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Stochastic processes

Let (2,5, P) be a probablity space and (.S,.4) a measurable space.
A stochastic process with values in the state space (S,.A) is a
family of random variables X = {X; : t € J}, defined in (22, F,P)
and with values in S. Usually J ( the time parameter) is
@ a finite or infinite subset of N, and we say that the process is
discrete in time.
e an interval of RT of the form [0,00) or [a,b] , with 0 < a < b
and we say it is continuous in time.



Stochastic processes

Let (2,5, P) be a probablity space and (.S,.4) a measurable space.
A stochastic process with values in the state space (S,.A) is a
family of random variables X = {X; : t € J}, defined in (22, F,P)
and with values in S. Usually J ( the time parameter) is
@ a finite or infinite subset of N, and we say that the process is
discrete in time.
e an interval of RT of the form [0,00) or [a,b] , with 0 < a < b
and we say it is continuous in time.
The most frequent case in this course will be S =R and A = B(R)
i.e. the Borel sigma algebra in R and J = [0,00) to J = [0, T].
For each w € Q fixed, the function ¢ — X;(w) is called a path of
the process X.
We can also regard a process as a function defined on the product

space
X:JxQ—= S8

and write X (¢,w) instead of X;(w).



Stochastic processes

When J is an interval of R, we say that : the process is a.s right
continuous (resp. left continuous) if for almost all w € € the path
t — X (w) is right continuous, (resp. left continuous), A process is

continuous if for almost all w € Q the path t — X;(w) is
continuous.



Stochastic processes

When J is an interval of R, we say that : the process is a.s right
continuous (resp. left continuous) if for almost all w € €2 the path
t — Xi(w) is right continuous, (resp. left continuous), A process is
continuous if for almost all w € € the path ¢t — X;(w) is
continuous.

There are several forms of equality amongst processes; two
processes X and Y

e are equal if X(w) = Yi(w), for all t,w.
e X is a modification of Yifforallt € J, P(X; =Y;) =1
e X is indistinguishable from Y if P(X; = Y, forall te€ J) =1



Stochastic processes

We can see ( with an example) that even if two processes are a
modification of each other, they might have different trajectoires.
(Exercise).

Cleary If X is indistinguishable from Y, then X is a modification
of Y.

For a reciprocal result we need some regularity of the paths:

Proposition 1

If X,Y are right continuous (or left continuous) and X is a
modification of Y , then they are undistinguishable.




Stochastic processes

Proof: Let D be a countable dense subset of J = [0,00) and N
the complement of the set {X; = Y}, for all ¢ € D}. Then because
of the countable subadditivity of P we have

P(N) <Y P(X; #Y;) =0

teD

Let C' € § be the set where the paths of X and Y are right
continuous. Then P(C) =1 and if A:= N U C* then

P(A) = P(N UC®) = 0.

The set A = NN C has probability 1 and by the right continuity
of the paths and the density of D we have X; = Y;, for all t € J,
so P(X; =Y, forall t € J) =P(A°) =1.



Stochastic processes

The finite dimensional distributions of a process are
P(th € Bl,Xt2 €DBs... ,th € Bk)

withkeN,t; e B, e A,i=1,2,...k.

They are important, because in many occasions this is all we know
about the process, and they are essential to construct a process
(Kolmogorov consistency theorem).

It is clear that: if X is a modification or a version of Y then they
have the same finite dimensional distributions (exercise).



Stochastic processes

The finite dimensional distributions of a process are
P(th € Bl,Xt2 €DBs... ,th € Bk)

withkeN,t; e B, e A,i=1,2,...k.

They are important, because in many occasions this is all we know
about the process, and they are essential to construct a process
(Kolmogorov consistency theorem).

It is clear that: if X is a modification or a version of Y then they
have the same finite dimensional distributions (exercise).

@ we can also think of the processes X, Y defined in different
probabilty spaces and in this case they are said to be
equivalent if they have the same finite dimensional
distributions.



Stochastic processes, measurable properties

A filtration {§; : t € J} or (Ft)ies in (2,5, P) is a family of
sub-sigma-algebras of § such that §s C §:, s<t, s,t € J. The
probability space together with the filtration is denoted

(2,5, (8t)te1, P).



Stochastic processes, measurable properties

A filtration {§; : t € J} or (Ft)ies in (2,5, P) is a family of
sub-sigma-algebras of § such that §s C §:, s<t, s,t € J. The
probability space together with the filtration is denoted

(Qv S, (%’f)tGJ, P)'

We say that the process {X;:t € J} is

e measurable if X : J x Q — S is B(J) ® §-measurable.

e adapted to the filtration {§; : t € J} if forall t € J, X is
§i-measurable.

e progressively measurable or simply progressive if for all
t > 0 the function (s,w) — S from [0,¢] x Q to S'is
B0, t] ® &+ measurable.



Stochastic processes

These definitions are interesting in the continuous time setting. In
the discrete time case, all we usually need is that the process is
adapted in the space (2, F, ($n)neJ, P).



Stochastic processes

These definitions are interesting in the continuous time setting. In
the discrete time case, all we usually need is that the process is
adapted in the space (2, F, ($n)neJ, P).

The canonical filtration of a given process {X; : t € J} is the
filtration generated by the process, i.e, for each t € J, §; is the
sigma algebra generated by the family of random variables
{Xs:s<t,s € J}, which can also be written as

(St=0(Xs:s€J,s<t), telJ)

It is obvious that any process is adapted to its canonical filtration.



Stochastic processes

Proposition 2
A right (or left) continuous process is measurable.
I




Stochastic processes

Proposition 2

A right (or left) continuous process is measurable.

Proof: We will do it in the case J = [0,00). By definition of the
product sigma algebra, for each n € N, the mapping
On : J X 2 — R defined as

(t,w) = Xpng (w)

on

is B[0, 00) ® §- measurable for all n € N. Then by rigth contintuity
we conclude.



Stochastic processes

Proposition 2

A right (or left) continuous process is measurable.

Proof: We will do it in the case J = [0,00). By definition of the
product sigma algebra, for each n € N, the mapping
On : J X 2 — R defined as

(t,w) = Xpng (w)

on

is B[0, 00) ® §- measurable for all n € N. Then by rigth contintuity
we conclude.

The same idea is used to prove the following result:

Proposition 3

* A right (or left) continuous adapted process is progressive.




Stochastic processes

We will need several concepts related to the filtration:

e a discrete stopping time in (2,5, (§n)nes, P) is a random
variable 7 : Q — NU{+o00} such that {r < n} € F, for all
neJCN.

It is immediate that 7 : Q@ — NU{+4o00} is a discrete stopping
time iff {r =n} e, forallne JCN



Stochastic processes

We will need several concepts related to the filtration:

e a discrete stopping time in (2,5, (§n)nes, P) is a random
variable 7 : Q — NU{+o00} such that {r < n} € F, for all
neJCN.

