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Due to Kluppelberg et. al. (2005). Start with GARCH(1,1):

n € Ny,

2 2 2
gn — Onén, 0, =0 =+ alfn—l -+ 510_71—17

From the recursion,

n—1 n—1

—Oéoz H 61+a15 +08H 51+a15)

1=0 g=2+1
n Ls] n—1
= <a§+a0/ exp [ Zlog B1t+ai€; )} ds) exp [Zlog B1+aaeg; )}
0 J=0 §=0
n—1
Denote X,, := — 3 log(f1 + aic)).
j=0

August 3, 2015, Stochastic Processes and Applications, Ulaanbaatar, MONGOLIA

Modeling Financial Time-Series with COGARCH processes - p. 14/51



COGARCH(1,1) model

th — Ot st7 t > 07 GO — 07

Outline

t

Introduction —

e i (O'(Q)—I-Oéo/ eXSds)e K- 1 >0,
0

Continuous-time approaches
@ Nelson'’s diffusion limit
® COGARCH(1,1) model

® COGARCH(1,1) model Wh e re

@ COGARCH(1,1) model

X; = — Z 10g (51 - Oél(ALS)Q) .

0<s<t

COGARCH(p, q) processes

Parameter Estimation

The volatility process o? satisfies

Real Data Analysis

t
Conclusions and Future Works O'? — Ozot—lOg /81 / 03d8+(a1/51) Z UE(ALS)Q—FO(%’ t Z O
0 0<s<t

|
August 3, 2015, Stochastic Processes and Applications, Ulaanbaatar, MONGOLIA Modeling Financial Time-Series with COGARCH processes - p. 15/51



Outline

COGARCH(1,1) model

Introduction

Continuous-time approaches

@ Nelson'’s diffusion limit
® COGARCH(1,1) model
® COGARCH(1,1) model
® COGARCH(1,1) model

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

August 3, 2015, Stochastic Processes and Applications, Ulaanbaatar, MONGOLIA

Modeling Financial Time-Series with COGARCH processes - p. 16/51



COGARCH(1,1) model

e Stationary and uncorrelated increments: (G4, — G¢)>o,
r >0

Outline

Introduction

Continuous-time approaches
@ Nelson'’s diffusion limit
® COGARCH(1,1) model
® COGARCH(1,1) model
® COGARCH(1,1) model

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

|
August 3, 2015, Stochastic Processes and Applications, Ulaanbaatar, MONGOLIA Modeling Financial Time-Series with COGARCH processes - p. 16/51



Outline

COGARCH(1,1) model

Introduction

Continuous-time approaches

@ Nelson'’s diffusion limit
® COGARCH(1,1) model
® COGARCH(1,1) model
® COGARCH(1,1) model

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

e Stationary and uncorrelated increments: (G4, — G¢)>o,
r >0

e Heavy tails and volatility clusters at high levels

August 3, 2015, Stochastic Processes and Applications, Ulaanbaatar, MONGOLIA

Modeling Financial Time-Series with COGARCH processes - p. 16/51



COGARCH(1,1) model

e Stationary and uncorrelated increments: (G4, — G¢)>o,
r >0

Outline

Introduction

e Heavy tails and volatility clusters at high levels

Continuous-time approaches
® Nelson'’s diffusion limit .
® COGARCH(L1) model  Volatility process has an ACF of an CAR(1)
® COGARCH(1,1) model
® COGARCH(1,1) model

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

|
August 3, 2015, Stochastic Processes and Applications, Ulaanbaatar, MONGOLIA Modeling Financial Time-Series with COGARCH processes - p. 16/51



COGARCH(1,1) model

Stationary and uncorrelated increments: (G4, — Gt)>o,
r >0

Outline

Introduction

Heavy tails and volatility clusters at high levels
Volatility process has an ACF of an CAR(1)

Continuous-time approaches
@ Nelson'’s diffusion limit
® COGARCH(1,1) model
® COGARCH(1,1) model
® COGARCH(1,1) model

Squared increment process has an ACF of an ARMA(1,1)

