

RW in dynamic random environment generated by the reversal of discrete time contact process

Andrej Depperschmidt

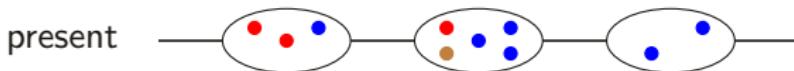
joint with Matthias Birkner, Jiří Černý and Nina Gantert

Ulaanbaatar, 07/08/2015

Motivation

Theoretical **population genetics** tries to explain variability observed in nature by elementary evolutionary mechanisms such as

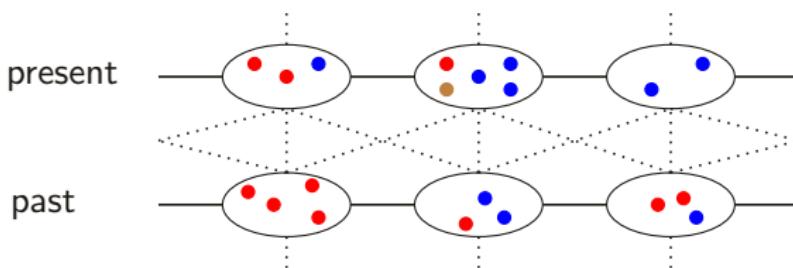
- ▶ **genetic drift** (= change in type frequency due to random sampling),
- ▶ **mutation, selection, recombination,**
- ▶ **migration, ...**



Motivation

Theoretical **population genetics** tries to explain variability observed in nature by elementary evolutionary mechanisms such as

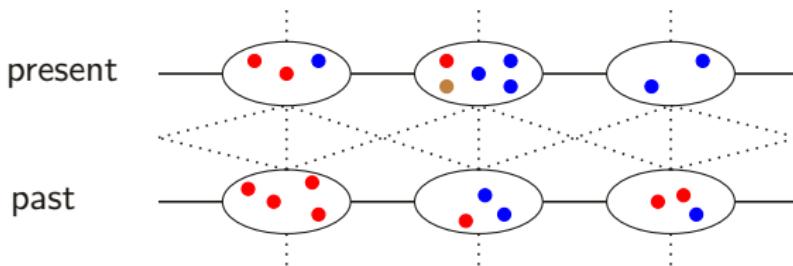
- ▶ **genetic drift** (= change in type frequency due to random sampling),
- ▶ **mutation, selection, recombination,**
- ▶ **migration, ...**



Motivation

Theoretical **population genetics** tries to explain variability observed in nature by elementary evolutionary mechanisms such as

- ▶ **genetic drift** (= change in type frequency due to random sampling),
- ▶ **mutation, selection, recombination,**
- ▶ **migration, ...**



- ▶ Good understanding of variability requires good understanding of **genealogical relationship** of individuals (cf. Amaury Lambert's talk).
- ▶ In the spatial setting one needs to study **coalescing random walks**.

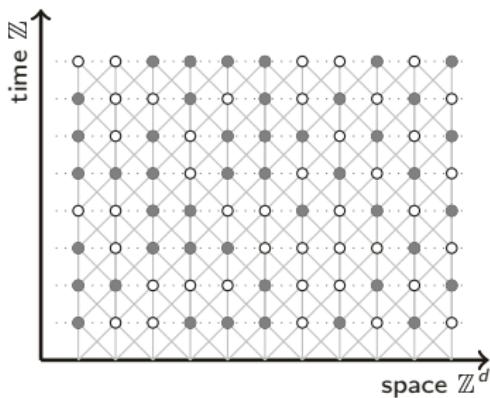
Introduction

- ▶ **Aim:** Study ancestral lineages in **locally regulated populations**¹ with fluctuating population size. We consider the **discrete-time contact process** without types.
- ▶ **Problem:** Pick an individual from the upper invariant distribution and denote by X_n the position of the ancestor of that individual n generations ago. Describe the behaviour of X_n . Do LLN and CLT for X_n hold?
- ▶ **Note:** X_n is a **random walk in a Markovian random environment** given by the time reversal of the original population process.

¹locally regulated populations are supercritical in sparsely populated and subcritical in crowded regions

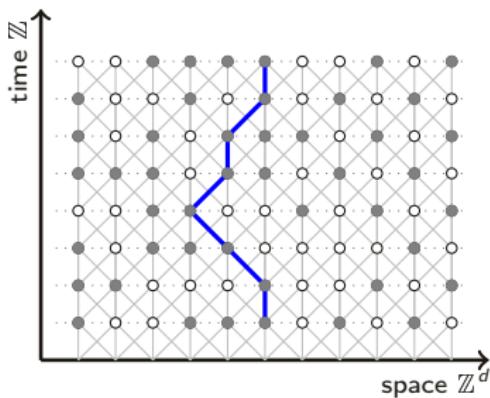
Oriented percolation on $\mathbb{Z}^d \times \mathbb{Z}$