It is immediate that 7 : Q@ — NU{+4o00} is a discrete stopping
time iff {r =n} e, forallne JCN

@ a stopping time, with respect to given filtration (§;, ¢ € J)
is a random variable 7 : Q — [0, 00| such that {7 <t} € 3,
forallt € J.



Stochastic processes

We will need several concepts related to the filtration:

e a discrete stopping time in (2,5, (§n)nes, P) is a random
variable 7 : Q — NU{+o00} such that {r < n} € F, for all
neJCN.

It is immediate that 7 : Q@ — NU{+4o00} is a discrete stopping
time iff {r =n} e, forallne JCN

@ a stopping time, with respect to given filtration (§;, ¢ € J)
is a random variable 7 : Q — [0, 00| such that {7 <t} € 3,
forallt € J.

@ Given a stopping time 7 and a process X, the mapping
X, :Q — S is defined as

Xr (W) = X’r(w) (w)



Stochastic processes

Remarks: If X is measurable and 7 is a finite stoping time , then
X, is a random variable. A finer property is

Proposition 4

** If X is progressively measurable and T is a finite stopping time
then X, is a random variable.




Stochastic processes

Many examples of stopping times are related to the time a given
process reaches a certain level, like in the ruin problems associated
to the simple random walks.

e Random Walk (RW): if (£,)nen is a sequence of 11D random
variables, the corresponding random walk is a discrete time
process X defined as: X, :=a+ " &, a € R. Then if we
define,

(1)

_Jmin{n e N: X, > 2a}, if {neN: X, >2a} #0,
Sl if fneN:X, >2a}=10

T is a discrete stopping time w.r.t the canonical filtration of
the RW, since for all m € N,

{r<m} =UL{Xi >2a} € F.

An example which is not a stopping time is

7 =max{n € N: X, > 2a}.



Stochastic processes

@ In fact, a similar result is true if we replace the R.W. by any
adapted discrete time process.

e *If X = (X;:t>0)is a process with continuous paths and A
is a closed subset of R then the hitting time of a set A is
defined as:

- {inf{tZO:XteA}, if {t>0:X,€A}#0,
A =

o if {t>0:X,€ A} =0 (2)

It can be proved that it is a stopping time.



Martingales

A martingale defined in (2, 3§, (§¢)tes, P) is a stochastic process
{X¢ :t € J} such that
o {X;:t € J}is adapted to the given filtration,

o forallt € J, E(|Xy]) < o0
o for all s,t € J such that s < ¢ the following condition is
fulfilled:
E(X¢Fs) = Xs.

Martingales form a very important class of processes, as will be
seen in the development of this course. A submartingale (resp.
supermartingale) verifies the first two properties and
E(Xt’gs) > X;. (resp. E(Xt‘gs) < Xs.)
We have the properties like s — E(X;) is constant for a
martingale because, for s < t,

E(Xt> = E(E(Xt‘gs)) = E(Xs)



Martingales

Some examples are:
1. In the random walk if E(§;) = 0, then

n
Xn :a+Z€z
=1

is a martingale with respect to the canonical filtration (§,)nen
and is called discrete time martingale.
If E(&1) > 0 (or E(&1) < 0) the corresponding random walk is a
submartingale ( supermartingale) with respect to the canonical
filtration.
2. Any process {X; : t € [0,T]} such that

o E(X;)=0 t>0,

o X;is— X, and § are independent, for all s,¢ >0
is a martingale with respect to the canonical filtration,(F;):



Martingales

To see this we simply write, in the first case,

E(Xn—i-m‘gn) =E

m
X+ Y & m] = X,.
i=n+1
We used the facts:
e the independence between (&;)i2, | and §p,
o the knowledge that X, is §,,-measurable,
@ the hypothesis E(§;) = 0 for all i € N.

For the second example, observe that
E(Xi+s — Xs|§s) = E(Xyrs — Xs) = 0, because of the
independence between X, — X and §s.



Martingales

Some important properties of martingales. Let (X,,),, be a discrete
time martingale in (2,3, (§n)nes, P).

Proposition 5

Optional sampling theorem or Doob stopping theorem: Let (X,,),
be a discrete submartingale in (Q,§, (§n)nes, P) and S, T : Q@ — N
two discrete stopping times such that S <'I' and bounded by
k € N, then

E(Xr) > E(Xg).

If X is a martingale , we have an equality.

Observe that for discrete time martingales, X7 is a random
variable.



Martingales

Idea of the proof: Q = U;?:O(S = j) and it is a disjoint union; so

we can write Xg as Xg(w) = Z?:o Xj15—j)(w).
We shall only prove a special case since this is the case we will
need: T=k and S < k.

}—‘

k k—
Xr—Xg = Z(Xk - Z Xk = Xj)L(s=)

7=0 =0

.

and this sum has positive expectation (or is zero in the martingale
case), since the set (S = j) € §; , we get

E [1s=j(Xx — X;)] >0, j=0,1,...(k—1).



Martingales

Proposition 6

Let (X )flvzo, be a discrete positive submartingale in
(Q, 5, (§u)nes, P), then for all X > 0

1
P(Suan > A< XE(XN'l(Supn XnZA)) <
n




Martingales

Proof:Observe that here J = {0,1...N}. Let

S_{inf{n:an)\}, if {n:X,>A#£0 3

AN if{n: X, > A =0
S is a stopping time, S < N , so by (proposition 5),

E(Xn) > E(Xs) = E(Xs-1(sup, x,>0) + E(Xs-L(sup, x,<)
> )\IP)(Sup Xn > )‘) + IE(*XN']-(supn Xn<)\))

The last inequalities are due to the definition of S, i.e. Xg > A on
the set (sup,, X, > \) and Xg = Xy on the set (sup, X,, < \).



Martingales

For a discrete time martingale X, we then have ( by Jensen
Inequality) a positive submartingale (| X,|P : n € {0,1,2...N})
whenever E(| X n|P) < 0o and in any case we obtain:

If X is a discrete time martingale indexed by the finite set
{0,1,2...N} and if p > 1 then

NP [sup X, > A] <E(Xn]), A>0




Martingales

The former properties can be extended to the continuous time case:

Doob’s maximal inequality: Let (My);>o be a right continuous
martingale and p > 1 then

1
P(sup [My| > 3) < = E(MP), £20, A>0.
0<s<t AP

Proof. . Let D be a countable dense subset of the interval [0, ¢].
Because of the right continuity

Sup|Ms| = Sup ‘Ms’
seD s€0,t]



Martingales

Let D, C D be an increasing sequence, such that D, is finite and
D =, D.

Since the result holds for each discrete submartingale indexed by a
finite set D,,, (|Ms|)sep, . we have for all n € N

1
P | sup [M| > A| < = E(|M|D).
SEDn >\p

Passing to the limit as n — oo we conclude.



