

Modeling Financial Time-Series with COGARCH(p, q) processes

Erdenebaatar Chadraa
Minnesota State University

Peter Brockwell
Colorado State University

Alex Lindner
Technische Universität München

Outline

Outline

● Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Outline

- Introduction
 - Stylized features of financial data
 - GARCH models
 - Lévy processes

Outline

• Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Outline

- Introduction
 - Stylized features of financial data
 - GARCH models
 - Lévy processes
- Continuous-time approaches
 - Nelson's model
 - COGARCH(1,1) model

Outline

• Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Outline

- Introduction
 - Stylized features of financial data
 - GARCH models
 - Lévy processes
- Continuous-time approaches
 - Nelson's model
 - COGARCH(1,1) model
- COGARCH(p, q) model
 - Construction
 - Properties

Outline

● Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Outline

- Introduction
 - Stylized features of financial data
 - GARCH models
 - Lévy processes
- Continuous-time approaches
 - Nelson's model
 - COGARCH(1,1) model
- COGARCH(p, q) model
 - Construction
 - Properties
- Parameter estimation

Outline

● Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Outline

- Introduction
 - Stylized features of financial data
 - GARCH models
 - Lévy processes
- Continuous-time approaches
 - Nelson's model
 - COGARCH(1,1) model
- COGARCH(p, q) model
 - Construction
 - Properties
- Parameter estimation
- Simulation and Application

Outline

● Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Outline

- Introduction
 - Stylized features of financial data
 - GARCH models
 - Lévy processes
- Continuous-time approaches
 - Nelson's model
 - COGARCH(1,1) model
- COGARCH(p, q) model
 - Construction
 - Properties
- Parameter estimation
- Simulation and Application
- Conclusions and Future work

Outline

● Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Introduction

Stylized Features

Outline

Introduction

- **Stylized Features**

- Dow Jones Industrial
- Average
- GARCH model
- Example
- Lévy processes
- Lévy processes
- Example: Brownian Motion
- Example: Compound
- Poisson

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Stylized Features

- Tail heaviness

Outline

Introduction

● **Stylized Features**

- Dow Jones Industrial

Average

- GARCH model

- Example

- Lévy processes

- Lévy processes

- Example: Brownian Motion

- Example: Compound

Poisson

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Stylized Features

- Tail heaviness
- Volatility clustering

Outline

Introduction

● **Stylized Features**

- Dow Jones Industrial
 Average
- GARCH model
- Example
- Lévy processes
- Lévy processes
- Example: Brownian Motion
- Example: Compound
 Poisson

Continuous-time approaches

COGARCH(p, q) processes

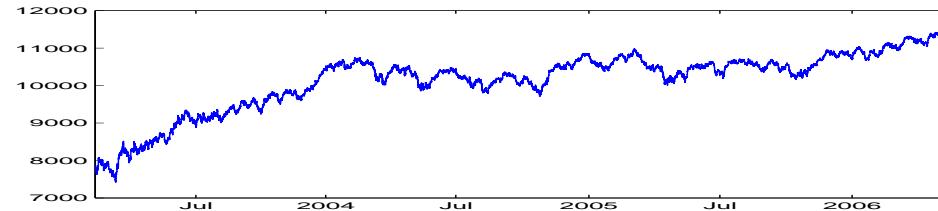
Parameter Estimation

Real Data Analysis

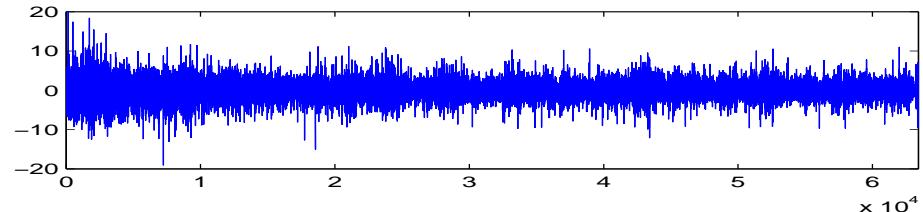
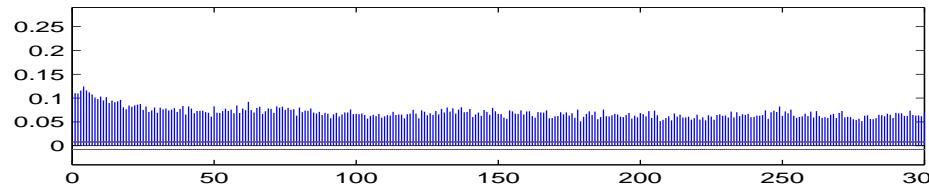
Conclusions and Future Works

Stylized Features

- Tail heaviness
- Volatility clustering
- Dependence without correlation



DJIA recorded from 02/13/2003 to 05/12/2006.



DJIA log-returns and the ACF of the squared log returns.

Dow Jones Industrial Average

Outline

Introduction

- Stylized Features
- Dow Jones Industrial Average
- GARCH model
- Example
- Lévy processes
- Lévy processes
- Example: Brownian Motion
- Example: Compound Poisson

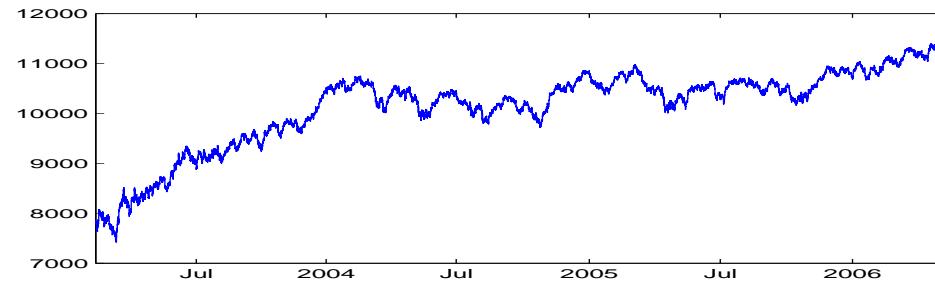
Continuous-time approaches

COGARCH(p, q) processes

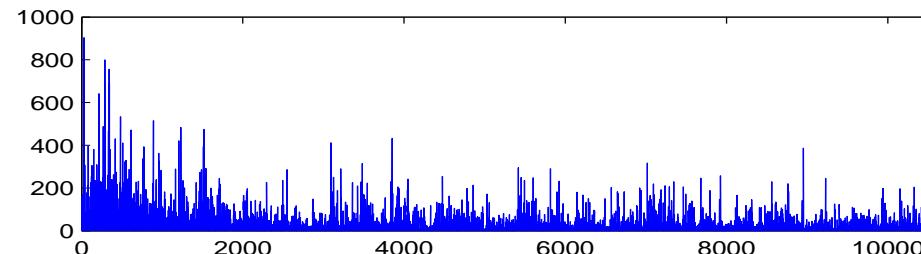
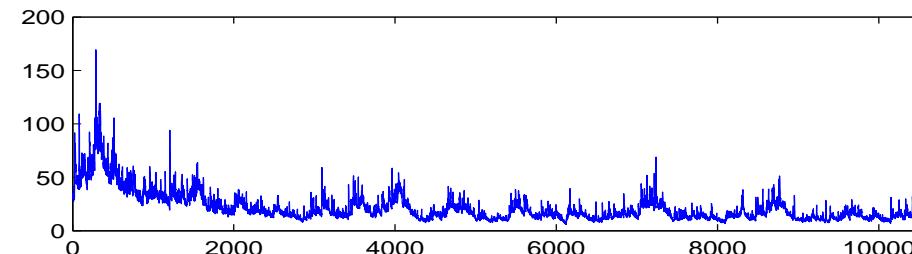
Parameter Estimation

Real Data Analysis

Conclusions and Future Works



DJIA recorded from 02/13/2003 to 05/12/2006.



DJIA squared log-returns, and the estimated volatilities.

GARCH model

$X_n = \ln P_n - \ln P_{n-1}$ where P_n are asset price, $n = 1, 2, \dots$

GARCH(p, q) model:

$$X_n = \sqrt{v_n} \varepsilon_n,$$

$$v_n = \alpha_0 + \sum_{i=1}^p \alpha_i X_{n-i}^2 + \sum_{j=1}^q \beta_j v_{n-j},$$

where $\{\varepsilon_n\} \stackrel{i.i.d.}{\sim} N(0, 1)$, $\alpha_0 > 0$, $\alpha_i \geq 0$, $i = 1, \dots, p$

Outline

Introduction

- Stylized Features
- Dow Jones Industrial Average
- **GARCH model**
- Example
- Lévy processes
- Lévy processes
- Example: Brownian Motion
- Example: Compound Poisson

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Example

ARCH(1) process:

$$\begin{aligned} X_n &= \sqrt{v_n} \varepsilon_n, \\ v_n &= \alpha_0 + \alpha_1 X_{n-1}^2. \end{aligned}$$

Outline

Introduction

- Stylized Features
- Dow Jones Industrial Average
- GARCH model
- **Example**
- Lévy processes
- Lévy processes
- Example: Brownian Motion
- Example: Compound Poisson

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Example

ARCH(1) process:

$$\begin{aligned} X_n &= \sqrt{v_n} \varepsilon_n, \\ v_n &= \alpha_0 + \alpha_1 X_{n-1}^2. \end{aligned}$$

- X_n with $|\alpha_1| < 1$ is strictly stationary white noise,

Outline

Introduction

- Stylized Features
- Dow Jones Industrial Average
- GARCH model
- **Example**
- Lévy processes
- Lévy processes
- Example: Brownian Motion
- Example: Compound Poisson

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Example

ARCH(1) process:

$$\begin{aligned} X_n &= \sqrt{v_n} \varepsilon_n, \\ v_n &= \alpha_0 + \alpha_1 X_{n-1}^2. \end{aligned}$$

- X_n with $|\alpha_1| < 1$ is strictly stationary white noise,
- X_n is not i.i.d.,

Outline

Introduction

- Stylized Features
- Dow Jones Industrial Average
- GARCH model
- **Example**
- Lévy processes
- Lévy processes
- Example: Brownian Motion
- Example: Compound Poisson

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Example

ARCH(1) process:

$$\begin{aligned} X_n &= \sqrt{v_n} \varepsilon_n, \\ v_n &= \alpha_0 + \alpha_1 X_{n-1}^2. \end{aligned}$$

- X_n with $|\alpha_1| < 1$ is strictly stationary white noise,
- X_n is not i.i.d.,
- X_n is “heavy-tailed”,

Outline

Introduction

- Stylized Features
- Dow Jones Industrial Average
- GARCH model
- **Example**
- Lévy processes
- Lévy processes
- Example: Brownian Motion
- Example: Compound Poisson

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Example

ARCH(1) process:

$$\begin{aligned} X_n &= \sqrt{v_n} \varepsilon_n, \\ v_n &= \alpha_0 + \alpha_1 X_{n-1}^2. \end{aligned}$$

- X_n with $|\alpha_1| < 1$ is strictly stationary white noise,
- X_n is not i.i.d.,
- X_n is “heavy-tailed”,
- X_n^2 has the ACF of an AR(1).

