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Time Series Analysis in a nutshell

Time series

Definition: A time series is a stochastic process (Xt , t ∈ T ).
The term is often also used for its (perhaps only partial) realisation
(xt , t ∈ T0), where T0 ⊆ T .
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Time Series Analysis in a nutshell

Remark

I In most cases T is an index set of consecutive time points;
often T = Z, T = N, T = R+

0 , or T = R.

I alternatively, (e.g. in geophysics) T can be a spatial index set
(precipitation in Asia during a specific month),
or T contains points of a surface (e.g. surface of the earth);
T can even index time and space (wind fields across Europe)

I during this topic lecture T ⊆ Z, mostly T ⊆ N
I Notation:

I Time:
discrete: t1 < t2 < . . . < tn or
continuous: 0 ≤ t ≤ T , t ≥ 0
during this lecture equidistant: tj = ∆j with ∆ = 1

I Observations: (xt1 , . . . , xtn) or (x1, . . . , xn) or (xt , 0 ≤ t ≤ T )
I Process: (Xti )i∈N or (Xi )i∈Z or (Xt , 0 ≤ t ≤ T )

I Time series can be real- or complex-valued and they can be
multivariate.
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Time Series Analysis in a nutshell

A time series plot
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Time Series Analysis in a nutshell

Just out of curiosity
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Time Series Analysis in a nutshell

A different series
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Time Series Analysis in a nutshell

Another time series
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Time Series Analysis in a nutshell

Where are time series? - Examples
There exist for example

I Financial time series:
Exchange rates, stock prices, interest rates, export numbers,...

I Meteorological time series:
temperatures, precipitation per hour/day/week/month,...

I Physical time series:
Sunspot numbers, measurements of an experiment, ...

I Biological time series
genetic values of progeny,...

I Medical time series
Patient data, clinical test data,...

I Ecological time series:
pollutants (CO2, Ozone, . . .), water levels,...

I Demographical time series:
population size, monthly income,...
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Time Series Analysis in a nutshell

Goals of time series analysis

general formulation:
understand dependencies over time

(a) describe / characterize

(b) model choice

(c) estimate parameters

(d) predict

(e) control

Today we will only deal with:
(a): seasonal effects, trend, outliers, change points
(b): model dependence in time, which is characterized by the
covariances between the random variables Xt
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Time Series Analysis in a nutshell

Deseasoning and detrending

Stationarity

Anita Behme 2015/08/13, 11



Time Series Analysis in a nutshell

Weak stationarity

Definition: A stochastic process (Xt)t∈T is called weakly
stationary if

(i) E |Xt |2 <∞ ∀t ∈ T
(ii) EXt = µ ∀t ∈ T
(iii) Cov (Xr ,Xs) = Cov (Xr+h,Xs+h)
∀r , s, h : r , s, r + h, s + h ∈ T
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Time Series Analysis in a nutshell

Strict stationarity

Definition: A stochastic process (Xt)t∈T is called strictly (or
strongly) stationary, if

(Xt1 , ...,Xtn)
d
= (Xt1+h, ...,Xtn+h)

for all t1, ..., tn ∈ T , n ∈ N, and h such that t1 + h, . . . , tn + h ∈ T .

In particular, Xt ∼ F for all t ∈ T .
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Time Series Analysis in a nutshell

Stationarity

If (Xt)t∈T is strictly stationary with finite variance, then (Xt)t∈T is
also weakly stationary. The converse is not true!

Exercises:

(a) Find an example of a weakly stationary process, which is not
strictly stationary.

(b) Show: If (Xt)t∈T is a gaussian process and weakly stationary,
then (Xt)t∈T is also strictly stationary.
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Time Series Analysis in a nutshell

Stationarity: Interpretation

A stationary stochastic process is in a “stochastic equilibrium”;
i.e.,

I sections of a sample path “look alike”

I fluctuations are purely random

A non-stationary stochastic process shows features like

I the mean level is not constant,

I the average size of the fluctuations is not constant,

I the type of dependence varies.