Gaussian random variables

Definition 1
The normal random variable X : Q — R with mean m and
variance o2 (X ~ N(m,0?)), has density

1

(2na2)1/2 202

.

Some useful properties on gaussian or normal random variables:
a- ifm=0, E(X?) =02 E(X?) =30",

b.- Var(X2) =E [XQ — 02}2 = 204

c- Pp(\) = E[exp(AX)] = exp(Am + ‘722)‘2) (Laplace transform).
d- ®x(u) = E[exp(iuX)] = exp(imu — "22“2)
(Characteristic function.)

(Excercise).




Brownian motion

The Brownian motion. This mathematical object is related to
problems that evolve in time in very chaotic way, so in the
beginning the XX century it seemed difficult to make any
mathematical model to describe this. It has proven to be one of the
most important processes in the theory and in many applications.
@ In 1826-27 a biologist Robert Brown observed the movement
of polen particles placed in water, and saw it was very
irregular and erratic. He described it but could not explain
why it moved;
@ Bachelier in 1900 described the fluctuations in stock prices
and found a mathematical model for them:
o later Einstein (re)-discovered it in 1905, when studying the
movement of a diffusing particle.
@ Smoluchowski found a description of BM as a limit of R.W.
o finally in 1923 Norbert Wiener gave a rigorous construction of
the BM and studied many of its properties.
e Kolmogorov. P. Lévy.......



Brownian motion

Definition 2

A real valued stochastic process B = (By)i>0 defined in (Q2,§,P)
is called the standard Brownian motion(BM) or Wiener process if

1. Bp=0 as.
2. Byyp — By has N(0, h) distribution, for 0 < h and 0 < t.

3. Foralln € N and all times 0 <t; <ty < ...<t, the random
variables (By; — By,_,)(i—1,2..n) are independent.




Brownian motion

Definition 2

A real valued stochastic process B = (By)i>0 defined in (Q2,§,P)
is called the standard Brownian motion(BM) or Wiener process if

1. Bp=0 as.
2. Byip — By has N(0, h) distribution, for 0 < h and 0 < t.

3. Foralln € N and all times 0 <t; <ty < ...<t, the random
variables (By; — By,_,)(i—1,2..n) are independent.

The second property means that the process has stationary
increments i.e. By, — B; has the same distribution as
Bsip — B for any h,s,t € [0,00) and (B, — By) =~ N (0, h).



Brownian motion

Definition 2

A real valued stochastic process B = (By)i>0 defined in (Q2,§,P)
is called the standard Brownian motion(BM) or Wiener process if

1. Bp=0 as.
2. Byip — By has N(0, h) distribution, for 0 < h and 0 < t.

3. Foralln € N and all times 0 <t; <ty < ...<t, the random
variables (By; — By,_,)(i—1,2..n) are independent.

The second property means that the process has stationary
increments i.e. By, — B; has the same distribution as

Bsip — B for any h,s,t € [0,00) and (B, — By) =~ N (0, h).
The third condition can also be stated as: for all t,s > 0, the
random variable B, ;s — By is independent of §; = o{B, : u < s}.



Brownian motion. Path continuity.

(Kolmogorov)** If we have a process (X;)¢>o such that for all
T > 0 there exist positive constants «, 3, C with

E|X, — X% < C.|s — t|'*? s,t € [0,T]

then the process admits a continuous version on [0, T].




Brownian motion. Path continuity.

(Kolmogorov)** If we have a process (X;)¢>o such that for all
T > 0 there exist positive constants «, 3, C with

E|X, — X% < C.|s — t|'*? s,t € [0,T]

then the process admits a continuous version on [0, T].

As a consequence the BM has a continuous version, since the BM
verifies the condition

E.[|B: — Bs|'] < C(t — s)2.
A process B with values in R", is an n-dimensional Brownian
motion if it can be written as
B, =BY,B®....BM™), t>0

where (Bt(l))izl,z,m are independent real valued BM.
It will also have a continuous version.



Brownian motion

Another definition of Brownian motion is
Definition 3

A real valued stochastic process B = (B)¢>o defined in (2, §,P)
is called Brownian motion or Wiener process if

A. Is a Gaussian Process.
B. m(t) =E(By) =0, t>0,
C. cov(By, Bs) = C(s,t) = min(s,t), s,t>0




Brownian motion

We now see one of the implications. The other one is left as an
excercise.
If B verifies definition 2 then ,

A. It is a Gaussian process: given n € N, 0<t; <ty <...t, for
any a; € Rjv=1,2,...n, then there exist b; e R, =1,2,...n

verifying
n n
Z aiBti = Z bi(Bti - Bti—l)'
i=1 i=1

B. m(t) =0,t >0 and
C. for0<s<t

cov(By, B;) = E(BsB;) =E(By(B; — Bs) + B} =s

since E(Bs) E(B; — Bs) = 0 and E(B2) = s.

so it verifies definition 3.



Brownian motion

Conversely, if it verifies definition 3
1. By =0 a.s because E(B3) =0,
2. for 0 < s <t, (B;— Bs)is gaussian and

E((B;—Bs)?)= E(B?—2B;B,+B?)) = t—2min(s, t)+s = t—s.

So (By — Bs) ~ N(0,t — s)

3. to see the independence of the increments, it is enough to prove
that the covariance matrix of the gaussian vector
(B, — By, ,)I, is diagonal. This is a consequence of

E ((Btz — Bti_1>(Btj — Bt]-_l)) = tl - tz - ti—l + tqj_l = 0

for t; < tj_l < tj.



Gaussian processes

Proposition 7

Given a function m : [0,T] — R and a symmetric positive definite
function C' : [0,T] x [0,T] — R there exists a probability space
(22,35,P) and Gaussian process (Xt),c[o,7] defined on it such that
it has mean function m and covariance function C'.

This result is based in Daniel-Kolmogorov existence theorem and
on properties of Gaussian vectors.



Brownian motion

The existence of the BM is a consequence of the former
proposition for Gaussian processes. This is done taking the mean
function as m(t) = 0,t > 0 and the covariance function as
C(s,t) = cov(Bs, By) = min(s,t), s,t>0.



Brownian motion

The existence of the BM is a consequence of the former
proposition for Gaussian processes. This is done taking the mean
function as m(t) = 0,t > 0 and the covariance function as
C(s,t) = cov(Bs, By) = min(s,t), s,t>0.

All we must verify is that this function is positive definite
(symmetry is immediate). So for any n € N, s; € R* and

a; €ER, i=1,2...n

Z a;a;C(s;, s5) Z azaj/ 1[051 1[053)( s)ds =

1<i,j<n 1<i,5<n

/ (Zail[o,si)(s)fds Z 0
0 =1



Brownian motion

Some transformed processes of B real BM. The following processes
are also real valued BM:

e Symmetry: (Z; = —B4)t>0

@ Scaling: for any ¢ > 0 the process (Bf = %Bc% :t>0)

e Translation by h > 0: the process (Y; = By, — Bp)i>0-

@ reversion in time: for T' > 0, the process
(Rf = By — Br—t)tejo,7] is also a Brownian motion in [0,77].

