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Self-similar Markov processes (ssMp)

Definition

A strong Markov process (Xt : t ≥ 0) on R with RCLL paths, with
probabilities Px , x ∈ R, is a ssMp if there exists an index α ∈ (0,∞) such
that, for all c > 0 and x ∈ R,

(cXtc−α : t ≥ 0) under Px

is equal in law to

(Xt : t ≥ 0) under Pcx .

Definition

pssMp if sample paths are positve and absorbed at the origin.
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This is a small tour through some Markov process theory along the
example of self-similar processes.

We discuss

results for ssMps
Examples←→ SDEs

Note: Goal of these lectures is an SDE point of view (inspired by work of
Maria-Emilia, Amaury, Zenghu & friends) rather than the stable process
point of view of Kyp & friends.
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Warning: We do NOT arrive at the most general results for ssMps.

Our journey is the destination!

Our journey goes through ideas from stochastic calculus and many
examples towards one particular result for ssMps.
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Content

Examples and Brownian SDEs

Lamperti’s representation for pssMps and generators

Examples

Lamperti SDE and Jump Diffusions
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Several Examples of ssMps

Brownian motion (Bt) is a ssMp with index 2

stopped Brownian motion (Bt1(T0>t)) is a pssMp with index 2

Bessel processes of dimension δ - Bes(δ) - i.e. solutions of

dXt =
δ − 1

2

1

Xt
dt + dBt

give pssMp with index 2.

squared-Bessel processes of dimension δ - Bes2(δ) - i.e. solutions of

dXt = δ dt + 2
√

XtdBt

give pssMps with index 1.

Brownian motion conditioned to be positive (B↑) is a pssMp with
index 2
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How to check Self-Similarity?

There is no general approach!

For (Bt) show that scaled process is also a BM.

For (Bt1(T0>t)) consider the joint process (Bt , infs≤t Bt).

Show the process is “limit” of self-similar processes.

For the SDE examples use SDEs Theory.
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Self-Similarity for Bes2(δ)

cXtc−1 = c

(
X0 + δtc−1 +

∫ tc−1

0
2
√

Xs dBs

)

= cX0 + δt + c

∫ t

0
2
√

Xsc−1 d(Bsc−1)

= cX0 + δt +

∫ t

0
2
√

cXsc−1 d(
√

cBsc−1)

=: cX0 + δt +

∫ t

0
2
√

cXsc−1 dWt .

Hence, (Xt) and (cXtc−1) both satisfy the same SDE

dXt = δdt + 2
√

XtdBt

driven by some Brownian motions.

Why does this imply Bes2(δ) is ssMp? → Need some SDE theory.
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1dim SDE Theory

Consider the 1dim SDE

dXt = a(Xt)dt + σ(Xt)dBt , X0 ∈ R,

driven by a BM.

Notation (Solutions)

A (weak) solution is a stochastic process satisfying almost surely the
integrated version

Xt = X0 +

∫ t

0
a(Xs)ds +

∫ t

0
σ(Xs)dBs , X0 ∈ R.

A solution is called strong if it is adapted to the filtration generated
by the driving noise (Bt).

Reference e.g. Karatzas/Shreve
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1dim SDE Theory

Question: Which SDEs can you solve explicitly?

Roughly everything that comes from Itō’s formula calculations.

Exercise: Play around with the exponential function to solve

dXt = aXtdt + σXtdBt .

Example: Which SDE is solved by Xt = B3
t

→ blackboard?
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1dim SDE Theory
Consider the SDE

dXt = a(Xt)dt + σ(Xt)dBt , X0 ∈ R.

Notation (Uniqueness)

We say weak uniqueness holds if any two weak solutions have the
same law.

We say pathwise uniqueness holds if any two weak solutions are
indistinguishable.

Example: Tanaka’s SDE

dXt = sign(Xt)dBt

has a weak solution, has no strong solution, weak uniqueness holds,
pathwise uniqueness is wrong. sign is a bad function!

