(c)

c) limsupypo, & = o0, liminfy §¢ = —00 ass.
If E[¢1] < oo, then law of large numbers is lims_oo % = E[¢] as.

Definition

We say

(0) & is killed

(a) & drifts to +o0
(b) & drifts to —oo
)

(c) & oscillates

Example: & = at + 0 B;
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Lamperti transform for POSITIVE ssMp

Consequence for pssMps
For all x > 0 we have

(1) ¢ = oo a.s. iff £ drifts to 400 or oscillates,
(2) ¢ <00 and X{)_ = 0as. iff ¢ drifts to —oc,

(3) ¢ < 00 and XC((’?)_ > 0 a.s. iff £ is killed.

— blackboard drawings
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Summary

(X, Px)x>0 pssMp > (&,Py)ycr killed Lévy
Xe = exp(€s(t)) &s = log(X7(s)),
S a random time-change T a random time-change
X never hits zero & — oo or £ oscillates
X hits zero continuously & — —o0
X hits zero by a jump = £ is killed
X has continuous paths & has continuous paths
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Example

We know Bes?(6)
dXt = (5dt + 2\/ XtdBt

is self-similar so it is a pssMp up to To. | am telling you that Bes?(4) hits
zero (continuously) if and only if § < 2.

Questions: Can you guess (without calculating) the corresponding Lévy
process?
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Generator Theory

Recall: The generator of a Markov process (more precisely Feller) on X is
the operator

.Af(X) = lim Ex[f(Xt)] — f(X)

t—0 t ’

x € X,

defined on the domain D(A) = {f € Cp, : Af(x) exists in Cp}.

Note: It is normal to know the action A but not the full domain D(A).
BUT: Domain is very important!
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Generator Theory

Dynkin Formula and it’s inverse

(1) If (A, D(A)) is the generator of (X;) and f € D(.A), then
t

M: = F(Xe) — F(Xo) — / AF(X.)ds, 30,
0

is a martingale.
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Generator Theory

Dynkin Formula and it’s inverse

(1) If (A, D(A)) is the generator of (X;) and f € D(.A), then
t

M: = F(Xe) — F(Xo) — / AF(X.) ds, £ 0,
0

is a martingale.

(2) If f € Cp and there is g € Cp with

M, = F(X,) — F(Xo) — / "g(X)ds, t>0,
0

is a martingale, then f € D(A) and g = Af.
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Generator Theory

Example: (3A, Co(R)) generates Brownian motion B and

GA, Co(R,) N {F : £(0) = 0}>

generates Brownian motion absorbed at zero Bt:

o BTN - ()

ATf(X) - t—0 t
o BB )] + EIF(B) ez 1)) — F(x)
50 t
C
= Af(x) +£(0) 5,

. . . x <
using the asymptotic lim;_,q w = X—CQ Hence, convergence takes

place in G, iff £(0) = 0 and action of A' is determined by A.
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Generator Theory
@ For solutions of dX; = a(X;)dt + o(X¢)dB: the generator acts as

1c:r2(x)f"(x), x € R,

Af(x) = a(x)f'(x) + >

because (Itd formula)

f(X:) =f(Xo) + /Ot f'(Xs)a(Xs)ds + /Ot f'(Xs)o(Xs)dBs

1 t
+ 5/ f"(Xs)o?(Xs)ds, t>0.
0
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Generator Theory
@ For solutions of dX; = a(X;)dt + o(X¢)dB: the generator acts as

1
~o?(x)f"(x), x€R,

Af(x) = a(x)f'(x) + 5

because (Itd formula)

f(Xt) = f(Xo) + /Ot f'(Xs)a(Xs)ds + /Ot f'(Xs)o(Xs)dBs

1 t
+ 2/ f"(Xs)o?(Xs)ds, t>0.
0

o For a Lévy process with triplet (a, 2, ) the generator acts as
1
Af(x) = af'(x) + 502 (x)
+/ (f(x +u)—f(x)— f’(x)ul‘uEl)l"l(du), x € R.
R
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Generator Theory

Many calculations can be performed that explain some transformations
such as time-change and Doob's h-transform.
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Generator Theory

Many calculations can be performed that explain some transformations
such as time-change and Doob's h-transform.

For h-transforms the formula A"f(x) = ﬁflfh(x) holds.
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Generator Theory

Many calculations can be performed that explain some transformations
such as time-change and Doob's h-transform.

For h-transforms the formula A"f(x) = ﬁflfh(x) holds.

