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Stylized Features

• Tail heaviness

• Volatility clustering

• Dependence without correlation
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GARCH model

Xn = lnPn − lnPn−1 where Pn are asset price, n = 1, 2, . . .

GARCH(p, q) model:

Xn =
√
vn εn,

vn = α0 +

p∑

i=1

αiX
2
n−i +

q∑

j=1

βjvn−j ,

where {εn} i.i.d.∼ N(0, 1), α0 > 0, αi ≥ 0, i = 1, . . . , p
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Example

ARCH(1) process:

Xn =
√
vn εn,

vn = α0 + α1X
2
n−1.
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Example

ARCH(1) process:

Xn =
√
vn εn,

vn = α0 + α1X
2
n−1.

• Xn with |α1| < 1 is strictly stationary white noise,

• Xn is not i.i.d.,

• Xn is “heavy-tailed”,

• X2
n has the ACF of an AR(1).
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Lévy processes

An adapted process L := {Lt, t ≥ 0} with L0 = 0 a.s. is

a real valued Lévy process if
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Lévy processes

An adapted process L := {Lt, t ≥ 0} with L0 = 0 a.s. is

a real valued Lévy process if

• L has independent increments,

• L has stationary increments,

• L is continuous in probability.
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Lévy processes

Characteristic function of Lt:

ϕt(θ) = E(exp(iθLt)) = exp(tξ(θ)), θ ∈ R,

where ξ(θ) satisfies the Lévy - Khinchin formula,

ξ(θ) = iγLθ − τ2L
θ2

2
+

∫

R

(
eiθx − 1− iθx1|x|≤1

)
dνL(x).

ξ(θ) is called a characteristic exponent or Lévy symbol.

(γL, τ
2
L, νL) is called the characteristic triplet of L.

νL on R is called the Lévy measure.
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Example: Brownian Motion

The Lévy symbol: ξ(θ) = iγBθ − τ2B
θ2

2 .

The characteristic triplet: (γB , τ2B , 0).
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(γB = 0, τ2B = 1).
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Example: Compound Poisson

Lt :=
Nt∑
i=1

Yi, where {Yn} i.i.d.∼ FY , indep. of N = (Nt)t≥0.

The Lévy symbol: ξ(θ) =
∫
R
(eiθx − 1)λFY (dx).

The characteristic triplet: (γL, 0, λFY ).
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A sample path of a compound Poisson process with jump
rate λ = 25 and standard normal jumps.
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Continuous-time approaches



Outline

Introduction

Continuous-time approaches

•Nelson’s diffusion limit

•COGARCH(1,1) model

•COGARCH(1,1) model

•COGARCH(1,1) model

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

August 3, 2015, Stochastic Processes and Applications, Ulaanbaatar, MONGOLIA Modeling Financial Time-Series with COGARCH processes - p. 13/51

Nelson’s diffusion limit

Gt = lnPt where Pt, t ≥ 0 are asset price.

GARCH(1, 1) diffusion limit satisfies

dGt = σt dW
(1)
t ,

dσ2
t = θ(γ − σ2

t )dt+ ρσ2
t dW

(2)
t , t ≥ 0,

where (W
(1)
t )t≥0 and (W

(2)
t )t≥0 are independent Brownian

motions.
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Nelson’s diffusion limit

Gt = lnPt where Pt, t ≥ 0 are asset price.

GARCH(1, 1) diffusion limit satisfies

dGt = σt dW
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t ,
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t = θ(γ − σ2

t )dt+ ρσ2
t dW
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where (W
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t )t≥0 are independent Brownian

motions.

• GARCH process is driven by a single noise sequence.
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Nelson’s diffusion limit

Gt = lnPt where Pt, t ≥ 0 are asset price.

GARCH(1, 1) diffusion limit satisfies

dGt = σt dW
(1)
t ,

dσ2
t = θ(γ − σ2

t )dt+ ρσ2
t dW

(2)
t , t ≥ 0,

where (W
(1)
t )t≥0 and (W

(2)
t )t≥0 are independent Brownian

motions.

• GARCH process is driven by a single noise sequence.