→ blackboard
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1dim SDE Theory

Theorem (Itō)

If a and σ are Lipschitz, then there is a unique strong solution.

Proof: Fixpoint theorem in good process space → constructive.

Problem: No interesting function is globally Lipschitz.

Theorem

If a and σ are locally Lipschitz and grow at most linearly, then there is a
unique strong solution.

Problem: Many interesting functions are not locally Lipschitz.

Theorem (Strook/Varadhan)

If a and σ are bounded and continuous, then there is a weak solution.
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1dim SDE Theory

Theorem

Pathwise uniqueness implies weak uniqueness.

Theorem

Weak existence and pathwise uniqueness imply strong existence.

Theorem

Weak uniqueness implies strong Markov and Feller properties.

Theorem (Yamada/Watanabe - Brownian case)

If a is locally Lipschitz and σ is locally 1
2 -Hölder, then pathwise uniqueness

holds.

→ blackboard

Note: Apply same strategy whenever you have an Itō formula!
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1dim SDE Theory

Remarks:

To prove pathwise uniqueness there is a strategy!

There is no general strategy to prove weak uniqueness!

This is a strange problem: Only know how to proceed in the harder case.

Note: All results (in law) extend to general stochastic equations (Kurtz).

Note: Pathwise uniqueness results differ for different noise; proofs usually
same strategy but ugly.
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Question

How would you construct a positive strong solution for

dXt = δdt + 2
√

XtdBt , X0 = 0,

for δ > 0? For δ ≤ 0?

Note that

a ≡ δ is Lipschitz

σ(x) = 2
√

x is 1
2 -Hölder

so pathwise uniqueness holds.
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A Counterexample

The SDE

dXt = |Xt |βdBt , X0 = 0,

has precisely one solution Xt ≡ 0 if β ≥ 1
2 .

For β < 1
2 there are infinitely many solutions.

The equation has only one solution X ∈ S where

S =

{
(Xt)t≥0 :

∫ ∞
0

1(Xs=0) ds = 0 a.s.

}
Very hard and due to Bass/Burdy/Chen.
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Another Counterexample

The SDE

dXt = 3X
1/3
t dt + 3X

2/3
t dBt , X0 = 0, (1)

has infinitely many solutions (both real and non-negative).

But: The SDE has only one positve solution in S.
→ blackboard

Question: Can you relate all solutions to the solutions in S?
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A Consequence to Self-Similarity
Uniqueness holds for

dXt = δdt + 2
√

XtdBt ,

hence, solutions are strong Markov and (Xt)
L
= (cXtc−1), so Bes2(δ) is a

ssMp with index 1.

Remark: Same argument shows that interesting positive solution to SDE
(1) defines a ssMp. Or, use

Lemma

In general, suppose (Xt) is a pssMp with index α, then (Xα
t ) is a pssMp

with index 1.

Proof: Set Y = Xα, then(
cYtc−1

)
t≥0 =

(
(c1/αXtc−1)α

)
t≥0 =

(
(c1/αXt(c1/α)−α)α

)
t≥0 =

(
Yt

)
t≥0
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To remember for later

Solutions to

dXt = δdt + 2
√

XtdBt ,

for a ssMp that is NOT absorbed at zero if only if δ > 0. Recall, a pssMp
is by definition absorbed at 0.
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A discontinuous ssMp

Definition

A Lévy process (Xt) is called (strictly) α-stable if it is also a self-similar
Markov process.

Theorem: α ∈ (0, 2]. [α = 2→ BM, exclude this.]

Theorem: Characteristic exponent Ψ(θ) := − logE(eiθX1) satisfies

Ψ(θ) = |θ|α(eπiα(
1
2
−ρ)1(θ>0) + e−πiα(

1
2
−ρ)1(θ<0)), θ ∈ R.

where ρ = P0(Xt ≥ 0).

