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Motivation

Theoretical population genetics tries to explain variability observed in
nature by elementary evolutionary mechanisms such as

» genetic drift (= change in type frequency due to random sampling),
» mutation, selection, recombination,

» migration, ...
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Motivation

Theoretical population genetics tries to explain variability observed in
nature by elementary evolutionary mechanisms such as

» genetic drift (= change in type frequency due to random sampling),
» mutation, selection, recombination,

» migration, ...

» Good understanding of variability requires good understanding of
genealogical relationship of individuals (cf. Amaury Lambert's talk).

> In the spatial setting one needs to study coalescing random walks.



Introduction

» Aim: Study ancestral lineages in locally regulated populations! with
fluctuating population size. We consider the discrete-time contact
process without types.

» Problem: Pick an individual from the upper invariant distribution
and denote by X, the position of the ancestor of that individual n
generations ago. Describe the behaviour of X,,. Do LLN and CLT
for X, hold?

» Note: X, is a random walk in a Markovian random environment
given by the time reversal of the original population process.

Llocally regulated populations are supercritical in sparsely populated and subcritical
in crowded regions
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Oriented percolation on Z9 x Z

w(x, n), (x,n) € Z¢ x Z i.i.d. Ber(p)
(x, n) is open if w(x,n) =1 and closed if w(x,n) =0

for n < m write (x, n) — (y, m) if there is x, = X, Xp11, .-+, Xm = ¥
with w(xk, k) =1 and ||xk41 — xk|] < 1
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Oriented percolation on Z9 x Z

> w(x,n), (x,n) € Z¢ x Z i.i.d. Ber(p)
> (x,n) is open if w(x,n) =1 and closed if w(x,n) =0

» for n < m write (x,n) — (y, m) if there is x, = X, Xp11,. ., Xm = ¥
with w(xk, k) =1 and ||xk41 — xk|] < 1
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Discrete time contact process
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» Starting with some initial set A C 79 at time m € Z, for n > m set
A, ={ycZ?:3Ix € A sth.(x,m) = (y,n)}
(here we artificially set w(-, m) = La(+))

> Let p> p., A=7Z9 and m — —oo. Then (1,)nez with 1, = 14, is
the stationary contact process with £(7),) = upper invariant law.

» Interpretation: 7, is the set of wet sites if water flows up from
79 x {—oc} through open sites.
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A, ={ycZ?:3Ix € A sth.(x,m) = (y,n)}

(here we artificially set w(-, m) = La(+))
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» Starting with some initial set A C 79 at time m € Z, for n > m set
A, ={ycZ?:3Ix € A sth.(x,m) = (y,n)}

(here we artificially set w(-, m) = La(+))

> Let p> p., A=7Z9 and m — —oo. Then (1,)nez with 1, = 14, is
the stationary contact process with £(7),) = upper invariant law.

» Interpretation: 7, is the set of wet sites if water flows up from
79 x {—oc} through open sites.



Alternative local construction of (,)

» Conditioned on 7, the distribution of 7,1 is

P(nnt1(x) = 1|nn) = P+ Ligy, |x—y | <100(y)=1}-

Interpretation:
» with prob. p at (x, n+ 1) there are enough resources for one
individual
» if occupied sites in the neighbourhood in the previous generation
exist, then choose a parent at random
> otherwise (x, n+ 1) remains vacant

» with prob. 1 — p at (x,n+ 1) no resources are available
> (x,n+ 1) remains vacant irrespective of the neighbourhood



Contact process as locallly regulated population

» Contact process is locally regulated: Expected offspring number is

» 3p > 1 in empty neighbourhoods
> 3%p = p < 1 in crowded neighbourhoods
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Backbone: cluster of percolating sites
Define the cluster of percolating sites on Z9 x 7Z by

C:={(x,n) €29 XL :(x,n) = 7 x {+00}}.

p=038
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» Interpretation: C is the set of all wet sites if water flows down from
79 x {+00} through open sites. When time is running upwards, the
process of configurations of occupied (green) sites is time-reversal of
the discrete time contact process.

» Note: C is not the “usual” percolation cluster.
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Backbone: cluster of percolating sites
Define the cluster of percolating sites on Z9 x Z by

C:={(x,n) €Z¢ X Z:(x,n) = Z x {+o00}}.
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» Interpretation: C is the set of all wet sites if water flows down from
79 x {+oc} through open sites. When time is running upwards, the
process of configurations of occupied (green) sites is time-reversal of
the discrete time contact process.

» Note: C is not the “usual” percolation cluster.



Random walk on C
Define the neighbourhood of (x, n) by
Ulx,n) ={(y,n+1):[x =yl <1}

On B = {(0,0) € C} define the directed random walk (Xs)n=0,1,...
on C by

XOIOa

and for (y,n+1) € CN U(x, n)

1
IP(Xn+1 :)/|Xn = Xac) = m

Interpretation: (X)) is the ancestral lineage of an individual located
at space-time origin.
Remark: More general finite and symmetric U's, leading to different

pc and geometry of clusters, can be considered, e.g.

Ulxon) = {(y,n+1) : [x — ]| = 1}.
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Annealed and quenched LLN and CLT

> P, law of RW with transition probab. P(X 11 = y|X, = x,w)
» E,, corresponding expectation

Theorem (LLN)

(i) P(Xo/n—0|B) =1,
(i) Po(Xa/n —=250) =1 for P( - |B)-a.a. w.

