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These are lectures notes for a 4h30 mini-course held in Ulaanbaatar, Na-
tional University of Mongolia, August 5-7th 2015, at the summer school

Stochastic Processes and Applications, Mongolia

I thank Carina Geldhauser, Andreas Kyprianou, Tsogzolmaa Saizmaa and the
local organizers in Mongolia to have arranged this event, as well as the DAAD,
the University of Augsburg and Lisa Beck for funding.

The aim is to present an introduction to basic results of random matrix the-
ory and some of its motivations, targeted to a large panel of students coming
from statistics, finance, etc. Only a small background in probability is required
(Mongolian students had a 1.5 month crash course on measure theory before
the summer school). A few references to support – or go further than – the
course:

• High Dimensional Statistical Inference and Random Matrices, I. Johnstone,
Proceedings of the ICM, Madrid, Spain, (2006), math.ST/0611589. A
short review of the application of random matrix theory results to statis-
tics.

• Theory of finance risks: from statistical physics to risk management, J.P. Bou-
chaud and M. Potters, CUP (2000). A book explaining how ideas com-
ing from statistical physics (and for a small part, of random matrices)
can be applied to finance, by two pioneers. J.P. Bouchaud founded a
hedge fund (Capital Fund Management), which conduct investment us-
ing those ideas, as well as pure research.

• Population structure and eigenanalysis, N. Patterson, A.L. Preis and D. Re-
ich, PLoS Genetics 2 12 (2006). Research discussing the methodology
of PCA, and proposing statistical tests based on Tracy-Widom distribu-
tions, with applications to population genetics in view.

• Random matrices, M.L. Mehta, 3rd edition, Elsevier (2004). Written by a
pioneer of random matrix theory. Accessible at master level, rather fo-
cused on calculations and results for exactly solvable models, including
Gaussian ensembles. A good reference to browse for results.
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1. Motivations from statistics for data in high dimensions

Lecture 1 (1h30)
August 5th, 2015

1 Motivations from statistics for data in high

dimensions

Collecting a huge amount of data has been facilitated by the development of
computer sciences. It is then critical to have tools to analyze this data. Imagine
that for each sample one has collected information represented by a point in
RN . With N large, this is certainly too much information for our brain to
process. One would like to know if some relevant patterns can be identified,
that would explain most of the scattering of the data by restricting to a well-
chosen k-dimensional plane in RN , for k = 1, 2, 3 etc. This problem is posed
for instance in archeology, in biology and genetics, in economics and finance,
in linguistics, etc. Let us give some examples.

1.1 Latent semantics

Imagine we have documents i ∈ {1, . . . , n + 1}, that we would like to group
by similarity of topic. One strategy is to spot certain words j ∈ {1, . . . , p} in
these documents, and compute the frequency fij – this can be automatized
efficiently – of occurrence of the word j in document i. We then form the n× p
matrix X whose (i, j)-th entry is:

(1) xij = fij −
1

n + 1

n+1

∑
k=1

fkj .

Since we subtracted the mean frequency, the data xn+1,j = − 1
n+1 ∑n

k=1 fkj is
determined by the xij for i ≤ n, so it is enough to consider a n× p matrix.

word j

document i







X =

p

n

Let us consider the covariance matrix M = p−1XXT (XT is the transpose
of the matrix X). M is a symmetric matrix of size n× n, with entries:

Mik =
1
p

p

∑
j=1

xijxkj .

Mik is large when, there are many words j ∈ {1, . . . , p} whose frequency is
above the mean both in document i and k, or below the mean both in i and k.
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1.1. Latent semantics

So, Mik can be considered as a measure of the correlation between the docu-
ments. For instance, if two documents both contain many ”horse” and ”ger”,
but very few ”kangaroo” and ”bush”, the corresponding entry in the matrix
M will at least be made of 4 large positive terms. On the other hand, there
might be many words – for instance ”river”, ”road”, ”car”, ”bird” – whose
frequency is close to what can be expected in an arbitrarily chosen document
(clearly, one should not choose such generic words, unless one expects them
for some reason to be able to differentiate the documents one wants to ana-
lyze) ; and some other words – ”tea”, ”cheese”, ”mountain” – may sometimes
appear in excess, or not very frequently, so that the sign of xijxkj is some-
times positive and negative without a clear trend : in these two cases, the total
contribution of these words to Mik will be small in absolute value.

Instead of trying to group documents one by one when we notice a strong
correlation – as one can read from the large matrix M – one introduces the
notion of weighted document, i.e. the assignment of real numbers wi to each
document i. They can be collected in a column vector W = (wi)1≤i≤n. Actually,
only the relative weight of i and j matters: for any λ > 0, W and λW repre-
sent the same weighted document. A way to fix this ambiguity is to restrict
ourselves to vectors W with unit euclidean norm:

WTW =
n

∑
i=1

w2
i = 1 .

Then, only W and −W represent the same weighted document. Let us try to
find the weighted document W that would display the strongest correlation,
i.e. we want to maximize:

WT MW =
n

∑
i,k=1

wiwk Mik .

among vectors of unit norm. The answer is that W should be an eigenvector1

of M with maximum eigenvalue:

MW(1) = λ1W(1) .

If W(1)
i and W(1)

j are both large and positive – or both large and negative – we
can interpret documents i and j as being ”similar” according to the strongest
pattern that has been found in the data. If W(1)

i is close to 0, it means that the
document i does not really participate to this strongest pattern.

We could also have a look at the second, the third, etc. strongest patterns,
i.e. consider the eigenvectors W(a) for the a-th eigenvalue, sorted in decreas-
ing order λ1 ≥ λ2 ≥ · · · ≥ λn. Unless the matrix M enjoys for a special
reason extra symmetries on top of MT = M, the n eigenvalues computed
from the numerical data of M will most likely be distinct, so there is for each
λ(a) a unique (up to overall sign) eigenvector W(a). Let Ea = span(W(a)) be
the eigenspace for λa. This method provides a decomposition of the space of

1Remember that a symmetric matrix of size n× n with real-valued entries has exactly n real
eigenvalues, counted with multiplicity. In particular, there is a maximum eigenvalue.
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1. Motivations from statistics for data in high dimensions

weighted documents Rn into subspaces E1, E1 ⊕ E2, E1 ⊕ E2 ⊕ E3, . . . of di-
mension 1, 2, 3,. . . In other words, it achieves the task of identifying some low
dimensional subspaces

⊕
λ>x Eλ in the high dimensional Rn, and the thresh-

old x and dimension gives an indication of the relevance of the pattern that are
identified in this way. This method is called Principal Component Analysis
(PCA), and was introduced in statistics by Pearson in 1901 [27] and Hotelling
in 1931 [20].

To present PCA results, it is customary to draw in the 2-dimensional plane
a point with coordinates pi = (xi, yi) with coordinates xi = W(1)

i and yi =

W(2)
i for each i ∈ {1, . . . , n}. The documents that appear in the same region

are then interpreted as ”similar” (see Figure 1).

1.2 Population genetics

If one replaces ”document” by ”individual”, and ”word” by allele (i.e. version)
of a gene, the same strategy allows to study the genetic proximity of various
populations, and maybe gain some insight into the history of population mix-
tures. Figure 1 is drawn from such an example.

1.3 A remark

From the matrix X, one could also build a p × p covariance matrix, whose
lines and columns are indexed by words (or genes):

M̃ = n−1 XTX .

Its PCA analysis is useful for factor analysis, i.e. to study what are the most
prominent reasons of similarity among the documents (or individuals).

1.4 A word of caution

As in any statistical analysis, care should be taken before drawing any con-
clusion of a cloud of points. PCA has a wide scope of applications in various
disciplines, and as a result of its popularity, some research works which use
PCA are not free of basic methodology errors. For instance, the most obvious
fact is that points gathered near (0, 0) do not represent any information, ex-
cept that the patterns identified do not allow to distinguish those documents.
Another common mistake is to display, say W(3) in abscissa and (to exagger-
ate) W(18), without questioning the relevance of the eigenvector for the 18-th
eigenvalue. It is totally possible that a very small number – like 0, 1, 2, ... –
of eigenvectors are actually relevant, the other being not distinguishable from
those of a matrix with random entries.

1.5 The use of random matrix theory

Random matrix theory provides statistical tests for the relevance of PCA re-
sults, as follows. One chooses a null model, which in the previous examples
would be an ensemble of symmetric random matrices Mnull. The idea behind
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1.5. The use of random matrix theory

disease study, though here we focus on the population
genetics. Our analysis of these data used 40,560 SNPs.

In Figure 5 we plot the first two eigenvectors. Notice that
the population separation is clear, but that the natural
separation axes are not the eigenvectors. Further, the Thai
and Chinese populations appear to show a cline, rather than
two discrete clusters grouped around a central point. We
suspect that this shows some evidence of genetic admixture,
perhaps involving a population in Thailand that is related to
the Chinese. (See also Figure 8, which we describe later.)
Table 2 shows the eigenvalues, the TW significance, and an
ANOVA p-value for the first three eigenvectors. Again there
is excellent agreement between the supervised and unsuper-
vised analyses.

In the third dataset, which was created and analyzed by
Mark Shriver and colleagues [5], we have data from 12
populations. The missing data pattern showed some evidence
of population structure, with the missing data concentrated
in particular samples, populations, and SNPs. For this reason,
we only used markers for analysis for which there was no
missing data, and we corrected for LD using our regression
technique (see below). The details of the data preprocessing

steps are described in Methods. We analyzed samples from
189 individuals on 2,790 SNPs. On this dataset, we find the
leading eigenvalue statistics to be as shown in Table 3.
In all the datasets mentioned above, we have very good

agreement between the significance of the TW statistic, which
does not use the population labels, and the ANOVA, which
does. This verifies that the TW analysis is correctly labeling
the eigenvectors as to whether they are reflecting real
population structure.
Shriver and colleagues [5], using different principal

components methods and broken stick statistical analysis
[27,28], recovered four significant components on this data-
set. Our analysis has clearly recovered more meaningful
structure, providing empirical validation of the power of this
approach.

Figure 5. Three East Asian Populations

Plots of the first two eigenvectors for a population from Thailand and Chinese and Japanese populations from the International Haplotype Map [32].
The Japanese population is clearly distinguished (though not by either eigenvector separately). The large dispersal of the Thai population, along a line
where the Chinese are at an extreme, suggests some gene flow of a Chinese-related population into Thailand. Note the similarity to the simulated data
of Figure 8.
doi:10.1371/journal.pgen.0020190.g005

Table 2. Statistics from Thai/Chinese/Japanese Data

Number Eigenvalue TW Statistic TW p-Value ANOVA p-Value

1 2.21 92.34 ,10!12 ,10!12

2 1.47 31.15 ,10!12 ,10!12

3 1.23 !1.61 .61 .97

doi:10.1371/journal.pgen.0020190.t002

Table 3. Statistics from Shriver Dataset

Number Eigenvalue TW Statistic TW p-Value ANOVA p-Value

1 22.36 76.091 ,10!12 ,10!12

2 8.20 106.870 ,10!12 ,10!12

3 5.09 106.071 ,10!12 ,10!12

4 3.81 103.146 ,10!12 ,10!12

5 3.33 115.239 ,10!12 ,10!12

6 2.09 60.090 ,10!12 ,10!12

7 1.89 51.768 ,10!12 ,10!12

8 1.44 14.658 ,10!12 ,10!12

9 1.30 2.038 .010 1.09 3 10!7

10 1.27 0.084 .084 0.78

doi:10.1371/journal.pgen.0020190.t003

PLoS Genetics | www.plosgenetics.org December 2006 | Volume 2 | Issue 12 | e1902082

Population Structure and Eigenanalysis

Figure 1: PCA analysis of genetic data of individuals from 3 East Asian popu-
lations, based on the International Haplotype Map, and concerning p = 40560
SNPs. SNP stands for Single Nucleotide Polymorphism: genes come in sev-
eral versions, which often differ by the nature of the nucleotide (A, C, G or T)
present in a few specific positions in the gene. Up to a correction factor, fi,j in
(1) measures the frequency of a given allele (=version of a gene) j carried by
an individual i, and therefore takes values 0, 1 or 2 (this last case means that
the two chromosomes carry the same allele). Reprinted from Population struc-
ture and eigenanalysis, N. Patterson, A.L. Preis and D. Reich, PLoS Genetics 2
12 (2006).

the choice of the null model is that sampling Mnull in this random ensem-
ble will produce data that ”contain no information” compared to the type of
information we would like to identify in genuine data. Imagine that one has
computed the probability pnull

A of various events A concerning the eigenvalues
or the eigenvectors of a matrix M drawn from the null model. If one observes
the event A in the genuine data one is analyzing, we say that the null model
can be rejected with confidence 1− pnull

A .
To this end, for various random ensembles of matrices (that one could take

as null models):

• we need to know the distribution of eigenvalues, especially in the limit
of matrices of large size ;

• we are especially interested in extreme (maximal or minimal) eigenval-
ues ;
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1. Motivations from statistics for data in high dimensions

• and we would like to understand whether these distributions are very
sensitive or not to the choice of the null model, i.e. what happens to the
spectrum if we do small perturbations of our random matrix.

These questions are a priori non obvious to answer, and represent typical
interests in random matrix theory.
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2 General principles

We shall introduce in Section 3 and 4 two ensembles of random matrices, but
before that, let us pose the problem in mathematical terms.

2.1 Definition and tools

We say that a n× n matrix M is symmetric if Mij is real and Mij = Mji, and
that is hermitian is Mij is complex and Mij = M∗ji where the ∗ stands for
complex conjugate. We denote:

(2) Sn =
{

n× n symmetric matrices
}

, Hn =
{

n× n hermitian matrices
}

and we note that Sn ⊆ Hn. The Lebesgue measure on Sn is by definition the
product of the Lebesgue measures on the linearly independent entries of M:

dM = ∏
1≤i<j≤n

dMij

n

∏
i=1

dMii .

Similarly on Hn:

dM = ∏
1≤i<j≤n

d(Re Mij)d(Im Mij)
n

∏
i=1

dMii .

A matrix M ∈ Hn has exactly n real eigenvalues, that we write in decreas-
ing order:

λ
(M)
1 ≥ λ

(M)
2 ≥ · · · ≥ λ

(M)
n .

The spectral measure is the probability measure:

L(M) =
1
n

n

∑
i=1

δ
λ
(M)
i

.

consisting of a Dirac mass 1/n on each eigenvalue. This is a convenient way to
collect information on the spectrum of M, since for any continuous function
f , we can write:

n

∑
i=1

f (λ(M)
i ) =

ˆ
f (x)dL(M)(x) .

We state without proof the Hoffman-Wielandt inequality:

∀A, B ∈ Hn,
n

∑
i=1

(λA
i − λB

i )
2 ≤ Tr (A− B)2 .