- ▶ $\omega(x, n)$, $(x, n) \in \mathbb{Z}^d \times \mathbb{Z}$ i.i.d. $\text{Ber}(p)$
- ▶ (x, n) is **open** if $\omega(x, n) = 1$ and **closed** if $\omega(x, n) = 0$
- ▶ for $n \leq m$ write $(x, n) \rightarrow (y, m)$ if there is $x_n = x, x_{n+1}, \dots, x_m = y$ with $\omega(x_k, k) = 1$ and $\|x_{k+1} - x_k\| \leq 1$



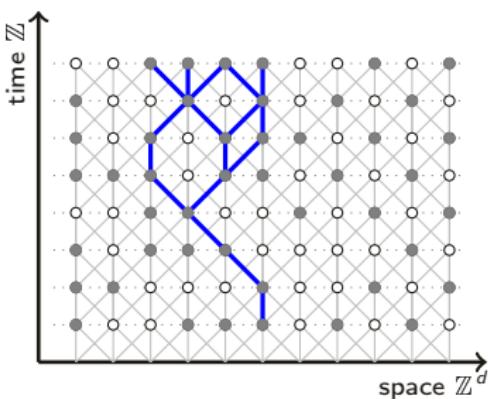
Oriented percolation on $\mathbb{Z}^d \times \mathbb{Z}$

- ▶ $\omega(x, n)$, $(x, n) \in \mathbb{Z}^d \times \mathbb{Z}$ i.i.d. $\text{Ber}(p)$
- ▶ (x, n) is **open** if $\omega(x, n) = 1$ and **closed** if $\omega(x, n) = 0$
- ▶ for $n \leq m$ write $(x, n) \rightarrow (y, m)$ if there is $x_n = x, x_{n+1}, \dots, x_m = y$ with $\omega(x_k, k) = 1$ and $\|x_{k+1} - x_k\| \leq 1$



Oriented percolation on $\mathbb{Z}^d \times \mathbb{Z}$

- ▶ $\omega(x, n)$, $(x, n) \in \mathbb{Z}^d \times \mathbb{Z}$ i.i.d. $\text{Ber}(p)$
- ▶ (x, n) is **open** if $\omega(x, n) = 1$ and **closed** if $\omega(x, n) = 0$
- ▶ for $n \leq m$ write $(x, n) \rightarrow (y, m)$ if there is $x_n = x, x_{n+1}, \dots, x_m = y$ with $\omega(x_k, k) = 1$ and $\|x_{k+1} - x_k\| \leq 1$

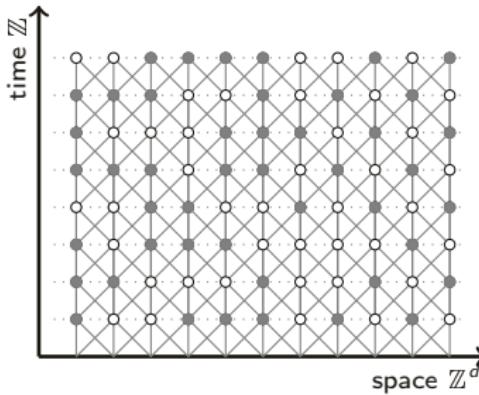


Theorem

There is $p_c \in (0, 1)$ s.th. for $p > p_c$
 $\mathbb{P}_p((0, 0) \rightarrow \mathbb{Z}^d \times \{+\infty\}) > 0$
(and = 0 for $p \leq p_c$).

In what follows we fix $p > p_c$.

Discrete time contact process



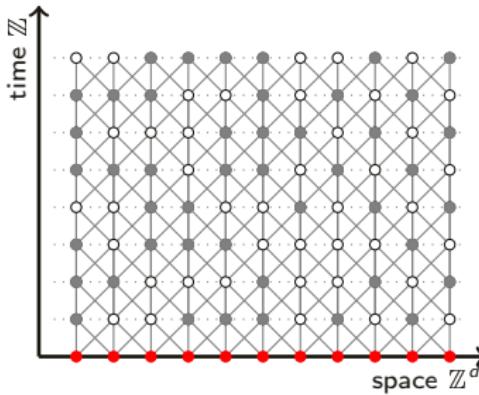
- ▶ Starting with some initial set $A \subset \mathbb{Z}^d$ at time $m \in \mathbb{Z}$, for $n \geq m$ set

$$A_n := \{y \in \mathbb{Z}^d : \exists x \in A, \text{ s.th. } (x, m) \rightarrow (y, n)\}$$

(here we artificially set $\omega(\cdot, m) = \mathbb{1}_A(\cdot)$)

- ▶ Let $p > p_c$, $A = \mathbb{Z}^d$ and $m \rightarrow -\infty$. Then $(\eta_n)_{n \in \mathbb{Z}}$ with $\eta_n = \mathbb{1}_{A_n}$ is the **stationary contact process** with $\mathcal{L}(\eta_n) = \text{upper invariant law}$.
- ▶ **Interpretation:** η_n is the set of **wet** sites if water **flows up** from $\mathbb{Z}^d \times \{-\infty\}$ through open sites.

