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Motivation

Theoretical population genetics tries to explain variability observed in
nature by elementary evolutionary mechanisms such as

I genetic drift (= change in type frequency due to random sampling),
I mutation, selection, recombination,
I migration, . . .

present

past

I Good understanding of variability requires good understanding of
genealogical relationship of individuals (cf. Amaury Lambert’s talk).

I In the spatial setting one needs to study coalescing random walks.
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Introduction

I Aim: Study ancestral lineages in locally regulated populations1 with
fluctuating population size. We consider the discrete-time contact
process without types.

I Problem: Pick an individual from the upper invariant distribution
and denote by Xn the position of the ancestor of that individual n
generations ago. Describe the behaviour of Xn. Do LLN and CLT
for Xn hold?

I Note: Xn is a random walk in a Markovian random environment
given by the time reversal of the original population process.

1locally regulated populations are supercritical in sparsely populated and subcritical
in crowded regions



Oriented percolation on Zd × Z

I ω(x , n), (x , n) ∈ Zd × Z i.i.d. Ber(p)

I (x , n) is open if ω(x , n) = 1 and closed if ω(x , n) = 0
I for n ≤ m write (x , n)→ (y ,m) if there is xn = x , xn+1, . . . , xm = y

with ω(xk , k) = 1 and ‖xk+1 − xk‖ ≤ 1
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Theorem
There is pc ∈ (0, 1) s.th. for p > pc

Pp

(
(0, 0)→ Z

d × {+∞}
)
> 0

(and = 0 for p ≤ pc).

In what follows we fix p > pc .



Discrete time contact process
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I Starting with some initial set A ⊂ Zd at time m ∈ Z, for n ≥ m set

An := {y ∈ Zd : ∃x ∈ A, s.th. (x ,m)→ (y , n)}

(here we artificially set ω(·,m) = 1A(·))
I Let p > pc , A = Z

d and m→ −∞. Then (ηn)n∈Z with ηn = 1An is
the stationary contact process with L(ηn) = upper invariant law.

I Interpretation: ηn is the set of wet sites if water flows up from
Z

d × {−∞} through open sites.
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Alternative local construction of (ηn)

I Conditioned on ηn the distribution of ηn+1 is

P(ηn+1(x) = 1|ηn) = p · 1{∃y ,‖x−y‖≤1,ηn(y)=1}.

Interpretation:
I with prob. p at (x , n + 1) there are enough resources for one

individual
I if occupied sites in the neighbourhood in the previous generation

exist, then choose a parent at random
I otherwise (x , n + 1) remains vacant

I with prob. 1− p at (x , n + 1) no resources are available
I (x , n + 1) remains vacant irrespective of the neighbourhood



Contact process as locallly regulated population

I Contact process is locally regulated: Expected offspring number is
I 3p > 1 in empty neighbourhoods
I 3 1

3p = p < 1 in crowded neighbourhoods

n

n + 1



Backbone: cluster of percolating sites
Define the cluster of percolating sites on Zd × Z by

C := {(x , n) ∈ Zd × Z : (x , n)→ Z× {+∞}}.
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I Interpretation: C is the set of all wet sites if water flows down from
Z

d × {+∞} through open sites. When time is running upwards, the
process of configurations of occupied (green) sites is time-reversal of
the discrete time contact process.

I Note: C is not the “usual” percolation cluster.
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Random walk on C
I Define the neighbourhood of (x , n) by

U(x , n) := {(y , n + 1) : ‖x − y‖ ≤ 1}.

I On B := {(0, 0) ∈ C} define the directed random walk (Xn)n=0,1,...
on C by

X0 = 0,

and for (y , n + 1) ∈ C ∩ U(x , n)

P
(
Xn+1 = y |Xn = x , C

)
=

1
|C ∩ U(x , n)|

.

I Interpretation: (Xn) is the ancestral lineage of an individual located
at space-time origin.

I Remark: More general finite and symmetric U’s, leading to different
pc and geometry of clusters, can be considered, e.g.

U(x , n) := {(y , n + 1) : ‖x − y‖ = 1}.



Possible paths for the RW
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Annealed and quenched LLN and CLT

I Pω law of RW with transition probab. P(Xn+1 = y |Xn = x , ω)

I Eω corresponding expectation

Theorem (LLN)

(i) P
(
Xn/n→ 0

∣∣B) = 1,

(ii) Pω
(
Xn/n

n→∞−−−→ 0
)

= 1 for P( · |B)-a.a. ω.

Theorem (annealed and quenched CLT)

For f ∈ Cb(Rd)

(i) E
[
f
(
Xn/
√
n
) ∣∣B] n→∞−−−→ Φ(f ),

(ii) Eω
[
f (Xn/

√
n)
] n→∞−−−→ Φ(f ) for P( · |B)-a.a. ω.

Here Φ(f ) =
∫
f (x)Φ(dx) and Φ is a non-trivial centred d-dimensional

normal law.