(4)

Y, =

tB1 if t>0
t
0if t=0.

(Excercise:)



Brownian motion

The following process associated to the Brownian motion
(B; : t > 0) are martingales with respect to canonical filtration of
the BM.

2. (B} —t:t>0)
3. For any a € R, (Mt:exp(aBt—aQ—z):t20>.



Brownian motion

Proofs: Let 0 < s < t.
1. E(B; — Bs|§s) =E(B; — Bs) =0
2. E(Bf — B — (t - 5)|3s) =

E ((Bt — Bs)? — (t — 8) + 2Bs(B; — BS)\SS) =0
) =1
and this last conditional expectation equals (using the
properties of Gaussian r.v)
E [exp(a(B: — B.) — % (t - 9)I5s| =
exp(—% (t — ) E [exp(a(B; — By)] = 1

E (My|3,) = M, iff E(




Brownian motion

We also consider the BM started at point y € R. It is the
translated process (y + B; : t > 0). We use the notations
E,(.), Py(.) for the expectation and the probability in this case.



Brownian motion

We also consider the BM started at point y € R. It is the
translated process (y + B; : t > 0). We use the notations
E,(.), Py(.) for the expectation and the probability in this case.

For A € B(R) the definition of BM gives us the distribution of
each By,

1 z?

P(B € A) = /Ap(m,y,t)dx _ W/Aexp [—(”C;:J)Q] da,



Brownian motion

We also consider the BM started at point y € R. It is the
translated process (y + B; : t > 0). We use the notations

E,(.), Py(.) for the expectation and the probability in this case.
For A € B(R) the definition of BM gives us the distribution of
each By,

IP’(BteA):/A (2,0, ¢)dz — (ml)mf exp [—zj] da,

P(B € A) = /Ap(m,y,t)dx _ (Qﬂl)lm/Aexp [—(”C;:J)Q] da,

and for any borel- measurable and bounded function f: R — R,

f(By)) /f p(z,y,t) (2“1)1/2/1”(3:) exp [_(ac;tyy] dx



Brownian motion

Computation of joint probabilities.

ForneN, 0<t; <ty <...t, and f : R® — R, bounded and
measurable,

“+o0o +oo
E[f(BtluBt27"‘Btn)] :/ / f(xl,xg,...a:n).

p(x1,0,t1)p(xa, x1,ta—11) . .. D(Tp, Tpe1, by —tp—1)dxy, . . . drodzy
and

+o0o +oo
Ez[f(Btl7Bt27"'Btn)] —/ / f(.il?l,.flfg,...l'n).

p(x1, 2, t1)p(xe, 21, t2—11) .. . p(T, Tp—1, tn—tn—1)dTy, . . .dasgd:nlj




Brownian motion

Idea: there exists a linear transformation 7' : R™ — R" such that

h(y17 s ;yn) = f(T(yla <o 7yn)) - f(y17y1+y2a S Y1tY2, '+yn)

then define Y; = By, — By, ,,i =1,2,...n which are independent,
so they have a joint density,
p(yh 07 tl)p(y?; 07 t2 - tl) .. p(y'IZ7 07 tn - tn—l) and

E[f(Bt17Bt27 .- Btn)] - E[h(Y;fnY;iw .- Y;fn)]

“+o00 —+00
/ / h(yl,yg,...yn).

~P(yl7 07 tl)p(y27 07 t2 - tl) .. -p(y’ru 07 tn - tn—l)dyn o d?JQ dyl

Since the jacobian of T" equals 1, we can transform this integral in
order to obtain the result.



Brownian motion: Markov property

Theorem 4

Let B be a standard Brownian motion. For a borel and bounded
function, f :R >R and 0 < s <t

1. E(f(By)|Ss) = E(f(B:)|Bs),

T—Dg 2
2. E[f(By)|o(Bs)] = WIR eXP[ (g(ti; }dl‘,

N2
3. E(f(Bt)|Bs =y) = W Jr f (@) exp [ (2(tfy€)’)] dz,




We will prove the second equality of the theorem: We call

— [ $@poy.t ) da.
R

To prove the result we show that for all C' € o(B;),
E(f(Bi)1lc) = E(¥(Bs)1c),

i.e. E(f(B)|o(Bs)) = W(Bs).
But C is of the form (Bs € A) for some A € B(R). Hence, the left
hand side (by theorem 3) is equal to

E [f(Bi)1 BseA //f )1a(y)p(y,0,8)p(y, z,t — s)dxdy
— [ pw0.9v@)dy
The right hand side

E(¥(B,)1c) = /Q 1,4(B.).W(B,)dP = /A p(y,0, 5)¥(y) dy

(the last equality is just the change of variable formula).
I



To prove 1. we define F(x,y) := f(z+vy), z,y €R

E (f(By)I3s)) =E (f(B: — Bs + By)|Ss)) = E (F(B; — Bs, Bs)|3s))

We now define ®(y) := W fR F(x,y)exp [—Q(fiis)} dz
and obtain,
®0) = o [ "]
v e AL T

o o 5

So
E (f(Bt)’gs)) = (I)(Bs) =F [f(Bt)‘Bs]
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Discrete case: integration w.r.t a Simple symmetric Random Walk.
Let (&,)nen be a sequence of independent Bernoulli random
variables, , i.e. P(&§; =1) =1/2 =P(& = —1), then the
corresponding random walk

Xo=> & AXi=Xi-X;1=§
i=1

We can consider each &; as the result of a game and we can try to
find a good strategy for the game by betting each time a certain
amount A; but we have to make the decision before the next play,
with just the information of what has happened until time (i — 1).
i.e A; must be o(Xj : k < i — 1)-measurable for each i € N, , and
the capital up to time n, will be

Zn = iz‘lz‘& = iAi(Xi - Xi) = zn:Az‘AXi
=1 i=1 =1



Stochastic I1t6 Integral.

It is easy to see that

Proposition 8

@ (Z, :n €N) is a martingale for the canonical filtration
Sn=0(Xk : k <n).
o E(Z,) =0, var(Z,) =1 E(A4?) if Ay, € L2 (%, §,P)

Proof: It is a martingale: for any n € N,
E(Zn|gn71) =E [(anl + Angn)|3n71] - anb

because E(A,&n|Fn—1) = A E(&,) = 0 since A, is
$n—1-measurable and &, is independent of §,,—1 and has mean 0.
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To compute its variance:

B2 ~E(3 A6~ ZAZ@ =Y E(4) E(E) =) E(42),

7.7

we used:

o for the second equality, if 7 < 7,
E(A;A;6&;) =E(E(A;iA;&i&(T5-1)) =
= E(A;4;& E(&185-1) = E(A4i4;6 E(E))) =0,

because of the measurability and independence assumed.

o for the third one, A; depends only on (& : k=1,2...0i — 1)
and these are independent of &;

o E(¢?) =1



Stochastic I1t6 Integral.