Discrete time contact process



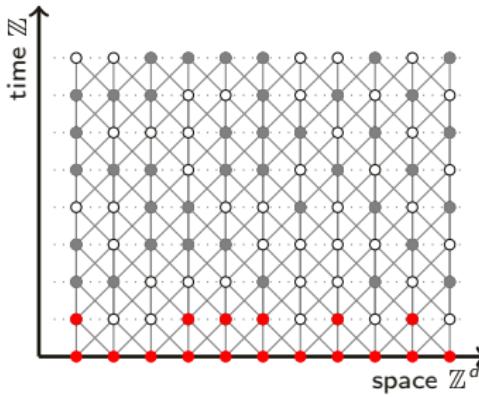
- ▶ Starting with some initial set $A \subset \mathbb{Z}^d$ at time $m \in \mathbb{Z}$, for $n \geq m$ set

$$A_n := \{y \in \mathbb{Z}^d : \exists x \in A, \text{ s.th. } (x, m) \rightarrow (y, n)\}$$

(here we artificially set $\omega(\cdot, m) = \mathbb{1}_A(\cdot)$)

- ▶ Let $p > p_c$, $A = \mathbb{Z}^d$ and $m \rightarrow -\infty$. Then $(\eta_n)_{n \in \mathbb{Z}}$ with $\eta_n = \mathbb{1}_{A_n}$ is the **stationary contact process** with $\mathcal{L}(\eta_n) = \text{upper invariant law}$.
- ▶ **Interpretation:** η_n is the set of **wet** sites if water **flows up** from $\mathbb{Z}^d \times \{-\infty\}$ through open sites.

Discrete time contact process



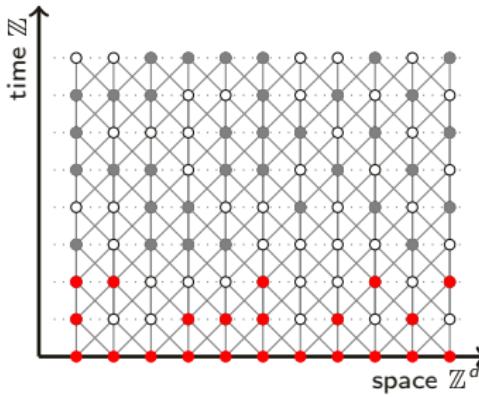
- ▶ Starting with some initial set $A \subset \mathbb{Z}^d$ at time $m \in \mathbb{Z}$, for $n \geq m$ set

$$A_n := \{y \in \mathbb{Z}^d : \exists x \in A, \text{ s.th. } (x, m) \rightarrow (y, n)\}$$

(here we artificially set $\omega(\cdot, m) = \mathbb{1}_A(\cdot)$)

- ▶ Let $p > p_c$, $A = \mathbb{Z}^d$ and $m \rightarrow -\infty$. Then $(\eta_n)_{n \in \mathbb{Z}}$ with $\eta_n = \mathbb{1}_{A_n}$ is the **stationary contact process** with $\mathcal{L}(\eta_n) = \text{upper invariant law}$.
- ▶ **Interpretation:** η_n is the set of **wet** sites if water **flows up** from $\mathbb{Z}^d \times \{-\infty\}$ through open sites.

Discrete time contact process



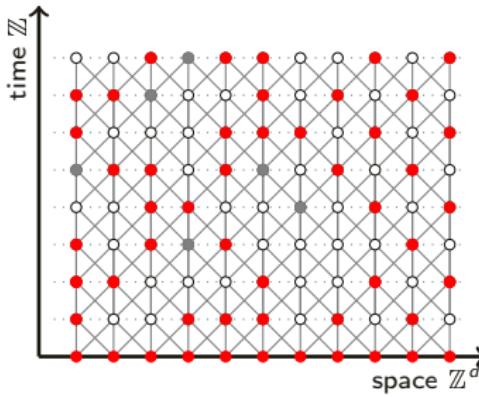
- ▶ Starting with some initial set $A \subset \mathbb{Z}^d$ at time $m \in \mathbb{Z}$, for $n \geq m$ set

$$A_n := \{y \in \mathbb{Z}^d : \exists x \in A, \text{ s.th. } (x, m) \rightarrow (y, n)\}$$

(here we artificially set $\omega(\cdot, m) = \mathbb{1}_A(\cdot)$)

- ▶ Let $p > p_c$, $A = \mathbb{Z}^d$ and $m \rightarrow -\infty$. Then $(\eta_n)_{n \in \mathbb{Z}}$ with $\eta_n = \mathbb{1}_{A_n}$ is the **stationary contact process** with $\mathcal{L}(\eta_n) = \text{upper invariant law}$.
- ▶ **Interpretation:** η_n is the set of **wet** sites if water **flows up** from $\mathbb{Z}^d \times \{-\infty\}$ through open sites.