Theorem: Assume jumps in both directions, then

Π(dx) =

(
Γ(1 + α)

π

1

|x |1+α
(
sin(παρ)1{x>0} + sin(παρ̂)1{x<0}

))
dx
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A Lévy process (Xt) is called (strictly) α-stable if it is also a self-similar
Markov process.

Theorem: α ∈ (0, 2]. [α = 2→ BM, exclude this.]

Theorem: Characteristic exponent Ψ(θ) := − logE(eiθX1) satisfies

Ψ(θ) = |θ|α(eπiα(
1
2
−ρ)1(θ>0) + e−πiα(

1
2
−ρ)1(θ<0)), θ ∈ R.

where ρ = P0(Xt ≥ 0).

Theorem: Assume jumps in both directions, then

Π(dx) =

(
Γ(1 + α)

π

1

|x |1+α
(
sin(παρ)1{x>0} + sin(παρ̂)1{x<0}

))
dx
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Notation

Let (ξt) a Lévy process which is killed and sent to the cemetery state
−∞ at an independent and exponentially distributed random time
with rate in q ∈ [0,∞).

Sometimes write ξ(x) if started in x , but always ξ = ξ(0).

Define the integrated exponential Lévy process

It =

∫ t

0
eαξs ds, t ≥ 0,

and its limit I∞ := limt↑∞ It .

Define the inverse of the increasing process I :

ϕ(t) = inf{s > 0 : Is > t}, t ≥ 0.

As usual, we work with the convention inf ∅ =∞.
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Let (ξt) a Lévy process which is killed and sent to the cemetery state
−∞ at an independent and exponentially distributed random time
with rate in q ∈ [0,∞).

Sometimes write ξ(x) if started in x , but always ξ = ξ(0).

Define the integrated exponential Lévy process
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Lamperti transform for POSITIVE ssMp
Theorem (Part (i))

If X (x), x > 0, is a pssMp with index α, then it can be represented as
follows. For x > 0,

X
(x)
t = x exp{ξϕ(x−αt)}, t ≤ T0,

and ξ is a (possibly killed) Lévy process.

Furthermore, ζ(x) = xαI∞, where ζ(x) = inf{t > 0 : X
(x)
t ≤ 0}.

Note: Using ξ(log x) = ξ + log x , one can also write

X
(x)
t = exp{ξ(log x)ϕ(t) }, t ≤ T0.

Note: First version more common, but second version shows better what
happens.
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Lamperti transform for POSITIVE ssMp

Theorem (Part (ii))

Conversely, suppose ξ is a given (possibly killed) Lévy process. For each
x > 0, define

X
(x)
t = x exp{ξϕ(x−αt)}1(t<xαI∞), t ≥ 0.

Then X (x) defines a pssMp, up to its absorption time at the origin.
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For a Lévy process ξ either

(0) ξ is killed

(a) limt↑∞ ξt = +∞ a.s.

(b) limt↑∞ ξt = −∞ a.s.

(c) lim supt↑∞ ξt =∞, lim inft↑∞ ξt = −∞ a.s.

If E [ξ1] <∞, then law of large numbers is limt→∞
ξt
t = E [ξ1] a.s.

Definition

We say

(0) ξ is killed

(a) ξ drifts to +∞
(b) ξ drifts to −∞
(c) ξ oscillates

Example: ξt = at + σBt
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Lamperti transform for POSITIVE ssMp

Consequence for pssMps

For all x > 0 we have

(1) ζ(x) =∞ a.s. iff ξ drifts to +∞ or oscillates,

(2) ζ(x) <∞ and X
(x)

ζ(x)− = 0 a.s. iff ξ drifts to −∞,

(3) ζ(x) <∞ and X
(x)

ζ(x)− > 0 a.s. iff ξ is killed.