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

|
August 3, 2015, Stochastic Processes and Applications, Ulaanbaatar, MONGOLIA Modeling Financial Time-Series with COGARCH processes - p. 16/51



COGARCH(p, q) processes

|
August 3, 2015, Stochastic Processes and Applications, Ulaanbaatar, MONGOLIA Modeling Financial Time-Series with COGARCH processes - p. 17/51



Outline

Construction

Introduction

Continuous-time approaches

COGARCH(p, q) processes

@ Construction

@ Construction cont.d
@ Construction cont.d
® COGARCH(p, q)

equations
® Non-negativity of the
volatility
@ Stationarity property
® Second-order property
® Squared increment

process
® Squared increment

process
® ACF of the squared

increments
® Example: COGARCH(1,3)

® Example: COGARCH(1,3)
® Mixing: COGARCH(2,2)

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Start with a GARCH(p, q) process (&, )nen, defined by
&n

p q
02 = o+ Z ;& + Z ﬁjai_j, n > max{p, q}.
i=1 j=1

On€n,

The volatility process can be viewed as a “self-exciting”

ARMA(q,p — 1) process driven by the noise sequence

(03—15%—1)n6N-
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CARMA(q, p— 1) process (v );>o with driving Lévy process L:

e = c+a'G,
dCt — BCtdt —I_ est,

where a’ = |a1,...,q4), aj :=0forj >p,e=10,---,0,1)

and
0
0 0 1 0
0
1

0 0 0
5 _ﬁq _ﬁq—l _Bq—2 _51 d

Need to replace (L;) by a continuous-time analog of the

driving process (02 ;e _|)nen.
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In discrete-time,

(d)

Zg

Its continuous-time analog:

Z 03— (ALS)2 =

0<s<t 0

2: 2_2
;&

il

o2_d[L, L],

l.e.
dR; = o2 d[L,L]\?,
where [L, L]gd) IS the discrete part of the quadratic

covariation of L.
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Vi >0 a.s.

a'ePle >0,

Vi>0

for any driving Lévy process if

vVit>0.
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Vi>0 as. Vt>0
for any driving Lévy process if

a'ePle >0, Vt>0.

In the COGARCH(2, 2) case, the necessary and sufficient
condition is

as > 0 and o1 > —042)\(3).
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cov(Y,,) exists if EL} < oo and
IS~ ea’S|I7 p < 2(=A — [|S™"ea’S||. ),
where p := EL%, p := ELj.
If (V;)¢>0 Is the stationary volatility process, then
a5 83
(Bg — pon)?(1 —m)

where m := var ().

COV(‘/t—I—ha ‘/t) — COV(thrha ¢t>> t) h Z 07
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cov(Y,,) exists if EL} < oo and
IS~ ea’S|I7 p < 2(=A — [|S™"ea’S||. ),
where p := EL%, p := ELj.
If (V;)¢>0 Is the stationary volatility process, then
a5 83
(Bg — pon)?(1 —m)

where m := var ().

covV(Viyn, Vi) =

Cov(wt—l—ha ¢t>7 t) h > 07

 Volatility process has an ACF of a CARMA(g, p — 1).
(Volatility process of a GARCH(p, ¢) has an ACF of an
ARMA(g, p — 1)).

Conclusions and Future Works
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Gﬁ” :

Gir — Gy =

Foranyt>0and h > r > 0,

E(Gy")
E((G)?)

cov(Ggr) : Gi?h)