The right-hand side can be written in several forms:

Tr M2 =
n

∑
i=1

(λ
(M)
i )2 =

n

∑
i,j=1

Mij Mji =
n

∑
i,j=1
|Mij|2 .
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2. General principles

We remark that, since A and B a priori do not commute, λA
i − λB

i is not in
general an eigenvalue of A− B. This inequality is pretty useful. For instance,
it tells us that the vector of eigenvalues (λ

(M)
1 , . . . , λ

(M)
n ) is a Lipschitz – and a

fortiori, continuous2 – function of the entries of M.

2.2 Random matrices, topology, convergence

By convention, any topological space is equipped with the σ-algebra gener-
ated by its open sets – the so-called Borel σ-algebra.

A random matrix of size n is a random variable Mn with values in Hn, i.e.
a measurable function from a set Ω to Hn. Since eigenvalues are continuous
functions of the entries, the λ

(Mn)
i are also random variables, i.e. measurable

functions from Ω to R. The random probability measure L(Mn) is called the
empirical (spectral) measure. At this point we need to specify the topology we
choose on the setM1(R) of probability measures on R. We shall be concerned
with two choices: the weak topology and the vague topology. For the weak
topology, M1(R) is a Polish space ; as a consequence (or as a fact for those
who are not familiar with topology), it is enough to declare what does it
mean for a sequence (µn)n of probability measures to converge to a probability
measure µ in this topology:

µn
weak−→
n∞

µ ⇐⇒ ∀ f ∈ C0
b , lim

n→∞

ˆ
f dµn =

ˆ
f dµ ,

where C0
b is the set of continuous bounded functions from R to R. For the

vague topology, the convergence of sequences is nearly the same:

µn
vague−→

n∞
µ ⇐⇒ ∀ f ∈ C0

c , lim
n→∞

ˆ
f dµn =

ˆ
f dµ ,

where C0
c is the set of continuous functions with compact support. Therefore,

convergence for the weak topology implies convergence for the vague topol-
ogy, but the converse may not hold. Now, if we equip M1(R) is equipped
with the Borel σ-algebra of any of these topologies, the empirical measure
L(Mn) is a (probability measure)-valued random variable, i.e. a measurable
function Ω→M1(R).

Usually, we are dealing with a ensemble of random matrices for each n,
and want to study the spectrum when n→ ∞. We should distinguish:

• global information, which involve the macroscopic behavior of eigen-
values. For instance, we ask about the convergence of L(Mn) – as a ran-
dom variable – towards a deterministic limit, its fluctuations, etc.

• and local information, which concern only O(1) eigenvalues. For in-
stance, we ask about the convergence of the maximal eigenvalue λ

(Mn)
1 ,

2Another way to prove this is to remark that the eigenvalues of M are the roots of the charac-
teristic polynomial det(z−M). The coefficients of this polynomial of z are polynomial functions
of the entries of M, thus continuous, and it is a standard result of complex analysis that the roots
of a polynomial are continuous functions of the coefficients.
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2.3. Qualitative remarks

its fluctuations, etc.

We remind that, if (Xn)n is a sequence of random variables with values in
X , there are several (non-equivalent) notions of convergence to another X -
valued random variable X. The three main ones we shall use are almost sure
convergence, convergence in probability and for X = R, convergence in law.
The definitions are ”(Xn)n converges to X . . . ”

• almost surely, if P
[

limn→∞ Xn = X
]
= 1.

• in probability, if for any ε > 0, limn→∞ P
[
|Xn − X| > ε] = 0.

• in law, if for any x ∈ R at which P[X ≤ x] is continuous,

lim
n→∞

P[Xn ≤ x] = P[X ≤ x].

We remind that almost sure convergence implies convergence in probability,
and the latter implies convergence in law, but the converse in general do not
hold.

Even if the entries Mij are independent random variables, the eigenval-
ues depend in a non-linear way of all the entries, and therefore are strongly
correlated. For this reason, the limit distributions of the spectrum in the limit
n → ∞ are in general very different than the limit distributions one can find
in the theory of independent random variables3. We will see a few of these
new limit laws in the lectures. It turns out these laws enjoy some universality,
and the results of random matrix theory have found applications way beyond
statistics, e.g. in biology and the study of ARN folding, in number theory, in
nuclear physics, statistical physics and string theory, etc.

2.3 Qualitative remarks

Size of the spectrum

Imagine that one fills a hermitian matrix Mn of size n with entries of size O(1).
How large (as a function of n) in absolute value can we expect the eigenvalues
to be ? We have:

Tr M2
n =

n

∑
i,j=1

∣∣[Mn]ij
∣∣2 =

n

∑
i=1

[
λ
(Mn)
i

]2 .

This quantity is of order n2, since in the first expression it is written as a
sum of n2 terms of order 1. Then, from the second expression we deduce
roughly that the eigenvalues should be order

√
n. In other words, if we fill

a matrix Mn of size n with entries of size O(n−1/2) – or equivalently with
random variables having variance of order of magnitude 1/n – we can expect

3For independent identically distributed random variables, we have the law of large numbers
and the central limit theorem for the sum, and we also know that the possible limit distributions
for the maximum of a sequence of i.i.d. are the Gumbel law (e.g. for variables whose distribution
decays exponentially), the Fréchet law (e.g. for heavy tailed distributions) and the Weibull law
(e.g. for bounded random variables).
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2. General principles

the spectrum to remain bounded when n → ∞. This non-rigorous argument
serves as an explanation of the scalings in forthcoming definitions.

Stability under perturbations

Let Mn be a random matrix of size n, and assume that when n → ∞, L(Mn)

converges to a deterministic limit µ in probability for the vague topology, i.e.
for any ε > 0 and f ∈ C0

c ,

(3) lim
n→∞

P
[∣∣∣
ˆ

f (x)d(µn − µ)(x)
∣∣∣ > ε

]
= 0 .

Then, let ∆n be another random matrix of size n.

2.1 lemma. If limn→∞ n−1E[Tr ∆2
n] = 0, then L(Mn+∆n) converges to µ in proba-

bility, for the vague topology.

Proof. Any continuous f with compact support can be approximated for the
sup norm by a polynomial (Stone-Weierstraß theorem), in particular by a
Lipschitz function. Therefore, it is enough to prove that (3) holds for µn =
L(Mn+∆n) for any ε > 0 and f Lipschitz. Let us denote k its Lipschitz constant.
We have:

∣∣∣
ˆ

f (x)d(L(Mn+∆n) − dL(Mn))(x)
∣∣∣ =

1
n

∣∣∣
n

∑
i=1

f (λ(Mn+∆n)
i )− f (λ(Mn)

i )
∣∣∣

≤ 1
n

n

∑
i=1

k
∣∣λ(Mn+∆n)

i − λ
(Mn)
i

∣∣

≤ k√
n

( N

∑
i=1

(λ
(Mn+∆n)
i − λ

(Mn)
i )2

)1/2

≤ k√
n
(
Tr ∆2

n
)1/2 ,

where we have used Cauchy-Schwarz inequality, and the Hoffman-Wielandt
inequality. Then, for any fixed ε > 0, with Markov inequality:

P
[∣∣∣
ˆ

f (x)d(L(Mn+∆n) − L(Mn))(x)
∣∣∣ > ε

]
≤ k2 E[Tr ∆2

n]

nε2 ,

and under the assumption of the lemma, the right-hand side converges to 0.
Since we already had (3) for µn = L(Mn), we have proved the desired result. �

As we have seen before, it is natural to consider matrices Mn whose en-
tries have variance bounded by C/n. In that case, according to this lemma,
we could make o(n2) entries deterministic – by choosing [∆n]ij = E[[Mn]ij]−
[Mn]ij for the selected entries – without affecting the convergence of the em-
pirical measure to the limit µ. This lemma indicates that small perturbations
of a random matrix do not affect global properties of the spectrum.

There is no such general rule for local properties (such as the position of
the maximum eigenvalue) : we will see examples showing that sometimes they

12



2.3. Qualitative remarks

are preserved under small perturbations, and sometimes they are dramatically
affected.

13



3. Wishart matrices

3 Wishart matrices

3.1 Definition

A real Wishart matrix is a random symmetric matrix M of the form:

M = n−1 XTX ,

where X is random matrix of size n× p such that:

• (Xij)1≤i≤n are independent samples of a real-valued random variable Xj
;

• (X1, . . . ,Xp) is a Gaussian vector with given covariance K ∈ Sp

In other words, the joint probability density function (= p.d.f.) of the entries
of X is:

cnp(K) exp
(
− 1

2

n

∑
i,i′=1

p

∑
j,j′=1

XijXi′ j′K
−1
jj′

)
= cnp(K) exp

(
− 1

2
Tr XTK−1X

)
.

cnp(K) is a normalization constant. All the normalization constants that will
appear in these lectures can be explicitly computed, but we will not care about
them. The matrix M is of size p× p, and n is called the number of degrees of
freedom. The parameter:

γ = n/p

will play an important role. The ensemble of real Wishart matrices with a co-
variance K = diag(σ2, . . . , σ2) is a natural choice of null model for covariance
matrices in data analysis, which depends on a parameter σ. It was introduced
by Wishart in 1928 [37].

One can also define the ensemble of complex Wishart matrices. These are
random hermitian matrices of the form M = (XT)∗X, where (Xij)1≤i≤n are in-
dependent samples of Xj such that (X1, . . . ,Xp) is a complex Gaussian vector
with given covariance K ∈ Hp. This is one of the simplest model of com-
plex random matrices, and the latter are relevant e.g. in telecommunications,
when one studies non-ideal propagation of waves along many canals (com-
plex numbers are used to encode simultaneously the amplitude and the phase
of a wave).

3.2 Spectral density in the large size limit

We consider real or complex Wishart ensembles with given covariance K =
diag(σ2, . . . , σ2). Marčenko and Pastur showed in 1967 [25] that the empirical
measure L(M) has a deterministic limit:

3.1 theorem. If the limit where p, n → ∞ while n/p converges to a fixed value
γ ∈ (0,+∞), L(M) converges almost surely and in expectation in the weak topology,
towards the probability measure (see Figure 2):

(4) µMP = max(1− γ, 0)δ0 +
γ
√
(a+(γ)− x)(x− a−(γ))

2πσ2 x
1[a−(γ),a+(γ)] dx

14



3.3. Maximum eigenvalue and fluctuations

where a±(γ) = σ2(1± γ−1/2)2.

2 4 6 8

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 2: Marčenko-Pastur probability density function, for σ2 = 1: in green
γ = 3, in orange γ = 1, in blue γ = 0.4. The mass of the distribution in this
last case is 0.4, to which should be added a Dirac mass with mass 0.6 at 0.

We note that when n < p, the matrix XTX has rank n < p, and therefore
has almost surely p− n = p(1− γ) zero eigenvalues, which explains the Dirac
mass in (4) which appear for γ < 1. The mean and variance of the Marčenko-
Pastur distribution are:

(5)
ˆ

x dµMP(x) = σ2,
ˆ

x2 dµMP(x)−
( ˆ

xdµMP(x)
)2

= σ4/γ .

Apart from the possible Dirac mass at 0, the support of µMP is spread on an
interval of length 4σ2γ−1/2 around the mean σ2: the smaller γ is, the broader
the support becomes. On the other hand, when γ → ∞, the support becomes
localized around σ2, i.e. we can read the variance of the Gaussian entries of
X. For practical applications, this means that if the number of measurements
n is not very large compared to the number p of properties we measure, the
spectrum of M will be spread.

Another property of µMP is that, for4 γ 6= 1, the density of µMP vanishes
like a squareroot at the edges a±(γ). This behavior is frequent for the spectra
of large random matrices.

3.3 Maximum eigenvalue and fluctuations

From Marčenko-Pastur theorem, one can easily deduce that, for any ε > 0,

P[λ
(M)
1 ≤ a+(γ)− ε]→ 0 ,

4For γ = 1, it diverges as x−1/2 when x → 0+.

15



3. Wishart matrices

and thus that (lim supn→∞ λ
(M)
1 ) is almost surely larger than a+(γ). Indeed,

let us choose an arbitrary non-negative, non-zero, continuous function f with
compact support included in (a+(γ) − ε,+∞). We can rescale f to enforce´

f (x)dµMP(x) = 1. We then have:

P
[
λ
(M)
1 ≤ a+(γ)− ε

]
≤ P

[ ˆ
f (x)dL(M)(x) = 0

]

≤ P
[∣∣∣
ˆ

f (x)d(L(M) − µMP)(x)
∣∣∣ ≥ 1/2

]
,

and the latter converges to 0 when n, p → ∞ according to Theorem 3.1. But
Theorem 3.1 does not tell us whether the maximum eigenvalue λ

(M)
1 really

converges to a+(γ) or not. The reason is easily understood: the event λ
(M)
1 ≤

a+(γ)− ε actually means that all eigenvalues are smaller than a+(γ)− ε: this
is a global information, hence contained in the statement of convergence of
L(M). However, the realization of an event like λ

(M)
1 ≥ a+(γ)− ε only involves

a single eigenvalue, and thus more work is needed to estimate its probabil-
ity. We will not say how this work is done, but the result is that there is no
surprise:

3.2 theorem. [16] λ
(M)
1 converges almost surely to a+(γ).

The distribution of the fluctuations of λ
(M)
1 is also known. Before present-

ing the result, let us give a non-rigorous argument to guess the order of mag-
nitude of these fluctuations. The guess is that, for a Wishart matrix of large
size p, the number of eigenvalues in an interval Ip whose length depend on p
should be well approximated by pµMP[Ip]. So, we guess that the fluctuations

of λ
(M)
1 should occur in a region of width δp → 0 around a+(γ) where µMP

has mass of order 1/p. Since µMP vanishes like a squareroot at the edge, we
have:

µMP[a+(γ)− δp, a+(γ)] ∼
ˆ δp

0
x1/2dx =

2
3

δ3/2
p ,

and this gives the estimate δp ∼ p−2/3. The following result [15, 22] confirms
this guess:

3.3 theorem. We set β = 1 for real Wishart, and β = 2 for complex Wishart. The
random variable:

γ1/2 p2/3 λ
(M)
1 − a+(γ)

σ2(1 + γ−1/2)4/3

converges in law towards a random variable Ξβ when n, p→ ∞ while n/p converges
to γ ∈ (0,+∞).

The distribution function:

TWβ(s) = P[Ξβ ≤ s]

16



3.3. Maximum eigenvalue and fluctuations

is called the Tracy-Widom law. It is not an elementary function, but can be
considered as a new special function. It is nowadays well-tabulated, hence
ready for use in statistics (Figure 3). We now give one of their expression, first

Figure 3: Probability density function of the Tracy-Widom law, i.e. TWβ(s),
for β = 1 (GOE, in blue), β = 2 (GUE, in red), and β = 4. Graph courtesy of
J.M. Stéphan.

obtained by Tracy and Widom in 1992 for β = 2 [33] and 1995 for β = 1 [34]:

hermitian TW2(s) = exp
[
−
ˆ ∞

s

{
q′(t)− tq2(t)− q4(t)

}
dt
]

,

symmetric TW1(s) = exp
[
− 1

2

ˆ ∞

s
q(t)dt

]
.