→ blackboard drawings
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Summary

(X ,Px)x>0 pssMp

Xt = exp(ξS(t)),

S a random time-change

↔ (ξ,Py )y∈R killed Lévy

ξs = log(XT (s)),

T a random time-change

X never hits zero
X hits zero continuously

X hits zero by a jump
X has continuous paths

 ↔


ξ →∞ or ξ oscillates

ξ → −∞
ξ is killed

ξ has continuous paths
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Example

We know Bes2(δ)

dXt = δdt + 2
√

XtdBt

is self-similar so it is a pssMp up to T0. I am telling you that Bes2(δ) hits
zero (continuously) if and only if δ < 2.

Questions: Can you guess (without calculating) the corresponding Lévy
process?
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Generator Theory

Recall: The generator of a Markov process (more precisely Feller) on X is
the operator

Af (x) = lim
t→0

E x [f (Xt)]− f (x)

t
, x ∈ X ,

defined on the domain D(A) = {f ∈ Cb : Af (x) exists in Cb}.

Note: It is normal to know the action A but not the full domain D(A).
BUT: Domain is very important!
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Generator Theory

Dynkin Formula and it’s inverse

(1) If (A,D(A)) is the generator of (Xt) and f ∈ D(A), then

Mt = f (Xt)− f (X0)−
∫ t

0
Af (Xs) ds, t ≥ 0,

is a martingale.

(2) If f ∈ Cb and there is g ∈ Cb with

Mt = f (Xt)− f (X0)−
∫ t

0
g(Xs) ds, t ≥ 0,

is a martingale, then f ∈ D(A) and g = Af .
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Generator Theory

Example: (12∆,C0(R)) generates Brownian motion B and(
1

2
∆,C0(R+) ∩ {f : f (0) = 0}

)
generates Brownian motion absorbed at zero B†:

A†f (x) = lim
t→0

E x [f (B†t )]− f (x)

t

= lim
t→0

E x [f (B†t )1(t<T0)] + E x [f (B†t )1(t≥T0)]− f (x)

t

= Af (x) + f (0)
C

x2
,

using the asymptotic limt→0
Px [T0≤t]

t = C
x2

. Hence, convergence takes

place in Cb iff f (0) = 0 and action of A† is determined by A.
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Generator Theory

For solutions of dXt = a(Xt)dt + σ(Xt)dBt the generator acts as

Af (x) = a(x)f ′(x) +
1

2
σ2(x)f ′′(x), x ∈ R,

because (Itō formula)

f (Xt) = f (X0) +

∫ t

0
f ′(Xs)a(Xs)ds +

∫ t

0
f ′(Xs)σ(Xs)dBs

+
1

2

∫ t

0
f ′′(Xs)σ2(Xs)ds, t ≥ 0.

For a Lévy process with triplet (a, σ2,Π) the generator acts as

Af (x) = af ′(x) +
1

2
σ2f ′′(x)

+

∫
R

(
f (x + u)− f (x)− f ′(x)u1|u|≤1

)
Π(du), x ∈ R.
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Generator Theory
Many calculations can be performed that explain some transformations
such as time-change and Doob’s h-transform.

For h-transforms the formula Ahf (x) = 1
h(x)Afh(x) holds.

Some might know that (B↑t ), BM conditioned to be positive is an

h-transform of (B†t ) with h(x) = x .

Pluging-in gives

A↑f (x) =
1

h(x)

1

2

d2

dx2
fh(x)

=
1

h(x)

1

2
(f ′′(x)h(x) + f (x)h′′(x) + 2f ′(x)h′(x))

=
1

2
f ′′(x) +

1

x
f ′(x)

→ (B↑t ) is Bes(3)-process, self-similar with index 1. Stable case harder!
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Generator Theory

Time-Change: If X and X̃ are Markov processes with generators A and Ã
acting as

Af (x) = β(x)Ãf (x), x ∈ X ,

for a measurable function β : X → R, then

Xt = X̃(
∫ t
0 β
−1(X̃s) ds)−1 , t ≥ 0,

if

inf

{
t :

∫ t

0
β−1(X̃s) ds =∞

}
= inf{t : β(X̃t) = 0}.