Discrete time contact process



- ▶ Starting with some initial set $A \subset \mathbb{Z}^d$ at time $m \in \mathbb{Z}$, for $n \geq m$ set

$$A_n := \{y \in \mathbb{Z}^d : \exists x \in A, \text{ s.th. } (x, m) \rightarrow (y, n)\}$$

(here we artificially set $\omega(\cdot, m) = \mathbb{1}_A(\cdot)$)

- ▶ Let $p > p_c$, $A = \mathbb{Z}^d$ and $m \rightarrow -\infty$. Then $(\eta_n)_{n \in \mathbb{Z}}$ with $\eta_n = \mathbb{1}_{A_n}$ is the **stationary contact process** with $\mathcal{L}(\eta_n) = \text{upper invariant law}$.
- ▶ **Interpretation:** η_n is the set of **wet** sites if water **flows up** from $\mathbb{Z}^d \times \{-\infty\}$ through open sites.

Alternative local construction of (η_n)

- ▶ Conditioned on η_n the distribution of η_{n+1} is

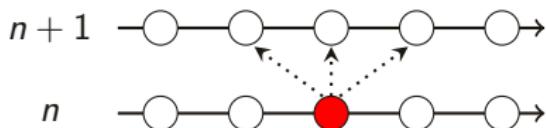
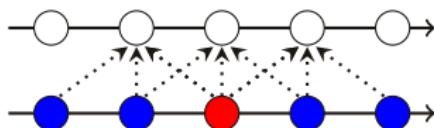
$$\mathbb{P}(\eta_{n+1}(x) = 1 | \eta_n) = p \cdot \mathbb{1}_{\{\exists y, \|x-y\| \leq 1, \eta_n(y) = 1\}}.$$

Interpretation:

- ▶ with prob. p at $(x, n+1)$ there are **enough resources** for one individual
 - ▶ if occupied sites in the neighbourhood in the previous generation exist, then choose a parent at random
 - ▶ otherwise $(x, n+1)$ remains vacant
- ▶ with prob. $1 - p$ at $(x, n+1)$ **no resources** are available
 - ▶ $(x, n+1)$ remains vacant irrespective of the neighbourhood

Contact process as locally regulated population

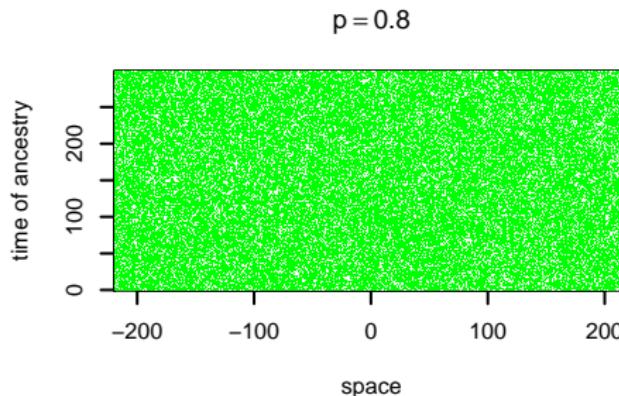
- ▶ Contact process is locally regulated: Expected offspring number is
 - ▶ $3p > 1$ in empty neighbourhoods
 - ▶ $3\frac{1}{3}p = p < 1$ in crowded neighbourhoods



Backbone: cluster of percolating sites

Define the cluster of **percolating sites** on $\mathbb{Z}^d \times \mathbb{Z}$ by

$$\mathcal{C} := \{(x, n) \in \mathbb{Z}^d \times \mathbb{Z} : (x, n) \rightarrow \mathbb{Z} \times \{+\infty\}\}.$$

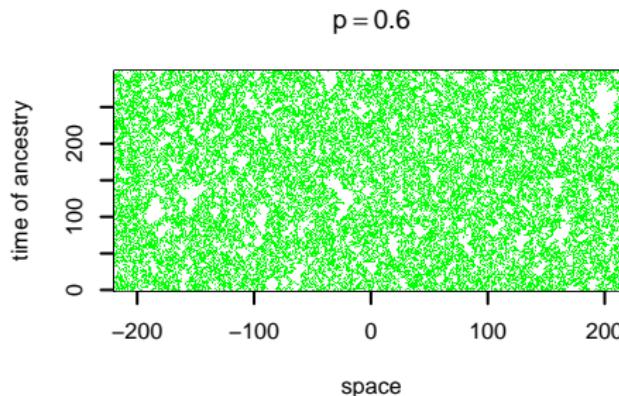


- ▶ **Interpretation:** \mathcal{C} is the **set of all wet sites** if water flows down from $\mathbb{Z}^d \times \{+\infty\}$ through open sites. When time is running upwards, the process of configurations of occupied (green) sites is **time-reversal** of the discrete time contact process.
- ▶ **Note:** \mathcal{C} is not the “usual” percolation cluster.