• The diffusion limit is driven by two independent Brownian

motions.
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COGARCH(1,1) model

Due to Klüppelberg et. al. (2005). Start with GARCH(1,1):

ξn = σnεn, σ2
n = α0 + α1ξ

2
n−1 + β1σ

2
n−1, n ∈ N0,

From the recursion,

σ2
n = α0

n−1∑

i=0

n−1∏

j=i+1

(β1 + α1ε
2
j ) + σ2

0

n−1∏

j=0

(β1 + α1ε
2
j )

=
(
σ2
0+α0

∫ n

0

exp
[
−

⌊s⌋∑

j=0

log(β1+α1ε
2
j )
]
ds
)
exp

[ n−1∑

j=0

log(β1+α1ε
2
j )
]
.

Denote Xn := −
n−1∑
j=0

log(β1 + α1ε
2
j ).
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COGARCH(1,1) model

dGt = σt dLt, t > 0, G0 = 0,

σ2
t =

(
σ2
0 + α0

∫ t

0

eXs ds

)
e−Xt− , t ≥ 0,

where
Xt := −

∑

0<s≤t

log
(
β1 + α1(∆Ls)

2
)
.

The volatility process σ2
t satisfies

σ2
t = α0t−log β1

∫ t

0

σ2
sds+(α1/β1)

∑

0<s<t

σ2
s(∆Ls)

2+σ2
0 , t ≥ 0.
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COGARCH(1,1) model
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COGARCH(1,1) model

• Stationary and uncorrelated increments: (Gt+r −Gt)t≥0,
r > 0
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COGARCH(1,1) model

• Stationary and uncorrelated increments: (Gt+r −Gt)t≥0,
r > 0

• Heavy tails and volatility clusters at high levels



Outline

Introduction

Continuous-time approaches

•Nelson’s diffusion limit

•COGARCH(1,1) model

•COGARCH(1,1) model

•COGARCH(1,1) model

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

August 3, 2015, Stochastic Processes and Applications, Ulaanbaatar, MONGOLIA Modeling Financial Time-Series with COGARCH processes - p. 16/51

COGARCH(1,1) model

• Stationary and uncorrelated increments: (Gt+r −Gt)t≥0,
r > 0

• Heavy tails and volatility clusters at high levels

• Volatility process has an ACF of an CAR(1)
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COGARCH(1,1) model

• Stationary and uncorrelated increments: (Gt+r −Gt)t≥0,
r > 0

• Heavy tails and volatility clusters at high levels

• Volatility process has an ACF of an CAR(1)

• Squared increment process has an ACF of an ARMA(1,1)
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COGARCH(p, q) processes
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Construction

Start with a GARCH(p, q) process (ξn)n∈N0
defined by

ξn = σnεn,

σ2
n = α0 +

p∑

i=1

αiξ
2
n−i +

q∑

j=1

βjσ
2
n−j , n ≥ max{p, q}.

The volatility process can be viewed as a “self-exciting”

ARMA(q, p− 1) process driven by the noise sequence

(σ2
n−1ε

2
n−1)n∈N.
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Construction cont.d

CARMA(q, p−1) process (ψt)t≥0 with driving Lévy process L:

ψt = c+ a′ζt,

dζt = Bζtdt+ e dLt,

where a′ = [α1, . . . , αq], αj := 0 for j > p, e = [0, · · · , 0, 1]′

and

B =




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . . 0

0 0 0 · · · 1

−βq −βq−1 −βq−2 · · · −β1




.

Need to replace (Lt) by a continuous-time analog of the

driving process (σ2
n−1ε

2
n−1)n∈N.
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Construction cont.d

In discrete-time,

R(d)
n :=

n−1∑

i=0

ξ2i =

n−1∑

i=0

σ2
i ε

2
i .

Its continuous-time analog:

Rt =
∑

0<s≤t

σ2
s−(∆Ls)

2 =

∫ t

0

σ2
s−d[L,L]

(d)
s ,

i.e.
dRt = σ2

t− d[L,L]
(d)
t ,

where [L,L]
(d)
t is the discrete part of the quadratic

covariation of L.
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COGARCH(p, q) equations

COGARCH(p, q) (q ≥ p ≥ 1) process with parameters B, a,
α0 and driving Lévy process L is defined as follows:

dGt =
√
Vt dLt, t > 0, G0 = 0,

Vt = α0 + a′Yt−, t > 0, V0 = α0 + a′Y0,

where the state process Y = (Yt)t≥0 is the unique càdlàg
solution of the stochastic differential equation

dYt = BYt− dt+ e(α0 + a′Yt−) d[L,L]
(d)
t , t > 0,

with initial value Y0, independent of the driving Lévy process
(Lt)t≥0.