Theorem (annealed and quenched CLT)
For f € Cb(]Rd)
(i) BIf (Xa/v/n) | B] === o(f),
(i) Eo[f(Xa/+/P)] 7225 O(F) for P( - |B)-a.a. w.

Here &(f) = [ f(x)®(dx) and ® is a non-trivial centred d-dimensional
normal law.

Note: (i) < (i) in LLN; (ii) = (i) but (i) % (ii) in CLT.



Key steps of the proofs

» For LLN and annealed (averaged) CLT we need to identify a suitable
regeneration structure and obtain moment estimates on regeneration
times and corresponding spatial increments.

» For quenched CLT using two inedependent RW's on the same
2
cluster show that IE[(EW [f(Xa/v/n)] — Cb(f)) ‘B} summable.

» Note: The steps are common in the RWRE literature but the details
highly depend on the particular processes.



Use of regeneration structure for LLN

Tm

Twm,

> Let To =0< Ty < To < ... be a sequence of regeneration times, at
which the process starts anew. Define M, so that Ty, < n < Ty
» Then

n+1°

<

Xn = (Xn - XMn) + (XTk - Xqu)
1

»
Il

sum of i.i.d. r.v.'s



Use of regeneration structure for LLN

Tm

Twm,

> Let To =0< Ty < To < ... be a sequence of regeneration times, at
which the process starts anew. Define M, so that Ty, < n < Ty
» Then

n+1°

1 1 n
Xn - E(Xn - XMn) + —— (XTk - XTk,l)

n

sum of i.i.d. r.v.'s



Remarks regarding regeneration times

» The random walk cannot be constructed by local rules.

» At regeneration times not only the walk, but also the environment
have start anew.

» We construct preliminary paths of the RW by local rules using w's
and some auxiliary randomness. These will become segments of the
real path at regeneration times.



A local construction of the walk

» For (x,n) € Z9 x Z let @(x, n) be an independent uniform ordering
of elements of U(x, n).
» For (x, n) define a (directed) path v,sx’") of k steps that begin on
open sites, choosing directions according to w:
> 37(0) = (x,n),
> 0 G) = (v, n+J) then 4" (j +1) = (z,n+j + 1), where
(z,n+j + 1) is the element of
{(z/,n—l—j—l—l) e U(y,n+j): (z',n—l—j—i—l) — 77 % {n+k—1}}

with the smallest index in @W(y, n+ j)

» Construction is local because only w's and w's in time slices
{n,...,n+ k —1} are used.

"N

\ RAA / /
&(x, n)[z]‘r/.>w(x,n)[1] e > / &

(x,n)



From local to global construction

"N

N
@(x, n)[2]/> (x, n)[1] / > / \
.n) k=1 k=2 k=3 k=4

’y,((x’")(k) = endpoint of the local k-step construction

If (x,n) € C then 485" (j) = klim "y,(f’")(j) exists for all j.
—00

If 70 (k) € C then 7"(j) = 4&™(j) for all j < k.
On B ={(0,0) e C}

(Xk> k) = Vg’O)(k)a k= 07 13 2; s

is a space-time version of the path of the directed RW on C.
If 7% (k) € C then (X;,j) = 72 (j) for all j < k.



Regeneration times

TO = 0, YO = 07
Ty =min{k>0: 'y,((o’o)(k) ecC}, Yi1=Xp, = ’Y(T(i’o)(Tl)v

To=Ti+min{k>0:7"""(k)ec}, Yo=Xp,=...

» Randomised version of Kuczek's (1989) construction
> Cont. time versions appeared in Neuhauser (1992) and Valesin (2010)



Main result towards LLN and annealed CLT

Proposition

Under P(- | B)
» the sequence ((Y, — Y1, T, — 7',-_1))’.>1 isi.id.,

> Y7 is symmetrically distributed.

Furthermore there are ¢, C € (0, 0) s.th.

P(||Yill > n| B), P(T1 > n| B) < Ce™" for n € N.

Proof sketch.

» For tail bounds use the fact that finite clusters are small.
» Symmetry follows from the symmetric construction of the paths.

» i.i.d. property holds because the local path construction uses disjoint
time-slices.

O



Proof ideas for the quenched case

2
Need to show that [(Ew [f(Xn/v/n)] — <b(f)) ‘B] is summable.

We prove this first along a subsequence and then use concentration
arguments.

For estimates we take independent RW's (X,) and (X)) on the same
cluster C, i.e. they use the same w, but independent @ resp. &’.

One can define joint regeneration times and prove a proposition
analogous to the one walk case.

With high probability (X,) and (X!) can be coupled with two
independent walks on two independent clusters.

» In case d > 2 walks spend enough time away from each other.
> In case d = 1 we use a martingale decomposition of the difference.



Outlook & references

Problem:

» From population genetics point of view the joint behaviour of N
ancestral lineages, i.e. N coalescing RW's is interesting.

References and generalisations:

» Birkner, Cerny, D. and Gantert (2013), Directed random walk on the
backbone of an oriented percolation cluster. Electron. J. Probab.

» Birkner, Cerny and D. (2015), Random walks in dynamic random
environments and ancestry under local population regulation
http://arxiv.org/abs/1505.02791

» Miller (2015), Random walks on weighted, oriented percolation
clusters, http://arxiv.org/abs/1506.01879
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