Some might know that (B]), BM conditioned to be positive is an
h-transform of (B]) with h(x) = x.
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Generator Theory

Many calculations can be performed that explain some transformations
such as time-change and Doob's h-transform.

For h-transforms the formula A"f(x) = h(X Afh( ) holds.

Some might know that (B]), BM conditioned to be positive is an
h-transform of (B]) with h(x) = x.

Pluging-in gives

1 1d°
A2 da ™)

1 ]' 1 1! ! /
h( 72 (f (x)h(x) + F(x)h"(x) + 2f'(x)h'(x))

1! ]' !
= 5f () + ()

ATf(x) =

— (B]) is Bes(3)-process, self-similar with index 1. Stable case harder!
7. August 2015 34 / 64



Generator Theory

Time-Change: If X and X are Markov processes with generators A and A

acting as

Af(x) = B(x)Af(x), x€ X,

for a measurable function 5 : X — R, then

Xe =X rp-1%) a1 20,

inf {t : /Ot,e—l()"(s) ds = oo} = inf{t: B(X;) = 0}.
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Generator Theory

Time-Change: If X and X are Markov processes with generators A and A
acting as

AF(x) = BO)AF(x), x € X,
for a measurable function 8 : X — R, then

Xe=Xptp1(xyayn £20,

inf {t : /Otﬁ—l(fg) ds = oo} = inf{t: B(X;) = 0}.

Theorem due to Volkonskii. (Proof: Martingale problem, change variables).
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Generator Theory

Time-Change: If X and X are Markov processes with generators A and A
acting as

Af(x) = B(x)Af(x), x€ X,

for a measurable function 8 : X — R, then

Xt (f ,8 X5 ds) 1, tZO,

inf{ /5 ) ds = oo }:inf{t:ﬁ(f(t):0}.

Theorem due to Volkonskii. (Proof: Martingale problem, change variables).

Note: Multiplication in generator changes only speed not directions.
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Generator Theory

Fun example: SABR model (stochastic «, 3, p model with 5 < 1)

dX; = 0. XL dB,
dO't = OfO'tth

Suppose B and W are independent even though the p in the name stands
for their correlation.

Question: Any idea for the limit lim_ oo X:?

Hint: Generator is

Af(x,y) =y (ng ;f (x.y) + Fry (. y))
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Lamperti’s representation, revisited

Theorem (Lamperti), continuous case

The action of the generator for a continuous pssMp is

Af (x) = Xia Ka + ?) x f'(x) + o x* f"(x)

and the corresponding Lévy process is & = at + o B;.

Why? Righthand side is

Af(x) = XiAeBM it F(5),

(67

where A _gm with aritc is the generator of eBM With drift and you know which
SDE it solves.

Leif Déring Self-Similar Markov Processes (and SDEs) 7. August 2015

37 /64



Lamperti’s representation, revisited

Theorem (Lamperti), for E[e] < oo

The action of the generator for a pssMp is
Af(x)

I & / 02 2 1
=@ log E[e 1]xf(x)+?x f(x)

+ /00 [F(e"x) — f(x) — f'(x)(e” — 1)x1}<1] N(du)

—0o0

and the corresponding Lévy process has triplet (a, o2, ).

Why? Righthand side is
1
Af(x) = ;Aeg f(x),

where A is the generator of es.
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General Remarks 1

There are three transformations for Markov processes (SDEs in particular)
and we know what happens:
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General Remarks 1

There are three transformations for Markov processes (SDEs in particular)
and we know what happens:

@ change space (Ito formula)
@ change time (Volkonskii)
o reverse time (h-transform)

Keep this in mind if you want to analyze a process !!!
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General Remarks 2

For pssMps (and other processes such as CSBPs) there are three
equivalent ways of thinking:

@ time-change
@ generator
e SDE

All have advantages and disadvantages. Advantages are
@ time-change can be good to analyze asymptotics
@ generator good for quick calculations

@ SDE good because you have It formula and local times for instance
(for full power use illegal functions!)
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@ Examples and Brownian SDEs

@ Lamperti's representation for pssMps and generators
@ Examples
°

Lamperti SDE and Jump Diffusions
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Continuous pssMp Examples (no killing)

Recall
o2 o?
Af(x) = (a + —) xi—« f’(x) + > X2~ f”(x),

. 2 . . .
so, setting § = a+ %, all pssMps with continuous paths and index « are
solutions (up to Tp) to

dXe = 0XEdt + o X} T ?dB,,  Xo > 0, (2)
for some § € R,o0 > 0.