• When p = q = 1 it is reduced to the COGARCH(1, 1) model.
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Non-negativity of the volatility



Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

•Construction

•Construction cont.d

•Construction cont.d

•COGARCH(p, q)

equations
•Non-negativity of the

volatility
•Stationarity property

•Second-order property

•Squared increment

process
•Squared increment

process
•ACF of the squared

increments
•Example: COGARCH(1,3)

•Example: COGARCH(1,3)

•Mixing: COGARCH(2,2)

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

August 3, 2015, Stochastic Processes and Applications, Ulaanbaatar, MONGOLIA Modeling Financial Time-Series with COGARCH processes - p. 22/51

Non-negativity of the volatility

Vt > 0 a.s. ∀ t ≥ 0

for any driving Lévy process if

a′eBte ≥ 0, ∀ t ≥ 0.
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Non-negativity of the volatility

Vt > 0 a.s. ∀ t ≥ 0

for any driving Lévy process if

a′eBte ≥ 0, ∀ t ≥ 0.

• In the COGARCH(2, 2) case, the necessary and sufficient
condition is

α2 ≥ 0 and α1 ≥ −α2λ(B).
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Stationarity property
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Stationarity property

Yt
d−→ Y∞, as t→ ∞,

where Y∞ is a finite r.v., if
∫

R

log(1 + ‖S−1ea′S‖r y2) dνL(y) < −λ = −λ(B),

for some r ∈ [1,∞] and some matrix S such that S−1BS is

diagonal.
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Stationarity property

Yt
d−→ Y∞, as t→ ∞,

where Y∞ is a finite r.v., if
∫

R

log(1 + ‖S−1ea′S‖r y2) dνL(y) < −λ = −λ(B),

for some r ∈ [1,∞] and some matrix S such that S−1BS is

diagonal.

• In the COGARCH(1,1) case, this is a necessary and
sufficient condition for existence of a stationary solution.
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Stationarity property

Yt
d−→ Y∞, as t→ ∞,

where Y∞ is a finite r.v., if
∫

R

log(1 + ‖S−1ea′S‖r y2) dνL(y) < −λ = −λ(B),

for some r ∈ [1,∞] and some matrix S such that S−1BS is

diagonal.

• In the COGARCH(1,1) case, this is a necessary and
sufficient condition for existence of a stationary solution.

• If Y0
d
= Y∞ then (Yt)t≥0 and (Vt)t≥0 are strictly stationary.
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Second-order property

cov(Y∞) exists if EL4
1 <∞ and

‖S−1ea′S‖2r ρ < 2(−λ− ‖S−1ea′S‖rµ),

where µ := EL2
1, ρ := EL4

1.

If (Vt)t≥0 is the stationary volatility process, then

cov(Vt+h, Vt) =
α2
0β

2
q

(βq − µα1)2(1−m)
cov(ψt+h, ψt), t, h ≥ 0,

where m := var (ψt).



Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

•Construction

•Construction cont.d

•Construction cont.d

•COGARCH(p, q)

equations
•Non-negativity of the

volatility
•Stationarity property

•Second-order property

•Squared increment

process
•Squared increment

process
•ACF of the squared

increments
•Example: COGARCH(1,3)

•Example: COGARCH(1,3)

•Mixing: COGARCH(2,2)

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

August 3, 2015, Stochastic Processes and Applications, Ulaanbaatar, MONGOLIA Modeling Financial Time-Series with COGARCH processes - p. 24/51

Second-order property

cov(Y∞) exists if EL4
1 <∞ and

‖S−1ea′S‖2r ρ < 2(−λ− ‖S−1ea′S‖rµ),

where µ := EL2
1, ρ := EL4

1.

If (Vt)t≥0 is the stationary volatility process, then

cov(Vt+h, Vt) =
α2
0β

2
q

(βq − µα1)2(1−m)
cov(ψt+h, ψt), t, h ≥ 0,

where m := var (ψt).

• Volatility process has an ACF of a CARMA(q, p− 1).

(Volatility process of a GARCH(p, q) has an ACF of an

ARMA(q, p− 1)).
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Squared increment process

G
(r)
t := Gt+r −Gt =

∫

(t,t+r]

√
Vs dLs, t ≥ 0.