Theorem due to Volkonskii. (Proof: Martingale problem, change variables).

Note: Multiplication in generator changes only speed not directions.
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Generator Theory

Fun example: SABR model (stochastic α, β, ρ model with β < 1){
dXt = σtX

β
t dBt

dσt = ασtdWt

Suppose B and W are independent even though the ρ in the name stands
for their correlation.

Question: Any idea for the limit limt→∞ Xt?

Hint: Generator is

Af (x , y) = y2

(
x2β 1

2
fxx(x , y) +

1

2
fyy (x , y)

)
.
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Lamperti’s representation, revisited

Theorem (Lamperti), continuous case

The action of the generator for a continuous pssMp is

Af (x) =
1

xα

[(
a +

σ2

2

)
x f ′(x) + σ x2 f ′′(x)

]
and the corresponding Lévy process is ξt = at + σBt .

Why? Righthand side is

Af (x) =
1

xα
AeBM with driftf (x),

where AeBM with drift is the generator of eBM with drift and you know which
SDE it solves.
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Lamperti’s representation, revisited

Theorem (Lamperti), for E [eξ1] <∞
The action of the generator for a pssMp is

Af (x)

=
1

xα

[
log E [eξ1 ] x f ′(x) +

σ2

2
x2 f ′′(x)

+

∫ ∞
−∞

[
f (eux)− f (x)− f ′(x)(eu − 1)x1|u|≤1

]
Π(du)

]

and the corresponding Lévy process has triplet (a, σ2,Π).

Why? Righthand side is

Af (x) =
1

xα
Aeξ f (x),

where Aeξ is the generator of eξ.
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General Remarks 1

There are three transformations for Markov processes (SDEs in particular)
and we know what happens:

change space (Itō formula)

change time (Volkonskii)

reverse time (h-transform)

Keep this in mind if you want to analyze a process !!!
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General Remarks 2

For pssMps (and other processes such as CSBPs) there are three
equivalent ways of thinking:

time-change

generator

SDE

All have advantages and disadvantages. Advantages are

time-change can be good to analyze asymptotics

generator good for quick calculations

SDE good because you have Itō formula and local times for instance
(for full power use illegal functions!)
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Content

Examples and Brownian SDEs

Lamperti’s representation for pssMps and generators

Examples

Lamperti SDE and Jump Diffusions
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Continuous pssMp Examples (no killing)

Recall

Af (x) =

(
a +

σ2

2

)
x1−α f ′(x) +

σ2

2
x2−α f ′′(x),

so, setting δ = a + σ2

2 , all pssMps with continuous paths and index α are
solutions (up to T0) to

dXt = δX 1−α
t dt + σX

1−α/2
t dBt , X0 > 0, (2)

for some δ ∈ R, σ > 0.

Corollary: Solutions to the SDE (2) hit zero in finite time a.s. if δ < σ2

2 .
Otherwise, almost surely zero is not hit.
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Continuous pssMp Examples (no killing)

Example α = 1: With σ = 2 meet again Bes2(δ):

dXt = δdt + 2
√

XtdBt

and (comparing generators)

ξt = (δ − 2)t + 2Bt .

Hence, due the consequence of Lamperti’s representation zero is hit in
finite time iff δ < 2.
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Stable process killed on entry to (−∞, 0)

Theorem (Chaumont/Caballero)

For the pssMp constructed by killing a stable process on first entry to
(−∞, 0), the underlying Lévy process, ξ∗, that appears through the
Lamperti transform has characteristic exponent given by

− log E (eizξ
∗
1 ) =

Γ(α− iz)

Γ(αρ̂− iz)

Γ(1 + iz)

Γ(1− αρ̂+ iz)
, z ∈ R.
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The radial part of a stable process

Suppose that X is a symmetric stable process,

We know that |X | is a pssMp.