More generally, given a discrete Martingale (X},),en, in

(2,5, (Fn)nes, P) and a bounded positive process (A,,), such that
A, is §,_1 measurable, n = 1,2... we can define the stochastic
integral ( also called the martingale transform of A) as:

(A . X)n = 4n = En:AZ(XZ — Xz'—l) = zn:AzAXz
i=1 =1

It can be proved that it is also a martingale and we can compute
its variance (left as exercise).
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We want to give sense to

o 7, = fo s)dBs, for g : R — R,

e to [ h(X)dBs for a process (X, : s > 0).

@ or to fH (s, Xs)dB;s for a process (X : s > 0).
for convenient classes of functions g, h, H and processes X. The
first one is rather easy to study ( the Paley-Wiener integral,
defined as — fo (t)Bdt, for g differentiable and such that
9(0)=g(T) = 0) but the second one, will prove to be quite tricky

due to the great irregularity of the paths of the Brownian motion
t — By, as will be seen in the next slides.
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This concept is needed in order to develop a theory of stochastic
differential equations (SDE) of the form:

dXt = a(Xt, t)dt + b(Xt, t)dBt
Xo==x
which must be understood as

t t
Xt:/ a(Xs,s)ds—i—/ b(Xs,s)dBs, Xog==x
0 0

So our task is to give a meaning to the last integral.
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A simple case: we will try to compute fg BdB: a Riemann sum
for it would be

Z B"'k (Btk+1 - Btk)

where 7 is a partition: {0 =tg <t; <...t,, =t} of [0,¢] and

Tk € [tk, tg+1]. Since ( as will be seen later) the Brownian motion
has paths with unbounded variation, we cannot expect to obtain a
pathwise limit .

We will see that different choices of the intermediate point give
rise to different limits. First we will study the variation of the
brownian paths.
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Quadratic variation of Brownian motion.

Definition 4

Let (X;:t > 0) be a continuous stochastic process. We define its
p-variation on [a,b] C [0,00) as the limit in probability when
|mn| — O (if it exist) of

Qula,b] =Y [Xep  — XenlP =D |AX(t0)]P

Tn

where {m, : n € N} a family of partitions of [a,b], of the form
T i={a =15 <t? <--- <ty =b} such that lim, , |m,| = 0.

Recall that |m,| = maxy, [t} | — 7]
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When p = 2 it is called quadratic variation of X and for p =1
the total variation of X in [a,b];

( notation: AX(t}) := X | — Xin).

We recall the fact:

( convergence in Ly (2, F,P)) implies ( convergence in probability.)



Stochastic I1t6 Integral.

Proposition 9

The quadratic variation on [0,t] of the Brownian motion, B is
equal to t and is denoted < B, B >.

Let {m, : n € N} be a family of partitions of [a, b], of the form
T i={a =15 <t} <--- <ty = b}, such that lim, . |7,| = 0.

We will use the result: If X ~ A(0,0?) then var(X?) = 20*.
So if AB(t}) == By — By, At := (tf,, —17) then

AB(t?) ~ N(0, At?) and var[(AB(t1)?] = 2(At)2.
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We will prove that

=(b—a).

(Lo tim Qu] = [Lz—nlggo S (AB(@)

E[(Qn— (b~ a))’) = E

(D AB(t7)? — Atg)2

This is the variance of a sum of independent random variables, so
it is equal to the sum of the variances:

= var [AB(t})? — Atg] =2 (Af)? < 2/7"[.(b - a),

Tn Tn

and since |m,| — 0 as n — oo, the former goes to 0.
The case stated in the proposition is for a = 0,b = t.
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1.-If 1 < p < 2 the p-variation of the BM is a.s. infinite.
2.- The total variation of the paths of BM is a.s infinite.

Idea: We will work the case (a,b) = (0,t) and we suppose that B
has finite p-variation for some p € [1,2) and let § =2 —p > 0,

-5 )
Z |Bt?+1 o Bt2|2 - Z |Bt713+1 o Bt2’2 |Bt?+1 o Bt2|

ﬂ-nk ’Tl'nk

k+1

§ sup ’Bt" — Bt'fkl|5. Z |Bt'l’;+1 — Bt? |p.
Tny, o

This inequality leads to a contradiction.
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We return to the example fg BdB:

Let (my,)n be sequence of a partitions of [0,t] with the same
notations and \ € [0, 1] fixed. We define

R,(\) =>_ BmAB(t})

with i = (1 — A)t% + M}, ;. Then

: B}
Ly — lim R,(\) = o + (A —1/2)t.

n—00

This means that the limit of the Riemann sum depends on the
intermediate point 1 selected and there is a rule to choose it.
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An easy ( but long computation) shows that for a partition
T i={0=1ty <t} <--- <ty =t} R, can be written as

Ry =504 A, + B, + C, with
o A, =-1/2 Z(AB(tZ))z, and A, — —t/2 in the Ly norm.

Tn
e B, = Z(BT? - Btz)Q, and B,, — At in the Ly norm
0o C, = Z(Btg+l — BTZ)(BTE — Btg) and using properties of
Tn

the independence of the increments, we get E(C2) — 0
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We will do in detail the case A =0, i.e. r;} =1}

Ral0) = Y By aB() = 2 3 [(B3

k+1

~ B}) — (By,, — By)?|

Tn

2
the first term is a telescopic sum and is equal to and we
already know that the second converges in Ly to

Bi
2

t

2

and this gives rise to the Itd6 Stochastic Integral , which is the
one we will develop here and what we just computed is .
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The case A = 1/2 according to the lemma is equal to:

B2
Ro(1/2) = 2L,

which is also used and is called the Stratonovich Integral.
2
Observe that:(% — 5, t>0) is a martingale while the

2
Stratonovich integral %, is not.
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For technical reasons we will work with the completed canonical
filtration for the BM, (F¢):.

Definition 5

Given a filtered space (2,5, (§¢)tey, P), and 0 < a < b the class
[2[a, b] is the set of processes {F : [0,00) x Q — R} such that

o F' is progressively measurable
o E [ JPEGs, w)st] is finite.
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Definition 6

A process G defined in (2, F, (St)tes, P) is called elementary
processes if it belongs to I'2[0,T] and there exists a partition
7={0=ty <ty <--- <ty =T} and random variables
G,:Q—=R, £k=0,1,2...m — 1 such that

G(t,w) = Gi(w), for t € [ty,tky1), k=0,1,...,m—1.