For any t ≥ 0 and h ≥ r > 0,

E(G
(r)
t ) = 0,

E((G
(r)
t )2) =

α0βqr

βq − µα1
EL2

1,

cov(G
(r)
t , G

(r)
t+h) = 0.
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Squared increment process

cov((G
(r)
t )2, (G

(r)
t+h)

2) = EL2
1 a

′eB̃hB̃−1(I − e−B̃r) cov(Yr, G
2
r), h ≥ r

var((G
(r)
t )2) = 6EL2

1 a
′Kr + 2(rEL2

1EV∞)2 + rEL4
1EV

2
∞,

where
B̃ := B + µea′,

cov(Yr, G
2
r) = [(I − eB̃r)cov(Y∞)− B̃−1(eB̃r − I)cov(Y∞)B′]e

and

Kr :=
[
(rI−B̃−1(eB̃r−I))cov(Y∞)−B̃−1(B̃−1(eB̃r−I)−rI)cov(Y∞)B
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ACF of the squared increments

The ACF of the squared increment process:

ρ(h) = c1e
λ̃1h + · · ·+ cqe

λ̃qh, h ≥ r,

where λ̃1, . . . , λ̃q are the eigenvalues of B̃. The ACF can also
be written as

ρ(h) =
a′Ph a+ a′Qh

a′P0 a+ a′Q0 +R0
, h ≥ r,

where Ph,Qh, P0,Q0 and R0 depend only on β̃1, . . . , β̃q.
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ACF of the squared increments

The ACF of the squared increment process:

ρ(h) = c1e
λ̃1h + · · ·+ cqe

λ̃qh, h ≥ r,

where λ̃1, . . . , λ̃q are the eigenvalues of B̃. The ACF can also
be written as

ρ(h) =
a′Ph a+ a′Qh

a′P0 a+ a′Q0 +R0
, h ≥ r,

where Ph,Qh, P0,Q0 and R0 depend only on β̃1, . . . , β̃q.

• Squared increment process has an ACF of an ARMA(q, q).

(Square of a GARCH(p, q) process has an ACF of an

ARMA(q, q).
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Example: COGARCH(1,3)

0 1000 2000 3000 4000 5000 6000 7000 8000
−100
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100

200

G
t
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−5
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5
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(1

)
t
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2
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V

t

The simulated compound-Poisson driven COGARCH(1,3)
process with jump-rate 2, normally distributed jumps with

mean zero and variance 0.74 and coefficients α0 = α1 = 1,
β1 = 1.2, β2 = .48 + π2 and β3 = .064 + .4π2.
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Example: COGARCH(1,3)
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0.015
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The sample ACFs of the volatilities (Vt) (left) and of the
squared COGARCH increments ((Gt+1 −Gt)

2) (right) of a
realisation of length 1,000,000 of the COGARCH(1,3)

process.
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Mixing: COGARCH(2,2)
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Mixing: COGARCH(2,2)

• For a compound-Poisson driven COGARCH(2,2) process,

(Yt)t≥0 is strongly mixing with geometric rate.
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Mixing: COGARCH(2,2)

• For a compound-Poisson driven COGARCH(2,2) process,

(Yt)t≥0 is strongly mixing with geometric rate.

• The volatility process (Vt)t≥0 and the squared increment

process (G
(r)
rn )n∈N also inherits the strong mixing property

as well as the rate.
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Parameter Estimation
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Least squares method

• The noise sequence in the squared increment process
((G

(r)
t )2)t≥0 is not an i.i.d. or a martingale difference.
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Least squares method

• The noise sequence in the squared increment process
((G

(r)
t )2)t≥0 is not an i.i.d. or a martingale difference.

• Under strong mixing and moment conditions, the least

squares estimators (LSE) of ARMA representations in

which the noise is the linear innovation process are

strongly consistent and asymptotically normal.

(Francq and Zakoïan (1998)).
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Strong consistency and asymptotic normality

Francq and Zakoïan (1998):

• For a strictly stationary ergodic process (Xt)t∈Z satisfying

the weak ARMA representation the LSE are strongly

consistent.
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Strong consistency and asymptotic normality

Francq and Zakoïan (1998):

• For a strictly stationary ergodic process (Xt)t∈Z satisfying

the weak ARMA representation the LSE are strongly

consistent.