Corollary: Solutions to the SDE (2) hit zero in finite time a.s. if § < "72
Otherwise, almost surely zero is not hit.
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Continuous pssMp Examples (no killing)

Example o = 1: With o = 2 meet again Bes?():

dXt - (Sdt + 2\/ XtdBt
and (comparing generators)

Hence, due the consequence of Lamperti's representation zero is hit in
finite time iff 0 < 2.
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Stable process killed on entry to (—oo, 0)

Theorem (Chaumont/Caballero)

For the pssMp constructed by killing a stable process on first entry to

(—00,0), the underlying Lévy process, £*, that appears through the
Lamperti transform has characteristic exponent given by

_ log E(e7€1) = MNa—iz) T(1+iz)

R.
Map—i2)Tl-—aptiz) - °©
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The radial part of a stable process

@ Suppose that X is a symmetric stable process,
e We know that |X| is a pssMp.

Theorem (Chaumont/Caballero)

Suppose that the underlying Lévy process for |X| is written £©, then it
characteristic exponent is given by

tog E(eF) — 2o TBCIZ+ ) _T(3(iz +1)

r(-3iz) TrGliz+1-a)

z e R.
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@ Examples and Brownian SDEs

@ Lamperti's representation for pssMps and generators
@ Examples
°

Lamperti SDE and Jump Diffusions
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Extending pssMps to 0

@ Recurrent Case (continuous exit)

— blackboard

@ Transient Case

— blackboard

Next: simple proof for special case of spec negative pssMps, assume o = 1.
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Lévy Jump SDEs

A Lévy SDE is
dXt = a(Xt)dt + O'(th)st

driven by a Lévy process is an abbreviation for

t t
X = Xo +/ a(Xs)ds —|—/ o(Xs-)dLs, t>0.
0 0

Theory and results mostly analogous to Brownian theory (apart from
pathwise uniqueness), similar [td construction of stochastic integral.

Example: If (L;) is spec pos a-stable, then pathwise uniqueness holds if a
is Lipschitz and o is (1 — 1)-Halder (Li/Mytnik).
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Jump Diffusions

We want more general equations:

t

t
xt:x0+/ a(XS)ds+/ o(Xs) dBs
0 0

+/0t/(JC(Xs_,U)(N—N,)(dS, du)+/0t/vd(Xs—7U)M(d5> du)

where
e N PPP on [0,00) x U with intensity N'(ds, du) = dsv(du) and v is
o-finite
@ M PPP on [0,00) x V with intensity M’(ds, du) = dsu(du) and p is
finite
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Jump Diffusions

/ t / (Xo_, u)(N — N")(ds, du)

:—!;nq()/ /E Xs—, u)(N — N7)(ds, du)
::m)//s Xo_, )N (ds, du) — // Xo_,u (dsdu))

= sll—% < Z c(Xs—, x) — /0 / c(Xs—, u) v(du) ds).
xeN([0,t]x Us) N

Warning: In general both limits can be infinite but the compensated
integral converges under suitable conditions.

Note: If limiting compensator integral is finite, then jump integral is finite
and integral is difference of jump integral and compensator integral.
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Jump Diffusions

Example 1:
Lévy processes in Lévy-1tc form:

o U=[-1,1], N'(ds, du) = dsN(du),
o V=[-1,1]°, M=N,

e a(x) =a, o(x) =0, c(x,u) = u, d(x,u) = u.

Example 2:

e U=[-1,1], N'(ds, du) = dsN(du),

o V=[-11]° M=N,

e c(x,u) =c(x)u, d(x,u) =d(x)u.
Note: Lévy SDEs are special jump SDEs: Jumps always take the form
d(Xt—)AL; just as a Brownian integral gives o(X¢)AB;.

General jump diffusions have jumps d(X;—, AL;) which is more flexible for
modelling.
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Ito Formula
With X as above and f € C?, we get
f(Xe) — f(Xo)
/ F(X,)a(X,) ds + / (X:)o(Xs) dBs + / F1(X)02(X) ds

P
J,

/ (X + c(Xo, 1)) — F(Xs) — F1(Xs)c(Xs, u))| A7 (ds, du).

yu)) = F(Xs2)|(W = N')(ds, du)

+
c\

Q

(Xs— + c(X.
f(Xs— + d(Xs—, u)) — F(Xs=)| M(ds, du)

o)

o
<

+
S~

Q
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Ito Formula
With X as above and f € C?, we get
f(Xe) — f(Xo)
/ f'(Xs)a(Xs) ds + / f/(Xs)a(Xs)stnL% /0 t f"(Xs)o?(Xs) ds