Anita Behme 2015/08/13, 15



Time Series Analysis in a nutshell

Deseasoning and detrending

Reduction of time series to stationary time series
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Time Series Analysis in a nutshell

Reduction of time series to stationary time series

The time series plot may help to detect, whether the time series
contains deterministic components like

I trend component

I seasonal component

I change points (model change)

I outliers

Anita Behme 2015/08/13, 17



Time Series Analysis in a nutshell

Idealistic models
(perhaps after appropriate transformation)

(i) Xt = Tt + St + Yt , t ∈ T , where
Tt : trend component (non-random)
St : seasonal component with period p (non-random)

(often p = 4, 12, 52, 7, 365)
Yt : random fluctuations (stationary)

(ii) Xt = TtSt + Yt , t ∈ T

(iii) lnXt − lnXt−1 = µ+ Yt , t ∈ 0, 1, . . . ,T , where
µ: mean value
Yt : random fluctuations (stationary)

(log-return model - often used for financial time series)

Anita Behme 2015/08/13, 18



Time Series Analysis in a nutshell

Example 1
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Time Series Analysis in a nutshell

Estimate trend- and seasonal component in the model
Xt = Tt + St + Yt

W.l.o.g. assume that EYt = 0 und St+p = St ,
∑p

j=1 Sj = 0.

Assumption: monthly data Xj ,k , j = 1, . . . , n, k = 1, . . . , 12; i.e.,

Xj ,k = Xk+12(j−1), j = 1, . . . , n, k = 1, . . . , 12.

Anita Behme 2015/08/13, 20



Time Series Analysis in a nutshell

Methode I: small trend method

Assumption: the trend component Tj is constant in year j .
A natural unbiased estimator is given by (since

∑12
k=1 Sk = 0)

T̂j =
1

12

12∑
k=1

Xj ,k .

Then we estimate Sk as

Ŝk =
1

n

n∑
j=1

(Xj ,k − T̂j),

then automatically
∑12

k=1 Ŝk = 0. The residuals are

Ŷj ,k = Xj ,k − T̂j − Ŝk , j = 1, . . . , n, k = 1, . . . , 12.
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Time Series Analysis in a nutshell

Example 1: Small trend method
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Time Series Analysis in a nutshell

Method II: MA-method

Step 1: First estimate the trend by a moving average, and the
periodicity p determines the length of the moving part of the time
series (window size).

p = 2q + 1 odd: T̂t = 1
p

∑q
j=−q Xt−j ,

p = 2q even: T̂t = 1
p

(
1
2 Xt−q + Xt−q+1

+ . . .+ Xt+q−1 + 1
2Xt+q

)
,

for q + 1 ≤ t ≤ n − q (use one-sided MA’s for t ≤ q and
t ≥ n − q).
It is also possible to use non-uniform weights.
This removes rapid fluctuations (high frequencies) from data: “low
pass filter”.
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Time Series Analysis in a nutshell

Method II: MA-method
Step 2: Estimate seasonal component
For each k = 1, . . . , p calculate Wk as arithmetic mean of

Xk+jp − T̂k+jp, q + 1 ≤ k + jp ≤ n − q (k fixed, j ∈ Z).

Wk would be a possible estimator for Sk , but
∑p

k=1Wk is not
necessarily equal to 0. Hence, choose

Ŝk = Wk −
1

p

p∑
i=1

Wi , k = 1, . . . , p,

and Ŝk = Ŝk−p for k > p.

The deseasonalized data are then

Dt = Xt − Ŝt , t = 1, . . . , n.

(Possibly reestimate a trend in the model without seasonal
component.)
The residuals are Ŷt := Xt − T̂t − Ŝt , t = 1, . . . , n.
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Time Series Analysis in a nutshell

Example 1: MA deseasoning
−

20
−

10
0

10
20

30
original series

te
m

pe
ra

tu
re

2007 2008 2009 2010 2011 2012 2013 2014 2015

4
5

6
7

8
9

trend component

T
_h

at
2

2007 2008 2009 2010 2011 2012 2013 2014 2015

−
20

−
10

0
10

20

seasonal component

re
p(

S
_h

at
2,

 8
)

2007 2008 2009 2010 2011 2012 2013 2014 2015

−
10

−
5

0
5

detrended series

te
m

pe
ra

tu
re

2007 2008 2009 2010 2011 2012 2013 2014 2015

Anita Behme 2015/08/13, 25



Time Series Analysis in a nutshell

Example 2
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Time Series Analysis in a nutshell

Method I: Fitting a polynomial trend in Xt = Tt + Yt

We may have reasons to assume that (Tt) is a polynomial in t:

Tt = a0 + a1t + a2t
2 + · · ·+ ar t

r

with r ∈ N0, a0, . . . , ar ∈ R.