Outline

Introduction

- Stylized Features
- Dow Jones Industrial Average
- GARCH model
- Example
- Lévy processes
- Lévy processes
- Example: Brownian Motion
- Example: Compound Poisson

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Lévy processes

An adapted process $L := \{L_t, t \geq 0\}$ with $L_0 = 0$ a.s. is a real valued Lévy process if

Outline

Introduction

- Stylized Features
- Dow Jones Industrial Average
- GARCH model
- Example
- Lévy processes
- Lévy processes
- Example: Brownian Motion
- Example: Compound Poisson

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Lévy processes

An adapted process $L := \{L_t, t \geq 0\}$ with $L_0 = 0$ a.s. is a real valued Lévy process if

- L has independent increments,

[Outline](#)

[Introduction](#)

- Stylized Features
- Dow Jones Industrial Average
- GARCH model
- Example
- **Lévy processes**
- Lévy processes
- Example: Brownian Motion
- Example: Compound Poisson

[Continuous-time approaches](#)

[COGARCH\(\$p, q\$ \) processes](#)

[Parameter Estimation](#)

[Real Data Analysis](#)

[Conclusions and Future Works](#)

Lévy processes

An adapted process $L := \{L_t, t \geq 0\}$ with $L_0 = 0$ a.s. is a real valued Lévy process if

- L has independent increments,
- L has stationary increments,

[Outline](#)

[Introduction](#)

- Stylized Features
- Dow Jones Industrial Average
- GARCH model
- Example
- **Lévy processes**
- Lévy processes
- Example: Brownian Motion
- Example: Compound Poisson

[Continuous-time approaches](#)

[COGARCH\(\$p, q\$ \) processes](#)

[Parameter Estimation](#)

[Real Data Analysis](#)

[Conclusions and Future Works](#)

Lévy processes

An adapted process $L := \{L_t, t \geq 0\}$ with $L_0 = 0$ a.s. is a real valued Lévy process if

- L has independent increments,
- L has stationary increments,
- L is continuous in probability.

Outline

Introduction

- Stylized Features
- Dow Jones Industrial Average
- GARCH model
- Example
- Lévy processes
- Lévy processes
- Example: Brownian Motion
- Example: Compound Poisson

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Lévy processes

Characteristic function of L_t :

$$\varphi_t(\theta) = E(\exp(i\theta L_t)) = \exp(t\xi(\theta)), \quad \theta \in \mathbb{R},$$

where $\xi(\theta)$ satisfies the Lévy - Khinchin formula,

$$\xi(\theta) = i\gamma_L \theta - \tau_L^2 \frac{\theta^2}{2} + \int_{\mathbb{R}} (e^{i\theta x} - 1 - i\theta x \mathbf{1}_{|x| \leq 1}) d\nu_L(x).$$

$\xi(\theta)$ is called a characteristic exponent or Lévy symbol.

$(\gamma_L, \tau_L^2, \nu_L)$ is called the characteristic triplet of L .

ν_L on \mathbb{R} is called the Lévy measure.

Outline

Introduction

- Stylized Features
- Dow Jones Industrial Average
- GARCH model
- Example
- Lévy processes
- Lévy processes
- Example: Brownian Motion
- Example: Compound Poisson

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

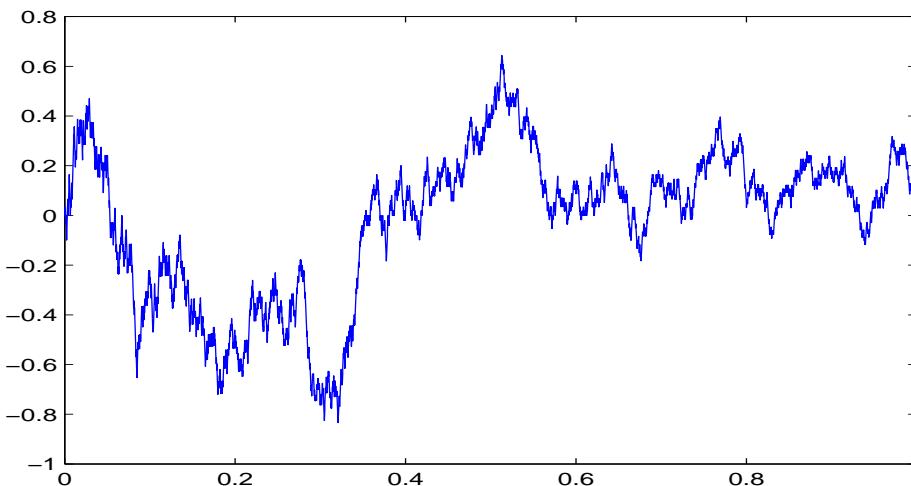
Real Data Analysis

Conclusions and Future Works

Example: Brownian Motion

The Lévy symbol: $\xi(\theta) = i\gamma_B \theta - \tau_B^2 \frac{\theta^2}{2}$.

The characteristic triplet: $(\gamma_B, \tau_B^2, 0)$.



A sample path of a standard Brownian motion
 $(\gamma_B = 0, \tau_B^2 = 1)$.

Outline

Introduction

- Stylized Features
- Dow Jones Industrial Average
- GARCH model
- Example
- Lévy processes
- Lévy processes
- Example: Brownian Motion
- Example: Compound Poisson

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

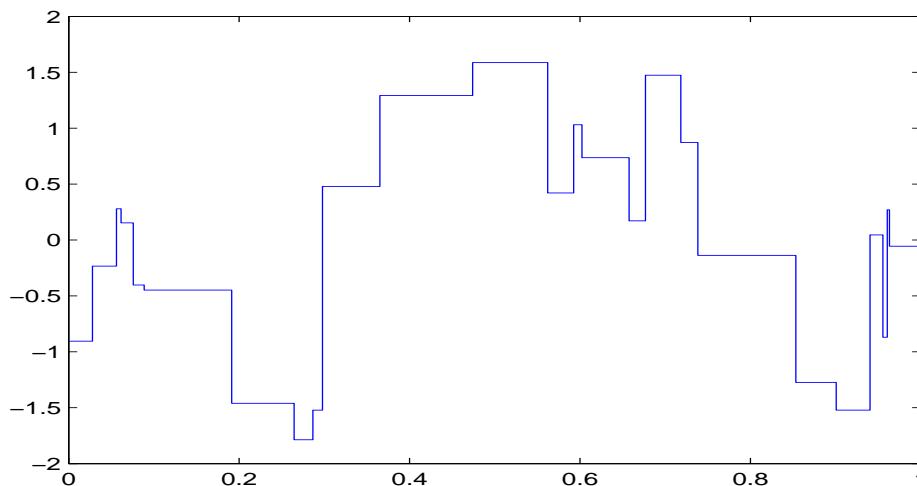
Conclusions and Future Works

Example: Compound Poisson

$L_t := \sum_{i=1}^{N_t} Y_i$, where $\{Y_n\} \stackrel{i.i.d.}{\sim} F_Y$, indep. of $N = (N_t)_{t \geq 0}$.

The Lévy symbol: $\xi(\theta) = \int_{\mathbb{R}} (e^{i\theta x} - 1) \lambda F_Y(dx)$.

The characteristic triplet: $(\gamma_L, 0, \lambda F_Y)$.



A sample path of a compound Poisson process with jump rate $\lambda = 25$ and standard normal jumps.

Continuous-time approaches

Nelson's diffusion limit

$G_t = \ln P_t$ where $P_t, t \geq 0$ are asset price.

GARCH(1, 1) diffusion limit satisfies

$$\begin{aligned} dG_t &= \sigma_t dW_t^{(1)}, \\ d\sigma_t^2 &= \theta(\gamma - \sigma_t^2)dt + \rho\sigma_t^2 dW_t^{(2)}, \quad t \geq 0, \end{aligned}$$

where $(W_t^{(1)})_{t \geq 0}$ and $(W_t^{(2)})_{t \geq 0}$ are independent Brownian motions.

Outline

Introduction

Continuous-time approaches

- Nelson's diffusion limit
- COGARCH(1,1) model
- COGARCH(1,1) model
- COGARCH(1,1) model

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Nelson's diffusion limit

$G_t = \ln P_t$ where $P_t, t \geq 0$ are asset price.

GARCH(1, 1) diffusion limit satisfies

$$\begin{aligned} dG_t &= \sigma_t dW_t^{(1)}, \\ d\sigma_t^2 &= \theta(\gamma - \sigma_t^2)dt + \rho\sigma_t^2 dW_t^{(2)}, \quad t \geq 0, \end{aligned}$$

where $(W_t^{(1)})_{t \geq 0}$ and $(W_t^{(2)})_{t \geq 0}$ are independent Brownian motions.

- GARCH process is driven by a single noise sequence.