Here, q(t) is the unique bounded solution to the Painlevé II equation:

q′′(t) = 2q3(t) + tq(t)

satisfying the growth conditions q(t) ∼
√
−t/2 when t→ −∞, and:

q(t) ∼ exp(− 2
3 t3/2)

2
√

πt1/4 , t→ +∞ .

Existence and uniqueness of the function q(t) was shown by Hastings and
McLeod in 1980 [19], and it bears their name. We will derive in Section 9.3 an-
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3. Wishart matrices

other expression for TW2(s) in terms of a infinite size (Fredholm) determinant,
which is actually the easiest way to compute numerically the Tracy-Widom
law.

3.4 Application to Markowitz portfolio optimization

This paragraph is based on the article Random matrix theory and financial cor-
relations, Bouchaud, Cizeau, Laloux, Potters, Risk Magazine 12 69 (1999), and
the figures extracted from this article.

Imagine we consider investing in assets j ∈ {1, . . . , p} a fraction of money
wj. We would like to determine, for a fixed return r, to determine the choice
of portfolio (w∗1 , . . . , w∗n) minimizing the risk. For this purpose, we only have
at our disposal the observations of the price pij of these assets at times i ∈
{1, . . . , n} in the past. We can subtract the mean price and write pij = pj + xij.
If we had invested in the past and get our return at time i, we would have
earned:

ri =
p

∑
j=1

wj(pj + xij)

If we are ready to believe5 that these observations represent well of what can
happen during the (future) period of our investment, we can take:

r =
p

∑
j=1

wj pj +
1
n

n

∑
i=1

wjxij = r + JTXW

where W is column vector representing the portfolio, J the column vector with
entries 1/n, and X = (xij)ij the n× p matrix collecting the observations. One
can also try to evaluate the risk in investing as W with the quantity:

ρ =
p

∑
j,j′=1

wjwj′
( 1

n

n

∑
i=1

xijxij′
)
= WT MW ,

where:
M = n−1 XTX

is the empirical correlation matrix. Finding the W∗ that minimizes ρ for a
given (r− r) can be done by minimizing the quantity WT MW − aJTXW for a
constant a – the Lagrange multiplier – that we adjust so that:

r− r) = WT MW .

Denoting P = JTX, the result is:

(6) ρ∗ =
(r− r)2

PT M−1P
W∗ =

ρ∗

r− r
M−1P .

In particular, we see that the eigenvectors of M with small eigenvalues play
an important role in the evaluation of ρ∗ and W∗. This is the base of the

5This is highly criticizable, especially in finance. We will come back to this point.
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3.4. Application to Markowitz portfolio optimization

method proposed by Markowitz in 1952 [24]. One usually plots the return r
as a function of the estimation ρ∗ of the risk: the curve is called the efficient
frontier, and in this simple model, it is a parabola.

As a matter of fact, it is hard to build an empirical covariance matrix reli-
able for future investments, and Markowitz theory suffers in practice from im-
portant biases. With an example drawn from genuine financial data, Bouchaud
et al. pointed out that a large part – and especially the lower part – of the spec-
trum of M can be fitted with a Marčenko-Pastur distribution, hence cannot be
distinguished from the null model of large random covariance matrix (Fig-
ure 4). The effect is that the minimal risk for a given return is underestimated
(Figure 6), and the guess (6) of the optimal portfolio does not give good re-
sults.

The part of the spectrum undistinguishable from noise is called the noise
band. If one make observations of the prices and build empirical correlation
matrices over two distinct periods, one can also check that the eigenvectors
for eigenvalues outside the noise band have common features – quantitatively
measured by the absolute value of their scalar product – while the eigenvec-
tors for eigenvalues in the noise band have nothing more in common than
two random vectors (Figure 5). It supports the idea that only eigenvectors for
eigenvalues outside the noise band contain a genuine information about the
long-time evolution of the market.

Although there is no ideal cure, Bouchaud et al. proposed to replace the
empirical correlation matrix M by M̃ build as follows.

• Decompose Rn = Enoise ⊕ E, where Enoise (resp. E) is the sum of eigen-
spaces for eigenvalues in the noise band (resp. outside the noise band).

• Replace the restriction of M to Enoise by a multiple of the identity oper-
ator, so that the trace is preserved.

• Use the new matrix M̃ in the Markowitz optimization formulas (6).

The risk is still underestimated, but to a smaller extent.
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4. Gaussian ensembles

Bouchaud, Jean-Philippe. Theory of Financial Risks : From Statistical Physics to Risk Management.
: Cambridge University Press, . p 98
http://site.ebrary.com/id/10014876?ppg=98
Copyright © Cambridge University Press. . All rights reserved.
May not be reproduced in any form without permission from the publisher,
except fair uses permitted under U.S. or applicable copyright law.

Figure 4: Spectrum of an empirical p× p covariance matrix, build from the
value of p = 406 assets from the S&P 500, observed every day in a period of
n = 1309 days between 1991 and 1996. One eigenvalue is much larger than
the other, and correspond to the market mode, i.e. all assets increase or de-
crease simultaneously. The blue (resp. red) curve is the Marčenko-Pastur (MP)
spectral density for a large Wishart matrix with γ = n/p, and input covari-
ance diag(σ2, . . . , σ2) for σ2 = 0.85 (resp. σ2 = 0.74). This last value is the
optimal fit. About 6% of the eigenvalues cannot be not accounted by the MP
law, and they are responsible represent 1− σ2 = 26% of the variance. We note
that the shape of the empirical density of low eigenvalues is well reproduced
by MP, so these eigenvalues (and the corresponding eigenvectors, which have
the largest weight for Markowitz optimization) cannot be distinguished from
noise.

Lecture 2 (1h30)
August 6th, 2015

4 Gaussian ensembles

The Gaussian ensembles are the simplest ensembles of random matrices from
the computational point of view. As Wishart matrices, they come in two fla-
vors, depending whether one considers symmetric or hermitian matrices. For
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Figure 2: Efficient frontiers from Markovitz optimisation, in the return vs. volatility
plane. The leftmost dotted curve correspond to the classical Markovitz case using
the empirical correlation matrix. The rightmost short-dashed curve is the realisation
of the same portfolio in the second time period (the risk is underestimated by a
factor of 3!). The central curves (plain and long-dashed) represents the case of
cleaned correlation matrix. The realized risk is now only a factor 1.5 larger than
the predicted risk.
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Figure 3: Eigenvector overlap between the two time periods, as a function of the
rank n. After rank n = 10 (corresponding to the upper edge of the noise band λmax),
the overlap reaches the noise level 1/

√
(N). Inset: Plot of the same quantity in the

full range.

Figure 5: M(1) and M(2) are empirical correlation matrices coming from ob-
servation in period 1 and 2. If we denote W(a)

i a unit norm eigenvector of
M(a) for the i-th eigenvalue (in decreasing order) with norm 1, the plot shows
the scalar product |W(1)

i ·W(2)
i | as a function of i = 1, 2, 3, . . . in abscissa. The

horizontal line 1/
√

p is the typical value for the overlap of two independent
random vectors with normal entries Gaussian entries.

a reason revealed in Section 7.1, the symmetric case is labeled β = 1, and the
hermitian case β = 2.

In the Gaussian Orthogonal Ensemble (GOE), we consider a symmetric
random matrix M of size n× n, with

(7) Mij =





Xij 1 ≤ i < j ≤ n
Xji 1 ≤ j < i ≤ n
Yi 1 ≤ i = j ≤ n

,

where Xij and Yi are independent centered Gaussian random variables with:

(8) E[X2
ij] = σ2/n, E[Y2

i ] = 2σ2/n .

We choose to scale the variance by 1/n, so that the spectrum will remain
bounded – see Section 2.3. The difference of normalization between the off-
diagonal and diagonal elements is motivated by observing that the resulting
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Figure 6: The dashed curve is the prediction from M (blue) or M̃ (orange) of
the effective frontier via (6), constructed from the observations in a first period
of time, and proposing to invest W∗ or W̃∗. The plain curves correspond to
the effective frontier measured if we really invested W∗ (blue) or W̃∗ (orange)
in the second period of time.

probability measure on the entries of M is proportional to:

(9) dM exp
[
− n

2σ2

(
2

n

∑
i=1

M2
ii + ∑

1≤i<j≤n
M2

ij

)]
= dM exp

[
− n

2σ2 Tr M2
]

.

The Lebesgue measure dM is invariant under conjugation M 7→ Ω−1MΩ
by an orthogonal matrix Ω, and so is Tr M2. Therefore, for any orthogonal
matrix Ω, M drawn from (9) and Ω−1MΩ have the same distribution, and this
explains the name GOE. This property would not be true if we had chosen the
same variance in (7) for the diagonal and off-diagonal entries.

In the Gaussian Unitary Ensemble (GUE), we consider a hermitian ran-
dom matrix M of size n× n, with

Mij =





Xij +
√
−1 X̃ij 1 ≤ i < j ≤ n

Xji +
√
−1 X̃ji 1 ≤ j < i ≤ n

Yii 1 ≤ i = j ≤ n

where Xij, X̃ij and Yi are independent centered Gaussian random variables
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4.1. Spectral density

with:
E[X2

ij] = E[X̃2
ij] = σ2/2n, E[Y2

i ] = σ2/n .

The resulting probability measure on the entries of M reads:

dM exp
[
− n

σ2 Tr M2
]

,

and it is invariant under conjugation M 7→ Ω−1MΩ by a unitary matrix Ω.
The probability measures for the GOE and the GUE can written in a unified

way:

dM exp
[
− nβ

2σ2 Tr M2
]

.

The results that we have seen in the case of Wishart matrices for the spec-
tral density in the large size limit, and the location of the maximum eigenvalue
and its fluctuations, have an analog for the Gaussian ensembles. Their proof
in the case β = 2 (GUE) will be sketched in Section 9.

4.1 Spectral density

Let Mn be a random matrix in the GOE or the GUE. Wigner showed in 1955

[36] that the empirical measure L(Mn) converges to a deterministic limit –
although the almost sure mode of convergence was only obtained later, by
large deviation techniques – see e.g. the book [1].

4.1 theorem. When n → ∞, L(Mn) converges almost surely and in expectation to
the probability measure (see Figure 7 for a plot):

(10) µsc =

√
4σ2 − x2

2πσ2 1[−2σ,2σ](x)dx .

µsc is called the semi-circle law, because of the shape of its density when
σ = 1. It is symmetric around 0, and the variance is:

ˆ 2σ

−2σ
x2 dµsc(x) = σ2 .

As in the Wishart case, we observe that the density of µsc vanishes like a
squareroot at the edges of its support.

4.2 Maximum eigenvalue and fluctuations

4.2 theorem. [26] When n→ ∞, λ
(Mn)
1 converges almost surely to 2σ. Besides, we

have the convergence in law:

n2/3σ−1{λ
(Mn)
1 − 2σ

}
−→
n∞

Ξβ ,

where Ξβ is drawn from the Tracy-Widom law with β = 1 for GOE, and β = 2 for
GUE.
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4. Gaussian ensembles

Comparing to the Wishart case, we remark that the global properties of
the spectrum do not depend on the type – β = 1 for symmetric, or β = 2 for
hermitian – of matrices once the ensemble is properly normalized, while the
local properties (e.g. the Tracy-Widom laws) depend non-trivially on β, as one
can see in Figure 3.

24



5 Stieltjes transform and freeness

5.1 Stieltjes transform and its properties

If µ is a probability measure on R, its Stieltjes transform is the function:

(11) Wµ(z) =
ˆ

R

dµ(x)
z− x

.

It is a holomorphic function6 of z ∈ C \ supp µ. It is an important tool because
of the Stieltjes continuity theorem – see for instance [31]. In its most basic form:

5.1 theorem. Let (µn)n be a sequence of probability measures on R, and µ another
probability measure. µn converges to µ for the vague topology if and only if for all
z ∈ C \R, Wµn(z) converges to Wµ(z).

The same theorem holds if (µn)n is a sequence of random measures, by
adding on both sides of the equivalence the mode of convergence ”almost
sure”, ”in probability”, etc. Thus, the problem of checking the convergence of
probability measures can thus be replaced with the – usually easier – problem
of checking pointwise convergence of holomorphic functions. Let us give a
few useful properties to handle the Stieltjes transform.
• Firstly, if µ is a measure which has moments up to order K, we have the
asymptotic expansion:

Wµ(z) =
1
z
+

K

∑
k=1

mk

zk+1 + o(z−(K+1)), mk =

ˆ
R

xk dµ(x)

valid when |z| → ∞ and z remains bounded away from the support (if the
support is R, that means |Im z| ≥ δ for some fixed δ > 0). So, the moments
can be read off the expansion of Wµ(z) at infinity.
• Secondly, the Stieltjes transform can be given a probabilistic interpretation.
We observe that, for y ∈ R and η > 0,

− 1
π

Im Wµ(y + iη) =
ˆ

R

η

π

dµ(x)
(y− x)2 + η2

is the density – expressed in the variable y – of the convolution µ ? Cη of the
initial measure µ with the Cauchy measure of width η:

Cη =
η dx

π(x2 + η2)
.

• Thirdly, the measure µ can be retrieved from its Stieltjes transform. Indeed,
if f is a continuous function bounded by a constant M > 0, we know that:

lim
η→0

ˆ
R

η

π

f (y)dy
(x− y)2 + η2 = f (x) ,

6The support supp µ is the set of all points x ∈ R such that, for any open neighborhood Ux of
x, µ[Ux ] > 0.
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5. Stieltjes transform and freeness

and actually the quantity inside the limit is bounded by M. So, by dominated
convergence, we have:

lim
η→0+

ˆ
R

f (y)d(µ ? Cb)(y) = lim
η→0+

ˆ
R

dµ(x)
( ˆ

R

η

π

f (y)dy
(x− y)2 + η2

)
(12)

=

ˆ
R

f (x)dµ(x) .

This means that, if µ has a density7, this density is computed as the disconti-
nuity on the real axis of the Stieltjes transform:

(13) µ(x) =
Wµ(x− i0)−Wµ(x + i0)

2iπ
dx .

Note that there is a unique function W(z) which is holomorphic in C \R, has
a given discontinuity on R, and behaves likes 1/z when |z| → ∞. Indeed, if
W̃ was another such function, then W̃ −W would have no discontinuity on
R, hence would be holomorphic in C. The growth condition implies that it
decays at infinity, and by Liouville theorem, this implies that W̃ −W = 0.

Let us see how it works on a few examples.

• The Stieltjes transform of a Dirac mass located at x0 is:

W(z) =
1

z− x0
.

More generally, a simple pole at z = x0 ∈ R with residue r in Wµ(z) indicated
that µ has a contribution from a Dirac mass r located at x0.
• For the semi-circle law (10), we could use the definition (11) and compute
the integral with the change of variable x = σ(ζ + 1/ζ) and complex anal-
ysis tricks. But there is a better way, relying on (13). Indeed, we are looking
for a holomorphic function behaving like 1/z when |z| → ∞, which has a
discontinuity on [−2σ, 2σ] such that:

∀x ∈ [−2σ, 2σ], W(x + i0)−W(x− i0) = −
√

x2 − 4σ2

σ2 .