Theorem (Chaumont/Caballero)

Suppose that the underlying Lévy process for |X | is written ξ�, then it
characteristic exponent is given by

− log E (eizξ
�
1 ) = 2α

Γ(12(−iz + α))

Γ(−1
2 iz)

Γ(12(iz + 1))

Γ(12(iz + 1− α))
, z ∈ R.
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Content

Examples and Brownian SDEs

Lamperti’s representation for pssMps and generators

Examples

Lamperti SDE and Jump Diffusions
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Extending pssMps to 0

Recurrent Case (continuous exit)

→ blackboard

Transient Case

→ blackboard

Next: simple proof for special case of spec negative pssMps, assume α = 1.
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Lévy Jump SDEs

A Lévy SDE is

dXt = a(Xt)dt + σ(Xt−)dLt

driven by a Lévy process is an abbreviation for

Xt = X0 +

∫ t

0
a(Xs)ds +

∫ t

0
σ(Xs−)dLs , t ≥ 0.

Theory and results mostly analogous to Brownian theory (apart from
pathwise uniqueness), similar Itō construction of stochastic integral.

Example: If (Lt) is spec pos α-stable, then pathwise uniqueness holds if a

is Lipschitz and σ is (1− 1
α)-Hölder (Li/Mytnik).
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Jump Diffusions

We want more general equations:

Xt = X0 +

∫ t

0
a(Xs) ds +

∫ t

0
σ(Xs) dBs

+

∫ t

0

∫
U

c(Xs−, u)(N −N ′)(ds, du) +

∫ t

0

∫
V

d(Xs−, u)M(ds, du)

where

N PPP on [0,∞)× U with intensity N ′(ds, du) = dsν(du) and ν is
σ-finite

M PPP on [0,∞)× V with intensity M′(ds, du) = dsµ(du) and µ is
finite
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Jump Diffusions

∫ t

0

∫
U

c(Xs−, u)(N −N ′)(ds, du)

L2
:= lim

ε→0

∫ t

0

∫
Uε

c(Xs−, u)(N −N ′)(ds, du)

:= lim
ε→0

(∫ t

0

∫
Uε

c(Xs−, u)N (ds, du)−
∫ t

0

∫
Uε

c(Xs−, u)N ′(ds, du)
)

= lim
ε→0

( ∑
x∈N ([0,t]×Uε)

c(Xs−, x)−
∫ t

0

∫
Uε

c(Xs−, u) ν(du) ds
)
.

Warning: In general both limits can be infinite but the compensated
integral converges under suitable conditions.

Note: If limiting compensator integral is finite, then jump integral is finite
and integral is difference of jump integral and compensator integral.
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Jump Diffusions

Example 1:
Lévy processes in Lévy-Itō form:

U = [−1, 1], N ′(ds, du) = ds Π(du),

V = [−1, 1]c , M = N ,

a(x) = a, σ(x) = σ, c(x , u) = u, d(x , u) = u.

Example 2:

U = [−1, 1], N ′(ds, du) = ds Π(du),

V = [−1, 1]c , M = N ,

c(x , u) = c(x)u, d(x , u) = d(x)u.

Note: Lévy SDEs are special jump SDEs: Jumps always take the form
d(Xt−)∆Lt just as a Brownian integral gives σ(Xt)∆Bt .

General jump diffusions have jumps d(Xt−,∆Lt) which is more flexible for
modelling.
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Itō Formula

With X as above and f ∈ C 2, we get

f (Xt)− f (X0)

=

∫ t

0
f ′(Xs)a(Xs) ds +

∫ t

0
f ′(Xs)σ(Xs) dBs +

1

2

∫ t

0
f ′′(Xs)σ2(Xs) ds

+

∫ t

0

∫
U

[
f (Xs− + c(Xs−, u))− f (Xs−)

]
(N −N ′)(ds, du)

+

∫ t

0

∫
V

[
f (Xs− + d(Xs−, u))− f (Xs−)

]
M(ds, du)

+

∫ t

0

∫
U

[
f (Xs + c(Xs , u))− f (Xs)− f ′(Xs)c(Xs , u))

]
N ′(ds, du).