Outline

Introduction

Continuous-time approaches

- Nelson's diffusion limit
- COGARCH(1,1) model
- COGARCH(1,1) model
- COGARCH(1,1) model

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Nelson's diffusion limit

$G_t = \ln P_t$ where $P_t, t \geq 0$ are asset price.

GARCH(1, 1) diffusion limit satisfies

$$\begin{aligned} dG_t &= \sigma_t dW_t^{(1)}, \\ d\sigma_t^2 &= \theta(\gamma - \sigma_t^2)dt + \rho\sigma_t^2 dW_t^{(2)}, \quad t \geq 0, \end{aligned}$$

where $(W_t^{(1)})_{t \geq 0}$ and $(W_t^{(2)})_{t \geq 0}$ are independent Brownian motions.

- GARCH process is driven by a single noise sequence.
- The diffusion limit is driven by two independent Brownian motions.

COGARCH(1,1) model

Due to Klüppelberg et. al. (2005). Start with GARCH(1,1):

$$\xi_n = \sigma_n \varepsilon_n, \quad \sigma_n^2 = \alpha_0 + \alpha_1 \xi_{n-1}^2 + \beta_1 \sigma_{n-1}^2, \quad n \in \mathbb{N}_0,$$

From the recursion,

$$\sigma_n^2 = \alpha_0 \sum_{i=0}^{n-1} \prod_{j=i+1}^{n-1} (\beta_1 + \alpha_1 \varepsilon_j^2) + \sigma_0^2 \prod_{j=0}^{n-1} (\beta_1 + \alpha_1 \varepsilon_j^2)$$

$$= \left(\sigma_0^2 + \alpha_0 \int_0^n \exp \left[- \sum_{j=0}^{\lfloor s \rfloor} \log(\beta_1 + \alpha_1 \varepsilon_j^2) \right] ds \right) \exp \left[\sum_{j=0}^{n-1} \log(\beta_1 + \alpha_1 \varepsilon_j^2) \right].$$

Denote $X_n := - \sum_{j=0}^{n-1} \log(\beta_1 + \alpha_1 \varepsilon_j^2)$.

Outline

Introduction

Continuous-time approaches

- Nelson's diffusion limit
- COGARCH(1,1) model
- COGARCH(1,1) model
- COGARCH(1,1) model

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

COGARCH(1,1) model

Outline

Introduction

Continuous-time approaches

- Nelson's diffusion limit
- COGARCH(1,1) model
- COGARCH(1,1) model
- COGARCH(1,1) model

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

$$\begin{aligned} dG_t &= \sigma_t dL_t, \quad t > 0, \quad G_0 = 0, \\ \sigma_t^2 &= \left(\sigma_0^2 + \alpha_0 \int_0^t e^{X_s} ds \right) e^{-X_{t-}}, \quad t \geq 0, \end{aligned}$$

where

$$X_t := - \sum_{0 < s \leq t} \log (\beta_1 + \alpha_1 (\Delta L_s)^2).$$

The volatility process σ_t^2 satisfies

$$\sigma_t^2 = \alpha_0 t - \log \beta_1 \int_0^t \sigma_s^2 ds + (\alpha_1 / \beta_1) \sum_{0 < s < t} \sigma_s^2 (\Delta L_s)^2 + \sigma_0^2, \quad t \geq 0.$$

COGARCH(1,1) model

Outline

Introduction

Continuous-time approaches

- Nelson's diffusion limit
- COGARCH(1,1) model
- COGARCH(1,1) model
- COGARCH(1,1) model

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

COGARCH(1,1) model

- Stationary and uncorrelated increments: $(G_{t+r} - G_t)_{t \geq 0}$,
 $r > 0$

Outline

Introduction

Continuous-time approaches

- Nelson's diffusion limit
- COGARCH(1,1) model
- COGARCH(1,1) model
- COGARCH(1,1) model

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

COGARCH(1,1) model

- Stationary and uncorrelated increments: $(G_{t+r} - G_t)_{t \geq 0}$, $r > 0$
- Heavy tails and volatility clusters at high levels

Outline

Introduction

Continuous-time approaches

- Nelson's diffusion limit
- COGARCH(1,1) model
- COGARCH(1,1) model
- COGARCH(1,1) model

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

COGARCH(1,1) model

- Stationary and uncorrelated increments: $(G_{t+r} - G_t)_{t \geq 0}$, $r > 0$
- Heavy tails and volatility clusters at high levels
- Volatility process has an ACF of an CAR(1)

Outline

Introduction

Continuous-time approaches

- Nelson's diffusion limit
- COGARCH(1,1) model
- COGARCH(1,1) model
- COGARCH(1,1) model

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

COGARCH(1,1) model

- Stationary and uncorrelated increments: $(G_{t+r} - G_t)_{t \geq 0}$, $r > 0$
- Heavy tails and volatility clusters at high levels
- Volatility process has an ACF of an CAR(1)
- Squared increment process has an ACF of an ARMA(1,1)

Outline

Introduction

Continuous-time approaches

- Nelson's diffusion limit
- COGARCH(1,1) model
- COGARCH(1,1) model
- COGARCH(1,1) model

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

COGARCH(p, q) processes

Construction

Start with a GARCH(p, q) process $(\xi_n)_{n \in \mathbb{N}_0}$ defined by

$$\xi_n = \sigma_n \varepsilon_n,$$

$$\sigma_n^2 = \alpha_0 + \sum_{i=1}^p \alpha_i \xi_{n-i}^2 + \sum_{j=1}^q \beta_j \sigma_{n-j}^2, \quad n \geq \max\{p, q\}.$$

The volatility process can be viewed as a “self-exciting” ARMA($q, p - 1$) process driven by the noise sequence $(\sigma_{n-1}^2 \varepsilon_{n-1}^2)_{n \in \mathbb{N}}$.

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

● Construction

- Construction cont.d
- Construction cont.d
- COGARCH(p, q) equations
- Non-negativity of the volatility
- Stationarity property
- Second-order property
- Squared increment process
- Squared increment process
- ACF of the squared increments
- Example: COGARCH(1,3)
- Example: COGARCH(1,3)
- Mixing: COGARCH(2,2)

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Construction cont.d

CARMA($q, p - 1$) process $(\psi_t)_{t \geq 0}$ with driving Lévy process L :

$$\psi_t = c + \mathbf{a}' \zeta_t,$$

$$d\zeta_t = B \zeta_t dt + \mathbf{e} dL_t,$$

where $\mathbf{a}' = [\alpha_1, \dots, \alpha_q]$, $\alpha_j := 0$ for $j > p$, $\mathbf{e} = [0, \dots, 0, 1]'$

and

$$B = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \cdots & 1 \\ -\beta_q & -\beta_{q-1} & -\beta_{q-2} & \cdots & -\beta_1 \end{bmatrix}.$$

Need to replace (L_t) by a continuous-time analog of the driving process $(\sigma_{n-1}^2 \varepsilon_{n-1}^2)_{n \in \mathbb{N}}$.

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

- Construction
- Construction cont.d
- Construction cont.d
- COGARCH(p, q) equations
- Non-negativity of the volatility
- Stationarity property
- Second-order property
- Squared increment process
- Squared increment process
- ACF of the squared increments
- Example: COGARCH(1,3)
- Example: COGARCH(1,3)
- Mixing: COGARCH(2,2)

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Construction cont.d

In discrete-time,

$$R_n^{(d)} := \sum_{i=0}^{n-1} \xi_i^2 = \sum_{i=0}^{n-1} \sigma_i^2 \varepsilon_i^2.$$

Its continuous-time analog:

$$R_t = \sum_{0 < s \leq t} \sigma_{s-}^2 (\Delta L_s)^2 = \int_0^t \sigma_{s-}^2 d[L, L]_s^{(d)},$$

i.e.

$$dR_t = \sigma_{t-}^2 d[L, L]_t^{(d)},$$

where $[L, L]_t^{(d)}$ is the discrete part of the quadratic covariation of L .

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

- Construction
- Construction cont.d
- Construction cont.d
- COGARCH(p, q) equations
- Non-negativity of the volatility
- Stationarity property
- Second-order property
- Squared increment process
- Squared increment process
- ACF of the squared increments
- Example: COGARCH(1,3)
- Example: COGARCH(1,3)
- Mixing: COGARCH(2,2)

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

COGARCH(p, q) equations

COGARCH(p, q) ($q \geq p \geq 1$) process with parameters B , \mathbf{a} , α_0 and driving Lévy process L is defined as follows:

$$dG_t = \sqrt{V_t} dL_t, \quad t > 0, \quad G_0 = 0,$$

$$V_t = \alpha_0 + \mathbf{a}' \mathbf{Y}_{t-}, \quad t > 0, \quad V_0 = \alpha_0 + \mathbf{a}' \mathbf{Y}_0,$$

where the state process $\mathbf{Y} = (\mathbf{Y}_t)_{t \geq 0}$ is the unique càdlàg solution of the stochastic differential equation

$$d\mathbf{Y}_t = B\mathbf{Y}_{t-} dt + \mathbf{e}(\alpha_0 + \mathbf{a}' \mathbf{Y}_{t-}) d[L, L]_t^{(d)}, \quad t > 0,$$

with initial value \mathbf{Y}_0 , independent of the driving Lévy process $(L_t)_{t \geq 0}$.

- When $p = q = 1$ it is reduced to the COGARCH(1, 1) model.