Note: (i) ⇔ (ii) in LLN; (ii) ⇒ (i) but (i) 6⇒ (ii) in CLT.



Key steps of the proofs

I For LLN and annealed (averaged) CLT we need to identify a suitable
regeneration structure and obtain moment estimates on regeneration
times and corresponding spatial increments.

I For quenched CLT using two inedependent RW’s on the same

cluster show that E
[(

Eω
[
f
(
Xn/
√
n
)]
− Φ(f )

)2∣∣∣B] summable.

I Note: The steps are common in the RWRE literature but the details
highly depend on the particular processes.



Use of regeneration structure for LLN

X0
T0

T1

T2

TMn

XMn

TMn+1

XMn+1

n

I Let T0 = 0 < T1 < T2 < . . . be a sequence of regeneration times, at
which the process starts anew. Define Mn so that TMn ≤ n < TMn+1 .

I Then

1
n

Xn =

1
n

(Xn − XMn) +

Mn

n

1
Mn

Mn∑
k=1

(XTk
− XTk−1)︸ ︷︷ ︸

sum of i.i.d. r.v.’s
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Remarks regarding regeneration times

I The random walk cannot be constructed by local rules.

I At regeneration times not only the walk, but also the environment
have start anew.

I We construct preliminary paths of the RW by local rules using ω’s
and some auxiliary randomness. These will become segments of the
real path at regeneration times.



A local construction of the walk
I For (x , n) ∈ Zd × Z let ω̃(x , n) be an independent uniform ordering

of elements of U(x , n).
I For (x , n) define a (directed) path γ(x,n)k of k steps that begin on

open sites, choosing directions according to ω̃:
I γ

(x,n)
k (0) = (x , n),

I γ
(x,n)
k (j) = (y , n + j) then γ(x,n)

k (j + 1) = (z , n + j + 1), where
(z , n + j + 1) is the element of{
(z ′, n + j + 1) ∈ U(y , n + j) : (z ′, n + j + 1)→ Z

d × {n + k − 1}
}

with the smallest index in ω̃(y , n + j)

I Construction is local because only ω’s and ω̃’s in time slices
{n, . . . , n + k − 1} are used.

(x , n)

ω̃(x , n)[1]ω̃(x , n)[2]

k = 1 k = 2 k = 3 k = 4



From local to global construction

(x , n)

ω̃(x , n)[1]ω̃(x , n)[2]

k = 1 k = 2 k = 3 k = 4

I γ
(x,n)
k (k) = endpoint of the local k-step construction

I If (x , n) ∈ C then γ(x,n)∞ (j) := lim
k→∞

γ
(x,n)
k (j) exists for all j .

I If γ(x,n)k (k) ∈ C then γ(x,n)k (j) = γ(x,n)∞ (j) for all j ≤ k .
I On B = {(0, 0) ∈ C}

(Xk , k) := γ(0,0)∞ (k), k = 0, 1, 2, . . .

is a space-time version of the path of the directed RW on C.
I If γ(0,0)k (k) ∈ C then (Xj , j) = γ

(0,0)
k (j) for all j ≤ k .



Regeneration times

T0 := 0, Y0 := 0,

T1 := min
{
k > 0 : γ

(0,0)
k (k) ∈ C

}
, Y1 := XT1 := γ

(0,0)
T1

(T1),

T2 := T1 + min
{
k > 0 : γ

(Y1,T1)
k (k) ∈ C

}
, Y2 := XT2 := . . .

...
...

T0

T1

T2

T3
T6

I Randomised version of Kuczek’s (1989) construction
I Cont. time versions appeared in Neuhauser (1992) and Valesin (2010)



Main result towards LLN and annealed CLT

Proposition
Under P(· | B)

I the sequence
(
(Yi − Yi−1,Ti − Ti−1)

)
i≥1 is i.i.d.,

I Y1 is symmetrically distributed.
Furthermore there are c ,C ∈ (0,∞) s.th.

P(‖Y1‖ > n | B), P(T1 > n | B) ≤ Ce−cn for n ∈ N.

Proof sketch.

I For tail bounds use the fact that finite clusters are small.
I Symmetry follows from the symmetric construction of the paths.
I i.i.d. property holds because the local path construction uses disjoint

time-slices.



Proof ideas for the quenched case

I Need to show that E
[(

Eω
[
f
(
Xn/
√
n
)]
− Φ(f )

)2∣∣B] is summable.

We prove this first along a subsequence and then use concentration
arguments.

I For estimates we take independent RW’s (Xn) and (X ′n) on the same
cluster C, i.e. they use the same ω, but independent ω̃ resp. ω̃′.

I One can define joint regeneration times and prove a proposition
analogous to the one walk case.

I With high probability (Xn) and (X ′n) can be coupled with two
independent walks on two independent clusters.

I In case d ≥ 2 walks spend enough time away from each other.
I In case d = 1 we use a martingale decomposition of the difference.
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