Special case: Lévy for a = σ = const and d(x , u) = c(x , u) = u and
N =M.
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Itō Formula

With X as above and f ∈ C 2, we get

f (Xt)− f (X0)

=

∫ t

0
f ′(Xs)a(Xs) ds +

∫ t

0
f ′(Xs)σ(Xs) dBs +

1

2

∫ t

0
f ′′(Xs)σ2(Xs) ds

+

∫ t

0

∫
U

[
f (Xs− + c(Xs−, u))− f (Xs−)

]
(N −N ′)(ds, du)

+

∫ t

0

∫
V

[
f (Xs− + d(Xs−, u))− f (Xs−)

]
M(ds, du)

+

∫ t

0

∫
U

[
f (Xs + c(Xs , u))− f (Xs)− f ′(Xs)c(Xs , u))

]
N ′(ds, du).
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If f is bounded, then∫ t

0

∫
V

∣∣f (Xs− + c(Xs−, u))− f (Xs−)
∣∣µ(du) ds

≤ 2||f ||∞t

∫
V
µ(du) <∞

so adding and substracting compensation for M gives

Mt = f (Xt)− f (X0)−
∫ t

0
Af (Xs) ds

is a martingale, where

Af (x) = a(x)f ′(x) +
1

2
σ2(x)f ′′(x)

+

∫
U

[
f (x + c(x , u))− f (x)− f ′(x)c(x , u)

]
ν(du)

+

∫
V

[
f (x + d(x , u))− f (x)

]
µ(du).

Consequence: Have generator action for jump diffusions, Lévy processes.

Leif Döring Self-Similar Markov Processes (and SDEs) 7. August 2015 53 / 64



If f is bounded, then∫ t

0

∫
V

∣∣f (Xs− + c(Xs−, u))− f (Xs−)
∣∣µ(du) ds

≤ 2||f ||∞t

∫
V
µ(du) <∞

so adding and substracting compensation for M gives

Mt = f (Xt)− f (X0)−
∫ t

0
Af (Xs) ds

is a martingale, where

Af (x) = a(x)f ′(x) +
1

2
σ2(x)f ′′(x)

+

∫
U

[
f (x + c(x , u))− f (x)− f ′(x)c(x , u)

]
ν(du)

+

∫
V

[
f (x + d(x , u))− f (x)

]
µ(du).

Consequence: Have generator action for jump diffusions, Lévy processes.
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Jump Diffusions

Remark: All general SDE theorems hold equally for jump diffusions. Only
uniqueness results need adjustment.

Remark: There are some pathwise uniqueness results, essentially same
proof as for BM (Itō formula with φn(·)→ | · |). More difficult because of
unfriendly jump Itō formula.
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Jump Diffusions and Time-Change
Suppose solution X̃ of a jump diffusion has generator Ã. How to produce
time-change X with generator A = βÃ?

We know how to change drift and diffusion, but what to do with the
jumps? → add extra component in PPP!

Xt = X0 +

∫ t

0
β(Xs)a(Xs) ds +

∫ t

0

√
β(Xs)σ(Xs) dBs

+

∫ t

0

∫ β(Xs−)

0

∫
U

c(Xs−, u)(N −N ′)(ds, dr , du)

+

∫ t

0

∫ β(Xs−)

0

∫
V

d(Xs−, u)M(ds, dr , du),

where

N PPP on [0,∞)× [0,∞)× U with N ′(ds, dr , du) = ds dr ν(du)

M PPP on [0,∞)× [0,∞)× V with M′(ds, dr , du) = ds dr µ(du)

Exercise: Calculate generator for X with Itō formula to confirm A = βÃ.
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Exercise

Please find an SDE representation for pssMps with α = 1 !
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Lamperti SDE

Theorem (Barczy, D.)