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

- Construction
- Construction cont.d
- Construction cont.d
- COGARCH(p, q) equations
- Non-negativity of the volatility
- Stationarity property
- Second-order property
- Squared increment process
- Squared increment process
- ACF of the squared increments
- Example: COGARCH(1,3)
- Example: COGARCH(1,3)
- Mixing: COGARCH(2,2)

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Non-negativity of the volatility

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

- Construction
- Construction cont.d
- Construction cont.d
- COGARCH(p, q) equations
- Non-negativity of the volatility
- Stationarity property
- Second-order property
- Squared increment process
- Squared increment process
- ACF of the squared increments
- Example: COGARCH(1,3)
- Example: COGARCH(1,3)
- Mixing: COGARCH(2,2)

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Non-negativity of the volatility

$$V_t > 0 \quad \text{a.s.} \quad \forall t \geq 0$$

for any driving Lévy process if

$$\mathbf{a}' e^{Bt} \mathbf{e} \geq 0, \quad \forall t \geq 0.$$

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

- Construction
- Construction cont.d
- Construction cont.d
- COGARCH(p, q) equations
- Non-negativity of the volatility
- Stationarity property
- Second-order property
- Squared increment process
- Squared increment process
- ACF of the squared increments
- Example: COGARCH(1,3)
- Example: COGARCH(1,3)
- Mixing: COGARCH(2,2)

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Non-negativity of the volatility

$$V_t > 0 \quad \text{a.s.} \quad \forall t \geq 0$$

for any driving Lévy process if

$$\mathbf{a}' e^{Bt} \mathbf{e} \geq 0, \quad \forall t \geq 0.$$

- In the COGARCH(2, 2) case, the necessary and sufficient condition is

$$\alpha_2 \geq 0 \quad \text{and} \quad \alpha_1 \geq -\alpha_2 \lambda(B).$$

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

- Construction
- Construction cont.d
- Construction cont.d
- COGARCH(p, q) equations
- Non-negativity of the volatility
- Stationarity property
- Second-order property
- Squared increment process
- Squared increment process
- ACF of the squared increments
- Example: COGARCH(1,3)
- Example: COGARCH(1,3)
- Mixing: COGARCH(2,2)

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Stationarity property

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

- Construction
- Construction cont.d
- Construction cont.d
- COGARCH(p, q) equations
- Non-negativity of the volatility
- Stationarity property
- Second-order property
- Squared increment process
- Squared increment process
- ACF of the squared increments
- Example: COGARCH(1,3)
- Example: COGARCH(1,3)
- Mixing: COGARCH(2,2)

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Stationarity property

$$\mathbf{Y}_t \xrightarrow{d} \mathbf{Y}_\infty, \quad \text{as} \quad t \rightarrow \infty,$$

where \mathbf{Y}_∞ is a finite r.v., if

$$\int_{\mathbb{R}} \log(1 + \|S^{-1}\mathbf{e}\mathbf{a}'S\|_r y^2) d\nu_L(y) < -\lambda = -\lambda(B),$$

for some $r \in [1, \infty]$ and some matrix S such that $S^{-1}BS$ is diagonal.

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

- Construction
- Construction cont.d
- Construction cont.d
- COGARCH(p, q) equations
- Non-negativity of the volatility
- Stationarity property
- Second-order property
- Squared increment process
- Squared increment process
- ACF of the squared increments
- Example: COGARCH(1,3)
- Example: COGARCH(1,3)
- Mixing: COGARCH(2,2)

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Stationarity property

$$\mathbf{Y}_t \xrightarrow{d} \mathbf{Y}_\infty, \quad \text{as} \quad t \rightarrow \infty,$$

where \mathbf{Y}_∞ is a finite r.v., if

$$\int_{\mathbb{R}} \log(1 + \|S^{-1}\mathbf{e}\mathbf{a}'S\|_r y^2) d\nu_L(y) < -\lambda = -\lambda(B),$$

for some $r \in [1, \infty]$ and some matrix S such that $S^{-1}BS$ is diagonal.

- In the COGARCH(1,1) case, this is a necessary and sufficient condition for existence of a stationary solution.

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

- Construction
- Construction cont.d
- Construction cont.d
- COGARCH(p, q) equations
- Non-negativity of the volatility
- Stationarity property
- Second-order property
- Squared increment process
- Squared increment process
- ACF of the squared increments
- Example: COGARCH(1,3)
- Example: COGARCH(1,3)
- Mixing: COGARCH(2,2)

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Stationarity property

$$\mathbf{Y}_t \xrightarrow{d} \mathbf{Y}_\infty, \quad \text{as} \quad t \rightarrow \infty,$$

where \mathbf{Y}_∞ is a finite r.v., if

$$\int_{\mathbb{R}} \log(1 + \|S^{-1}\mathbf{e}\mathbf{a}'S\|_r y^2) d\nu_L(y) < -\lambda = -\lambda(B),$$

for some $r \in [1, \infty]$ and some matrix S such that $S^{-1}BS$ is diagonal.

- In the COGARCH(1,1) case, this is a necessary and sufficient condition for existence of a stationary solution.
- If $\mathbf{Y}_0 \stackrel{d}{=} \mathbf{Y}_\infty$ then $(\mathbf{Y}_t)_{t \geq 0}$ and $(V_t)_{t \geq 0}$ are strictly stationary.

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

- Construction
- Construction cont.d
- Construction cont.d
- COGARCH(p, q) equations
- Non-negativity of the volatility
- Stationarity property
- Second-order property
- Squared increment process
- Squared increment process
- ACF of the squared increments
- Example: COGARCH(1,3)
- Example: COGARCH(1,3)
- Mixing: COGARCH(2,2)

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Second-order property

$\text{cov}(\mathbf{Y}_\infty)$ exists if $EL_1^4 < \infty$ and

$$\|S^{-1}\mathbf{e}\mathbf{a}'S\|_r^2 \rho < 2(-\lambda - \|S^{-1}\mathbf{e}\mathbf{a}'S\|_r \mu),$$

where $\mu := EL_1^2$, $\rho := EL_1^4$.

If $(V_t)_{t \geq 0}$ is the stationary volatility process, then

$$\text{cov}(V_{t+h}, V_t) = \frac{\alpha_0^2 \beta_q^2}{(\beta_q - \mu \alpha_1)^2 (1 - m)} \text{cov}(\psi_{t+h}, \psi_t), \quad t, h \geq 0,$$

where $m := \text{var}(\psi_t)$.

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

- Construction
- Construction cont.d
- Construction cont.d
- COGARCH(p, q) equations
- Non-negativity of the volatility
- Stationarity property
- Second-order property
- Squared increment process
- Squared increment process
- ACF of the squared increments
- Example: COGARCH(1,3)
- Example: COGARCH(1,3)
- Mixing: COGARCH(2,2)

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Second-order property

$\text{cov}(\mathbf{Y}_\infty)$ exists if $EL_1^4 < \infty$ and

$$\|S^{-1}\mathbf{e}\mathbf{a}'S\|_r^2 \rho < 2(-\lambda - \|S^{-1}\mathbf{e}\mathbf{a}'S\|_r \mu),$$

where $\mu := EL_1^2$, $\rho := EL_1^4$.

If $(V_t)_{t \geq 0}$ is the stationary volatility process, then

$$\text{cov}(V_{t+h}, V_t) = \frac{\alpha_0^2 \beta_q^2}{(\beta_q - \mu \alpha_1)^2 (1 - m)} \text{cov}(\psi_{t+h}, \psi_t), \quad t, h \geq 0,$$

where $m := \text{var}(\psi_t)$.

- Volatility process has an ACF of a CARMA($q, p - 1$).

(Volatility process of a GARCH(p, q) has an ACF of an ARMA($q, p - 1$)).

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

- Construction
- Construction cont.d
- Construction cont.d
- COGARCH(p, q) equations
- Non-negativity of the volatility
- Stationarity property
- Second-order property
- Squared increment process
- Squared increment process
- ACF of the squared increments
- Example: COGARCH(1,3)
- Example: COGARCH(1,3)
- Mixing: COGARCH(2,2)

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Squared increment process

$$G_t^{(r)} := G_{t+r} - G_t = \int_{(t,t+r]} \sqrt{V_s} dL_s, \quad t \geq 0.$$

For any $t \geq 0$ and $h \geq r > 0$,

$$\begin{aligned} E(G_t^{(r)}) &= 0, \\ E((G_t^{(r)})^2) &= \frac{\alpha_0 \beta_q r}{\beta_q - \mu \alpha_1} E L_1^2, \\ \text{cov}(G_t^{(r)}, G_{t+h}^{(r)}) &= 0. \end{aligned}$$

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

- Construction
- Construction cont.d
- Construction cont.d
- COGARCH(p, q) equations
- Non-negativity of the volatility
- Stationarity property
- Second-order property
- Squared increment process
- Squared increment process
- ACF of the squared increments
- Example: COGARCH(1,3)
- Example: COGARCH(1,3)
- Mixing: COGARCH(2,2)

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Squared increment process

$$\text{cov}((G_t^{(r)})^2, (G_{t+h}^{(r)})^2) = EL_1^2 \mathbf{a}' e^{\tilde{B}h} \tilde{B}^{-1} (I - e^{-\tilde{B}r}) \text{cov}(\mathbf{Y}_r, G_r^2), \quad h \geq$$

$$\text{var}((G_t^{(r)})^2) = 6EL_1^2 \mathbf{a}' \mathbf{K}_r + 2(rEL_1^2 EV_\infty)^2 + rEL_1^4 EV_\infty^2,$$

where

$$\tilde{B} := B + \mu \mathbf{e} \mathbf{a}',$$

$$\text{cov}(\mathbf{Y}_r, G_r^2) = [(I - e^{\tilde{B}r}) \text{cov}(\mathbf{Y}_\infty) - \tilde{B}^{-1} (e^{\tilde{B}r} - I) \text{cov}(\mathbf{Y}_\infty) B'] \mathbf{e}$$

and

$$\mathbf{K}_r := [(rI - \tilde{B}^{-1} (e^{\tilde{B}r} - I)) \text{cov}(\mathbf{Y}_\infty) - \tilde{B}^{-1} (\tilde{B}^{-1} (e^{\tilde{B}r} - I) - rI) \text{cov}(\mathbf{Y}_\infty) B'] \mathbf{e}$$

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

- Construction
- Construction cont.d
- Construction cont.d
- COGARCH(p, q) equations
- Non-negativity of the volatility
- Stationarity property
- Second-order property
- Squared increment process
- Squared increment process
- ACF of the squared increments
- Example: COGARCH(1,3)
- Example: COGARCH(1,3)
- Mixing: COGARCH(2,2)

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

ACF of the squared increments

The ACF of the squared increment process:

$$\rho(h) = c_1 e^{\tilde{\lambda}_1 h} + \cdots + c_q e^{\tilde{\lambda}_q h}, \quad h \geq r,$$

where $\tilde{\lambda}_1, \dots, \tilde{\lambda}_q$ are the eigenvalues of \tilde{B} . The ACF can also be written as

$$\rho(h) = \frac{\mathbf{a}' P_h \mathbf{a} + \mathbf{a}' \mathbf{Q}_h}{\mathbf{a}' P_0 \mathbf{a} + \mathbf{a}' \mathbf{Q}_0 + R_0}, \quad h \geq r,$$

where $P_h, \mathbf{Q}_h, P_0, \mathbf{Q}_0$ and R_0 depend only on $\tilde{\beta}_1, \dots, \tilde{\beta}_q$.