I Fix r based on observed series (here r = 2)

I Estimate parameters by least squares estimation (LSE).
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Time Series Analysis in a nutshell

Example 2: log returns
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Time Series Analysis in a nutshell

Method II: Transforming the time series

Assumption: data Xj is of the form

lnXt − lnXt−1 = µ+ Yt , t ∈ 0, 1, . . . ,T ,

where
µ: mean value
Yt : random fluctuations (stationary)

or even more specifically
Yt ∼ N (0, σ2)

Then estimate µ and σ2 and compute normalized log returns

Zt := σ̂−1(ln(Xt/Xt−1)− µ̂).
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Time Series Analysis in a nutshell

Example 2: log returns
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Time Series Analysis in a nutshell

Reduction of time series to stationary time series

Attention:

I Various other models/methods for time series reduction exist!

I Choosing the right model can simplify the analysis drastically.
(and vice versa!)
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Time Series Analysis in a nutshell

Analyzing stationary time series

The autocovariance function
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Time Series Analysis in a nutshell

The autocovariance function

Definition: Let (Xt)t∈T be a stochastic process with
Var (Xt) <∞ for all t ∈ T . Then

γX (r , s) = Cov (Xr ,Xs) = E [(Xr − EXr ) (Xs − EXs)] , r , s,∈ T

is called autocovariance function of (Xt)t∈T .

For a weakly stationary stochastic process (Xt)t∈T we have
γX (r , s) = γX (r − s, 0) for all r , s. We define therefore

γX (h) = γX (h, 0) = Cov (Xt+h,Xt) ∀t, h;

i.e., γX (h) is the covariance between observations at a distance h
(we say between observations with lag h).
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Time Series Analysis in a nutshell

The autocovariance function

Properties of ACF γ:

(i) γ(0) ≥ 0

(ii) |γ(h)| ≤ γ(0)

(iii) γ(h) = γ(−h)

Exercise: Prove these properties.

Which functions can be ACFs?
(→ non-negative definite even functions)
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Time Series Analysis in a nutshell

The autocorrelation function

Definition: Let (Xt)t∈T be a weakly stationary stochastic process
with Var (Xt) <∞ for all t ∈ T . Then

ρX (h) :=
γX (h)

γX (0)

is called autocorrelation function (ACorrF) of (Xt)t∈T .
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Time Series Analysis in a nutshell

Analyzing stationary time series

Common time series models
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Time Series Analysis in a nutshell

White noise
White noise (Zt) ∼WN(0, σ2)

I EZt = 0 ∀ t
I γ(h) =

{
σ2 if h = 0
0 if h 6= 0

Anita Behme 2015/08/13, 37



Time Series Analysis in a nutshell

White noise
White noise (Zt) ∼WN(0, σ2)

I EZt = 0 ∀ t
I γ(h) =

{
σ2 if h = 0
0 if h 6= 0

Etymology: White noise is a random signal (or process) with a flat
spectral density. The name is analogous to white light in which the
spectral density of the light is distributed such that the eye’s three
color receptors (cones) are approximately equally stimulated.
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Time Series Analysis in a nutshell

Moving average process of order q

MA(q)-process:

Xt := Zt + θ1Zt−1 + . . .+ θqZt−q, t ∈ Z,

where (Zt) ∼WN(0, σ2Z ).

Example: MA(2)
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Time Series Analysis in a nutshell

Moving average process of order q
The process defined via

Xt =

q∑
j=0

θjZt−j , t ∈ Z, (Zj) ∼WN
(
0, σ2Z

)
, θ0 = 1,

is weakly stationary with

EXt = 0, VarXt = σ2Z

q∑
j=0

θ2j

γ (h) = E
[ q∑
j=0

θjZt−j

q∑
k=0

θkZt+h−k

]
=


0 h > q

σ2Z

q∑
j=0

θjθj+h, h = 0, ..., q

γ (−h) h < 0

% (h) =
γ (h)

γ (0)
=

 q∑
j=0

ψjψj+h

 q∑
j=0

ψ2
j

−1 , h = 1, ..., q.
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Time Series Analysis in a nutshell

Two MA(1) realisations
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Time Series Analysis in a nutshell

Autoregressive process of order p

AR(p)-process:

Xt := φ1Xt−1 + . . .+ φpXt−p + Zt , t ∈ Z,

where (Zt) ∼WN(0, σ2Z ).