The set of elementary processes in [0,T] will be denoted £]0,T].
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The Itd stochastic Integral of an elementary process G (with
the former notation ) on the interval [u,t] C [0,T] is defined as

n—1

t
/ GdB=G;-1(By, — By) + Z G (B, —Bt,)+Gn(Bt — By,,),
v k=i

where 7 < n are such that
u € [tz’_l,ti), t e [tn,tn+1), 1 < (n + 1) <m.
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Observe

o E(G2) < 0o and G, is §i,-measurable, k =1,2...m — 1
since the process is adapted (analogy with the betting
strategy for RW).

e if i =n i.e. if both points u,t belong to the same interval of
the partition then [ GdB = G;_1(B; — B,)

@ (G- B), is an usual notation for the stochastic integral
J3 GdB.

@ we can also write: fi GdB = (Gl - B)r

° fOT G/dB is also the martingale transform of (Gy) ( seen as a
discrete process) w.r.t. the martingale
(Xn = Btn,n = 1,2,m)
Notice that we could also have defined a elementary process
without using the space I'2[0, 7).
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Proposition 10

For G,G1,G2 € £]0,T], the stochastic integral
o is additive: [ GdB = [PGdB+ [{GdB. 0<u<s<t<T
@ is linear:
J3 @Gy +bG2)dB = a [y G1dB +b [} GodB, a,b€R
o verifies E( | GdB) = 0.
@ the stochastic integral as a process:

(Zy == fg GdB :t € [0,T]) is a continuous square integrable
martingale.




Stochastic It6 Integral. The It6 Isometry

Proposition 11

For any elementary process G (with the notations of definition 77)
and u,t € [0,T], u<t,

E [(/utGdB)Q] =F [/utGst}




Stochastic It6 Integral. The It6 Isometry

Proposition 11

For any elementary process G (with the notations of definition 77)
and u,t € [0,T], u<t,

E [(/utGdB)Q] =F [/utGst}

We do it in the case u = 0,¢ = T and use the notation
ABy, := B(tgp4+1) — B(tk).

o E[ABy] =0 and

o E[(ABy)*] = (thr1 — th),

e k#£j,j<k.

E [GxG;ABLAB;] = E [GxG,;AB,|E[ABy) = 0,

° k=j,
E [Gi(AB)*] =E [G}] E [(AB)*] = E(G})(trt1 — tr)
I



Stochastic It6 Integral. The It6 Isometry

Now we use these results to compute:

[/ GdB) } ZE (GG ;ABLAB; = > E(G})(trsr — tr)
k

which is equal to E [fOT szs} . This proves the Itd isometry for
elementary processes.

For the case u,t € [0,T] we can do exactly the same with the
modified partition 7 = {u =ty < t; < --- < t, =t} or else do it
for the elementary processes G1p, . [

Observe that E UOT G2ds} is the Lo([0,T] x Q)-norm of G.
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The class of elementary processes £[0, 7T is a subset of the product
space La(([0,T] x Q),2, 1) where 2 is the product sigma algebra
B([0,T]) ® § and p is the product measure A x P, with A the
Lebesgue measure in 5([0, 7).

The closure of £]0,T] with respect to the norm in the product
space Lo(([0,T] x Q) is T'2[0, T7.

Idea of the proof: the measurability conditions are preserved since
an Lo- limit admits a subsequence that is a.s. convergent.

Now , given a process X in I'3[0, 7] the method to find the
sequence of elementary processes that converge in the product
space to X relies on a deterministic lemma:
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Lemma 2

Deterministic lemma: In the space L2[0,T] of functions
f:10,T] — R we define the operator P, : L3]0,T| — L2[0,T] by

n

ti_

Paft)=>_ {5;‘—11@,1,@)} , 1= ;/J 1 f(s)ds
j=1 tj—2

with (t;)7_, the uniform partition of [0,T1: (t; = %) Then

1- for ¢ a step function in Lo[0,T], lim,, |P,¢ — ¢|a = 0,

2- the set of step functions is a dense subset of Ls[0,T]

3- if € Ly[0,T] then lim,, |P,y) — 9|2 = 0.
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Lemma 3
Deterministic lemma: In the space L2[0,T] of functions
f:[0,T] — R we define the operator P, : L2[0,T] — L2[0,T] by

n

Pof(t) = Z{f] lljl,t)} §i—1= /Jl

7=1

with (t;)7_, the uniform partition of [0,T1: (t; = 77) Then

(t;
1- for ¢ a bounded continuous function in [0,T],
lim,, ‘Pn¢ - ¢‘2 =0,
2- the set of bounded continuous functions is a dense subset of
Ls[0,T)
3- ify € Ly[0,T] then lim,, | P,y — ¢|a = 0.
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Given an element F of I'3]0, 7], we can suppose that it is bounded
( truncation method). And then for each w € € we construct

P, F(t,w), and verify that it is an elementary process. It converges
for each w fixed to F'(-,w) in the Ly[0, T]-norm, i.e.

T
1im/ |P,F(s,w) — F(s,w)|*ds = 0.
" Jo

Since everything is bounded this is also true when taking
expectation:

T
. 2 —
hrran [/0 | P F(s,w) — F(s,w)|[“ds| = 0. (5)
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We call G, = P,F € I'5[0,T] . Thanks to equation (5), (Gy)n is
a Cauchy sequence in the product space Lo([0,7] x Q) and thanks

to the Itd isometry for elementary processes, for any ¢t € [0, 77, the
sequence (f(;5 GndB), is a Cauchy sequence in Ly (2, F,P) :

E[\ /OthdB—/otGmdByQ] =E {y /Ot(Gn_Gm)dBﬂ

=F Uot(G” - Gm)th}
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Since Ly (2, §,P) is a complete metric space (even a Hilbert
space), the Lo (22,5, P) limit of (fot GrdB), exists and is by
definition the stochastic integral of F:

t t
(F . B)t = / FdB = Ly — lim/ G,dB,
0 nJo

and the limit does not depend on the approximating sequence.
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Corollary 3

The Ité Isometry in T'3[0,T): For any process F' € T'3[0,T)],and

t 0,7, t t
E [(/0 FdB)Q} =3 [/0 F(s)2ds]

and if F,,, F' € T'3[0,T] n € N are such that

n—oo

t
lim E[/ |F, — F|?dt] = 0
0

then ( [y FndB),, converges in Ly (2,5, P) to [, FdB.




Stochastic I1t6 Integral.