But we know that the squareroot takes a minus sign when one crosses the
locus [−2σ, 2σ] where the quantity inside is negative, so its discontinuity is
twice the squareroot. Therefore, the function − 1

2σ2

√
z2 − 4σ2 has the discon-

tinuity we look for. It cannot be the final answer for W(z), because of the
condition W(z) ∼ 1/z when |z| → ∞. But this can be achieved by adding a
polynomial: it does not affect the holomorphicity and discontinuity, but can
compensate the growth of the squareroot at infinity. One can check that:

(14) Wsc(z) =
z−
√

z2 − 4σ2

2σ2

7If µ has no density, (13) has to be interpreted in the weak sense (12).
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5.2. R-transform

has all the required properties, provided we choose the determination of the
squareroot such that

√
z2 − 4σ2 ∼ z when |z| → ∞. By uniqueness, (14) must

be the Stieltjes transform of µsc.
• Inspired by these two examples, the reader can show that the Stieltjes trans-
form of the Marčenko-Pastur law is:

WMP(z) =
(1− γ)σ2 + γz− γ

√
(z− a+(γ))(z− a−(γ))

2σ2z
,

where the determination of the squareroot is fixed by requiring that:
√
(z− a+(γ))(z− a−(γ)) ∼ z

when |z| → ∞.

5.2 R-transform

A closely related tool is the R-transform. To simplify, we consider only mea-
sures µ for which the moments mk = µ[xk] exist for all k ≥ 0. Let us consider
the formal Laurent series:

(15) Wµ(z) =
1
z
+ ∑

k≥1

mk

zk+1 .

We shall use curly letters to distinguish the formal series from the holomor-
phic function Wµ(z). There exist a unique formal series:

(16) Rµ(w) =
1
w

+ ∑
`≥1

κ` w`−1

such that:

(17) Rµ(Wµ(z)) = z .

In other words, Rµ is the functional inverse – at the level of formal series –
of Wµ. So, we also have equivalently Wµ(Rµ(w)) = 0. If we declare that mk
has degree k, the κ` are homogeneous polynomials of degree ` in the (mk)k≥1.
One can compute them recursively by replacing (15)-(16) in (17):

κ1 = m1 ,

κ2 = m2 −m2
1 ,

κ3 = m3 − 3m1m2 + 2m3
1 ,

κ4 = m4 − 4m1m3 − 2m2
2 + 10m2m2

1 − 5m4
1 , . . .

The κ` are called free cumulants. They should not be confused with the better
known cumulants (c`)`≥1, defined by:

ln
(

1 + ∑
k≥1

mk tk

k!

)
= ∑

`≥1

c` t`

`!
, t→ 0

27



5. Stieltjes transform and freeness

We see on the first few values:

c1 = m1 ,

c2 = m2 −m2
1 ,

c3 = m3 − 3m1m2 + 2m3
1 ,

c4 = m4 − 4m1m3 − 3m2
2 + 12m2m2

1 − 6m4
1 , . . .

that c2 = κ2 and c3 = κ3, but this is accidental and in general the cumulants
and free cumulants differ for ` ≥ 4.

5.3 Asymptotic freeness

In general, if A and B are two hermitian matrices, the knowledge of the spec-
trum of A and B is not enough to determine the spectrum of A + B or A · B.
Indeed, when A and B do not commute, they cannot be diagonalized in the
same basis.

It turns out that for large random matrices ”in general position”, knowing
the spectrum of A and B is enough to reconstruct the spectrum of A + B, and
the answer is elegantly expressed in terms of the R-transform ; the theory is
mainly due to Voiculescu around 1991 [35], in the more general context of C∗

algebras. Explaining why this is true would bring us too far, but we aim at
presenting the recipe, and illustrating some of its consequences.

We start by introducing several notions, first in a non-random context.

5.2 definition. If (Mn)n is a sequence of hermitian matrices of size n, we
say that it has a limit distribution if there exists a probability measure µ with
compact support such that L(Mn) converges to µ for the vague topology.

5.3 definition. Let (An)n and (Bn)n two sequences of hermitian matrices
of size n, admitting as limit distributions respectively µA and µB. We say
that (An)n and (Bn)n are asymptotically free if for any positive integers
r, m1, m′1, . . . , mr, m′r, we have:

(18) lim
n→∞

n−1 Tr
{ r

∏
i=1

(Ami
n − µA[xmi ] · In)(Bm′i

n − µB[xm′i ] · In)
}
= 0 ,

where In is the identity matrix of size n, and the factors in the product are
written from the left to the right with increasing i.

If we expand (18) and use it recursively, it implies that for asymptotically
free matrices, the large n limit of the trace of arbitrary products of An and Bn
can be computed solely in terms of the moments of µA and µB. In particular,
the large n limit of n−1Tr (An + Bn)m or n−1Tr (An · Bn)m can be computed
solely in terms of µA and µB. Since measures with compact support are de-
termined by their moments, we therefore understand that µA and µB should
determine µA+B and µA·B. Finding the explicit formulas requires some com-
binatorial work. Focusing on the spectrum of the sum, the result is:
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5.4 theorem. If (An)n and (Bn)n are asymptotically free and have limit distribu-
tions µA and µB, then (An + Bn)n has a limit distribution µA+B, characterized by:

(19) RµA+B(w) = RµA(w) +RµB(w)− 1
w

.

The last term − 1
w is there to ensure that the right-side is of the form 1/w+

O(1) when w→ 0.
The relevance of this result in random matrix theory is illustrated by the

following theorem of Voiculescu:

5.5 theorem. Let (An)n and (Bn)n be two sequences of hermitian random matrices
of size n. Assume that, for any n, An is independent of Bn, and for any unitary
matrix Ωn, Ω−1

n AnΩn is distributed like An. Then, (An)n and (Bn)n are almost
surely asymptotically free.

In particular, if L(An) (resp. L(Bn)) converges almost surely to a determin-
istic µA (resp µB) for the vague topology, using Stieltjes continuity theorem,
one deduces that L(An+Bn) converges almost surely to a deterministic µA+B
characterized by (19). To compute it, one has to compute the Stieltjes trans-
forms WµA and WµB , then compute their functional inverses RµA and RµB ,
use (19), compute again the functional inverse WµA+B , and finally reconstruct
the measure µA+B from (13).

5.4 The semi-circle law as a non-commutative CLT

From Voiculescu’s result, one can understand that the semi-circle law is an
analog, in the non-commutative world, of the gaussian distribution arising
when summing independent, identically distributed (i.i.d) real-valued ran-
dom variables.

Let (A(j)
n )1≤j≤N be i.i.d, centered random matrices, whose distribution is

invariant under conjugation by a unitary matrix. We assume that the empiri-
cal measure of A(1)

n converges almost surely to µA for the vague topology. It
follows from a slight generalization of Voiculescu’s theorem that the family
((A(j)

n )1≤j≤N)n is asymptotically free – this is defined like in Definition 5.3,
except that one uses arbitrary sequences of letters A(j1) · · · A(js) instead of ar-
bitrary sequences of letters ABABAB · · · . Let us consider:

S(N)
n =

1√
N

N

∑
j=1

A(j)
n .

Theorem 5.4 has an obvious generalization to this case: for any N ≥ 1, (S(N)
n )n

has a limit distribution µS(N) when n→ ∞, which is characterized by:

Rµ
S(N)

= NRµA/
√

N
(w)− N − 1

w
.
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5. Stieltjes transform and freeness

Playing with the functional equation (17), one easily find what is the effect of
a rescaling on the R-transform:

RµA/
√

N(w) = N−1/2RµA(N−1/2w) .

Since A(1)
n is centered, the first moment of µA vanishes. Denoting σ2

A the vari-
ance of µA, we can write:

RµA(w) =
1
w

+ σ2 w + ∑
`≥2

κ`+1 w` ,

and therefore:

(20) Rµ
S(N)

(w) =
1
w

+ σ2w + ∑
`≥2

N(1−`)/2 κ`+1w` −→
N→∞

1
w

+ σ2w

The functional inverse of R∞(w) = 1
w + σ2 w can be readily computed as it is

solution of a quadratic equation:

R∞(W∞(z)) = z ⇐⇒ W∞(z) =
z−
√

z2 − 4σ2

2σ2z
.

Note that the determination of the squareroot is fixed by requiring that the
formal seriesW∞(z) starts with 1/z+O(1/z). We recognize the Stieltjes trans-
form (14) of the semi-circle law µsc with variance σ2. Using Stieltjes continu-
ity theorem, one can deduce that µS(N) converges for the vague topology to

µsc when N → ∞. It is remarkable that the limit distribution for S(N)
n when

n, N → ∞ does not depend on the details of the summands A(j)
n .

Actually, the mechanism of the proof is similar to that of the central limit
theorem, provided one replaces the notion of Fourier transform (which is mul-
tiplicative for sum of independent real-valued random variables) with the no-
tion of R-transform (which is additive for the sum asymptotically free ran-
dom matrices). In both cases, the universality of the result – as well as the
occurrence of the gaussian distribution/the semi-circle law – comes from the
fact that, when the number of summands N goes to infinity, only the second
moment survives in the formula characterizing the distribution.

5.5 Perturbation by a finite rank matrix

We show8 how simple computations with the R-transform give insight into
the effect of a finite rank perturbation on the spectrum of a GUE matrix. This
gives a good qualitative idea of the effect of perturbations on more general
random matrices. We will state in Section 6 a complete theorem for Wishart
matrices.

8The example we present is inspired by Bouchaud.
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5.5. Perturbation by a finite rank matrix

So, let An be a GUE matrix of size n with variance σ2, and consider:

Sn = An + Bn, Bn = diag(Λ, . . . , Λ︸ ︷︷ ︸
m times

, 0, . . . , 0︸ ︷︷ ︸
n−m times

)

for Λ > 0. We set:
ε =

m
n

and would like the study the limit n → ∞, and then ε is small. As we have
seen, the distribution of An is invariant under conjugation by a unitary ma-
trix, and it has the semi-circle law as limit distribution. Bn is deterministic,
therefore independent of An, and it admits a limit distribution given by:

(21) µB = (1− ε)δ0 + εδΛ .

This falls in framework of Voiculescu’s theorem, so Sn has a limit distribution
µS. To compute it, we first write down the Stieltjes transform:

WµB(z) =
1− ε

z
+

ε

z−Λ
,

and solving for the functional inverse:

RµB(w) =
1
2

[
1
w

+ Λ +

√( 1
w
−Λ)2 +

4εΛ
w

]
.

Therefore, we add to it theR-transform (20) of the semi-circle law minus 1/w,
and we can expand when ε→ 0:

RµS(w) = σ2 w +
1
2

[
1
w

+ Λ +

√( 1
w
−Λ)2 +

4εΛ
w

]

=
1
w

+ σ2 w +
εΛ

1−Λw
+ O(ε2) .(22)

The Stieltjes transform of µS will satisfy:

(23) z =
1

WµS(z)
+ σ2 WµS(z) +

εΛ
1−ΛWµS(z)

+ O(ε2) .

At leading order in ε, µS the semi-circle law. Let us have a look at the first
subleading correction. Qualitatively, two situations can occur.

• If Wsc(z) = 1/Λ admits a solution z = zΛ on the real axis outside of the
support Kσ = [−2σ, 2σ] of µS, the O(ε) correction to WµS has a singularity
outside Kσ, which is the sign that µS has some mass outside Kσ. If such a
real-valued zΛ exists, we must have:

1
Λ

=
zΛ −

√
z2

Λ − 4σ2

2σ2 ≤ zΛ − (zΛ − 2σ)

2σ2 ≤ 1
σ

.

Conversely, if the condition Λ > σ is met, then there exists a unique such zΛ,
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5. Stieltjes transform and freeness

given by:

zΛ = Λ +
σ2

Λ
.

One can then show solving (23) perturbatively that WµS(z) has a simple pole
at z = zΛ + o(1), with residue ε + o(ε). This means that µS has a Dirac mass
ε at zΛ. In other words, if Λ is above the threshold σ, a fraction ε of eigen-
values – i.e. m = rank(Bn) eigenvalues – detach from the support. Even for
ε arbitrarily small but non-zero, the maximum eigenvalue is now located at
zΛ > 2σ instead of 2σ for a GUE matrix.
• If Λ ≤ σ, the singularities of WµS(z) remain on Kσ, and therefore the density
of µS is a small perturbation of the semi-circle, not affecting the position of
the maximum eigenvalue.

One should note that the value of the threshold Λ∗ = σ is located in the
bulk of the support. We will justify in Section 7.1 the loose statement that:

”eigenvalues of random matrices repel each other”

This allows an interpretation of the above phenomenon. If we try to add to
a random matrix a deterministic matrix with m eigenvalues Λ, they will un-
dergo repulsion of the eigenvalues that were distributed according to the dis-
tribution of A (here, the semi-circle). If the m Λ’s feel too many eigenvalues
of A to their left – here it happens precisely when Λ > σ – they will be kicked
out from the support, to a location zΛ further to the right of the support. If
Λ < σ, the Λ’s feel the repulsion of enough eigenvalues to their right and to
their left to allow for a balance, and thus we just see a small deformation of
the semi-circle law, keeping the same support in first approximation.
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6 Wishart matrices with perturbed covariance

Lecture 3 (1h30)
August 7th, 2015The same phenomenon was analyzed for complex Wishart matrices by Baik,

Ben Arous and Péché [2], and is now called the BBP phase transition. The
result also holds for real Wishart matrices [3]. We consider a Wishart matrix M
of size p, with n degrees of freedom, and covariance K = diag(Λ2, σ2, . . . , σ2).
This is a perturbation of the null model with covariance diag(σ2, . . . , σ2).

6.1 theorem. Assume n, p→ ∞ while n/p converges to γ, and define:

Λ∗ = σ(1 + γ−1/2) .

• If Λ ∈ (0, Λ∗), Theorem 3.3 continues to hold: λ
(M)
1 converges almost surely

to a+(γ), and the fluctuations at scale p−2/3 follow the Tracy-Widom law.

• If Λ ∈ (Λ∗,+∞), we have almost sure convergence of the maximum:

λ
(M)
1 −→ zΛ := σΛ

(
1 +

σ

γ(Λ− σ)

)
,

and the random variable

p1/2

σΛ

( 1
γ
− σ2

γ2(Λ− σ)2

)1/2{
λ
(M)
1 − zΛ

}

describing fluctuations at scale p−1/2, converges in law to a Gaussian with
variance 1.

When Λ approaches Λ∗ at a rate depending on p, the maximum eigenval-
ues converges to a+(γ), but its fluctuations follows a new distribution, that
interpolates between Tracy-Widom and Gaussian laws.