Every pssMp can be written as solution to

Xt = X0 +

(
a +

σ2

2
+

∫
{|u|≤1}

(eu − 1− u) Π(du)

)
t + σ

∫ t

0

√
XsdBs

+

∫ t

0

∫ 1/Xs−

0

∫
{|u|≤1}

Xs−[eu − 1](N −N ′)(ds, dr , du)

+

∫ t

0

∫ 1/Xs−

0

∫
{|u|>1}

Xs−[eu − 1]N (ds, dr , du), t ≤ T0,

where (a, σ2,Π) is a Lévy triplet and

B is a BM

N is a PPP on R+ × R+ × R with intensity ds ⊗ dr ⊗ Π(du)
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Lamperti SDE

The equation is not very nice.

But:

If we assume E [eξ1 ] <∞ we learn something.

If we assume ξ is spec neg, we can do everything we wish.
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Lamperti SDE
If E [eξ1 ] <∞, then∫ t

0

∫ 1/Xs−

0

∫
{|u|>1}

Xs−[eu − 1]N ′(ds, dr , du)

=

∫ t

0

∫ 1/Xs−

0

∫
{|u|>1}

Xs−[eu − 1] ds dr Π(du)

= t

∫
{|u|>1}

[eu − 1]Π(du) <∞,

hence, ∫ t

0

∫ 1/Xs−

0

∫
{|u|>1}

Xs−[eu − 1]N (ds, dr , du)

=

∫ t

0

∫ 1/Xs−

0

∫
{|u|>1}

Xs−[eu − 1](N −N ′)(ds, dr , du)

+ t

∫
{|u|>1}

[eu − 1]Π(du).
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Lamperti SDE

Using

log E [eξ1 ] = a +
σ2

2
+

∫
R

(eu − 1− u1{|u|≤1}) Π(du)

we can simplify the SDE to

Xt = X0 + log E [eξ1 ]t + σ

∫ t

0

√
XsdBs

+

∫ t

0

∫ 1/Xs−

0

∫
R

Xs−[eu − 1](N −N ′)(ds, dr , du).

Note: Call both SDEs Lamperti SDE because they are equivalent to
Lamperti’s representation.
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Lamperti SDE

Theorem (Barczy, D.)

Pathwise uniqueness holds for the Lamperti SDE.

Precisely for log E [eξ1 ] > 0 there are strong solutions for all X0 ≥ 0 to
the Lamperti SDE and pathwise uniqueness holds.

Proof: Ugly Yamada/Watanabe type arguments.
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Lamperti SDE

Theorem

The self-similar recurrent extensions of Fitzsimmons, Rivero and also the
limit laws P0 of Bertoin, Caballero, Chaumont, Kyprianou, Pardo, Rivero,
Savov, ... are solutions to the SDE.

Proof: As above for Bes2(δ): Show that (Xt) and (cXtc−1) solve same
equation, then use uniqueness.

Exercise: Please proof uniqueness also for positive jumps!

Warning: Spec neg case also has different easier proofs.
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Lamperti SDE

Why is Lamperti SDE special?

Lamperti SDE for t ≤ T0 ⇐⇒ Lamperti’s representation.

Lamperti’s respresentation does not work immediately for t > T0.

BUT: Lamperti SDE works immediately for t > T0 iff the necessary
and sufficient condition is fulfilled.
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Summary

We discussed definitions, examples and connections for

time-change

generators

SDEs

In some sense those are equivalent, but approaches have different
advantages.

For pssMps we discussed

time-change representation

generator representation

SDE representation

For pssMps the SDE representation has a magic feature: Can be extended
after hitting zero.
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