VVedL,, t>0.
(t,t+7r]

oo Byr
Bq — Hag

EL?.
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cov((G{)2, (GI)?) = BLY a'eP"B~Y(1 — e PT)con(Y,,G2), h>

var((G{")?) = 6EL} a'K, + 2(rEL}EVi)? + rEL{EV2,

where N
B := B + uea’,

~

cov(Y,,G?) = [(I — egr)cov(Yoo) — B7Y(eP" — I)cov(Y ) B'le
and

~ ~
~ ~

K, := [(rI-B~'(eP"—1I))cov(Yuo)— B Y(B~ 1P —I)—rI)cov(Y o )
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The ACF of the squared increment process:

p(h) = creMt 44 cge™,  h >,

where )i, ..., \, are the eigenvalues of B. The ACF can also
be written as

a'P,a+a'Qy,

h) = h >
p(h) aPypa+aQy+ Ry’ =1

~

where P;,, Qy, Py, Qo and R, depend only on 8, ..., 3,.
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The simulated compound-Poisson driven COGARCH(1,3)
process with jump-rate 2, normally distributed jumps with
mean zero and variance 0.74 and coefficients ag = a1 = 1,
51 = 1.2, 62 — 48 + 72 and 53 = .064 + A2,
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The sample ACFs of the volatilities (V;) (left) and of the
squared COGARCH increments ((Gy+1 — G¢)?) (right) of a
realisation of length 1,000,000 of the COGARCH(1,3)
process.
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e For a compound-Poisson driven COGARCH(2,2) process,

(Y:):>0 IS strongly mixing with geometric rate.
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e The noise sequence in the squared increment process
((GY)2),0 is not an i.i.d. or a martingale difference.
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Francqg and Zakoian (1998).

e For a strictly stationary ergodic process (X;):cz Satisfying
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« Estimate £ by fitting an ARMA(2,2) to the observed

squared increments and minimizing the least-squares sum.
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(Assume p = ELT = 1).
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Example: COGARCH(2,2)

ag=1, a1 =0.1, a9 =0, 51 =1, 85 = 0.2 and compound
Poisson driving process with std normal jumps and EL? = 1.

Outline

Introduction

ACF of the squared increment:

Continuous-time approaches

p(h) = 0.1040e Y1127 _(0.0811e7 08873 =12, ...

COGARCH(p, q) processes

Parameter Estimation A R MA(2 - 2) param ete rS

@ Least squares method
@ Strong consistency and

o Evinain the paraeters ¢1 = 1.3052, @9 = —0.3679, 0 = —1.2642, 0> = 0.3669.

® Example: COGARCH(2,2)

® Example: COGARCH(2,2)
® Simulation result H e n Ce y

@ Simulation result
@ Simulation result

@ \/olatility Estimation /31 p— log 5152 — 1 and /32 — log 51 log 52 — 017

@ Volatility Estimation

Real Data Anayss where ¢! = 0.8934 and &, ' = 0.4118 are the autoregressive
Conclusions and Future Works rOOtS Of the AR MA(Z,Z)
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Example: COGARCH(2,2)

ACF as a function of a:

h = 17.2007a% — 0.2185a35 + 3.8771a; — 0.4370axo _—0.1127h
PR = 14.690002 + 0.285302 + 2.3673a1 + 6.5707a + 5

| —2.32950f + 1834003 — 413380, + 3.66800
cosARCHp. g s 14.690002 + 0.285302 + 2.3673; + 6.57073 + 5

Parameter Estimation

Introduction

—0.8873h

® Least squares method Mat(:h'ng the tWO ACFS ylelds

@ Strong consistency and

asymptotic normality
@ Estimating the parameters

e Ao —150.75450% + 2.3868a5 — 34.9245a; + 10.7736a2 + 5 = 0,
® Example: COGARCH(2,2)

® Simulation result —14028804% —|— 2289570&% - 485971@1 —I_ 517914&2 —l_ 5 =S O,

@ Simulation result
@ \olatility Estimation

o Volaiy Estimation giving a = (0.1, 0). Further, find

Real Data Analysis

512314-042:1, 52:524—041:0.2 and og = 1.

Conclusions and Future Works
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Outline

Simulation result

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

@ Least squares method

@ Strong consistency and
asymptotic normality

@ Estimating the parameters

® Example: COGARCH(2,2)

® Example: COGARCH(2,2)

@ Simulation result

@ Simulation result

@ Simulation result

@ \olatility Estimation

@ Volatility Estimation

Real Data Analysis

Conclusions and Future Works

ag=1, a1 =0.1, a9 =0, 51 =1, 85 = 0.2 and compound
Poisson driving process with std normal jumps and EL? = 1.