A
J,

/ (Xs + c(Xs, ) — F(Xs) = F'(Xs)e(Xs, u))|N'(ds, du).

yu)) = F(Xs) ]V = N')(ds, du)

+
%

Q

(Xs— + c(X.
f(Xs— + d(Xs—, u)) — F(Xs )]M(ds, du)

o)

o
<

+
S~

Q

Special case: Lévy for a = 0 = const and d(x, u) = c(x, u) = u and
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If f is bounded, then
t
/ / |F(Xe + c(Xae 1)) — F(Xe_)| i) ds
0 14

<2|fllt | pl) < oc
14
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If £ is bounded, then
/0 t /V F(Xee + c(Xeu, ) — F(Xe_)| pu(du) ds
<2fllt [ ) <o
so adding and substracting compensation for M gives
M = f(X;) — F(Xo) — /Ot.Af(Xs) ds
is a martingale, where

AF(x) = a(x)F'(3) + 50°()F"(x)

+ y [F(x + c(x, u)) — f(x) — f'(x)c(x, u)]v(du)

+/ [F(x + d(x, u)) = f(x)] p(du).
1%
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If f is bounded, then
t
/ / F(Xow + c(Xos 1)) — F(Xe_)| pu(du) ds
0 14

<2|fllut [ u(d) < o0
14

so adding and substracting compensation for M gives
t
M = f(X;) — F(Xo) — / Af(Xs) ds
0

is a martingale, where

AF(x) = a(x)F'(3) + 50°()F"(x)

—i—/u [F(x + c(x, u)) — f(x) — f'(x)c(x, u)]v(du)
+ /V [F(x + d(x, u)) — f(x)] u(du).

Consequence: Have generator action for jump diffusions, Lévy processes.
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Jump Diffusions

Remark: All general SDE theorems hold equally for jump diffusions. Only
uniqueness results need adjustment.

Remark: There are some pathwise uniqueness results, essentially same
proof as for BM (Itd formula with ¢,(-) — | - |). More difficult because of
unfriendly jump It formula.
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Jump Diffusions and Time-Change

Suppose solution X of a jump diffusion has generator A. How to produce
time-change X with generator A = A7
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Jump Diffusions and Time-Change

Suppose solution X of a jump diffusion has generator A. How to produce
time-change X with generator A = A7

We know how to change drift and diffusion, but what to do with the
jumps? — add extra component in PPP!
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Jump Diffusions and Time-Change

Suppose solution X of a jump diffusion has generator A. How to produce
time-change X with generator A = 5A?

We know how to change drift and diffusion, but what to do with the
jumps? — add extra component in PPP!

X=X+ [ 500 ds+ [ VIO o(X,) d
4 / t / e / (Xes u)(N = N")(ds, dr, du)
/ / / Xs—, u)M(ds, dr, du),
where

e N PPP on [0,00) x [0,00) x U with N'(ds, dr, du) =

ds dr v(du)
e M PPP on [0,00) x [0,00) x V with M'(ds, dr, du)

= ds dr p(du)
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Jump Diffusions and Time-Change

Suppose solution X of a jump diffusion has generator A. How to produce
time-change X with generator A = 5A?

We know how to change drift and diffusion, but what to do with the
jumps? — add extra component in PPP!

X=X+ [ 500 ds+ [ VIO o(X,) d
4 / t / e / (Xes u)(N = N")(ds, dr, du)
/ / / Xs—, u)M(ds, dr, du),
where

e N PPP on [0,00) x [0,00) x U with N'(ds, dr, du) =

ds dr v(du)
@ M PPP on [0,00) x [0,00) x V with M’(ds, dr, du) = ds dr pu(du)
Exercise: Calculate generator for X with Itd formula to confirm A = A

Leif Déring Self-Similar Markov Processes (and SDEs) 7. August 2015 55 / 64



Exercise

Please find an SDE representation for pssMps with o = 1!

Leif Déring Self-Similar Markov Processes (and SDEs)



Lamperti SDE
Theorem (Barczy, D.)

Every pssMp can be written as solution to

2

Xt:X0—|—<a+g—+/ (e”—l—u)l'l(du)t—l—a/ vV dB
2 <1y

tp1/Xe
+/ / / Xs—[e" — 1)(N — N")(ds, dr,du)
0 Jo {lul<1}

£ /X
—I—/ / / Xs_[e" — 1IN (ds, dr,du), t < To,
0 Jo {Ju|>1}

where (a, 02, 1) is a Lévy triplet and
e Bisa BM
e Nisa PPPon Rt x RT x R with intensity ds ® dr @ M(du)
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Lamperti SDE

The equation is not very nice.