Backbone: cluster of percolating sites

Define the cluster of **percolating sites** on $\mathbb{Z}^d \times \mathbb{Z}$ by

$$\mathcal{C} := \{(x, n) \in \mathbb{Z}^d \times \mathbb{Z} : (x, n) \rightarrow \mathbb{Z} \times \{+\infty\}\}.$$

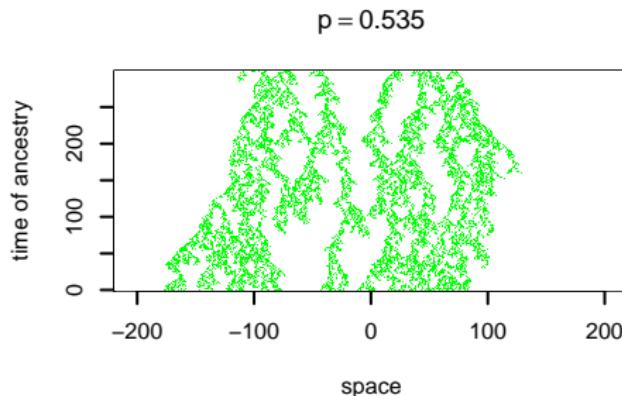


- ▶ **Interpretation:** \mathcal{C} is the **set of all wet sites** if water flows down from $\mathbb{Z}^d \times \{+\infty\}$ through open sites. When time is running upwards, the process of configurations of occupied (green) sites is **time-reversal** of the discrete time contact process.
- ▶ **Note:** \mathcal{C} is not the “usual” percolation cluster.

Backbone: cluster of percolating sites

Define the cluster of **percolating sites** on $\mathbb{Z}^d \times \mathbb{Z}$ by

$$\mathcal{C} := \{(x, n) \in \mathbb{Z}^d \times \mathbb{Z} : (x, n) \rightarrow \mathbb{Z} \times \{+\infty\}\}.$$



- ▶ **Interpretation:** \mathcal{C} is the **set of all wet sites** if water flows down from $\mathbb{Z}^d \times \{+\infty\}$ through open sites. When time is running upwards, the process of configurations of occupied (green) sites is **time-reversal** of the discrete time contact process.
- ▶ **Note:** \mathcal{C} is not the “usual” percolation cluster.

Random walk on \mathcal{C}

- ▶ Define the **neighbourhood** of (x, n) by

$$U(x, n) := \{(y, n+1) : \|x - y\| \leq 1\}.$$

- ▶ On $B := \{(0, 0) \in \mathcal{C}\}$ define the **directed random walk** $(X_n)_{n=0,1,\dots}$ on \mathcal{C} by

$$X_0 = 0,$$

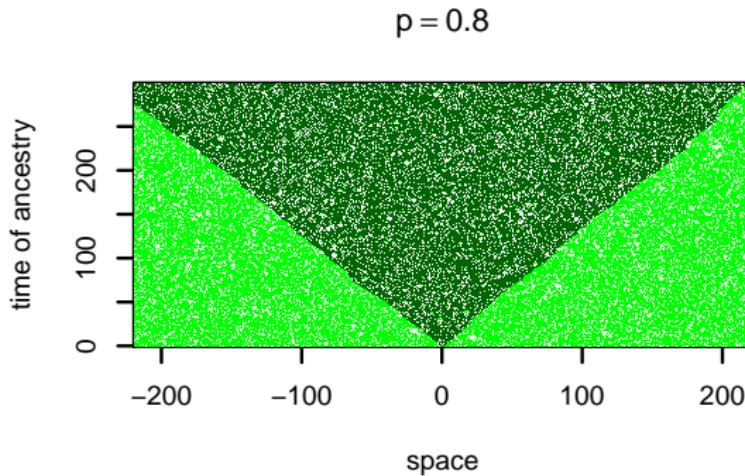
and for $(y, n+1) \in \mathcal{C} \cap U(x, n)$

$$\mathbb{P}(X_{n+1} = y | X_n = x, \mathcal{C}) = \frac{1}{|\mathcal{C} \cap U(x, n)|}.$$