• If in addition, (Xt)t∈Z satisfies E|Xt|4+2ν <∞ and strongly

mixing with the mixing rate such that
∑∞

k=0 α
ν/(2+ν)
k <∞

for some ν > 0 then the LSE are asymptotically normal.
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Estimating the parameters
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Estimating the parameters

• Estimate β̃ by fitting an ARMA(2,2) to the observed

squared increments and minimizing the least-squares sum.
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Estimating the parameters

• Estimate β̃ by fitting an ARMA(2,2) to the observed

squared increments and minimizing the least-squares sum.

• Estimate a by matching the ACF of the fitted ARMA(2,2)

model and

ρ(h) =
a′Ph a+ a′Qh

a′P0 a+ a′Q0 +R0
, h ≥ r.
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Estimating the parameters

• Estimate β̃ by fitting an ARMA(2,2) to the observed

squared increments and minimizing the least-squares sum.

• Estimate a by matching the ACF of the fitted ARMA(2,2)

model and

ρ(h) =
a′Ph a+ a′Qh

a′P0 a+ a′Q0 +R0
, h ≥ r.

• Finally, estimate α0 using

E((G
(r)
t )2) =

α0βqr

βq − µα1
EL2

1.

(Assume µ = EL2
1 = 1).
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Example: COGARCH(2,2)

α0 = 1, α1 = 0.1, α2 = 0, β1 = 1, β2 = 0.2 and compound
Poisson driving process with std normal jumps and EL2

1 = 1.

ACF of the squared increment:

ρ(h) = 0.1040e−0.1127h − 0.0811e−0.8873h, h = 1, 2, . . .

ARMA(2,2) parameters:

φ1 = 1.3052, φ2 = −0.3679, θ1 = −1.2642, θ2 = 0.3669.

Hence,

β̃1 = log ξ1ξ2 = 1 and β̃2 = log ξ1 log ξ2 = 0.1,

where ξ−1
1 = 0.8934 and ξ−1

2 = 0.4118 are the autoregressive
roots of the ARMA(2,2).
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Example: COGARCH(2,2)

ACF as a function of a:

ρ(h) =
17.2007α2

1 − 0.2185α2
2 + 3.8771α1 − 0.4370α2

14.6900α2
1 + 0.2853α2

2 + 2.3673α1 + 6.5707α2 + 5
e−0.1127h

+
−2.3295α2

1 + 1.8340α2
2 − 4.1338α1 + 3.6680α2

14.6900α2
1 + 0.2853α2

2 + 2.3673α1 + 6.5707α2 + 5
e−0.8873h

Matching the two ACFs yields

−150.7545α2
1 + 2.3868α2

2 − 34.9245α1 + 10.7736α2 + 5 = 0,

−14.0288α2
1 + 22.8957α2

2 − 48.5971α1 + 51.7914α2 + 5 = 0,

giving a = (0.1, 0). Further, find

β1 = β̃1 + α2 = 1, β2 = β̃2 + α1 = 0.2 and α0 = 1.
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Simulation result

α0 = 1, α1 = 0.1, α2 = 0, β1 = 1, β2 = 0.2 and compound
Poisson driving process with std normal jumps and EL2

1 = 1.

1, 000, 000 realizations of G(1)
i , i = 0, . . . , 999, 999 were

simulated. The estimation was repeated 2000 times.

α̂0 α̂1 β̂1 β̂2

Mean 1.0683 0.0961 1.0123 0.1986
(0.0100) (0.0010) (0.0054) (0.0009)

Bias 0.0683 -0.0039 0.0123 -0.0014
(0.0100) (0.0013) (0.0054) (0.0009)

MSE 0.1099 0.0018 0.0300 0.0009
(0.0059) (0.00001) (0.0014) (0.0001)

MAE 0.2509 0.0337 0.1383 0.0242
(0.0069) (0.0008) (0.0033) (0.0006)
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Simulation result
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Least-squares estimators of the ARMA(2,2) parameters. The
true values are φ1 = 1.3052, φ2 = −0.3679, θ1 = −1.2642 and

θ2 = 0.3669.
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Simulation result
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Least-squares estimators of the COGARCH parameters. The
true values are α0 = 1, α1 = 0.1, β1 = 1 and β2 = 0.2.



Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

•Least squares method

•Strong consistency and

asymptotic normality
•Estimating the parameters

•Example: COGARCH(2,2)

•Example: COGARCH(2,2)

•Simulation result

•Simulation result

•Simulation result

•Volatility Estimation

•Volatility Estimation

Real Data Analysis

Conclusions and Future Works

August 3, 2015, Stochastic Processes and Applications, Ulaanbaatar, MONGOLIA Modeling Financial Time-Series with COGARCH processes - p. 40/51

Volatility Estimation

Let h be a positive integer and G0, G 1

h
, . . . , G1, G1+ 1

h
, . . . are

the observed log returns. Then

Ŷt+1 = eB̂Ŷt +
h∑

i=1

(I +
1

h
B̂)h−ie

(
G

( 1

h
)

t+ i−1

h

)2

and
V̂t+1 = α̂0 + â′Ŷt+1, t = 0, 1, . . .

where Ŷ0 is an initial starting value.
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Volatility Estimation
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Sample path of the squared increment process (top graph),
theoretical (blue line) and the estimated volatility (red line)

based on the observations G 1

h
, G 2

h
, . . . , G500 and the

estimated coefficients. The middle graph is for h = 10 and
the bottom graph is for h = 1.



August 3, 2015, Stochastic Processes and Applications, Ulaanbaatar, MONGOLIA Modeling Financial Time-Series with COGARCH processes - p. 42/51

Real Data Analysis
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Dow Jones 5-minute data

Jul 2004 Jul 2005 Jul 2006
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Dow Jones Industrial Average recorded from February
12th, 2003 to May 12th, 2006. (813 trading days with 78
5-minute observations per day, resulting in total of 63414

5-minute observations).
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Dow Jones 5-minute data
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Dow Jones log returns (the top graph) and the ACF of the
squared log returns.
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Estimated Coefficients

COGARCH(2, 2) model was fitted to the 30-minute log

returns G(1)
0 , G

(1)
1 , . . . , G

(1)
10568.

The driving compound Poisson process has jump-rate c = 2

and normally distributed jumps with mean zero and variance

0.7071.

α̂0 = 0.9760, α̂1 = 0.0117, α̂2 = 0.1860,

β̂1 = 0.6088, β̂2 = 0.0122.
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Volatility Estimation
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Dow Jones squared 30-minute log returns (top graph), the
estimated volatilities based on the estimated coefficients and

5-minute log returns (middle graph). The unit of time is 30
minutes and there are h = 6 observations per unit interval.
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Goodness of fit

Estimated residuals:

G
(1)
t−1/

√
V̂t, t = 1, 2, . . . , 10569.

Sample mean: −0.0232,

Sample standard deviation: 0.9325,

Ljung-Box test statistic: QLB = 222.0025 with lag 189,

McLeod-Li test statistic: QML = 214.0934 with lag 189.

The critical value at 0.05 level was 222.0757.
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Goodness of fit
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ACF of the squared 30-minute log returns (top graph), the
residuals (middle graph) and the squared residuals (bottom

graph).
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Conclusions and Future Works
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Conclusions

• A family of continuous time GARCH processes,
generalizing the COGARCH(1, 1) process was introduced
and studied.

• A least-squares method to estimate the parameters of a
COGARCH(2,2) process was proposed making use of the
ACF structure of the squared increment process.

• When the driving Lévy process is compound Poisson, then
the state process and the squared increments are strongly
mixing with exponential rate, ensuring strong consistency
and asymptotic normality of the LSE.

• The COGARCH(2, 2) model with compound poisson
driving process was applied to a real data.



Outline

Introduction

Continuous-time approaches

COGARCH(p, q) processes

Parameter Estimation

Real Data Analysis

Conclusions and Future Works

•Conclusions

•Future Works

August 3, 2015, Stochastic Processes and Applications, Ulaanbaatar, MONGOLIA Modeling Financial Time-Series with COGARCH processes - p. 51/51

Future Works

• Investigate the degree to which the stationarity condition
can be relaxed when q > 1.

• Investigate the strong mixing property of COGARCH(p, q)
processes with q > 2 and with general driving
Lévy process.

• Investigate the connections between higher order
COGARCH and GARCH processes.

• Comparisons of COGARCH models fitted to observations
of the same process made at different frequencies.

Thank you!
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