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

- Construction
- Construction cont.d
- Construction cont.d
- COGARCH(p, q) equations
- Non-negativity of the volatility
- Stationarity property
- Second-order property
- Squared increment process
- Squared increment process
- ACF of the squared increments
- Example: COGARCH(1,3)
- Example: COGARCH(1,3)
- Mixing: COGARCH(2,2)

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

ACF of the squared increments

The ACF of the squared increment process:

$$\rho(h) = c_1 e^{\tilde{\lambda}_1 h} + \cdots + c_q e^{\tilde{\lambda}_q h}, \quad h \geq r,$$

where $\tilde{\lambda}_1, \dots, \tilde{\lambda}_q$ are the eigenvalues of \tilde{B} . The ACF can also be written as

$$\rho(h) = \frac{\mathbf{a}' P_h \mathbf{a} + \mathbf{a}' \mathbf{Q}_h}{\mathbf{a}' P_0 \mathbf{a} + \mathbf{a}' \mathbf{Q}_0 + R_0}, \quad h \geq r,$$

where $P_h, \mathbf{Q}_h, P_0, \mathbf{Q}_0$ and R_0 depend only on $\tilde{\beta}_1, \dots, \tilde{\beta}_q$.

- Squared increment process has an ACF of an ARMA(q, q).
(Square of a GARCH(p, q) process has an ACF of an ARMA(q, q)).

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

- Construction
- Construction cont.d
- Construction cont.d
- COGARCH(p, q) equations
- Non-negativity of the volatility
- Stationarity property
- Second-order property
- Squared increment process
- Squared increment process
- ACF of the squared increments
- Example: COGARCH(1,3)
- Example: COGARCH(1,3)
- Mixing: COGARCH(2,2)

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Example: COGARCH(1,3)

Outline

Introduction

Continuous-time approaches

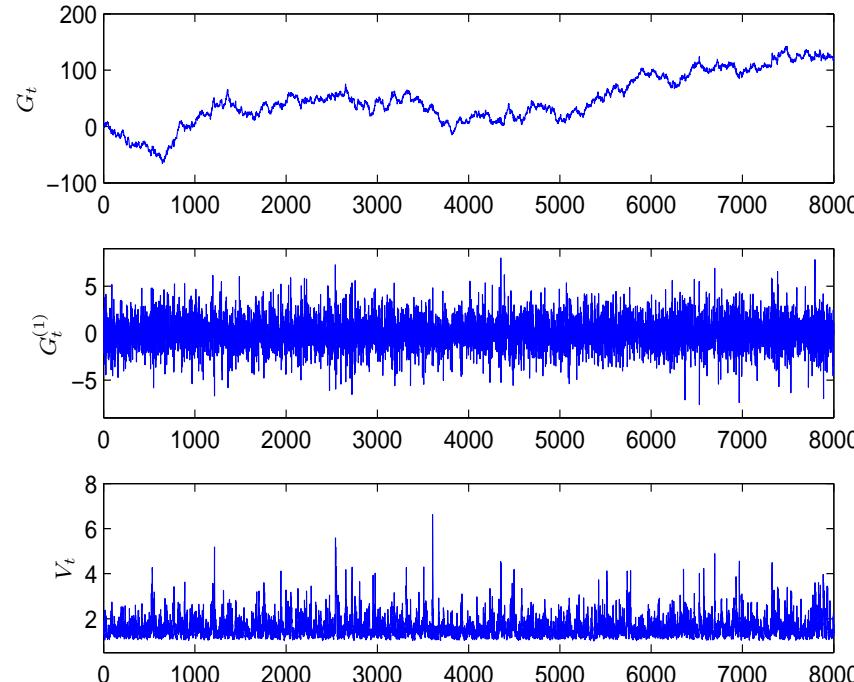
COGARCH(p, q) processes

- Construction
- Construction cont.d
- Construction cont.d
- COGARCH(p, q) equations
- Non-negativity of the volatility
- Stationarity property
- Second-order property
- Squared increment process
- Squared increment process
- ACF of the squared increments
- Example: COGARCH(1,3)
- Example: COGARCH(1,3)
- Mixing: COGARCH(2,2)

Parameter Estimation

Real Data Analysis

Conclusions and Future Works



The simulated compound-Poisson driven COGARCH(1,3) process with jump-rate 2, normally distributed jumps with mean zero and variance 0.74 and coefficients $\alpha_0 = \alpha_1 = 1$, $\beta_1 = 1.2$, $\beta_2 = .48 + \pi^2$ and $\beta_3 = .064 + .4\pi^2$.

Example: COGARCH(1,3)

Outline

Introduction

Continuous-time approaches

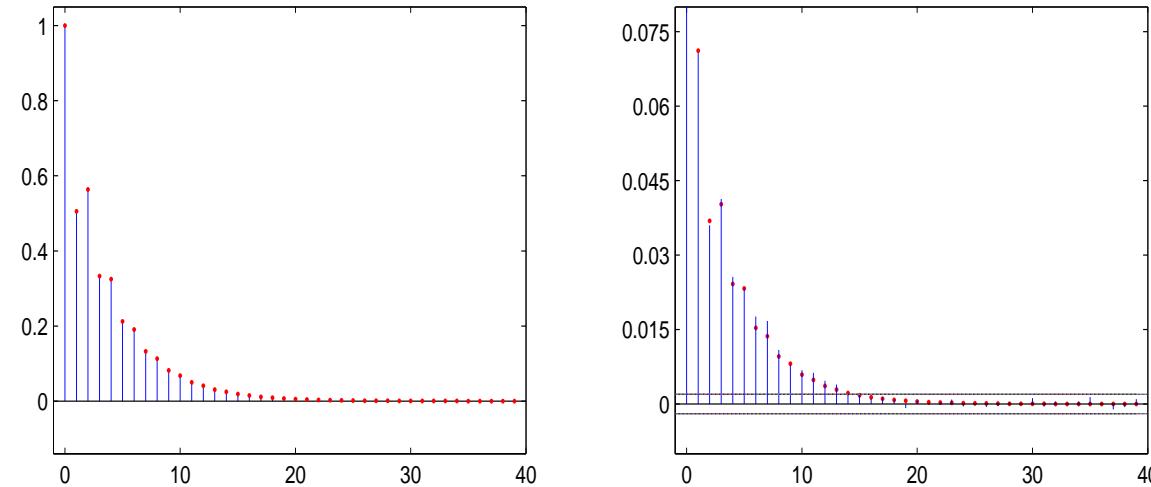
COGARCH(p, q) processes

- Construction
- Construction cont.d
- Construction cont.d
- COGARCH(p, q) equations
- Non-negativity of the volatility
- Stationarity property
- Second-order property
- Squared increment process
- Squared increment process
- ACF of the squared increments
- Example: COGARCH(1,3)
- Example: COGARCH(1,3)
- Mixing: COGARCH(2,2)

Parameter Estimation

Real Data Analysis

Conclusions and Future Works



The sample ACFs of the volatilities (V_t) (left) and of the squared COGARCH increments ($(G_{t+1} - G_t)^2$) (right) of a realisation of length 1,000,000 of the COGARCH(1,3) process.

Mixing: COGARCH(2,2)

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

- Construction
- Construction cont.d
- Construction cont.d
- COGARCH(p, q) equations
- Non-negativity of the volatility
- Stationarity property
- Second-order property
- Squared increment process
- Squared increment process
- ACF of the squared increments
- Example: COGARCH(1,3)
- Example: COGARCH(1,3)
- Mixing: COGARCH(2,2)

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Mixing: COGARCH(2,2)

- For a compound-Poisson driven COGARCH(2,2) process, $(Y_t)_{t \geq 0}$ is strongly mixing with geometric rate.

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

- Construction
- Construction cont.d
- Construction cont.d
- COGARCH(p, q) equations
- Non-negativity of the volatility
- Stationarity property
- Second-order property
- Squared increment process
- Squared increment process
- ACF of the squared increments
- Example: COGARCH(1,3)
- Example: COGARCH(1,3)
- Mixing: COGARCH(2,2)

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Mixing: COGARCH(2,2)

- For a compound-Poisson driven COGARCH(2,2) process, $(Y_t)_{t \geq 0}$ is strongly mixing with geometric rate.
- The volatility process $(V_t)_{t \geq 0}$ and the squared increment process $(G_{rn}^{(r)})_{n \in \mathbb{N}}$ also inherits the strong mixing property as well as the rate.

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

- Construction
- Construction cont.d
- Construction cont.d
- COGARCH(p, q) equations
- Non-negativity of the volatility
- Stationarity property
- Second-order property
- Squared increment process
- Squared increment process
- ACF of the squared increments
- Example: COGARCH(1,3)
- Example: COGARCH(1,3)
- Mixing: COGARCH(2,2)

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

Parameter Estimation

Least squares method

- The noise sequence in the squared increment process $((G_t^{(r)})^2)_{t \geq 0}$ is not an i.i.d. or a martingale difference.