Example: AR(2)
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Note: AR(1) is a Markov process.
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Time Series Analysis in a nutshell

Autoregressive process of order 1

Question: Is there a stationary AR(1) process?

For |φ| < 1 there exists a unique solution (Xt)t∈Z to

Xt − φXt−1 = Zt , (Zj) ∼WN
(
0, σ2Z

)
that is weakly stationary with

EXt = 0, VarXt = EX 2
t =

σ2Z
1− φ2

γ(h) =
φh

1− φ2
σ2Z = φ|h|σ2X , h ∈ Z

⇒ ρ (h) = φ|h|, h ∈ Z
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Time Series Analysis in a nutshell

Two AR(1) realisations
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Time Series Analysis in a nutshell

A combination of AR(p) and MA(q)
An ARMA(p, q)-process is a weakly stationary solution to:

Xt −
p∑

i=1

φiXt−i =

q∑
j=0

θjZt−j , t ∈ Z,

where (Zt) ∼WN(0, σ2Z ), and θ0 = 1.
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A combination of AR(p) and MA(q)
An ARMA(p, q)-process is a weakly stationary solution to:

Xt −
p∑

i=1

φiXt−i =

q∑
j=0

θjZt−j , t ∈ Z,

where (Zt) ∼WN(0, σ2Z ), and θ0 = 1.

Invoking the backshift operators and the polynomes

Φ(z) = 1− φ1z − . . .− φpzp

Θ(z) = 1 + θ1z + . . .+ θqz
q

we can write the ARMA(p, q)-process also as

Φ(B)Xt = Θ(B)Zt .
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A combination of AR(p) and MA(q)
An ARMA(p, q)-process is a weakly stationary solution to:

Xt −
p∑

i=1

φiXt−i =

q∑
j=0

θjZt−j , t ∈ Z,

where (Zt) ∼WN(0, σ2Z ), and θ0 = 1.

An ARMA(2,1) realisation:
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Time Series Analysis in a nutshell

Do ARMA(p, q) processes exist? Are they unique?

Assume that the characteristic polynomials Φ and Θ have no
common zeros.
Then if Φ (z) 6= 0 ∀z ∈ C, |z | ≤ 1 a unique weakly stationary
solution to the ARMA equation

Φ(B)Xt = Θ(B)Zt .

exists which is given by

Xt =
∞∑
j=0

ψjZt−j , t ∈ Z with Ψ (z) =
∞∑
j=0

ψjz
j =

Θ (z)

Φ (z)
, |z | ≤ 1.
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Time Series Analysis in a nutshell

Do ARMA(p, q) processes exist? Are they unique?

Assume that the characteristic polynomials Φ (z) and Θ (z) have
common zeros, then there are two possibilities:

I none of the common zeros lies on the unit circle: cancel the
common factor, then there remains a unique stationary
solution of the ARMA equation with polynomials Φ̃, Θ̃ that
have no common zero.

I At least one of the common zeros lies on the unit circle. Then
there can be multiple stationary solutions.
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Time Series Analysis in a nutshell

Linear processes

Definition: The time series (Xt)t∈Z is called linear process, if

Xt =
∞∑

j=−∞
ψjZt−j , t ∈ Z,

for some parameters (ψj)j∈Z ⊂ R such that
∞∑

j=−∞
|ψj | <∞ and

(Zt)t∈Z ∼WN
(
0, σ2Z

)
.

All models that we have seen so far are linear.
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Time Series Analysis in a nutshell

Analyzing stationary time series

Estimating mean and ACF
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Time Series Analysis in a nutshell

Estimating the mean
Consider observations X1, ...,Xn of a real-valued stationary time
series (Xt)t∈Z with mean EXt = µ and ACF γ.

A natural unbiased estimator of µ is

X n =
1

n

n∑
i=1

Xi , n ∈ N.
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Time Series Analysis in a nutshell

Estimating the mean
Consider observations X1, ...,Xn of a real-valued stationary time
series (Xt)t∈Z with mean EXt = µ and ACF γ.