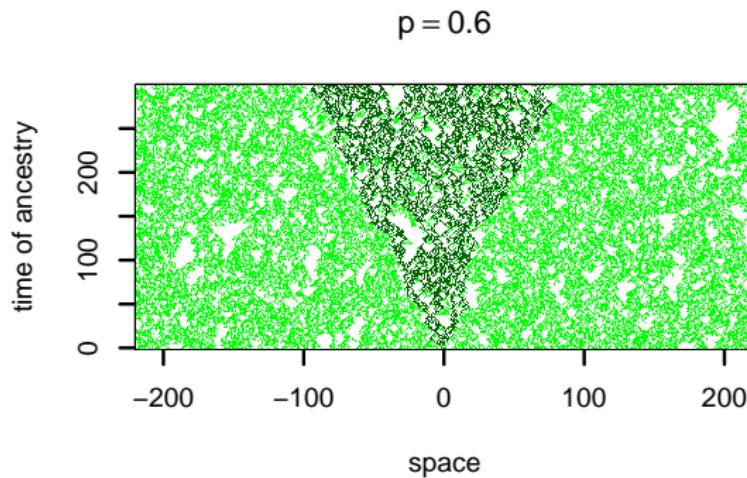
- ▶ **Interpretation:** (X_n) is the **ancestral lineage** of an individual located at space-time origin.
- ▶ **Remark:** More general **finite and symmetric** U 's, leading to different p_c and geometry of clusters, can be considered, e.g.

$$U(x, n) := \{(y, n+1) : \|x - y\| = 1\}.$$

Possible paths for the RW

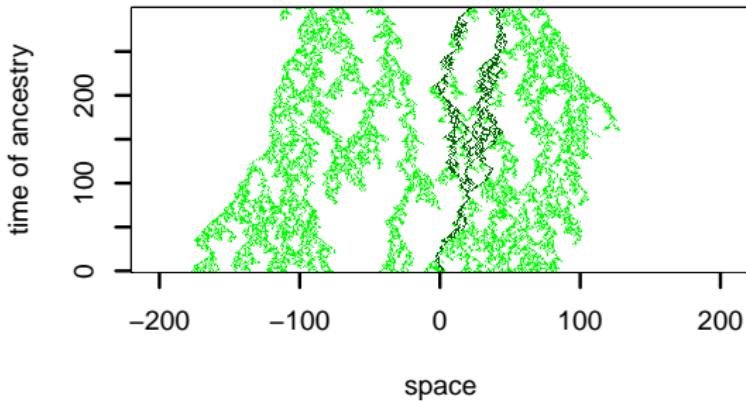


Possible paths for the RW



Possible paths for the RW

$p = 0.535$



Annealed and quenched LLN and CLT

- ▶ P_ω law of RW with transition probab. $\mathbb{P}(X_{n+1} = y | X_n = x, \omega)$
- ▶ E_ω corresponding expectation

Theorem (LLN)

- (i) $\mathbb{P}(X_n/n \rightarrow 0 | B) = 1,$
- (ii) $P_\omega(X_n/n \xrightarrow{n \rightarrow \infty} 0) = 1$ for $\mathbb{P}(\cdot | B)$ -a.a. $\omega.$

Theorem (annealed and quenched CLT)

For $f \in C_b(\mathbb{R}^d)$

- (i) $\mathbb{E}[f(X_n/\sqrt{n}) | B] \xrightarrow{n \rightarrow \infty} \Phi(f),$
- (ii) $E_\omega[f(X_n/\sqrt{n})] \xrightarrow{n \rightarrow \infty} \Phi(f)$ for $\mathbb{P}(\cdot | B)$ -a.a. $\omega.$

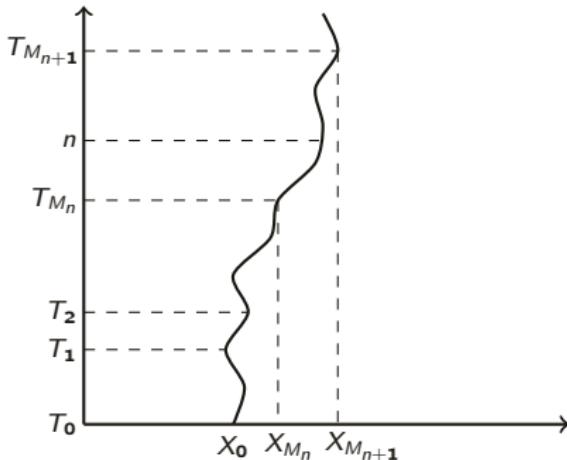
Here $\Phi(f) = \int f(x)\Phi(dx)$ and Φ is a non-trivial centred d -dimensional normal law.

Note: (i) \Leftrightarrow (ii) in LLN; (ii) \Rightarrow (i) but (i) $\not\Rightarrow$ (ii) in CLT.

Key steps of the proofs

- ▶ For LLN and annealed (averaged) CLT we need to identify a suitable **regeneration structure** and obtain moment estimates on regeneration times and corresponding spatial increments.
- ▶ For quenched CLT using two inedependent RW's on the same cluster show that $\mathbb{E}\left[\left(E_\omega[f(X_n/\sqrt{n})] - \Phi(f)\right)^2 \middle| B\right]$ summable.
- ▶ **Note:** The steps are common in the RWRE literature but the details highly depend on the particular processes.