The same properties we had in £[0, 7] hold true in I3[0, T7:
IfFF,GeT%0,T], AcR, and0<a<b<c<T,
o additivity [ FdB = [' FdB + [ FdB a.s.
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The same properties we had in £[0, 7] hold true in I3[0, T7:
IfFF,GeT%0,T], AcR, and0<a<b<c<T,
o additivity [ FdB = [' FdB + [ FdB a.s.
o linearity [{(AF + G)dB = A [{ FdB + [ GdB
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The same properties we had in £[0, 7] hold true in I3[0, T7:

IfFF,GeT%0,T], AcR, and0<a<b<c<T,
o additivity [ FdB = [' FdB + [ FdB a.s.
o linearity [*(AF + G)dB = A [ FdB + [ GdB
o E([‘FdB) =0
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The same properties we had in £]0, 7] hold true in I3]0, T'):
IfFF,GeT%0,T], AcR, and0<a<b<c<T,
o additivity [ FdB = [' FdB + [ FdB a.s.
o linearity [*(AF + G)dB = A [ FdB + [ GdB
o E(f°FdB) =0
° fg FdB is §; measurable, for all t € [0,T]
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The same properties we had in £]0, 7] hold true in I3]0, T'):
IfFF,GeT%0,T], AcR, and0<a<b<c<T,
o additivity [ FdB = [' FdB + [ FdB a.s.
o linearity [*(AF + G)dB = A [ FdB + [ GdB
o E(f°FdB) =0
° fg FdB is §; measurable, for all t € [0,T]

o ((f-B)= fg FdB :te[0,T]) is a continuous square
integrable martingale.

The proof is based in the fact that these results are true for
elementary processes. The last one needs special attention:



Stochastic It6 Integral: The It6 integral as a process.

Theorem 7
For F' € T3]0, T, the process defined by

t
(t,w)—)/ FdB, te€[0,T]
0

admits a continuous version and it is a square integrable
martingale.

Proof:Let (G,,) be the sequence of elementary process that
approximate F' in I'2]0, 7] and we take any t € [0, 7.



Stochastic It6 Integral: The It6 integral as a process.

Theorem 7
For F' € T3]0, T, the process defined by

t
(t,w)—)/ FdB, te€[0,T]
0

admits a continuous version and it is a square integrable
martingale.

Proof:Let (G,,) be the sequence of elementary process that
approximate F' in I'2]0, 7] and we take any t € [0, 7.

Each fg GrdB is a continuous martingale, and so

fg G,dB — fg G.dB is also a continuous martingale for any
n,m € N.



Stochastic It6 Integral: the It6 integral as a process.

Thanks to the Doob maximal inequality for martingales (theorem

1) :
t t
/ G,dB —/ GmdB’ > €
< 0 0
1 t t 2
< —QE / GndB—/ GndB
€ 0 0

t
/ (Gn — Gm)2d8) — 0, n,m — oc.
0




Stochastic It6 Integral: the It6 integral as a process.

So we can find a subsequence (1) such that

t t
P(A;) =P [ sup /0 Gn,,,dB —/0 GnkdB‘ > 2_k] <ok

0<t<T




Stochastic It6 Integral: the It6 integral as a process.

So we can find a subsequence (1) such that
¢ t

/ Gnk+ldB_/ GnkdB‘ > 2_]1 < 2_k
0 0

And by the Borel Cantelli lemma
P(limsup Ag) =0

P(Ay) =P [




Stochastic It6 Integral: the It6 integral as a process.

So we can find a subsequence (1) such that
¢ t

/ Gnk+ldB_/ GnkdB‘ > 2_]1 < 2_k
0 0

And by the Borel Cantelli lemma
P(limsup Ag) =0

P(Ay) =P [

This means that for almost all w € Q there exists ki (w) such that
for k >k

sup
0<t<T

t t
([ Gunan— [ GnkdB><w>\<2-k, -
0 0



Stochastic It6 Integral: the It6 integral as a process.

So we can find a subsequence (1) such that

t t
/ Gnk+ldB _/ GnkdB‘ > 2_]1 < 2_k
0 0

And by the Borel Cantelli lemma
P(limsup Ag) =0

P(Ag) =P [ sup

0<t<T

This means that for almost all w € Q there exists ki (w) such that
for k >k

sup
0<t<T

t t
([ Gunan— [ GnkdB><w>\<2-k, -
0 0

So a.s we get uniform convergence. Since t — fg GndB is
continuous, the limit is also continuous. It is a martingale because
it is the Lo-limit of martingales. It is clearly square integrable

because of the Itd isometri.



[t6 Formulas

As we have seen the computation of stochastic integrals is not
easy. The Itd formula allows us to compute many more and it is
fundamental in the theory, and is the main tool for the study of
SDE. We will give the main ideas of two classical forms of proving
the theorem.

The first approach to the simples [t6 formula is using the Taylor
expansion:



[t6 Formulas

Theorem 8

Given f : R — R of class C?, a real Brownian motion B, for any
t e (0,7,

t t
f(a:+Bt):f(x)+/O f’(x+B5)dBS+;/O (@ + By)ds
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Theorem 8

Given f : R — R of class C?, a real Brownian motion B, for any
t e (0,7,

t t
f(a:+Bt):f(x)+/O f’(x+B5)dBS+;/O (@ + By)ds

We will do the case when f, f/ and f” are bounded by a constant
M € R" and are uniformly continuous. Let 7, be a partition of
[0, 7] given by {0 = 1§ <7,

... <tp, =t} We can use the Taylor
formula to obtain



[t6 Formulas

Theorem 8

Given f : R — R of class C?, a real Brownian motion B, for any
t e (0,7,

t t
f(a:+Bt):f(x)+/O f’(x+B5)dBS+;/O (@ + By)ds

We will do the case when f, f/ and f” are bounded by a constant
M € R" and are uniformly continuous. Let 7, be a partition of
[0, 7] given by {0 = 1§ <7,

... <tp, =t} We can use the Taylor
formula to obtain

fl@+By) = f(@)+Y_ f'(«+ By)[By,, — Bir]

Tn

+1/2 Z f"(x + By)[Ber,, — Bty]Q + Ry,
Tn



[t6 Formulas

We have to analyze the error term R, given by :

R, =) (f"(x+&) — f"(@+ B))[Bi,, — Bl

Tn

where &, is a (random) point in the (non ordered) interval
(Ber (w), Ben, | (w)).



[t6 Formulas

We have to analyze the error term R, given by :

R, =) (f"(x+&) — f"(@+ B))[Bi,, — Bl

Tn

where &, is a (random) point in the (non ordered) interval

(Ber (w), Ben, ().
We also use the notations:

o= X e+ B By ~Bgl'. By = X S e+ By

Tn Tn

La(j) = f"(x + By)[(Ber,, — Ber)® — (€41 — L)),
AB(t}) = (B, — Bin).j = 1,2...(my — 1)
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[t6 Formulas

we will prove that

Q R,—0in Li(Q).

Q@ E (A, — Bn)?*] =0

© B, — [, f"(z + By)ds. a.s
For the first one:

|[Bal <Y 1f"(@+ &) = f"(x + B I[AB()))?

<sup |f"(@+&7) = f"(x + B)| Y _[AB(#})?

Tn



[t6 Formulas

we will prove that

Q R,—0in Li(Q).