For application in statistics, Λ can be thought as a trend in empirical data.
One may wonder if the trend can be identified from a PCA analysis. The
theorem shows that the answer is positive only if the trend is strong enough
– i.e. Λ > Λ∗. As for perturbation of the GUE, the threshold Λ2∗ lies inside the
support of the Marčenko-Pastur law.

Although more interesting for statistics, the case of real Wishart matrices
was only tackled in 2011 by Bloemendal and Virág9, with similar conclusions.
The reason is that, in the complex case, we will see in Section 8.3 that algebraic
miracles greatly facilitates the computations, which boil down to analyzing
the asymptotic behavior of a sequence of orthogonal polynomials. This can be
done with the so-called Riemann-Hilbert steepest descent analysis, developed
by Deift, Zhou and coauthors in the 90s – for an introduction, see [9] – and
this is the route taken by BBP.

9Actually, their method relate the distributions for the fluctuations of the maximum of per-
turbed GOE or GUE to the probability of explosion of the solution of second order stochastic
differential equation. In the unperturbed case, they also obtained characterizations of the same
nature for the Tracy-Widom laws. This is a beautiful result fitting in the topic of the summer
school, however at a more advanced level compared to the background provided at the school.
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7. From matrix entries to eigenvalues

7 From matrix entries to eigenvalues

7.1 Lebesgue measure and diagonalization

We would like to compute the joint distribution of eigenvalues of a symmetric
or hermitian random matrix. For this purpose, we basically need to perform a
change of variables in integrals of the form

´
dM f (M), hence to compute the

determinant of the Jacobian of this change of variable. Although some details
have to be taken care of before arriving to that point, the core of the computa-
tion is easy and concentrated in (27) and the evaluation of the determinant.

First consider the case of symmetric matrices. Let On be the set of orthog-
onal n× n matrices, i.e. satisfying ΩTΩ = In. Since any symmetric matrix can
be diagonalized by an orthogonal matrix, the C∞ map:

(24) M :
On ×Rn −→ Sn

(Ω, λ1, . . . , λn) 7−→ Ω diag(λ1, . . . , λn)Ω−1

is surjective. However, the map is not injective, so we cannot take (24) as an
admissible change of variable. Indeed, if:

M = Ωdiag(λ1, . . . , λn)Ω−1 = Ω̃diag(λ̃1, . . . , λ̃n)Ω̃−1,

then there exists a permutation σ ∈ Sn and an orthogonal matrix D that leaves
stable the eigenspaces of M such that:

(25) Ω̃ = ΩD, λ̃i = λσ(i) .

To solve this issue, we first restrict to the subset (Sn)∆ consisting of symmetric
matrices with pairwise distinct eigenvalues. This is harmless since (Sn)∆ is an
open dense subset of Sn, hence its complement has Lebesgue measure 0. Then,
two decompositions are related by (25) with D being a diagonal orthogonal
matrix, and this forces the diagonal entries to be ±1. So, let us mod out the
left-hand side of (24) by {±1}n. Then, we can kill the freedom of permuting
the λi’s by requiring that λi decreases with i. Denoting:

(Rn)∆ =
{
(λ1, . . . , λn) ∈ Rn, λ1 > λ2 > . . . > λn

}
,

we finally obtain an invertible map:

(26) M :
(
On/{±1}n)× (Rn)∆ −→ (Sn)∆

(Ω, λ1, . . . , λn) 7−→ Ω diag(λ1, . . . , λn)Ω−1

and one can show that it is a C∞ diffeomorphism – i.e. an admissible change
of variable.

To be more explicit, we have to choose coordinates on On. In the vicinity
of In ∈ On, we can choose as coordinates the entries (ωij)1≤i<j≤n of an anti-
symmetric matrix ω, which parametrizes an orthogonal matrix by the formula
Ω = exp(ω). And in Sn, we remind that we had chosen as coordinates the
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7.1. Lebesgue measure and diagonalization

entries (Mij)1≤i≤j≤n. Then, we know that:

dM = 2−n ∏
1≤i<j≤n

dωij

n

∏
i=1

dλi J (λ, ω) ,

where the 2−n comes from the quotient by {±1}n, and it remains to compute
the Jacobian determinant:

[
∂Mij
∂ωkl

∂Mij
∂λk

]

1≤k<l≤n 1≤k≤n

1≤i≤j≤ndetJ (λ, ω) =

First, we remind that the Lebesgue measure is invariant under conjugation
of M by an orthogonal matrix. We can thus evaluate the derivatives at ω = 0
(i.e. Ω = In) and find:

(27) dMij = [dω, Λ]ij + dΛiδij = dωij(λi − λj) + dλiδij

Therefore, the matrix in the Jacobian is diagonal: in the first block 1 ≤ i < j ≤
n and 1 ≤ k < l ≤ n, the diagonal elements (i, j) = (k, l) are (λi − λj), and in
the second block, the diagonal elements are just 1. Therefore:

J (λ, 0) = ∏
1≤i<j≤n

|λj − λi|

We can repeat all steps for hermitian matrices. On should be replaced with
the set Un of unitary matrices, i.e. satisfying (ΩT)∗Ω = In. The map (24) now
sends Un ×Rn to Hn. It is not surjective, but if we restrict to the set (Hn)∆
of hermitian matrices with pairwise distinct eigenvalues, the only freedom is
to have (25) with D a diagonal matrix whose entries are complex numbers
of unit norm ; we denote Un

1 the group of such matrices. Then, we obtain an
admissible change of variable:

(28)
(
Un/Un

1
)
× (Rn)∆ ' (Hn)∆ .

As coordinates on Un near In, we can take the real and imaginary parts of the
entries (ωij)1≤i<j≤n of a matrix ω such that10 (ωT)∗ = −ω, parametrizing a
unitary matrix by the formula Ω = exp(ω). The formula (27) for the differen-
tial does not change but we have now twice many coordinates: the Jacobian
matrix is still diagonal, and the diagonal entries corresponding to derivative
with respect to Re ωij and to Im ωij both evaluate to (λi − λj). Thus, the Jaco-
bian determinant reads:

J (λ, 0) = ∏
1≤i<j≤n

|λj − λi|2 .

10Such a matrix is called ”antihermitian”.
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7. From matrix entries to eigenvalues

There is a last step about which we will be brief: this result – valid at
Ω = In – has to be transported to any point of Sn (or Hn) by conjugating
with an On (resp Un) matrix. Of course, this does not affect the eigenvalue
dependence of the Jacobian factor. The result makes appear the Haar measure
on On (resp. Un): this is the unique probability measure which is invariant
under left and right multiplication by an orthogonal (resp. unitary) matrix.
We denote dν(Ω) the measure induced by the Haar measure on the quotient
On/{±1}n (resp. Un/Un

1 ).

7.1 theorem. Under the change of variable (26) or (28), we have:

dM = cβ,n dν(Ω)
n

∏
i=1

dλi ∏
1≤i<j≤n

|λj − λi|β

for some (explicitly computable) constant cβ,n > 0.

7.2 Repulsion of eigenvalues

As a consequence, if M is a random symmetric (resp. hermitian) matrix whose
p.d.f. of entries is dM F(M), and f is invariant under conjugation by an or-
thogonal (resp. unitary) matrix, then F(M) is actually a function f (λ1, . . . , λn)
of the eigenvalues only, and the joint p.d.f of the eigenvalues of M is propor-
tional to:

(29) Z−1
n,β ∏

1≤i<j≤n

∣∣∆(λ1, . . . , λn)
∣∣β f (λ1, . . . , λn) ,

with:

(30) ∆(λ1, . . . , λn) = ∏
1≤i<j≤n

(λj − λi) ,

and the constant Zn,β is such that the integral of (29) against the Lebesgue
measure over Rn evaluates to 1. Because of the factor |∆(λ1, . . . , λn)|β the
probability that two eigenvalues are close to each other is small: the eigenval-
ues of a random matrix usually repel each other. The intensity of the repulsion
is measured by the parameter β, which is fixed by the type of the matrix (sym-
metric or hermitian).

7.2 lemma. (30) is the Vandermonde determinant:

∆(λ1, . . . , λn) = det




1 1 · · · 1
λ1 λ2 · · · λn
...

...
...

λn−1
1 λn−1

2 · · · λn−1
n


 .

Proof. Let us denote D(λ1, . . . , λn) the determinant in the right-hand side. It
is a polynomial function of λi, of degree at most n− 1, which admits the n− 1
roots λi = λj indexed by j 6= i. Therefore, we can factor out successively all
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7.3. Eigenvalue distribution of Wishart matrices

the monomials that occur in ∆, and find:

(31) D(λ1, . . . , λn) = cn ∆(λ1, . . . , λn)

for some constant cn. We prove by induction that cn = 1. This is obviously
true for n = 1. If this is true for (n − 1), we expand the determinant of
size n with respect to its last column, and find that the coefficient of λn−1

n
is D(λ1, . . . , λn−1). Comparing with (31) and the induction hypothesis, we
deduce that cn = 1. �

7.3 lemma. For any sequence (Qm)m≥0 of polynomials of degree m with leading
coefficient 1:

∆(λ1, . . . , λn) = det
1≤i,j≤n

[
Qi−1(λj)

]
.

Proof. By adding linear combinations of the (n− 1) first lines to the last line,
one can actually replace λn−1

j in the last line by Qn−1(λj) for any polynomial
Qn−1 of degree n − 1 with leading coefficient 1. Repeating this procedure
successively for the lines (n− 1), (n− 2), etc. establishes the claim. �

7.3 Eigenvalue distribution of Wishart matrices

The result for Wishart matrices was obtained almost simultaneously in 1939

by [14, 17, 21, 28].

7.4 theorem. If M is a real (β = 1) or complex (β = 2) Wishart matrix with
covariance K = diag(σ2, . . . , σ2), of size p with n degrees of freedom, the joint p.d.f
of its eigenvalues is:

(32) Z−1
n,β ∏

1≤i<j≤n
|λi − λj|β

n

∏
i=1

λ
β
2 (n−p)+ β−2

2
i exp

(
− nβ

2σ2 λi

)

for an (explicitly computable) normalization constant Z−1
n,β.

Proof. The proof is a bit more involved than in Section 7.1, and was omitted
during the lectures. It uses a change of variable in three steps, the last one
being already given by Theorem 7.1. We give the details for the case of real
Wishart matrices.

• First, we consider X as a matrix of p vectors in Cn, which we can orthog-
onalize. This produces in a unique way a matrix Ω of size n × p, such that:

(33) ΩTΩ = Ip .

and a lower-triangular matrix L of size p× p with positive diagonal entries,
such that:

(34) X = ΩL .
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7. From matrix entries to eigenvalues

The Lebesgue measure dX is invariant under multiplication to the left by an
orthogonal matrix of size n, thus it is enough to evaluate the Jacobian at Ω
equals:

Ω0 =

[
Ip,p

0n−p,p

]
,

where 0m,p is the matrix of size m× p filled with 0’s.
We need to fix local coordinates on the tangent space at Ω0 of the set On,p

of matrices Ω satisfying (33). For example, we can choose the entries Ωkl with
1 ≤ k < l ≤ p, and the Ωkl with k ≥ p + 1 and 1 ≤ l ≤ p. The remaining Ωkl
with 1 ≤ l < k ≤ p are then determined by (33), and infinitesimally around
Ω0 we find for these indices Ωkl = −Ωlk. The dimension of On,p is thus
p(p− 1)/2 + p(n− p). For the matrix L, we naturally choose as coordinates
its non-zero entries Lkl indexed by 1 ≤ l ≤ k ≤ p – the space of L’s has
dimension p(p + 1)/2. This is consistent with the dimension of the space of
X’s:

np =
p(p + 1)

2
+

p(p− 1)
2

+ p(n− p) .

Now, we compute the differential of (34):

dXij = δikδjldLkl + dωklδikδk>l − dωkl Lklδilδk<l + dωkl Ll jδikδk>p .

A careful look at the indices shows that the Jacobian matrix is of the form:

det

J (L, Ω) =




I ∗ 0
0 U 0
0 0 U′




1≤l≤k≤p 1≤k<l≤p k≥p+1

1≤j≤i≤p

1≤i<j≤p
i≥p+1

[
∂Xij
∂Lkl

∂Xij
∂ωkl

∂Xij
∂ωkl

]

1≤l≤k≤p 1≤k<l≤p k≥p+1

det

=

with U and U′ upper triangular matrices with respect to the lexicographic
order on the double-indices (i, j). Besides, the diagonal elements of U and U′

at position (i, j) = (k, l) are Ljj. So, the determinant evaluates to:

J (L, Ω) =
p

∏
j=1

Ln−p+j−1
jj ,

and we have:

(35) dX = dν(Ω) ∏
1≤j≤i≤p

dLij

p

∏
j=1

Ln−p+j−1
jj ,

where dν(Ω) is the measure on On,p obtained by transporting the volume
element of the ω’s from Ω0 to any point in On,p.
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7.3. Eigenvalue distribution of Wishart matrices

• Next, we change variables from L to M:

M = n−1 XTX = n−1 LT L .

The differential is:
dMij = n−1

(
δl jLki + δliLkj

)
,

and we must compute the Jacobian:

J̃ (L) = 1≤j≤i≤p
[

∂Mij
∂Lkl

]

1≤l≤k≤p
det

If we put on couples (i, j) the lexicographic order, we observe that the Jaco-
bian matrix is upper-triangular, with entries n−1(δjjLii + δijLjj) on the diagonal
with double index (i, j). Therefore:

(36) dM = dL J̃ (L) , J̃ (L) = n−p(p+1)/2 2p
p

∏
j=1

Lj
jj .

• Combining (35) and (36) yields:

dX = cn,p dν(Ω) , dM
p

∏
j=1

Ln−p−1
jj

and we rewrite:

n

∏
j=1

Ln−p−1
jj = det(L)n−p−1 = det(LT L)(n−p−1)/2

= np(p+1)/2 det(M)(n−p−1)/2 = np(p+1)/2
n

∏
j=1

λ
(n−p−1)/2
j .

Finally, we use Theorem 7.1 to obtain the announced result (32) in the case
β = 1.

• The case of complex Wishart matrices is treated similarly, with On,p being
replaced by the set Un,p of n× p matrices Ω such that (ΩT)∗Ω = Ip. �
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8 Exact computations in invariant ensembles

8.1 Invariant ensembles

The Gaussian ensembles and the Wishart ensembles are special cases of the
invariant ensembles. These are symmetric (resp. hermitian) random matrices
M of size n, whose distribution of entries is of the form:

(37) Z−1
n,β dM exp

(
− nβ

2
Tr V(M)

)
.

The function V is assumed to grow fast enough at infinity – e.g. V is a poly-
nomial with positive leading coefficient – so that (37) has finite mass on Sn or
Hn, and we tune Z−1

n,β so that this mass is 1. Theorem 7.1 implies that the joint
p.d.f of the eigenvalues11 is:

(38) Z−1
n,β ∏

1≤i<j≤n
|λi − λj|β

n

∏
i=1

exp
{
− nβ

2
V(λi)

}
.