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

- Least squares method

- Strong consistency and asymptotic normality
- Estimating the parameters
- Example: COGARCH(2,2)
- Example: COGARCH(2,2)
- Simulation result
- Simulation result
- Simulation result
- Volatility Estimation
- Volatility Estimation

Real Data Analysis

Conclusions and Future Works

Least squares method

- The noise sequence in the squared increment process $((G_t^{(r)})^2)_{t \geq 0}$ is not an i.i.d. or a martingale difference.
- Under strong mixing and moment conditions, the least squares estimators (LSE) of ARMA representations in which the noise is the linear innovation process are strongly consistent and asymptotically normal.
(Francq and Zakoïan (1998)).

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

• Least squares method

- Strong consistency and asymptotic normality
- Estimating the parameters
- Example: COGARCH(2,2)
- Example: COGARCH(2,2)
- Simulation result
- Simulation result
- Simulation result
- Volatility Estimation
- Volatility Estimation

Real Data Analysis

Conclusions and Future Works

Strong consistency and asymptotic normality

Francq and Zakoïan (1998):

- For a strictly stationary ergodic process $(X_t)_{t \in \mathbb{Z}}$ satisfying the weak ARMA representation the LSE are strongly consistent.

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

- Least squares method
- Strong consistency and asymptotic normality
- Estimating the parameters
- Example: COGARCH(2,2)
- Example: COGARCH(2,2)
- Simulation result
- Simulation result
- Simulation result
- Volatility Estimation
- Volatility Estimation

Real Data Analysis

Conclusions and Future Works

Strong consistency and asymptotic normality

Francq and Zakoïan (1998):

- For a strictly stationary ergodic process $(X_t)_{t \in \mathbb{Z}}$ satisfying the weak ARMA representation the LSE are strongly consistent.
- If in addition, $(X_t)_{t \in \mathbb{Z}}$ satisfies $E|X_t|^{4+2\nu} < \infty$ and strongly mixing with the mixing rate such that $\sum_{k=0}^{\infty} \alpha_k^{\nu/(2+\nu)} < \infty$ for some $\nu > 0$ then the LSE are asymptotically normal.

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

- Least squares method
- Strong consistency and asymptotic normality
- Estimating the parameters
- Example: COGARCH(2,2)
- Example: COGARCH(2,2)
- Simulation result
- Simulation result
- Simulation result
- Volatility Estimation
- Volatility Estimation

Real Data Analysis

Conclusions and Future Works

Estimating the parameters

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

- Least squares method
- Strong consistency and asymptotic normality
- Estimating the parameters
- Example: COGARCH(2,2)
- Example: COGARCH(2,2)
- Simulation result
- Simulation result
- Simulation result
- Volatility Estimation
- Volatility Estimation

Real Data Analysis

Conclusions and Future Works

Estimating the parameters

- Estimate $\tilde{\beta}$ by fitting an ARMA(2,2) to the observed squared increments and minimizing the least-squares sum.

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

- Least squares method
- Strong consistency and asymptotic normality
- Estimating the parameters
- Example: COGARCH(2,2)
- Example: COGARCH(2,2)
- Simulation result
- Simulation result
- Simulation result
- Volatility Estimation
- Volatility Estimation

Real Data Analysis

Conclusions and Future Works

Estimating the parameters

- Estimate $\tilde{\beta}$ by fitting an ARMA(2,2) to the observed squared increments and minimizing the least-squares sum.
- Estimate \mathbf{a} by matching the ACF of the fitted ARMA(2,2) model and

$$\rho(h) = \frac{\mathbf{a}' P_h \mathbf{a} + \mathbf{a}' \mathbf{Q}_h}{\mathbf{a}' P_0 \mathbf{a} + \mathbf{a}' \mathbf{Q}_0 + R_0}, \quad h \geq r.$$

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

- Least squares method
- Strong consistency and asymptotic normality
- **Estimating the parameters**
- Example: COGARCH(2,2)
- Example: COGARCH(2,2)
- Simulation result
- Simulation result
- Simulation result
- Volatility Estimation
- Volatility Estimation

Real Data Analysis

Conclusions and Future Works

Estimating the parameters

- Estimate $\tilde{\beta}$ by fitting an ARMA(2,2) to the observed squared increments and minimizing the least-squares sum.
- Estimate \mathbf{a} by matching the ACF of the fitted ARMA(2,2) model and

$$\rho(h) = \frac{\mathbf{a}' P_h \mathbf{a} + \mathbf{a}' \mathbf{Q}_h}{\mathbf{a}' P_0 \mathbf{a} + \mathbf{a}' \mathbf{Q}_0 + R_0}, \quad h \geq r.$$

- Finally, estimate α_0 using

$$E((G_t^{(r)})^2) = \frac{\alpha_0 \beta_q r}{\beta_q - \mu \alpha_1} E L_1^2.$$

(Assume $\mu = E L_1^2 = 1$).

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

- Least squares method
- Strong consistency and asymptotic normality
- Estimating the parameters
- Example: COGARCH(2,2)
- Example: COGARCH(2,2)
- Simulation result
- Simulation result
- Simulation result
- Volatility Estimation
- Volatility Estimation

Real Data Analysis

Conclusions and Future Works

Example: COGARCH(2,2)

$\alpha_0 = 1, \alpha_1 = 0.1, \alpha_2 = 0, \beta_1 = 1, \beta_2 = 0.2$ and compound Poisson driving process with std normal jumps and $EL_1^2 = 1$.

ACF of the squared increment:

$$\rho(h) = 0.1040e^{-0.1127h} - 0.0811e^{-0.8873h}, \quad h = 1, 2, \dots$$

ARMA(2,2) parameters:

$$\phi_1 = 1.3052, \quad \phi_2 = -0.3679, \quad \theta_1 = -1.2642, \quad \theta_2 = 0.3669.$$

Hence,

$$\tilde{\beta}_1 = \log \xi_1 \xi_2 = 1 \quad \text{and} \quad \tilde{\beta}_2 = \log \xi_1 \log \xi_2 = 0.1,$$

where $\xi_1^{-1} = 0.8934$ and $\xi_2^{-1} = 0.4118$ are the autoregressive roots of the ARMA(2,2).

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

- Least squares method
- Strong consistency and asymptotic normality
- Estimating the parameters
- Example: COGARCH(2,2)
- Example: COGARCH(2,2)
- Simulation result
- Simulation result
- Simulation result
- Volatility Estimation
- Volatility Estimation

Real Data Analysis

Conclusions and Future Works

Example: COGARCH(2,2)

ACF as a function of \mathbf{a} :

$$\begin{aligned}\rho(h) &= \frac{17.2007\alpha_1^2 - 0.2185\alpha_2^2 + 3.8771\alpha_1 - 0.4370\alpha_2}{14.6900\alpha_1^2 + 0.2853\alpha_2^2 + 2.3673\alpha_1 + 6.5707\alpha_2 + 5} e^{-0.1127h} \\ &+ \frac{-2.3295\alpha_1^2 + 1.8340\alpha_2^2 - 4.1338\alpha_1 + 3.6680\alpha_2}{14.6900\alpha_1^2 + 0.2853\alpha_2^2 + 2.3673\alpha_1 + 6.5707\alpha_2 + 5} e^{-0.8873h}\end{aligned}$$

Matching the two ACFs yields

$$-150.7545\alpha_1^2 + 2.3868\alpha_2^2 - 34.9245\alpha_1 + 10.7736\alpha_2 + 5 = 0,$$

$$-14.0288\alpha_1^2 + 22.8957\alpha_2^2 - 48.5971\alpha_1 + 51.7914\alpha_2 + 5 = 0,$$

giving $\mathbf{a} = (0.1, 0)$. Further, find

$$\beta_1 = \tilde{\beta}_1 + \alpha_2 = 1, \quad \beta_2 = \tilde{\beta}_2 + \alpha_1 = 0.2 \quad \text{and} \quad \alpha_0 = 1.$$

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

- Least squares method
- Strong consistency and asymptotic normality
- Estimating the parameters
- Example: COGARCH(2,2)
- Example: COGARCH(2,2)
- Simulation result
- Simulation result
- Simulation result
- Volatility Estimation
- Volatility Estimation

Real Data Analysis

Conclusions and Future Works

Simulation result

$\alpha_0 = 1, \alpha_1 = 0.1, \alpha_2 = 0, \beta_1 = 1, \beta_2 = 0.2$ and compound Poisson driving process with std normal jumps and $EL_1^2 = 1$.

1,000,000 realizations of $G_i^{(1)}, i = 0, \dots, 999,999$ were simulated. The estimation was repeated 2000 times.