1,000, 000 realizations of G\", i = 0, ..., 999, 999 were
simulated. The estimation was repeated 2000 times.

Qg

aq

B

Bo

Mean

Bias

MSE

MAE

1.0683
(0.0100)
0.0683
(0.0100)
0.1099
(0.0059)
0.2509
(0.0069)

0.0961
(0.0010)
-0.0039
(0.0013)

0.0018
(0.00001)
0.0337
(0.0008)

1.0123
(0.0054)
0.0123
(0.0054)
0.0300
(0.0014)
0.1383
(0.0033)

0.1986
(0.0009)
-0.0014
(0.0009)
0.0009
(0.0001)
0.0242
(0.0006)
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Simulation result

Outline 150 150
. 100 100
Introduction
50 50
Continuous-time approaches
[0} (0]
1 1.2 1.4 1.6 —-0.6 -0.4 -0.2 (0}
COGARCH(p, q) processes 1 b2
Parameter Estimation 150 150
® Least squares method
. 100 100
® Strong consistency and
asymptotic normality 50 50
® Estimating the parameters
® Example: COGARCH(2,2) o o
® Example: COGARCH(2,2) -6 -14 12 -1 0 0z 04 0.6
@ Simulation result o1 02

@ Simulation result

o Simulation resu Least-squares estimators of the ARMA(2,2) parameters. The

@ \/olatility Estimation

o Volaiiy Esiimaon true values are ¢; = 1.3052, ¢ = —0.3679, 6, = —1.2642 and
Real Data Analysis 92 — 03669

Conclusions and Future Works
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Outline

Simulation result

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

® Least squares method
@ Strong consistency and

asymptotic normality
® Estimating the parameters

® Example: COGARCH(2,2)
® Example: COGARCH(2,2)
@ Simulation result

® Simulation result

@ Simulation result

@ \/olatility Estimation

@ Volatility Estimation

Real Data Analysis

Conclusions and Future Works

150 150
100 100
50 50
(0] (0]
150 150
100 100
50 50
(0] (0]

0.1 0.15 0.2 0.25 03
B2

Least-squares estimators of the COGARCH parameters. The
true values are g = 1, «; = 0.1, 81 = 1 and [y = 0.2.
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Volatility Estimation

Let h be a positive integer and Gy, G%, .., G, GH%, ... are

Outine the observed log returns. Then

Introduction

h
A 1

Continuous-time approaches ~ = 1 - i =
Vi =PV + Y (I + 2B)e(G\7),)’

COGARCH(p, q) processes

h b+
1=1

Parameter Estimation

@ Least squares method an d
@ Strong consistency and

A ~ A / A

asymptotic normalit p— pr—
OEs)t/imre)lting the paraymeters ‘[t+1 QO —|_ 2l Yt+1 2 t O’ 17 T
® Example: COGARCH(2,2) A . L. .
® Example: COGARCH(22) where Y is an initial starting value.
@ Simulation result
@ Simulation result
® Simulation result
@ \/olatility Estimation
® Volatility Estimation

Real Data Analysis

Conclusions and Future Works
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Outline

Volatility Estimation

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

@ Least squares method
@ Strong consistency and

asymptotic normality
@ Estimating the parameters

® Example: COGARCH(2,2)
® Example: COGARCH(2,2)
@ Simulation result

® Simulation result

® Simulation result

@ \olatility Estimation

@ \olatility Estimation

Real Data Analysis

Conclusions and Future Works

10)
(o))

V; (when h

1)

Vi (when h

0 100 200 300 400 500

Sample path of the squared increment process (top graph),
theoretical (blue line) and the estimated volatility (red line)
based on the observations G% : G%, ..., G500 and the

estimated coefficients. The middle graph is for h = 10 and
the bottom graph is for A = 1.
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Real Data Analysis
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Dow Jones 5-minute data