The Wishart ensembles – in which the size is denoted p instead of n – corre-
spond to the case:

(39) V(x) = − x
σ2 +

[
γ− 1 +

1
p

(
1− 2

β

)]
ln x, γ = n/p ,

and the Gaussian ensembles to:

V(x) =
x2

2σ2 .

Note that the distribution (38) makes sense for any value of β > 0. When
β increases starting from 0, they provide an interpolating model from inde-
pendent random variables to strongly correlated (repulsive) random variables,
called the β-ensembles.

Equation 38 still contains too much information. We would like to answer
questions like: what is the probability that one eigenvalue falls into a given
interval ? In other words, we want to compute the marginals of the distribu-
tion (38). Surprisingly, for β = 1 and β = 2, this can be performed exactly,
using tricks mainly discovered by Gaudin and Mehta in the early 60s. We will
stick to the case β = 2, for which the computations are in fact much simpler.
And since for the moment we will be occupied with exact computations, it is
convenient to use a notation W(λi) instead of (nβ/2)V(λi) in (38).

11Contrarily to the previous sections, in (38) the eigenvalues are not assumed to be ordered.
When we need to consider the maximum eigenvalue, we shall use the notation λmax.
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8.2. Partition function

8.2 Partition function

Prior to any computation, it is useful to evaluate the normalization constant,
also called partition function

Zn =

ˆ
Rn

∏
1≤i<j≤n

∣∣∆(λ1, . . . , λn)
∣∣2

n

∏
i=1

e−W(λi) .

This can be done in terms of the orthogonal polynomials (Pn)n≥0 for the mea-
sure dx e−W(x) on R. More precisely, consider the scalar product on the space
of real-valued polynomials:

(40) 〈 f , g〉 =
ˆ

R

f (x) g(x) e−W(x) dx .

The orthogonalization of the canonical basis (xn)n≥0 for the scalar product
(40) determines a unique sequence (pn)n≥0 of polynomials with the following
properties:

• Pn has degree n and starts with xn + · · · .

• For any n, m ≥ 0, 〈Pn, Pm〉 = δnmhn for some constant hn > 0.

8.1 theorem. Zn = n!
n−1

∏
m=0

hm

Proof. Let (Qm)m≥0 be an arbitrary sequence of polynomials of degree m with
leading coefficient 1, use the representation of Lemma 7.3 for Vandermonde
determinant, and expand the determinants:

Zn = ∑
σ,τ∈Sn

sgn(σ)sgn(τ)
ˆ

Rn

n

∏
i=1

Qσ(i)−1(λi) Qτ(i)−1(λi) e−W(λi)dλi .

We observe that, in each term, the integral over Rn factors into n integrals
over R. Then, i is a dummy index for the product, and we can also rename
it τ−1(i). Since the signatures satisfies sgn(σ)sgn(τ) = sgn(στ−1), we shall
change variables in the sum and set σ̃ = στ−1. The summands only depend
on σ̃, and it remains a sum over a permutation, which produces a factor of n!.
So:

Zn = n! ∑
σ̃∈Sn

n

∏
i=1

[ ˆ
R

Qσ̃(i)−1(x) Qi−1(x) e−W(x)dx
]

= n! det
1≤i,j≤n

[ ˆ
R

Qi−1(x)Qj−1(x) e−W(x)
]

,(41)

where, in the last line, we have used the multilinearity of the determinant.
Now, if we choose (Qm)m≥0 to be the orthogonal polynomials for the scalar
product (40), the matrix in the determinant becomes diagonal. This entails the
result. �
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8. Exact computations in invariant ensembles

8.3 Marginals of eigenvalue distributions

Jánossy densities

If M is a random hermitian matrix, we define the k-point Jánossy densities
ρ
(k)
n (x1, . . . , xk), as the functions such that, for any pairwise disjoint measur-

able sets A1, . . . , Ak:

(42) P
[
∃i1, . . . , ik, λij ∈ Aj

]
=

ˆ
A1×···×Ak

ρ
(k)
n (x1, . . . , xk)

k

∏
i=1

dxi .

The ρ
(k)
n can be considered as a probability density – in particular they are

non-negative – except that their total integral is not 1. Since the eigenvalues
are not ordered in (42), ρn(k) is a symmetric function of x1, . . . , xk, and we
have:

(43)
ˆ

Rk
ρ
(k)
n (x1, . . . , xk)

k

∏
i=1

dxi =
n!

(n− k)!
,

i.e. the number of ways of choosing k ordered eigenvalues among n. The 1-
point Jánossy density coincides with the average spectral density multiplied
by n, since ˆ

R

ρ
(1)
n (x)dx = n .

Besides, ρ
(n)
n is nothing that the joint p.d.f of the n-eigenvalues, multiplied by

n! since (43) gives: ˆ
Rn

ρ
(n)
n (x1, . . . , xn) = n! .

The k-point densities can be found by integrating out (n− k) variables in ρ
(n)
n ,

again paying attention to the normalization constant:

(44) ρ
(k)
n (x1, . . . , xk) =

1
(n− k)!

ˆ
Rn−k

ρ
(n)
n (x1, . . . , xn)

n

∏
i=k+1

dxi .

In invariant ensembles

When the random matrix is drawn from an invariant ensemble (Section 8.1),
we have:

(45) ρ
(n)
n (x1, . . . , xn) =

n!
Zn

∆(λ1, . . . , λn)
2

n

∏
i=1

e−W(λi) .

The Jánossy densities can be computed in terms of the orthogonal polynomials
which already appeared in Section 8.2 to compute Zn. Let us introduce the
Christoffel-Darboux kernel:

Kn(x, y) =
n−1

∑
k=0

Pk(x)Pk(y)
hk

.
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8.3. Marginals of eigenvalue distributions

Using the orthogonality relations, one can easily prove:

(46) Kn(x, y) =
Pn(x)Pn−1(y)− Pn−1(x)Pn(y)

hn−1(x− y)
,

which is more advantageous – especially from the point of the large n regime
– since it only involves two consecutive orthogonal polynomials.

8.2 theorem.

(47) ρ
(k)
n (x1, . . . , xk) = det

1≤i,j≤k

[
K̃n(xi, xj)

]
,

where K̃n(x, y) = Kn(x, y) e−[W(xi)+W(xj)]/2.

Proof. We first consider k = n. With (45) and Lemma 7.3 and Theorem 8.1, we
can write:

ρ
(n)
n (x1, . . . , xn) =

n!
n! ∏n−1

m=0 hm
det

1≤i,j≤n

[
Pj−1(λi)

]
· det

1≤k,l≤n

[
Pk−1(λl)

] n

∏
i=1

e−W(λi) .

We implicitly used det(AT) = det(A) to write the first determinant. We
then push a factor h1/2

m in the columns (resp. in the lines) of the first (resp.
the second) determinant, and a factor exp[−W(λm)/2] in the lines (resp.
the columns) of the first (resp. the second) determinant. The result, using
det(A · B) = (det A) · (det B), reads:

ρ
(n)
n (x1, . . . , xn) = det

1≤i,j≤n

[
h−1/2

j−1 Pj−1(λi) e−W(λi)/2] · det
1≤k,l≤n

[
h−1/2

k−1 Pk−1(λl) e−W(λl)/2]

= det
1≤i,l≤n

[ n

∑
k=1

Pk−1(λi)Pk−1(λl)

hk−1
e−[W(λi)+W(λj)]/2

]
,

which is the desired result.

Next, we would like to integrate out the last n − k variables in ρ
(k)
n to

find ρ
(k)
n via (44). This is achieved by successive application of the one-step

integration lemma:

8.3 lemma.

(48)
ˆ

R

det
1≤i,j≤k

[
K̃n(xi, xj)

]
dxk = (n− k + 1) det

1≤i,j≤k−1

[
K̃n(xi, xj)

]
.

To prove the lemma, we first remark that K̃n(x, y) is the kernel of an oper-
ator K̂n : L2(R, dx) −→ L2(R, dx), which is the orthogonal projection on the
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8. Exact computations in invariant ensembles

rank n subspace Rn−1[x] · e−W(x)/2. In particular – as one can check directly:
ˆ

R

K̃n(x, z)K̃n(z, y)dz = K̃n(x, y) ,
ˆ

R

K̃n(z, z)dz = n .

Let us expand the k× k determinant in the left-hand side of (48):

ˆ
R

det
1≤i,j≤k

[
K̃n(xi, xj)

]
dxk = ∑

σ∈Sk

sgn(σ)
ˆ

R

[ k

∏
i=1

K̃n(xi, xσ(i))
]

dxk .

We find two types of terms:

• If σ(k) = k, we have a factor
ˆ

R

K̃n(xk, xk)dxk = n.

The remaining factors is a sum over all permutations σ̃ ∈ Sk−1, which
reconstructs

det
1≤i,j≤k−1

[
K̃n(xi, xj)

]
.

• If σ(k) 6= k, we rather have a factor
ˆ

R

K̃n(xσ−1(k), xk) K̃n(xk, xσ(k))dxk = K̃n(xσ−1(k), xσ(k)).

This reconstructs ∏k−1
i=1 K̃n(xi, xσ̃(i)), which only depends on the permu-

tation σ̃ ∈ Sk−1 obtained from σ by ”jumping over k”, i.e. σ̃(i) = σ(i)
if i 6= σ−1(k), and σ̃(σ−1(k)) = σ(k). There are exactly (k− 1) ways to
obtain a given σ̃ from some σ, since we have to choose the position of the
element σ(k) ∈ {1, . . . , k− 1}. Besides, we have since sgn(σ̃) = −sgn(σ)
since the length of one cycle in σ̃ was reduced by 1 compared to σ. All
in all, these terms reconstruct:

−(k− 1) det
1≤i,j≤k−1

[
K̃n(xi, xj)

]
.

Summing the two entails the claim. �

Spectral density

The formula (47) is remarkable: we say that the eigenvalues of hermitian ma-
trices in invariant ensembles form a determinantal point process. If K̃n were
an arbitrary function of two variables, the k × k determinants of K̃n(xi, xj)
would have no reason to be non-negative. Here, for the Christoffel-Darboux
kernel, it must be non-negative by consistency.
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8.3. Marginals of eigenvalue distributions

For instance, the exact spectral density is 1/n times

(49) ρ
(1)
n (x) = K̃n(x, x) =

p′n(x)pn−1(x)− p′n−1(x)pn(x)
hn−1

e−W(x) .

In the GUE

The GUE corresponds to the weight:

(50) W(x) =
Nx2

2σ2 , with N = n .

We have written N here instead of n, to stress that the size of the matrix
appears in two places: first, in the orthogonality weight since W depends on
N = n, and then in the degree n or (n− 1) of the orthogonal polynomials we
need to use in (46). To avoid confusion, we may just perform all computations
with N, and at the end set N = n to retrieve the GUE normalized as in
Section 4. We will also choose σ = 1.

The orthogonal polynomials for the weight dx e−x2/2 on R are well-known,
called the Hermite polynomials and denoted Hn(x). The orthogonal polyno-
mials for the weight dx e−W(x) with (50) are just:

(51) Pn(x) = N−n/2 Hn(N1/2x) .

We list basic properties of the Hermite polynomials, that can be easily derived
using the orthogonality relations:

• Hn has parity (−1)n.

• We have the formula Hn(x) = (−1)n ex2/2 ∂n
x(e−x2/2).

• H′n(x) = nHn−1(x).

• We have the three-term recurrence relation Hn+1(x) = xHn(x)−nHn−1(x).

• The norm of Pn given by (51) is hn =
√

2π n! N−(n+1/2).

Thus, the formula (49) for the spectral density specializes to 1/n times
(Figure 7):

(52) ρ
(1),GUE
n (x) =

√
n

n!
√

2π

[
Hn−1(

√
nx)
]2 e−nx2/2 .

In the complex Wishart ensemble

For the Wishart ensemble, one should choose an orthogonality weight on the
real positive axis dx e−pV(x) with V given by (39) – and we remind that the size
now is denoted p instead of n. The corresponding orthogonal polynomials
are also well-known, and called the Laguerre polynomials. This makes the
computations in the complex Wishart ensemble rather explicit, and amenable
to large n asymptotics.
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Figure 7: Exact spectral density n−1ρ
(1)
n (x) for the GUE with σ = 1 for ma-

trices of small size n. For n = 1, this is just the Gaussian density. For n ≥ 2
increasing, we see that it approaches the semi-circle law, with oscillations at
scale 1/n. The oscillations for n finite but large can be understood as a conse-
quence of the repulsion of eigenvalues: a region where many eigenvalues are
expected prefers having less crowded neighboring regions.

8.4 Gap probabilities

The probability that none of the eigenvalues fall into a given measurable set
A is also computable in terms of Jánossy densities:

P
[
no eigenvalue in A

]
= E

[ n

∏
i=1

(1− 1A(λi))
]

=
n

∑
k=0

(−1)k ∑
1≤i1<...<ik≤n

P
[
λi1 , . . . , λik ∈ A

]

=
n

∑
k=0

(−1)k

k!

ˆ
Ak

ρ
(k)
n (x1, . . . , xk)

k

∏
i=1

dxi .(53)

46



8.4. Gap probabilities

From (47), we find:

P
[
no eigenvalues in A

]
=

n

∑
k=0

(−1)k

k!

ˆ
Ak

det
1≤i,j≤k

[
K̃n(xi, xj)

] k

∏
i=1

dxi .

Since Kn is the kernel of an operator of rank n, the determinants of size k > n
vanish, and we have:

P
[
no eigenvalues in A

]
=

∞

∑
k=0

(−1)k

k!

ˆ
Ak

det
1≤i,j≤k

[
K̃n(xi, xj)

] k

∏
i=1

dxi .

We recognize the definition of the Fredholm determinant12 of the operator K̂n
restricted to act on the Hilbert space L2(A, dx):

(54) P
[
no eigenvalues in A

]
= Det

[
1− K̂n

]
L2(A,dx) .

The Fredholm determinant Det[1− K̂] is a continuous function of K̂ for the
topology induced by the sup-norm for the kernel K̂(x, y) of K̂. This means
that, to study the large n asymptotics of (54), it is enough to study the uniform
convergence of the kernel K̃n(x, y).

In particular, if we take A to be the semi-infinite interval (a,+∞), the prob-
ability that no eigenvalue belongs to A is exactly the probability that the max-
imum eigenvalue is smaller than a:

P[λmax ≤ a] = Det
[
1− K̂n

]
L2
(
(a,+∞),dx

) .

12This is a generalization of the notion of determinant to operators in infinite-dimensional
spaces.
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9 Asymptotics and universality of local regime

We have expressed the Jánossy densities and the gap probabilities in terms of
the Christoffel-Darboux kernel:

(55) K̃n(x, y) =
Pn(x)Pn−1(y)− Pn−1(x)Pn(y)

hn−1(x− y)
.

In order to study the large n limit of the eigenvalue distributions, we just need
to derive the asymptotics of the orthogonal polynomials Pn(x).