	$\hat{\alpha}_0$	$\hat{\alpha}_1$	$\hat{\beta}_1$	$\hat{\beta}_2$
Mean	1.0683 (0.0100)	0.0961 (0.0010)	1.0123 (0.0054)	0.1986 (0.0009)
Bias	0.0683 (0.0100)	-0.0039 (0.0013)	0.0123 (0.0054)	-0.0014 (0.0009)
MSE	0.1099 (0.0059)	0.0018 (0.00001)	0.0300 (0.0014)	0.0009 (0.0001)
MAE	0.2509 (0.0069)	0.0337 (0.0008)	0.1383 (0.0033)	0.0242 (0.0006)

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

- Least squares method
- Strong consistency and asymptotic normality
- Estimating the parameters
- Example: COGARCH(2,2)
- Example: COGARCH(2,2)
- Simulation result
- Simulation result
- Simulation result
- Volatility Estimation
- Volatility Estimation

Real Data Analysis

Conclusions and Future Works

Simulation result

Outline

Introduction

Continuous-time approaches

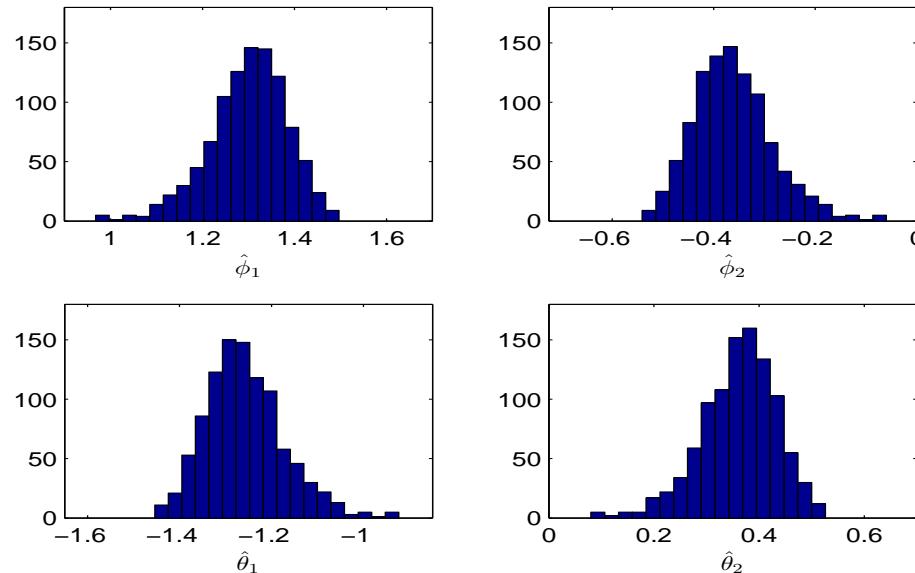
COGARCH(p, q) processes

Parameter Estimation

- Least squares method
- Strong consistency and asymptotic normality
- Estimating the parameters
- Example: COGARCH(2,2)
- Example: COGARCH(2,2)
- Simulation result
- **Simulation result**
- Simulation result
- Volatility Estimation
- Volatility Estimation

Real Data Analysis

Conclusions and Future Works



Least-squares estimators of the ARMA(2,2) parameters. The true values are $\phi_1 = 1.3052$, $\phi_2 = -0.3679$, $\theta_1 = -1.2642$ and $\theta_2 = 0.3669$.

Simulation result

Outline

Introduction

Continuous-time approaches

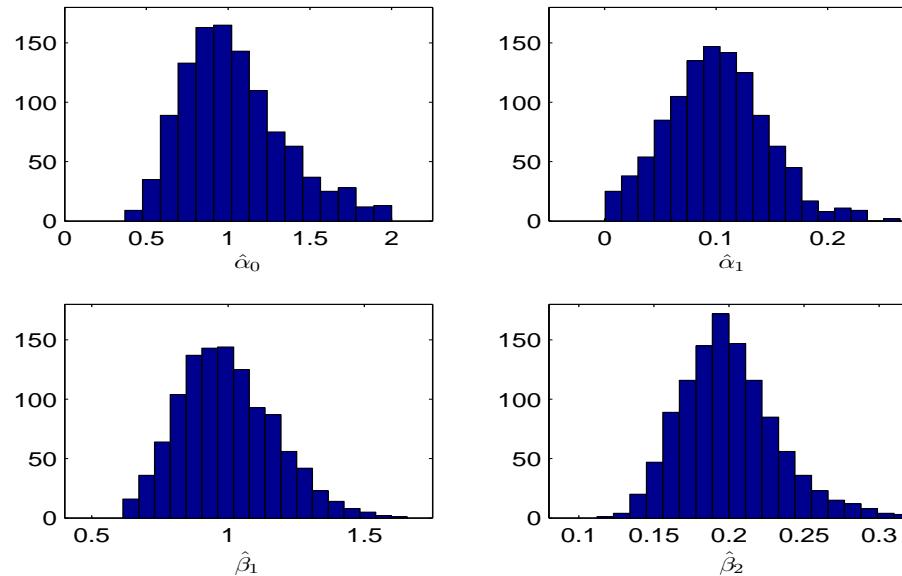
COGARCH(p, q) processes

Parameter Estimation

- Least squares method
- Strong consistency and asymptotic normality
- Estimating the parameters
- Example: COGARCH(2,2)
- Example: COGARCH(2,2)
- Simulation result
- Simulation result
- Simulation result
- Volatility Estimation
- Volatility Estimation

Real Data Analysis

Conclusions and Future Works



Least-squares estimators of the COGARCH parameters. The true values are $\alpha_0 = 1$, $\alpha_1 = 0.1$, $\beta_1 = 1$ and $\beta_2 = 0.2$.

Volatility Estimation

Let h be a positive integer and $G_0, G_{\frac{1}{h}}, \dots, G_1, G_{1+\frac{1}{h}}, \dots$ are the observed log returns. Then

$$\hat{\mathbf{Y}}_{t+1} = e^{\hat{B}} \hat{\mathbf{Y}}_t + \sum_{i=1}^h (I + \frac{1}{h} \hat{B})^{h-i} \mathbf{e} (G_{t+\frac{i-1}{h}}^{(\frac{1}{h})})^2$$

and

$$\hat{V}_{t+1} = \hat{\alpha}_0 + \hat{\mathbf{a}}' \hat{\mathbf{Y}}_{t+1}, \quad t = 0, 1, \dots$$

where $\hat{\mathbf{Y}}_0$ is an initial starting value.

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

- Least squares method
- Strong consistency and asymptotic normality
- Estimating the parameters
- Example: COGARCH(2,2)
- Example: COGARCH(2,2)
- Simulation result
- Simulation result
- Simulation result
- Volatility Estimation
- Volatility Estimation

Real Data Analysis

Conclusions and Future Works

Volatility Estimation

Outline

Introduction

Continuous-time approaches

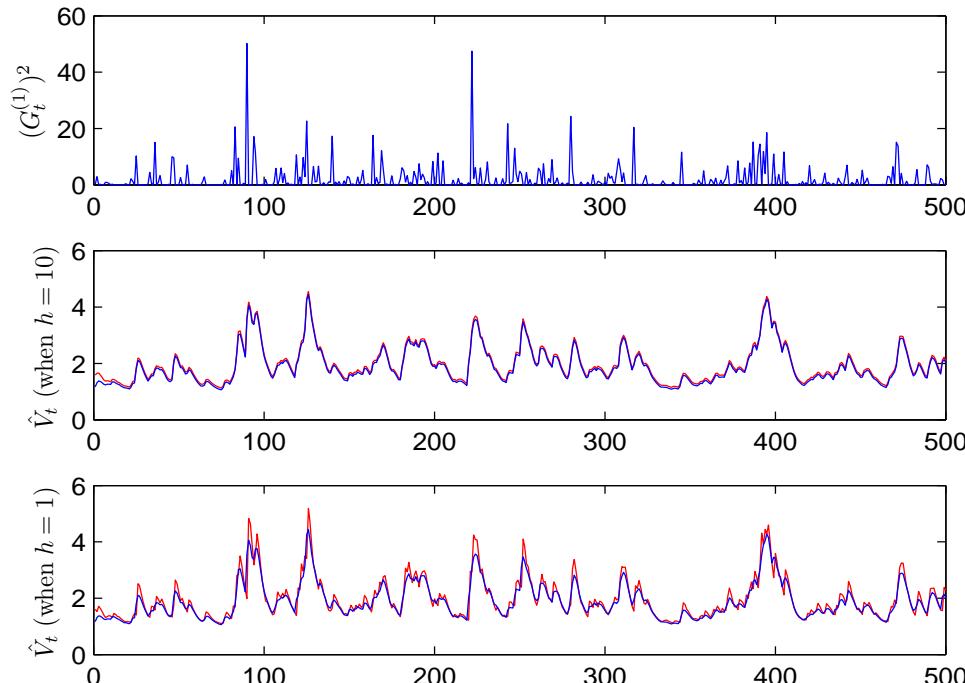
COGARCH(p, q) processes

Parameter Estimation

- Least squares method
- Strong consistency and asymptotic normality
- Estimating the parameters
- Example: COGARCH(2,2)
- Example: COGARCH(2,2)
- Simulation result
- Simulation result
- Simulation result
- Volatility Estimation
- Volatility Estimation

Real Data Analysis

Conclusions and Future Works



Sample path of the squared increment process (top graph), theoretical (blue line) and the estimated volatility (red line) based on the observations $G_{\frac{1}{h}}, G_{\frac{2}{h}}, \dots, G_{500}$ and the estimated coefficients. The middle graph is for $h = 10$ and the bottom graph is for $h = 1$.

Real Data Analysis

Dow Jones 5-minute data

Outline

Introduction

Continuous-time approaches

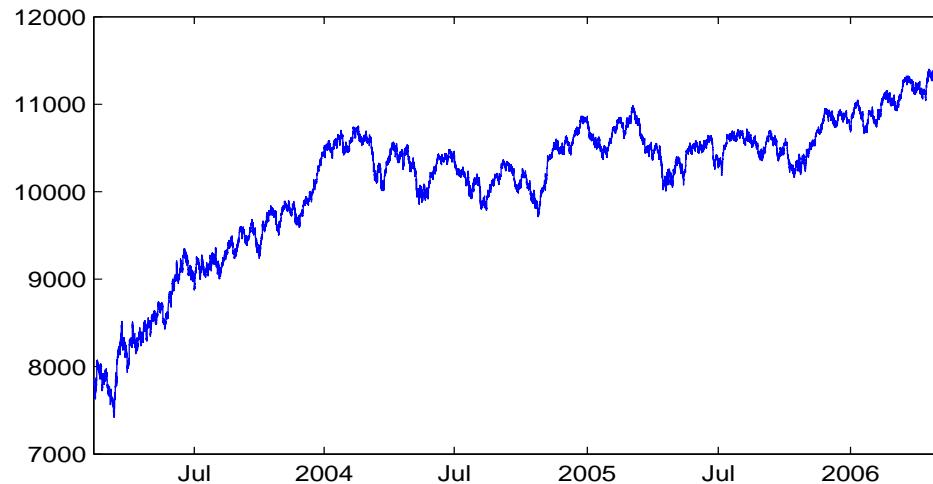
COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

- Dow Jones 5-minute data
- Dow Jones 5-minute data
- Estimated Coefficients
- Volatility Estimation
- Goodness of fit
- Goodness of fit

Conclusions and Future Works



Dow Jones Industrial Average recorded from February 12th, 2003 to May 12th, 2006. (813 trading days with 78 5-minute observations per day, resulting in total of 63414 5-minute observations).