But:

o If we assume E[e%] < co we learn something.

o If we assume £ is spec neg, we can do everything we wish.
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Lamperti SDE
If E[e1] < oo, then

£ 1/ X
/ / / Xo_[e" — 1(ds, dr, du)
o Jo (Jul>1}
t rl/Xs—
- / / / X,_[e" — 1] ds dr N(du)
0 Jo {Ju|>1}

¢ / e — 1]M(du) < oo,
lul>1)

£ 1/ Xee
/ / / X,_[e" — 1N (ds, dr, du)
0o Jo {lu|>1}

:/Ot/ol/xs /{u|>1}Xs[e”—l](/\/’—N’)(ds,dr,du)
+t/{u|>1}[e“—1]l'l(du).

hence,
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Lamperti SDE

Using

o2

log E[e%] = a+ 5 + /(eu —1— ulgy<1y) N(du)
R

we can simplify the SDE to

t
X = Xo + log E[e*!]t + 0/ V/ XsdBs
0

+/Ot/01/xs_ /RXS_[e“ — 1)(N — N')(ds,dr, du).

Note: Call both SDEs Lamperti SDE because they are equivalent to
Lamperti's representation.
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Lamperti SDE

Theorem (Barczy, D.)

@ Pathwise uniqueness holds for the Lamperti SDE.

o Precisely for log E[e%] > 0 there are strong solutions for all Xy > 0 to
the Lamperti SDE and pathwise uniqueness holds.

Proof: Ugly Yamada/Watanabe type arguments.
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Lamperti SDE

Theorem

The self-similar recurrent extensions of Fitzsimmons, Rivero and also the
limit laws P° of Bertoin, Caballero, Chaumont, Kyprianou, Pardo, Rivero,
Savov, ... are solutions to the SDE.
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Lamperti SDE

Theorem

The self-similar recurrent extensions of Fitzsimmons, Rivero and also the
limit laws P° of Bertoin, Caballero, Chaumont, Kyprianou, Pardo, Rivero,
Savov, ... are solutions to the SDE.

Proof: As above for Bes?(§): Show that (X;) and (cX;.-1) solve same
equation, then use uniqueness.
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Lamperti SDE

Theorem

The self-similar recurrent extensions of Fitzsimmons, Rivero and also the
limit laws P° of Bertoin, Caballero, Chaumont, Kyprianou, Pardo, Rivero,
Savov, ... are solutions to the SDE.

Proof: As above for Bes?(§): Show that (X;) and (cX;.-1) solve same
equation, then use uniqueness.

Exercise: Please proof uniqueness also for positive jumps!
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Lamperti SDE

Theorem

The self-similar recurrent extensions of Fitzsimmons, Rivero and also the
limit laws P° of Bertoin, Caballero, Chaumont, Kyprianou, Pardo, Rivero,
Savov, ... are solutions to the SDE.

Proof: As above for Bes?(§): Show that (X;) and (cX;.-1) solve same
equation, then use uniqueness.

Exercise: Please proof uniqueness also for positive jumps!

Warning: Spec neg case also has different easier proofs.
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Lamperti SDE

Why is Lamperti SDE special?

@ Lamperti SDE for t < Ty <=  Lamperti's representation.
@ Lamperti's respresentation does not work immediately for t > Tj.

@ BUT: Lamperti SDE works immediately for t > Ty iff the necessary
and sufficient condition is fulfilled.
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Lamperti SDE

Why is Lamperti SDE special?

@ Lamperti SDE for t < Ty <=  Lamperti's representation.
@ Lamperti's respresentation does not work immediately for t > Tj.

@ BUT: Lamperti SDE works immediately for t > Ty iff the necessary
and sufficient condition is fulfilled.

Leif Déring Self-Similar Markov Processes (and SDEs) 7. August 2015 63 / 64



Summary

We discussed definitions, examples and connections for
@ time-change
@ generators
e SDEs

In some sense those are equivalent, but approaches have different
advantages.
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Summary

We discussed definitions, examples and connections for
@ time-change
@ generators
e SDEs

In some sense those are equivalent, but approaches have different
advantages.

For pssMps we discussed
@ time-change representation
@ generator representation

@ SDE representation

For pssMps the SDE representation has a magic feature: Can be extended
after hitting zero.
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