A natural unbiased estimator of µ is

X n =
1

n

n∑
i=1

Xi , n ∈ N.

I If γ(n)→ 0 as n→∞, then VarX n = E
(
X n − µ

)2 → 0 as
n→∞.

I If
∑
|γ (n) | <∞, then limn→∞ nVarX n =

∑∞
h=−∞ γ (h).

Exercise: Proof this.
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Time Series Analysis in a nutshell

Estimating the mean
Consider observations X1, ...,Xn of a real-valued stationary time
series (Xt)t∈Z with mean EXt = µ and ACF γ.

A natural unbiased estimator of µ is

X n =
1

n

n∑
i=1

Xi , n ∈ N.

A Central Limit Theorem: If (Xt)t∈Z is linear,

i.e. Xt = µ+
∞∑

j=−∞
ψjZt−j , with (Zt)t∈Z ∼ i.i.d.

(
0, σ2

)
and such that

∑∞
j=−∞ |ψj | <∞ and

∑∞
j=−∞ ψj 6= 0, then

X n − µ√
v/n

d→ N (0, 1) ,

with v =
∑
γ(h) = σ2 (

∑
ψj)

2 .
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Time Series Analysis in a nutshell

Estimating the ACF

Consider observations X1, ...,Xn of a real-valued stationary time
series (Xt)t∈Z with mean EXt = µ and ACF γ.

Classical estimators for γ and ρ are

γ̂ (h) =
1

n

n−h∑
t=1

(
Xt − X n

) (
Xt+h − X n

)
, 0 ≤ h ≤ n − 1,

ρ̂ (h) = γ̂ (h) /γ̂ (0) , 0 ≤ h ≤ n − 1

I γ̂ (h) is in general biased, but asymptotically unbiased.

I Note: The estimate γ̂ (h) is bad for h close to n.

I One can prove a CLT for γ̂. (→ Bartlett’s formula)
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Time Series Analysis in a nutshell

Example 1: Mean daily high temperatures
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Time Series Analysis in a nutshell

Example 2: Exchange rates
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Time Series Analysis in a nutshell

Analyzing stationary time series

Non-linear models: ARCH and GARCH
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Time Series Analysis in a nutshell

The ARCH - A nonlinear model

I 1982: Robert Engle proposes the ARCH (autoregressive
conditionally heteroskedastic) time series to model the
volatility of the UK inflation. The volatility is modeled as
autoregressive process of previous observations:

Yt = σtεt , σ2t = θ +

q∑
i=1

αiY
2
t−i , t ∈ N,

where
I (εt)t∈N i.i.d. with E [εt ] = 0, Var (εt) = 1 and
I εt independent of Ft−1 = σ(Yt−k , k = 1, 2, . . .)
I θ > 0, αi ≥ 0 with αq > 0.

 Nobel price 2003
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Time Series Analysis in a nutshell

The

CO

GARCH

I 1986: Bollerslev extends the ARCH model with an additional
term of past volatilities and introduces the GARCH(p,q)
(generalized ARCH) processes:

Yt = σtεt , σ2t = θ +

q∑
i=1

αiY
2
t−i +

p∑
j=1

βjσ
2
t−j , t ∈ N,

where
I (εt)t∈N i.i.d. with E [εt ] = 0, Var (εt) = 1 and
I εt independent of Ft−1 = σ(Yt−k , k = 1, 2, . . .)
I θ > 0, αi ≥ 0, βi ≥ 0 with αq, βp > 0.

Setting βi = 0 yields the ARCH model.

I 2004: Klüppelberg et al. propose a continuous-time
GARCH(1,1) model: COGARCH(1,1).
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Time Series Analysis in a nutshell

A GARCH(1,1) realisation
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Time Series Analysis in a nutshell

Further reading

I Brockwell and Davis (1991)
Time Series: Theory and Methods.
2nd edition, Springer.

I Brockwell and Davis (2002)
Introduction to Time Series and Forecasting.
2nd edition, Springer.

I Box, Jenkins and Reinsel (2008)
Time Series Analysis: Forecasting and Control.
4th edition, Wiley.

I Andersen, Davis, Kreiss and Mikosch (Eds.) (2009)
Handbook of Financial Time Series.
Springer.

I Franq and Zakoian (2010)
GARCH Models: Structure, Statistical Inference and Financial Applications.
Wiley.

I ...
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