9.1 Asymptotics of Hermite polynomials

For Hermite polynomials, one can easily establish, from the properties previ-
ously mentioned, the integral representation:

Hn(x) = in ex2/2
ˆ

R

dζ ζn e−ζ2/2−ixζ .

The asymptotics of Hn(x) can then be derived using the classical method of
steepest descent analysis13 – see e.g. [1] for details. The result is called the
Plancherel-Rotach formula – see e.g. [30]. Let us define:

ϕn(x) =
e−x2/4 Hn(x)√√

2π n!
.

9.1 theorem. Let m be a fixed integer, and consider n→ ∞.

• Bulk. For fixed x0 ∈ (−2, 2) and X ∈ R, we have:

(56) ϕn+m(n1/2x0 + n−1/2X) =
2 cos

[
θn(x0, X, m)

]

n1/4
√

2π(4− x2
0)

1/4
+ O(n−3/4) ,

with:

θn(x0, X, m) = (n + m + 1)arcsin(x0/2)− π(n + m)

2

+
nx0

√
4− x2

0

4
+

X
√

4− x2
0

2
.

The result is uniform for X in any compact of R.

• Edge. For fixed X ∈ R, we have:

(57) ϕn+m(2n1/2 + n−1/6X) = n−1/12 Ai(X) + O(n−5/12) ,

where Ai is the Airy function, i.e. the unique solution to Ai′′(X) = XAi(X)

13This is a generalization in complex analysis of the Laplace method in real analysis to study
the ε→ 0 behavior integrals of the form

´
R

e− f (x)/ε)dx.
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9.2. Consequences in the bulk

which decays14 when X → +∞ like:

Ai(X) ∼ exp
(
− 2

3 X3/2)

2
√

π X1/4 .

(57) is uniform for X in any compact of R∪ {+∞}.

• Far side. For fixed |x0| > 2, ϕn+m(n1/2x0) decays exponentially fast when
n→ ∞.

The existence of the three regimes have direct qualitative consequences for
the distribution of eigenvalues in the large n limit. In the bulk, the Hermite
polynomials have an oscillatory asymptotics: it is the region where their n ze-
roes accumulate, and where the eigenvalue distribution will be concentrated.
As expected, with the scaling (51), we look at arguments of the Hermite poly-
nomials at the scale

√
n, and the bulk thus correspond to the bounded interval

x0 ∈ [−2, 2]. In (56), we see that non-trivial variations occur when we deviate
from x0 with order of magnitude 1/n, as measured by X. This means that
fluctuations of eigenvalues in the bulk of the GUE will occur at scale O(1/n).
The result in the far side indicates that it will be exponentially unlikely to find
eigenvalues outside of [−2, 2], and confirms that the support of the spectral
density should be [−2, 2]. At the right edge x0 = 2 between the far side and
the bulk – the behavior at the left edge x0 = −2 is obtained by symmetry –
there is a transition, and non-trivial variations now occur when x0 deviates
from 2 with order of magnitude n−1/2 · n−1/6 = n−2/3. So, the fluctuation of
eigenvalues near the edge, and in particular the fluctuations of the maximum,
will be of order n−2/3, as anticipated in Section 4.2.

Notice that the introduction of the variable X in Theorem 9.1 allows to
reach the distribution of eigenvalues in regions where only finitely many
eigenvalues are expected – these are regions of size 1/n in the bulk, and of size
n−2/3 around the edge – i.e. the local regime, while keeping only x0 would
provide information about the global regime only.

There is no difficulty in computing the asymptotics of the Christoffel-
Darboux kernel (55) in the various regimes from Theorem 9.1, although the
algebra is a bit lengthy. We shall summarize the results of these computations.

9.2 Consequences in the bulk

First, we find that the spectral density converges to the semi-circle law:

lim
n→∞

n−1ρ
(1)
n (x0) =

√
4− x2

0

2π
1[−2,2](x0) .

14At X → −∞, Ai(X) is unbounded and has oscillatory asymptotics.
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For the local regime around a point x0 ∈ (−2, 2) in the bulk, we find:

(58) lim
n→∞

K̃n

(
x0 +

X
ρ
(1)
n (x0)

, x0 +
Y

ρ
(1)
n (x0)

)

ρ
(1)
n (x0)

=
sin π(X−Y)

π(X−Y)
.

This function is called the sine kernel, and denoted Ksin(X, Y). The corre-
sponding operator is denoted K̂sin. In (58), It was natural, instead of choosing
to measure X in units of 1/n, to normalize it further by the spectral density.
Indeed, the average local density of eigenvalues measured in terms of X is
equal to 1, and this facilitates the comparison between different models.

9.2 corollary. For any fixed integer k, and fixed x0 ∈ (−2, 2), the eigenvalue
distribution is such that:

lim
n→∞

ρ
(k)
n

[(
x0 +

Xi

ρ
(1)
n (x0)

)n

i=1

]

ρ
(1)
n (x0)k

= det
1≤i,j≤k

Ksin(Xi, Xj) .

And, for any compact A of R, the gap probability behaves like:

lim
n→∞

P

[
no eigenvalue in

(
x0 +

A

ρ
(1)
n (x0)

)]
= Det

[
1− K̂sin

]
L2(A,dx) ,

where a + b · A the image of A by the map x 7→ a + bx.

9.3 Consequences at the edge

We find that the Christoffel-Darboux kernel at the edge behaves like:

lim
n→∞

n−1/6 K̃n(2 + n−2/3X, 2 + n−2/3Y) =
Ai(X)Ai′(Y)−Ai′(X)Ai(Y)

X−Y
.

This is the Airy kernel, denote KAi(X, Y). The corresponding operator is de-
noted K̂Ai.

9.3 corollary. At the right edge of the spectrum, the eigenvalue distribution is such
that:

lim
n→∞

n−k/6 ρ
(k)
n
[
(2 + n−2/3Xi)

n
i=1
]
= det

1≤i,j≤k
KAi(Xi, Xj) .

And, for any compact A of R∪ {+∞}, the gap probability behaves like:

lim
n→∞

P
[
no eigenvalue in 2 + n−2/3 A

]
= Det[1− K̂Ai]L2(A,dx) .

In particular:

lim
n→∞

P[λmax ≤ 2 + n−2/3s
]
= Det[1− K̂Ai]L2

(
(s,+∞),dx

) .

is another expression – the first historically obtained – of the Tracy-Widom law TW2(s).
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9.4 Universality

Here is a table summarizing the limit distributions we have seen.

detk×k

[
Ksin(xi, xj)

]

detk×k

[
KAi(xi, xj)

]

Det
[
1 − K̂sin

]
L2(A)

Det
[
1 − K̂Ai

]
L2(A)

in bulk
ρ(x0) ∼ cte

ρ(x0) ∼ (a− x0)1/2
at edge

Jánossy densities gap probabilities universality class

They are universal – i.e. valid independently of the details of the model –
for hermitian random matrices in invariant ensembles, for complex Wishart
matrices, and many other ensembles of random hermitian matrices. For sym-
metric matrices, there exist different universal laws – we have seen an expres-
sion of TW1(s) – which are also well understood [26]. This universality goes
actually beyond random matrices, see e.g. the review [10]. Let us illustrate it
by two examples.

Non-intersecting random walks

Consider the standard brownian motion (BM) in R, and let Kt(x, y) be the
probability density that a BM starting at time t = 0 at position x, ends at time
t at position y. It is a basic result of stochastic processes that:

Kt(x, y) = (2πt)−1/2 exp
(
− (x− y)2

2t

)
.

Since BM is a Markov process, we also have:
ˆ

R

Kt(x, z)Kt′(z, y)dz = Kt+t′(x, y) .

Now, let us consider n independent BMs starting from positions x1 < . . . <
xn at time t = 0, and conditioned not to intersect. Karlin and McGregor in
1960 [23] have computed the probability density that they arrive at time t at
positions y1 < . . . < yn:

Pn(x1, . . . , xn|y1, . . . , yn) = det
1≤i,j≤n

Kt(xi, yj)

This is the starting point of a series of results, showing that in various
situations, the non-intersecting random walkers – sometimes called vicious
because they do not want to cross – behave when n → ∞ like eigenvalues of
large random matrices (Figure 8). For instance, the fluctuations of the position
of the rightmost walker generically occur at scale n−2/3 around their mean,
and converge in law towards the Tracy-Widom GUE law. Similarly, if one
zoom amidst the walkers in a region where we expect to see only finitely
many of them, the distribution of the positions of k of them is given by the
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9. Asymptotics and universality of local regime

k × k determinant build from the sine kernel. More details can be found in
[12].

Airy kernel
Tracy-Widom GUE

Sine kernel

Figure 8: Simulation (courtesy of P. Ferrari) n independent random walks in
1 dimension, conditioned not to intersect. In the large n limit, after proper
rescaling, the fluctuations of the height of the top path follows the Tracy-
Widom GUE law, and the joint distribution of a finite number of paths start-
ing from the top path is given by the determinantal process with kernel KAi.
For a path in the bulk, the fluctuations of the height of a finite number of
consecutive paths are given by the determinantal process with kernel Ksin.

Growth models

The sine kernel or the Airy kernel distributions also appear in problems of
growing interfaces. There exist several mathematical models where this has
been established – see the review [13]. But I also want to point out, with
an example, that these distributions can be seen in (even non-mathematical)
nature.

The physicists Takeuchi and Sano (2010) observed experimentally the Tracy-
Widom law in nematic liquid crystals. ”Nematic” means that the material is
made of long molecules whose orientation has long-range correlations, while
liquid means that the molecules in the neighborhood of a given one are always
changing, i.e. the correlation of positions have short range. In nematic materi-
als, a ”topological defect” is a configuration of orientations that winds around
a point. In 2d, it occurs for instance when the local orientation rotates like the
tangent vector when following a circle throughout the material15. The mate-

15In three dimensions, the Hopf fibration φ : S3 → S2 is a configuration of orientations realizing
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2

FIG. 1: (Color online) Growing DSM2 cluster. (a) Images.
Indicated below is the elapsed time after the emission of laser
pulses. (b) Snapshots of the interfaces taken every 5 s in the
range 2 s ≤ t ≤ 27 s. The gray dashed circle shows the mean
radius of all the droplets at t = 27 s. The coordinate x at this
time is defined along this circle.

which are spaced by a polyester film of thickness 12 µm
enclosing a region of 16 mm × 16 mm for the convec-
tion. We chose here the homeotropic alignment of liquid
crystals in order to work with isotropic DSM2 growth,
which is realized by coating N ,N -dimethyl-N -octadecyl-
3-aminopropyltrimethoxysilyl chloride uniformly on the
electrodes using a spin coater. The cell is then filled with
N -(4-methoxybenzylidene)-4-butylaniline doped with
0.01 wt.% of tetra-n-butylammonium bromide. The cut-
off frequency of the conductive regime [11] is 850±50 Hz.
The cell is maintained at a constant temperature 25.0 ◦C
with typical fluctuations in the order of 10−3 K. The con-
vection is observed through the transmitted light from
light-emitting diodes and recorded by a CCD camera.

For each run we apply a voltage of 26 V at 250 Hz,
which is sufficiently larger than the DSM1-DSM2 thresh-
old at 20.7 V. After waiting a few seconds, we shoot into
the cell two successive laser pulses of wavelength 355 nm
and energy 6 nJ to trigger a DSM2 nucleus [13]. Figure
1 displays typical growth of a DSM2 cluster. We repeat
it 563 times to characterize the growth process precisely.

We define the local radius R(x, t) along the circle which
denotes the statistically averaged shape of the droplets,
as sketched in Fig. 1(b). This measures the interfacial
width w(l, t) ≡ 〈

√
〈[R(x, t) − 〈R〉l]2〉l〉 and the height-

difference correlation function C(l, t) ≡ 〈[R(x + l, t) −
R(x, t)]2〉, where 〈· · ·〉l and 〈· · ·〉 denote the average over
a segment of length l and all over the interface and ensem-
bles, respectively. Both w(l, t) and C(l, t)1/2 are common
quantities for characterizing the roughness, for which the
Family-Vicsek scaling [Eq. (1)] is expected.

This is tested in Fig. 2. Raw data of w(l, t) and
C(l, t)1/2 measured at different times [Fig. 2(a,b)] grow
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FIG. 2: (Color online) Scaling of the width w(l, t) and the
height-difference correlation function C(l, t). (a,b) Raw data

of w(l, t) (a) and C(l, t)1/2 (b) at different times t. The length
scale l is varied up to 2π〈R〉 and π〈R〉, respectively. (c)
Time evolution of the overall width W (t) and the plateau

level Cpl(t)
1/2 of the correlation function. (d) Collapse of the

data in (a) showing the Family-Vicsek scaling [Eq. (1)]. The
dashed lines are guides for the eyes showing the KPZ scaling.

algebraically for short length scales l & l∗ and converge
to constants for l ' l∗ in agreement with Eq. (1). The
power α of the algebraic regime measured in the last
frame t = 28.4 s is found to be α = 0.50(5). Here, the
number in the parentheses indicates the range of error
in the last digit, which is estimated both from the un-
certainty in a single fit and from the dependence on the
fitting range. The found value of α is in good agreement
with the KPZ roughness exponent αKPZ = 1/2.

The temporal growth of the roughness is measured by
the overall width W (t) ≡

√
〈[R(x, t) − 〈R〉]2〉 and the

plateau level of the correlation function, Cpl(t)
1/2, de-

fined as the mean value of C(l, t)1/2 in the plateau re-
gion of Fig. 2(b). Both quantities show a very clear
power law tβ with β = 0.336(11) [Fig. 2(c)] in remarkable
agreement with the KPZ growth exponent βKPZ = 1/3.
Furthermore, rescaling both axes in Fig. 2(a) with the
KPZ exponents, we confirm that our data of w(l, t) col-
lapse reasonably well onto a single curve [Fig. 2(d)]. A
collapse of the same quality is obtained for C(l, t)1/2.
We therefore safely conclude that the DSM2 interfacial
growth belongs to the (1+1)-dimensional KPZ class. In
passing, this rules out the logarithmic temporal scaling
claimed by Escudero for the droplet geometry [14].

Our statistically clean data motivate us to test further
predictions on the KPZ class beyond those for the scaling.
In this respect one of the most challenging benchmarks
may be the asymptotic distribution of height fluctua-
tions, calculated exactly for solvable models [5, 6]. A gen-
eral expression was proposed by Prähofer and Spohn [6],
which reads h(t) ( v∞t + (A2λt/2)1/3χ with A ≡ D/2ν,
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FIG. 3: (Color online) Parameter estimation. (a) Growth rate

d〈R〉/dt averaged over 1.0 s against t−2/3. The y-intercept of
the linear regression (dashed line) provides an estimate of λ.
(b) C(l, t)/l against l for different times t. Inset: nominal
estimates of A obtained from w(l, t) (blue bottom symbols)
and C(l, t) (green top symbols) as functions of t (see text).

the asymptotic growth rate v∞, and a random variable
χ obeying the Tracy-Widom (TW) distribution [15], or
the (rescaled) largest eigenvalue distribution of large ran-
dom matrices. The random matrices are from the Gaus-
sian unitary and orthogonal ensemble (GUE and GOE)
[16] for curved and flat interfaces, respectively. This im-
plies an intriguing relation to the random matrix the-
ory and requires no fitting parameter provided that the
values of the two KPZ parameters λ and A are mea-
sured. The prediction was tested once for flat interfaces
in the paper combustion experiment [17] with an appar-
ent agreement. However, the authors had to shift and
rescale the distribution function for want of the values of
the KPZ parameters, in which case the difference among
the predicted distributions and the Gaussian one is un-
pronounced. They also had to discard data subject to
intermittent advance of burning fronts due to quenched
disorder [17]. Therefore, a quantitative test of Prähofer
and Spohn’s prediction has not been carried out so far.