Q@ E (A, — Bn)?*] =0

© B, — [, f"(z + By)ds. a.s
For the first one:

Bal < 371" (2 + €)= (2 + B [[AB())
<sup |f"(@+&7) = f"(x + B)| Y _[AB(#})?

Tn

Using the Cauchy -Schwarz inequality

[E(R,)]” <E {St;p!f”(w+€}7’) f"(a+Be)|}?

{Z AB(t)] ]



[t6 Formulas

The uniform continuity of s — f”(x + By), the DCT and the
Lo-convergence of the quadratic variation allows us to conclude
that R,, converges to 0 in L1(2), and also in probability. Then by
the generalized DCT we get convergence in La(w).

3.-is immediate from the definition of the usual Riemann integral.
Then the convergence in Lo is a consequence of the DCT.



[t6 Formulas

The uniform continuity of s — f”(x + By), the DCT and the
Lo-convergence of the quadratic variation allows us to conclude
that R,, converges to 0 in L1(2), and also in probability. Then by
the generalized DCT we get convergence in La(w).

3.-is immediate from the definition of the usual Riemann integral.

Then the convergence in Lo is a consequence of the DCT.

We now prove 2 . We will see that

E[(Ay — Bn)?] < 2M2 > (0, — t1)?

Tn



[t6 Formulas

E (A, — Bn)?] =E ![Z Ln(5))”

_E lz Lnu)Ln(k)] -
i,k

=E |:ZJ Ln(j)ﬂ < M?E {an ((Bt?-&-l N Bt?)Q — (- t?))ﬂ



[t6 Formulas

E[(4n - Ba)’] =E [{Z La(j)?

=E [Z Ln(j>Ln<k:)] =
i,k

=E [Zj Ln(ﬂﬂ < M’E [Enn ((Ber,, = Ben)* = ()14 — t?))z}

= 2M2 Zﬂ'n (t?—l—l - t?)z

For the last equality we used the fact that the if
Y~ N<07t?+1 - t?), then E(YQ) = 2( ;L+1 _ t;L)Q



[t6 Formulas

The same method can be used to prove a similar result for time
dependent functions: f: (RT) x R — R of class Cy 2,

f(t,z+By) = f(0,x) / f2(s, x4+ Bs)dBs+ = / (s,z+DBs)ds+

t
+/ fi(s,x + Bs)ds
0



ET]ES

e for f(z) =2™, m > 2 then
:fo mBT YdBs +1/2m(m — 1) fo B™=2(s.
So this tells us that
Jy BBy = L(By)™ — L(m —1) [} BI2ds.
e for g(t,x) = tx, tB; = fo sdB +f0 Bgds. This can be done ,
using the It6 formula in the time dependent case , or it can be
proved directly.

o for u(t,x) = exp(Az — M) and defining the process
Y: = u(t, B), t >0 we get
dY = )\YdB
{ (6)
Yo=1

which is a stochastic differential equation.



[td Processes

Definition 7 ( 1t6 Processes.)

Given (2,5, (S)tes,P) , an It6 process is a process of the form
t noot '
Xt = Xo +/ A(w, s)ds + Z/ Gj(w,s)dB]
0 — Jo
g=1

with

o G; €I'Z0,T] j=1,2...nm,

e A is a progressive integrable process,

o Xy € L2(Q2) and Fo-measurable

e B, = (Bzgl)7 B§2), . Bt(n)) an R"™ -valued Brownian motion.
In differential form this is written as :

dX; = Ads+ Y G;dBY)
J




[td Processes

This family of processes is a subspace of the set of continuous
semimartingales, it is the sum of continuous martingales

fot Aj(w,s)dB, and a bounded variation continuous process

fot b(w, s)ds. We want to see if we have also an Ito formula for this
family of processes, i.e. if we can compute f(X;) for functions f
(with enough regularity conditions). Notice that

(f(X¢) :t €[0,T]) is a new process, and we will see that it will
also be an It6 process.



[t6 Formula

Theorem 9

Suppose that X has a stochastic differential
dX = Adt+ GdB

and that U : R x[0,T] — R is of class Cy 2, then
Y (t) :=U(X(t),t) has stochastic differential given by

1
dU(X,t) = Updt + Uy dX + §UmG2 dt =

1
= (Us + AU, + 5UMG?) dt + U,G dB




Integration by parts formula

The former theorem can be proved using Theorem 8 or can be
proved using the Integration by parts formula:

Theorem 10
Suppose that X1, X5 have a stochastic differential

dX; =A1dt+G1dB

dXy = Ay dt + GodB

with G1,Go € T'y and Ay, As progressive and integrable. Then for
s < t,

/XQXm—Xl( )XQ() X1 X2 /deXQ/ Gngdt

This formula is proved first for §y-measurable r.v, then for
elementary processes and finally for processes in I'3]0, 7).



higher dimensions

Definition 8

An IM"™*™-valued process , G= (G} j)i=1,..nj=1,..m belongs to
r5*™0,T) if each G, j € T?[0,T).

An R"™ valued process F= (F;)i=1,..n), belongs to T'1[0,T] if each
component F; is progressive and verifies E fOT |Ei(s)|ds is finite.

In this case we can also construct

T
/ GdB;.
0

(here B is an m-dimensional Brownian motion.) We also have
multidimensional [t6 processes and It6 Chain rule.



SDE

We like to find solutions to stochastic differential equations of the

form:
dX; = b(t, Xt)dt + O'(t, Xt)st

Some examples are the linear equations:

o dX; = —aXydt + odB; The solution is the
Ornstein-Uhlenbeck process

t
X, = Xoe %40 / e~ (=) 4B,
0

Since it is the stochastic integral of a deterministic function,
we see that is is a Gaussian process: the Riemann
approximations of the stochastic integrals is gaussian, so is
the limit. We can easily compute the mean function and the
covariance matrix of this Gaussian process.



@ The Vasicek model:dX; = (—aX; + b)dt + odB;. has a
solution given by

t
X, = Xoe ™ +b/a(l — e %o / e =) 4B,
0

e dZy = Zyp(t)dB; with ¢ bounded and progressive. The
solution is

Zy = Zgexp [/Otgb(s)st — ;/gb(s)st]

e dZy = Zy [u(t)dt + ¢(t)dBy] where p and ¢ are bounded and
progressive and Zy = 1. The solution is

zi= e [ wioyis+ [ otsiam. 1 [ otoyas



What do we mean by a solution?? A solution X of
dX; = b(t, Xt)dt + O'(t, Xt)st, Xy = X(O) t e [O, T]

is a progressive process , b and o progressive, such the
be L (,5,P) and 0 € I'2[0,T] and for all times ¢ € [0, 77,

t t
X = X —|—/ b(t, Xt)dt+ / O'(t,Xt)st.
0 0



Stratonovich Integral

t t 1 t
/HodB:/HdB+/det
0 0 2 0
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