12000

Outline

11000
Introduction

, , 10000 |-
Continuous-time approaches

COGARCH(p, q) processes 9000 -

Parameter Estimation 8000

Real Data Analysis 7000 . . \ \ . .
® Dow Jones 5-minute data Jul 2004 Jul 2005 Jul 2006
® Dow Jones 5-minute data

@ Estimated Coefficients

o sy Etmetor Dow Jones Industrial Average recorded from February
 Goodness of fi 12th, 2003 to May 12th, 2006. (813 trading days with 78
S — 5-minute observations per day, resulting in total of 63414

5-minute observations).
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Outline

Dow Jones 5-minute data

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

® Dow Jones 5-minute data
® Dow Jones 5-minute data
@ Estimated Coefficients

@ Volatility Estimation

® Goodness of fit

® Goodness of fit

Conclusions and Future Works

-20 . ! ! ! ! !
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x 10"
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0.2
0.15

0 50 100 150 200 250 300

Dow Jones log returns (the top graph) and the ACF of the
squared log returns.
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Estimated Coefficients

COGARCH(2, 2) model was fitted to the 30-minute log

returns G\, GV, ..., G ..

Introduction

Continsous-ime approaches The driving compound Poisson process has jump-rate ¢ = 2

cosarcrip, geocesses— @NA NOrmally distributed jumps with mean zero and variance
Parameter Estimation O . 70 7 1 .

Real Data Analysis

® Dow Jones 5-minute data X _ A - A _

& = 0.9760, &; = 0.0117, G = 0.1860,
@ Estimated Coefficients

@ Volatility Estimation

® Goodness of fit Bl = 06088, /82 — 00122

® Goodness of fit

Conclusions and Future Works
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Volatility Estimation

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

0
0 2000 4000 6000 8000 10000

Parameter Estimation

200
Real Data Analysis
® Dow Jones 5-minute data 150
® Dow Jones 5-minute data
® Estimated Coefficients 100
@ \olatility Estimation

® Goodness of fit 50
® Goodness of fit

0 2000 4000 6000 8000 10000
Conclusions and Future Works

Dow Jones squared 30-minute log returns (top graph), the
estimated volatilities based on the estimated coefficients and
5-minute log returns (middle graph). The unit of time is 30
minutes and there are h = 6 observations per unit interval.
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Goodness of fit

Estimated residuals:

Outline

GV WV, t=1,2,...,10569.

Introduction

continuous-ime spproaches —— S@Mple mean: —0.0232,

oerrep e Sample standard deviation: 0.9325,

e Ljung-Box test statistic: Q5 = 222.0025 with lag 189,
o o Sores S McLeod-Li test statistic: @, = 214.0934 with lag 189.

® Dow Jones 5-minute data

@ Estimated Coefficients

@ volilty Estimaton The critical value at 0.05 level was 222.0757.
® Goodness of fit

Conclusions and Future Works
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ACF of the squ
residuals (middl

ared 30-minute log returns (top graph), the
e graph) and the squared residuals (bottom

graph).
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Conclusions

o A family of continuous time GARCH processes,
generalizing the COGARCH(1, 1) process was introduced
and studied.

Outline

Introduction

e A least-squares method to estimate the parameters of a
COGARCH(2,2) process was proposed making use of the
ACF structure of the squared increment process.

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

e When the driving Lévy process is compound Poisson, then

| the state process and the squared increments are strongly
S e mixing with exponential rate, ensuring strong consistency
e and asymptotic normality of the LSE.

e The COGARCH(2, 2) model with compound poisson
driving process was applied to a real data.

Real Data Analysis

| |
|
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Future Works

 Investigate the degree to which the stationarity condition
can be relaxed when ¢ > 1.

Outline

i e Investigate the strong mixing property of COGARCH(p, q)
processes with ¢ > 2 and with general driving
Lévy process.

Continuous-time approaches

COGARCH(p, q) processes

- e |nvestigate the connections between higher order
el Date Aty COGARCH and GARCH processes.

coneusensana runreworis @ Comparisons of COGARCH models fitted to observations
® Conclusions

o Future Works of the same process made at different frequencies.

T'hank you!
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