We first measure the value of λ experimentally. For
the circular interfaces, λ is given as the asymptotic radial
growth rate, which has a leading correction term as λ !
d〈R〉/dt+avt

−2/3 for t → ∞ [18]. This relation is indeed
confirmed in Fig. 3(a) and yields a precise estimate at
λ = 35.40(23) µm/s.

The parameter A can be determined, at least for flat in-
terfaces, from the amplitude of C(l, t) and w(l, t) through
C ! Al and w2 ! Al/6 in the limit t → ∞ [18]. Fig-
ure 3(b) shows C(l, t)/l against l for different times t. A
similar series of plots is obtained for 6w2/l. The value
of A can be estimated from the plateau level or the lo-
cal maximum of these plots, but we find that these es-
timates increase slowly with time and do not agree with
each other (inset). This allows us to have only a rough
estimate A ≈ 10 µm for the range of time we study.

Now we test Prähofer and Spohn’s prediction for the
circular interfaces:

R(t) ! λt + (A2λt/2)1/3χGUE (3)
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FIG. 4: (Color online) Local radius distributions. (a) Cumu-
lants 〈Rn〉c vs t. The dashed lines are guides for the eyes

showing the indicated powers. (b) Skewness 〈R3〉c/〈R2〉3/2
c

and kurtosis 〈R4〉c/〈R2〉2c . The dashed and dotted lines indi-
cate the values of the skewness and the kurtosis of the GUE
and GOE TW distributions. (c) Local radius distributions

as functions of q ≡ (R − λt)/(A2λt/2)1/3. The dashed and
dotted lines show the GUE and GOE TW distributions, re-
spectively. (d) Differences in the cumulants of q and χGUE.
The dashed line indicates 〈qn〉c = 〈χn

GUE〉c. Inset: the same
data for n = 1 in logarithmic scales. The dashed line is a
guide for the eyes.

with a random variable χGUE obeying the GUE TW dis-
tribution. We first compute the cumulant 〈Rn〉c, for
which Eq. (3) implies 〈Rn〉c ! (A2λ/2)n/3〈χn

GUE〉ctn/3

for n ≥ 2. Our data indeed show this power-law be-
havior in time [Fig. 4(a)], though higher order cumu-
lants are statistically more demanding and hence provide
less conclusive results. We then calculate the skewness
〈R3〉c/〈R2〉3/2

c and the kurtosis 〈R4〉c/〈R2〉2c , which do
not depend on the parameter estimates. The result in
Fig. 4(b) shows that both amplitude ratios asymptoti-
cally converge to the values of the GUE TW distribution,
about 0.2241 for the skewness and 0.09345 for the kurto-
sis [6], and clearly rules out the GOE TW and Gaussian
distributions. Conversely, if we admit the GUE TW dis-
tribution, the amplitude of 〈R2〉c offers a precise estimate
of A at 9.98(7) µm, which is consistent with the direct es-
timate obtained above and hence used in the following.

Histograms of the local radius R(x, t) are then made
and shown in Fig. 4(c) for two different times as func-
tions of q ≡ (R − λt)/(A2λt/2)1/3, which corresponds
to χGUE if Eq. (3) holds. The experimental distributions
show remarkable agreement with the GUE TW one with-
out any fitting, apart from a slight horizontal translation.
Indeed, time series of the difference between the nth or-
der cumulants of q and χGUE [Fig. 4(d)] reveal that the

Figure 9: Comparison between fluctuations of the radius of a growing inter-
face in nematic liquid crystals and Tracy-Widom laws. Reprinted with permis-
sion from Universal fluctuations of growing interfaces: evidence in turbulent liquid
crystals, K. Takeuchi and M. Sano, Phys. Rev. Lett. 104 230601 (2010) © APS.

rial studied by Takeuchi and Sano presents two phases: the phase appearing
here in gray (resp. black) has a low (resp. high) density of topological defects.
If one applies a voltage to the grey phase, one encourages the formation of
defects. Once this happens – here at the center of the picture at time t = 0
– the black phase takes over the grey phase from this primary cluster of de-
fects. One observes that the interface grows approximately linearly with time
t. However, the turbulence driving the system causes some fluctuations from
samples to samples. The distribution of these fluctuations of radius from the
linear drift matches with the Tracy-Widom GUE law, and the quality of the
fit improves with time increasing (Figure 9). The symmetry class in this case
is conditioned by the geometry: a spherical geometry leads to GUE, while a
flat interface between two phases would lead to GOE. This result is confirmed
in a mathematical model for the interface growth analyzed at t → +∞ by
Sasamoto and Spohn around the same time [29].

Last remarks

In the last 20 years, tremendous progress has been made to prove universality
in random matrices, with weak assumptions, relying on various approaches.
Without exhaustivity, we can cite:

• the fact that some models are exactly solvable (like the invariant ensem-
bles of symmetric or hermitian random matrices) and Riemann-Hilbert
steepest descent analysis. This is very useful, but maybe not very sat-
isfactory from the probabilistic point of view, since the method hinges
from the beginning on ”algebraic miracles”, that disappear if the models
are slightly perturbed.

a topological defect.
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9. Asymptotics and universality of local regime

• transport of measures (Shcherbina ; Figalli, Guionnet and Bekerman),
which has succeeded in proving some universality for all β-ensembles.

• relaxation methods (Bourgade, Erdös, H.T.-Yau, etc.) which are of purely
based on probability, stochastic processes and analysis, which brought
many results for invariant ensembles, matrices with independent entries,
etc.

• combinatorial methods (Wigner ; Soshnikov ; Tao and Vu, etc.) that are
particularly useful for matrices with independent entries, etc.

One current trend is now to apply the insight gained from the study of ran-
dom matrices, to more difficult problems like random band matrices, random
Schrödinger operators, adjacency matrices of random graphs, etc. This is moti-
vated by the desire to understand the properties of localization/delocalization
of the eigenvectors – that determine isolating/conducting properties of mate-
rials modelized in this way.
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10 Questions of participants

• Ninjbat Uuganbaatar: Can one apply PCA techniques to analyze voting ?
In general, the number of options for which one votes is very small, so I do

not see how PCA can be used to analyze voting. However, it could be a tool
to check the representativity of the political offer in a given society. For in-
stance, one could ask n individuals to answer a poll consisting of p questions
about their political preference. As example of questions: how much should
income be taxed ? at which age should people retire ? should the state subsi-
dize health coverage ? . . . The opinion pollster would have to choose a way
to get answers which are numbers, for instance binary questions – somewhat
like in population genetics about presence or absence of an allele – given 0 or
1 as entries, or questions that one can answer by an intensity from 0 (not at
all) to 10 (absolutely). Then, one can build a n× p matrix X collecting the an-
swers, and the empirical covariance matrix M = p−1 XXT . By PCA analysis,
one can then hope to determine how many relevant groups can be formed,
that have similar political ideas – as measured by the questions asked. One
could then compare with the number of political parties, as well as their pro-
gramme, to see if the population is well-represented at the level of ideas, and
if their strength compares well with the magnitude of the eigenvalues found
in PCA. I do not know if such a project has been already conducted. Clearly,
an important work of calibration is needed – e.g. checking if the outcome of
PCA is similar when one asks yes/no questions, or intensity questions, etc. –
to ensure the results are reliable.

• Remco van der Hofstad: How can one identify quantitatively in PCA what
comes from true information and what comes from noise ?

For market prices, we have seen in the examples of Section 3.4 that the
overlap between the j-th eigenvector – sorted by decreasing order for the cor-
responding eigenvalues – of empirical correlation matrices in two distinct pe-
riods does not exceed what one expects from the overlap of two independent
random vectors for some j ≥ j0. And this threshold also corresponded well
with the position of the noise band – i.e. the distribution of eigenvalues λj
with j ≥ j0 was fitted with the Marčenko-Pastur law.

A more general method is to fix a confidence threshold, and then make
a statistical test for λi using the Tracy-Widom law, for i = 1, 2, 3, . . . until
one cannot reject anymore the null hypothesis (which enjoys Tracy-Widom
distribution). More precisely, if the test is passed for λi, one restricts the matrix
to the orthogonal of the eigenspace of λ1, . . . , λi before continuing the analysis.
And there exists estimates of the rate of convergence to the Tracy-Widom law
in null Wishart matrices (see e.g. [22]) when n, p is large but not infinite, which
can be used for statistical tests. To cope with finite size effects, one can also
use large deviation functions – see the question below – but one should keep
in mind that their details are much less robust (if one changes the model) than
the Tracy-Widom distribution.
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10. Questions of participants

• Kanstantsin Matetski: What can be said about the large deviations of the
maximum eigenvalue ?

Although I did not present them for lack of space in the lectures, there exist
techniques, based on potential theory and large deviation theory, to compute
the asymptotic behavior of the partition function in invariant ensembles. In
particular, if one assume that the support of the large n spectral density is a
single segment (as for GUE and Wishart) + some other technical assumptions
on V, one can show that the partition function:

Zn,β(A) =

ˆ
An

∏
1≤i<j≤n

|λj − λi|β
n

∏
i=1

exp
(
− nβ

2
V(λi)

)
dλi

has an asymptotic expansion of the form:

(59)

ln Zn,β(A) = n2F0 +(β/2)n ln n+n(β/2− 1)F1 +
3 + 2/β + β/2

12
ln n+ F2 + o(1)

when n → ∞, and the coefficients Fj can be computed fairly explicitly, de-
pending on V and A. The o(1) actually consists of a full asymptotic expansion
in powers of 1/n, and its coefficients can also be computed recursively.

These results give access to the large deviations for the maximum eigen-
value, since:

P[λmax ≤ a] =
Zn,β(a,+∞)

Zn,β(R)
.

For instance, when a is independent of n and strictly smaller than a∗ =
limn→∞ E[λmax], the assumptions leading to (59) are satisfied and we can
prove rigorously an asymptotic expansion of the form:

(60)

P[λmax ≤ a] = nc exp
[
−n2G0(a)−n(β/2− 1)G1(a)+

K

∑
k≥0

n−k Gk+2(a)+ o(n−K)
]

.

For a < a∗, this probability is super-exponentially small because one has to
push all the n eigenvalues to the left of a∗ to achieve the event λmax ≤ a < a∗.
The leading term G0(a) is called the large deviation function, and has some
relevance in statistical applications, because one has to face the finite size of
data.

How does that connect to the Tracy-Widom law ? If one naively insert
a = a∗ − sn−2/3 in the right-hand side of (60), we can show that each term
n−k Gk+2(a) tends to a constant G̃k+2 s−3k/2, which is of order 1. This is not
surprising because in this regime the probability (60) should vary between 0
and 1. As a matter of fact, putting a = a∗ − sn−2/3 goes out of the range in
which (60) was established. But, if one is ready to believe that the crossover
from ”large deviations” to ”not so large deviations” is smooth – an exchange
of limits that has not been justified as of writing – then we interpret the naive
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right-hand side where one first inserts a = a∗− sn−2/3 as the all-order asymp-
totic expansion when s→ +∞ of TWβ(−s). This leads to predictions, for any
value of β > 0, for the left tail of Tracy-Widom β laws. They agree with all rig-
orous results known for β = 1, 2, and with the leading order rigorously known
for arbitrary β. In particular, we have a prediction for the constant term of the
asymptotic expansion, which is always tricky to get. A similar story can be
devised for the right tail.

The large deviation function G0(a) at the left tail was first computed by
Dean and Majumdar in [8] – although this is a physics paper, the equation
they solve to get G0(a) can be rigorously established using potential theory
without any difficulty, hence making a complete proof. We discussed the gen-
eralization to all-order finite size corrections in [4] for the left tail, and [6] for
the right tail. The computations in these two papers are done for the Gaussian
ensembles, but there would be not difficulty in conducting them for other V,
e.g. for the Wishart ensembles. These two papers take as starting point the
asymptotic expansion of the form (60) ; these expansions have been estab-
lished rigorously in [5].

• Ninjbat Uuganbaatar : Is there a combinatorial interpretation to the for-
mulas we have seen for the distribution of random matrices ?

Let us start with a matrix Mn in the Gaussian ensembles, for σ = 1. The
moments of the semi-circle law can be directly computed by expanding its
Stieltjes transform (14) at z→ ∞:

lim
n→∞

n−1 Tr M2k
n =

2k!
k!(k + 1)!

= Cat(k) .

This is the Catalan number, computing the number of ways to connect pairs
of edges in a 2k-gon, without crossing. More generally, Harer and Zagier in
1986 [18] showed the expansion:

Tr M2k
n = ∑

g≥0
n1−2gNn(g)

where Nn(g) is the number of ways of identifying by pairs the edges of 2k-
gon, in such a way that the resulting surface has genus g. They gave several
formulas to compute these numbers – from (52), we know that they can be
expressed in terms of Hermite polynomials. Harer and Zagier used this to
compute the Euler characteristics of the moduli space of Riemann surfaces
of genus g ; this is one of the many and fruitful point of contacts between
random matrices and algebraic geometry.

Actually, the combinatorial interpretation of the moments of the GUE was
already known to physicists, in the more general context of invariant ensem-
bles of hermitian matrices. Brézin, Itzykson, Parisi and Zuber showed in 1979

[7] that the partition function ”decomposes” as:

Zn = nn+5/12 exp
(

∑
g≥0

n2−2g Fg

)
,
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and Fg enumerates discretized surfaces of genus g. For instance, if one takes
V(x) = x2/2− tx3/3, Fg is the number of triangulations of a genus g surface,
counted with a weight tT if it is made exactly of T triangles. Although it
seems he partition function does not make sense as a convergent integral since
V(x) → −∞, it can be defined rigorously as a formal series in the parameter
t – and this is why I said ”decompose” with quotes. Likewise the expectation
values:

E
[
Tr M`1

n · · ·Tr M`k
n
]

are related to the enumeration of discretized surfaces with k boundaries of
respective perimeters `1, . . . , `k counted with a weight nχ where χ is the Euler
characteristics. The coupling of the matrix size with the Euler characteristics
is a phenomenon that was first observed in gauge theories by the theoretical
physicist t’Hooft in 1974 [32]. More on the relations between random matrices,
enumeration of discretized surfaces and algebraic geometry, can be found in
the book [11].
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