Dow Jones 5-minute data

Outline

Introduction

Continuous-time approaches

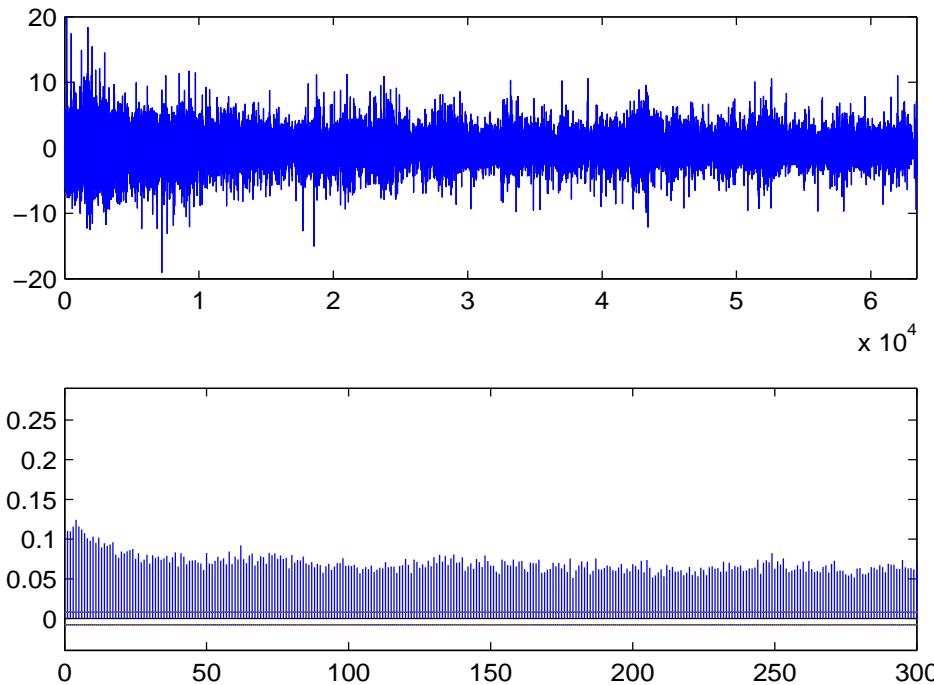
COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

- Dow Jones 5-minute data
- Dow Jones 5-minute data
- Estimated Coefficients
- Volatility Estimation
- Goodness of fit
- Goodness of fit

Conclusions and Future Works



Dow Jones log returns (the top graph) and the ACF of the squared log returns.

Estimated Coefficients

COGARCH(2, 2) model was fitted to the 30-minute log returns $G_0^{(1)}, G_1^{(1)}, \dots, G_{10568}^{(1)}$.

The driving compound Poisson process has jump-rate $c = 2$ and normally distributed jumps with mean zero and variance 0.7071.

$$\hat{\alpha}_0 = 0.9760, \hat{\alpha}_1 = 0.0117, \hat{\alpha}_2 = 0.1860,$$

$$\hat{\beta}_1 = 0.6088, \hat{\beta}_2 = 0.0122.$$

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

- Dow Jones 5-minute data
- Dow Jones 5-minute data
- Estimated Coefficients
- Volatility Estimation
- Goodness of fit
- Goodness of fit

Conclusions and Future Works

Volatility Estimation

Outline

Introduction

Continuous-time approaches

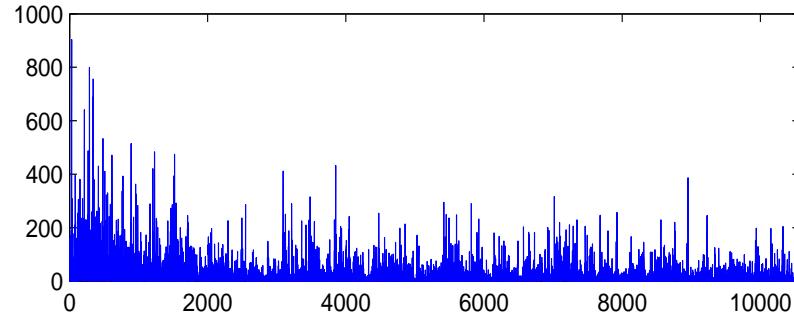
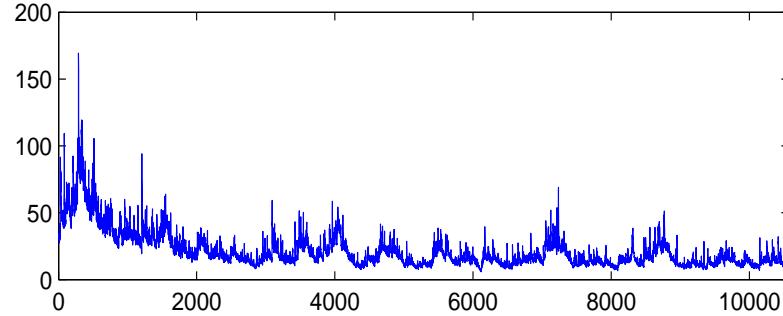
COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

- Dow Jones 5-minute data
- Dow Jones 5-minute data
- Estimated Coefficients
- Volatility Estimation
- Goodness of fit
- Goodness of fit

Conclusions and Future Works



Dow Jones squared 30-minute log returns (top graph), the estimated volatilities based on the estimated coefficients and 5-minute log returns (middle graph). The unit of time is 30 minutes and there are $h = 6$ observations per unit interval.

Goodness of fit

Estimated residuals:

$$G_{t-1}^{(1)} / \sqrt{\hat{V}_t}, \quad t = 1, 2, \dots, 10569.$$

Sample mean: -0.0232 ,

Sample standard deviation: 0.9325 ,

Ljung-Box test statistic: $Q_{LB} = 222.0025$ with lag 189,

McLeod-Li test statistic: $Q_{ML} = 214.0934$ with lag 189.

The critical value at 0.05 level was 222.0757.

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

- Dow Jones 5-minute data
- Dow Jones 5-minute data
- Estimated Coefficients
- Volatility Estimation
- **Goodness of fit**
- Goodness of fit

Conclusions and Future Works

Goodness of fit

Outline

Introduction

Continuous-time approaches

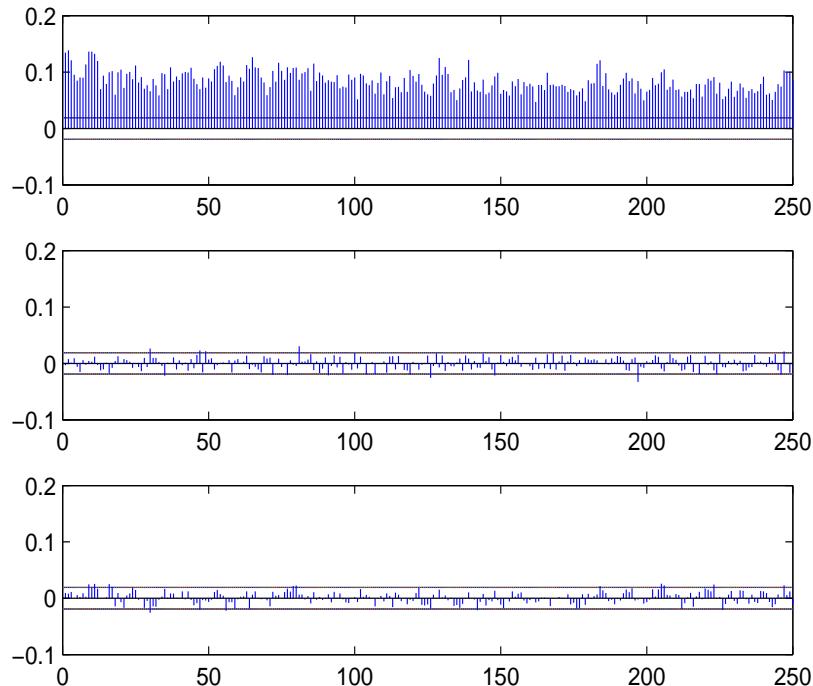
COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

- Dow Jones 5-minute data
- Dow Jones 5-minute data
- Estimated Coefficients
- Volatility Estimation
- Goodness of fit
- Goodness of fit

Conclusions and Future Works



ACF of the squared 30-minute log returns (top graph), the residuals (middle graph) and the squared residuals (bottom graph).

Conclusions and Future Works

Conclusions

- A family of continuous time GARCH processes, generalizing the COGARCH(1, 1) process was introduced and studied.
- A least-squares method to estimate the parameters of a COGARCH(2,2) process was proposed making use of the ACF structure of the squared increment process.
- When the driving Lévy process is compound Poisson, then the state process and the squared increments are strongly mixing with exponential rate, ensuring strong consistency and asymptotic normality of the LSE.
- The COGARCH(2, 2) model with compound poisson driving process was applied to a real data.

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

- Conclusions
- Future Works

Future Works

- Investigate the degree to which the stationarity condition can be relaxed when $q > 1$.
- Investigate the strong mixing property of COGARCH(p, q) processes with $q > 2$ and with general driving Lévy process.
- Investigate the connections between higher order COGARCH and GARCH processes.
- Comparisons of COGARCH models fitted to observations of the same process made at different frequencies.

Thank you!

Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

- Conclusions
- Future Works