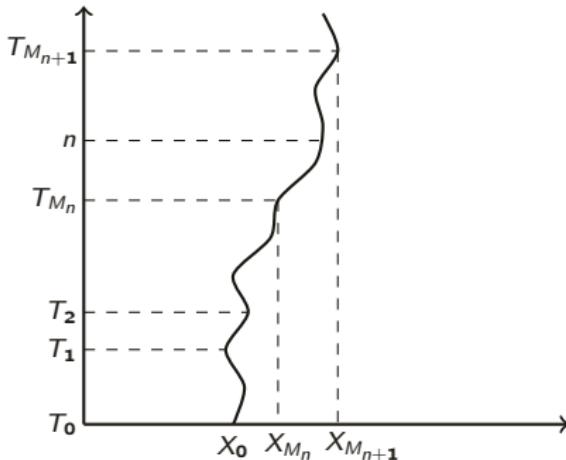
Use of regeneration structure for LLN



- ▶ Let $T_0 = 0 < T_1 < T_2 < \dots$ be a sequence of **regeneration times**, at which the process starts *anew*. Define M_n so that $T_{M_n} \leq n < T_{M_{n+1}}$.
- ▶ Then

$$X_n = (X_n - X_{M_n}) + \underbrace{\sum_{k=1}^{M_n} (X_{T_k} - X_{T_{k-1}})}_{\text{sum of i.i.d. r.v.'s}}$$

Use of regeneration structure for LLN



- ▶ Let $T_0 = 0 < T_1 < T_2 < \dots$ be a sequence of **regeneration times**, at which the process starts *anew*. Define M_n so that $T_{M_n} \leq n < T_{M_{n+1}}$.
- ▶ Then

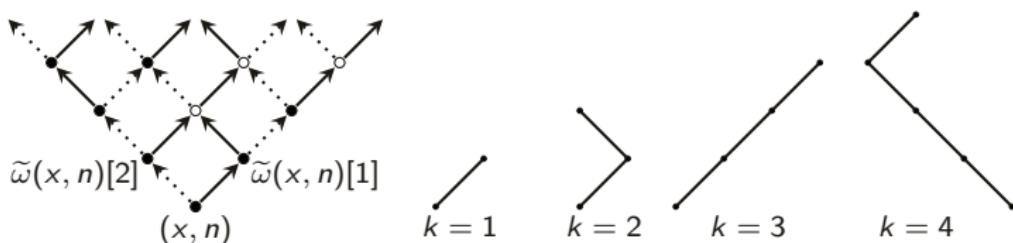
$$\frac{1}{n} X_n = \frac{1}{n} (X_n - X_{M_n}) + \frac{M_n}{n} \frac{1}{M_n} \underbrace{\sum_{k=1}^{M_n} (X_{T_k} - X_{T_{k-1}})}_{\text{sum of i.i.d. r.v.'s}}$$

Remarks regarding regeneration times

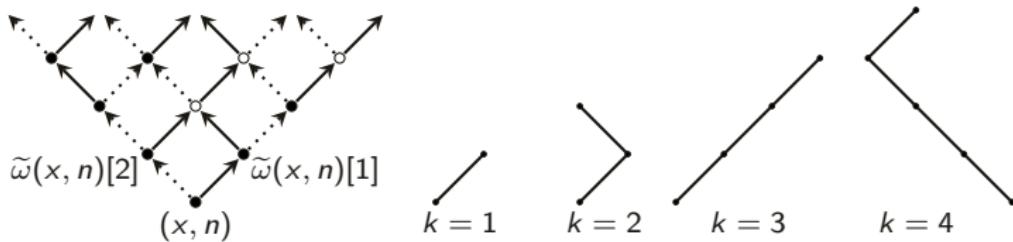
- ▶ The random walk cannot be constructed by local rules.
- ▶ At regeneration times not only the walk, but also the environment have start *anew*.
- ▶ We construct **preliminary paths** of the RW by local rules using ω 's and some **auxiliary randomness**. These will become segments of the *real path* at regeneration times.

A local construction of the walk

- ▶ For $(x, n) \in \mathbb{Z}^d \times \mathbb{Z}$ let $\tilde{\omega}(x, n)$ be an **independent uniform ordering** of elements of $U(x, n)$.
- ▶ For (x, n) define a (directed) path $\gamma_k^{(x, n)}$ of k steps that **begin on open sites**, choosing directions according to $\tilde{\omega}$:
 - ▶ $\gamma_k^{(x, n)}(0) = (x, n)$,
 - ▶ $\gamma_k^{(x, n)}(j) = (y, n+j)$ then $\gamma_k^{(x, n)}(j+1) = (z, n+j+1)$, where $(z, n+j+1)$ is the element of
$$\{(z', n+j+1) \in U(y, n+j) : (z', n+j+1) \rightarrow \mathbb{Z}^d \times \{n+k-1\}\}$$
with the smallest index in $\tilde{\omega}(y, n+j)$
- ▶ Construction is **local** because only ω 's and $\tilde{\omega}$'s in time slices $\{n, \dots, n+k-1\}$ are used.



From local to global construction



- ▶ $\gamma_k^{(x,n)}(k)$ = endpoint of the local k -step construction
- ▶ If $(x, n) \in \mathcal{C}$ then $\gamma_\infty^{(x,n)}(j) := \lim_{k \rightarrow \infty} \gamma_k^{(x,n)}(j)$ exists for all j .
- ▶ If $\gamma_k^{(x,n)}(k) \in \mathcal{C}$ then $\gamma_k^{(x,n)}(j) = \gamma_\infty^{(x,n)}(j)$ for all $j \leq k$.
- ▶ On $B = \{(0, 0) \in \mathcal{C}\}$

$$(X_k, k) := \gamma_\infty^{(0,0)}(k), \quad k = 0, 1, 2, \dots$$

is a **space-time version** of the path of the directed RW on \mathcal{C} .

- ▶ If $\gamma_k^{(0,0)}(k) \in \mathcal{C}$ then $(X_j, j) = \gamma_k^{(0,0)}(j)$ for all $j \leq k$.

Regeneration times

$$T_0 := 0,$$

$$Y_0 := 0,$$

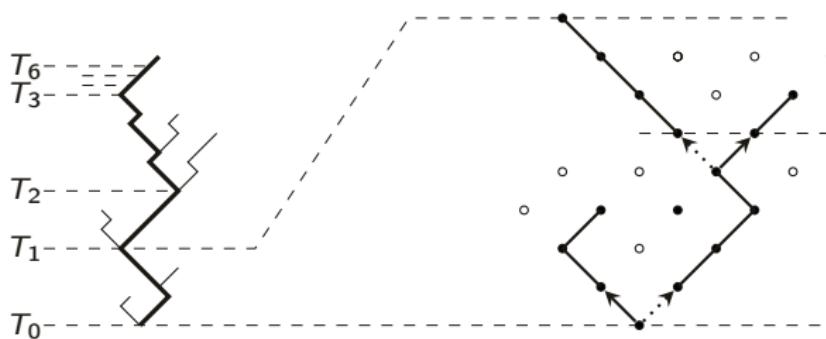
$$T_1 := \min \{k > 0 : \gamma_k^{(0,0)}(k) \in \mathcal{C}\},$$

$$Y_1 := X_{T_1} := \gamma_{T_1}^{(0,0)}(T_1),$$

$$T_2 := T_1 + \min \{k > 0 : \gamma_k^{(Y_1, T_1)}(k) \in \mathcal{C}\}, \quad Y_2 := X_{T_2} := \dots$$

⋮

⋮



- ▶ Randomised version of Kuczak's (1989) construction
- ▶ Cont. time versions appeared in Neuhauser (1992) and Valesin (2010)

Main result towards LLN and annealed CLT

Proposition

Under $\mathbb{P}(\cdot | B)$

- ▶ the sequence $((Y_i - Y_{i-1}, T_i - T_{i-1}))_{i \geq 1}$ is i.i.d.,
- ▶ Y_1 is symmetrically distributed.

Furthermore there are $c, C \in (0, \infty)$ s.th.

$$\mathbb{P}(\|Y_1\| > n | B), \mathbb{P}(T_1 > n | B) \leq Ce^{-cn} \quad \text{for } n \in \mathbb{N}.$$

Proof sketch.

- ▶ For tail bounds use the fact that finite clusters are small.
- ▶ Symmetry follows from the symmetric construction of the paths.
- ▶ i.i.d. property holds because the local path construction uses disjoint time-slices.

Proof ideas for the quenched case

- ▶ Need to show that $\mathbb{E} \left[\left(E_\omega \left[f(X_n/\sqrt{n}) \right] - \Phi(f) \right)^2 | B \right]$ is summable.
We prove this first along a subsequence and then use concentration arguments.
- ▶ For estimates we take **independent RW's** (X_n) and (X'_n) on the **same cluster** \mathcal{C} , i.e. they use the same ω , but independent $\tilde{\omega}$ resp. $\tilde{\omega}'$.
- ▶ One can define **joint regeneration times** and prove a proposition analogous to the one walk case.
- ▶ With high probability (X_n) and (X'_n) can be **coupled** with two independent walks on two independent clusters.
 - ▶ In case $d \geq 2$ walks spend enough time away from each other.
 - ▶ In case $d = 1$ we use a martingale decomposition of the difference.

Outlook & references

Problem:

- ▶ From population genetics point of view the joint behaviour of N ancestral lineages, i.e. N coalescing RW's is interesting.

References and generalisations:

- ▶ Birkner, Černý, D. and Gantert (2013), Directed random walk on the backbone of an oriented percolation cluster. *Electron. J. Probab.*
- ▶ Birkner, Černý and D. (2015), Random walks in dynamic random environments and ancestry under local population regulation
<http://arxiv.org/abs/1505.02791>
- ▶ Miller (2015), Random walks on weighted, oriented percolation clusters, <http://arxiv.org/abs/1506.01879>