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Time Series Analysis in a nutshell

Time series

Definition: A time series is a stochastic process (X, t € T).
The term is often also used for its (perhaps only partial) realisation
(xt,t € To), where To C T.
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Time Series Analysis in a nutshell

Remark

» In most cases 7 is an index set of consecutive time points;
often T=2,T=NT=R{, or T =R.
» alternatively, (e.g. in geophysics) 7 can be a spatial index set
(precipitation in Asia during a specific month),
or T contains points of a surface (e.g. surface of the earth);
T can even index time and space (wind fields across Europe)
» during this topic lecture 7 C Z, mostly 7 C N
> Notation:
> Time:
discrete: t) < tp < ... < t,or
continuous: 0 <t < T,t>0
during this lecture equidistant: t; = Aj with A =1
» Observations: (Xz,,...,Xz,) or (X1,...,Xp) or (x,0<t<T)
» Process: (X )ien or (Xi)icz or (X, 0<t<T)
> Time series can be real- or complex-valued and they can be
multivariate.

Anita Behme



in a nutshell

A time series plot

Mean daily high temperatures in Ulan Bator
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Time Series Analysis in a nutshell

Another time series plot

Mean daily high temperatures in Ulan Bator
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Time Series Analysis in a nutshell

Just out of curiosity

Mean daily high/low temperatures in Ulan Bator

temperature
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Time Series Analysis in a nutshell

A different series

sunspot numbers (yearly averages)
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Time Series Analysis in a nutshell

Another time series

Daily exchange rates MNT to USD (trading days only)
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Time Series Analysis in a nutshell

Where are time series? - Examples
There exist for example

>

Financial time series:

Exchange rates, stock prices, interest rates, export numbers,...
Meteorological time series:

temperatures, precipitation per hour/day/week/month,...
Physical time series:

Sunspot numbers, measurements of an experiment, ...
Biological time series

genetic values of progeny,...

Medical time series

Patient data, clinical test data,...

Ecological time series:

pollutants (CO2, Ozone, ...), water levels,...
Demographical time series:

population size, monthly income,...
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Time Series Analysis in a nutshell

Goals of time series analysis

general formulation:
understand dependencies over time

a) describe / characterize

(
(b) model choice

(c estimate parameters
(d
(

€

predict

)
)
)
)
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Time Series Analysis in a nutshell

Goals of time series analysis

general formulation:
understand dependencies over time
) describe / characterize

a
b) model choice

d) predict

(
(
(c) estimate parameters
(
(e) control

Today we will only deal with:

(a): seasonal effects, trend, outliers, change points

(b): model dependence in time, which is characterized by the
covariances between the random variables X;

Anita Behme




Deseasoning and detrending

Stationarity

2015/08/13, 11



Time Series Analysis in a nutshell

Weak stationarity

Definition: A stochastic process (X;),. is called weakly
stationary if

(i) EX¢? <00 VteT

(i) EXe=p VteT

(iii) Cov (Xr, Xs) = Cov (Xy1p, Xsih)
Vr,s,h: r, s, r+h s+h €T

Anita Behme 2015/08/13, 12



Strict stationarity

Definition: A stochastic process (X;),. is called strictly (or
strongly) stationary, if

d
(tha SX) th) = (Xt1+h7 R3] th-‘rh)

forall t1,...,t, € T, ne€N, and hsuch that ty +h,...,t,+heT.
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Time Series Analysis in a nutshell

Strict stationarity

Definition: A stochastic process (X;),. is called strictly (or
strongly) stationary, if

d
(tha "'7th) = (Xt1+h7 "'7th+h)
forall t1,...,t, € T, ne€N, and hsuch that ty +h,...,t,+heT.

In particular, X; ~ F forall t € T.
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Stationarity

If (Xt);cr is strictly stationary with finite variance, then (X),. is
also weakly stationary. The converse is not true!
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Stationarity

If (Xt);cr is strictly stationary with finite variance, then (X),. is
also weakly stationary. The converse is not true!

Exercises:
(a) Find an example of a weakly stationary process, which is not
strictly stationary.

(b) Show: If (X:),c7 is a gaussian process and weakly stationary,
then (X)o7 is also strictly stationary.
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Time Series Analysis in a nutshell

Stationarity: Interpretation

A stationary stochastic process is in a “stochastic equilibrium”;
ie.,

» sections of a sample path “look alike”
» fluctuations are purely random
A non-stationary stochastic process shows features like
» the mean level is not constant,
> the average size of the fluctuations is not constant,

> the type of dependence varies.

Anita Behme



Time Series Analysis in a nutshell

Deseasoning and detrending

Reduction of time series to stationary time series
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Time Series Analysis in a nutshell

Reduction of time series to stationary time series

The time series plot may help to detect, whether the time series
contains deterministic components like

> trend component
» seasonal component
» change points (model change)

» outliers

Anita Behme



Time Series Analysis in a nutshell

Idealistic models
(perhaps after appropriate transformation)

(i) Xe =Te+St+ Y, t €T,  where
T:: trend component (non-random)
S;: seasonal component with period p (non-random)

(often p = 4,12,52,7,365)

Y:: random fluctuations (stationary)

(i) Xe=TeSe+ Yo, teT

(i) InXy —InXe—1 =p+Ye, t€0,1,...,T, where
(4: mean value
Y:: random fluctuations (stationary)

(log-return model - often used for financial time series)

Anita Behme 2015/08/13, 18



Time Series Analysis in a nutshell
Example 1

Mean daily high temperatures in Ulan Bator
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Time Series Analysis in a nutshell

Estimate trend- and seasonal component in the model
Xe= T+ St + Yi

W.l.o.g. assume that EY; = 0 und S¢4p = St, Zf:l S;=0.

Assumption: monthly data Xj «, j=1,...,n, k=1,...,12; i.e,

)<j,k:Xk+12(j—1)a j:].,...,n, k:1,712

Anita Behme



Methode I: small trend method

Assumption: the trend component T; is constant in year j.
A natural unbiased estimator is given by (since 332, Sk = 0)

Then we estimate S; as
1 n
Se==> (Xu—T;
k nj_l( \ k J)7

then automatically 211(2:1 S, = 0. The residuals are

Vj,k:Xj,k*f_jfgk, j=1...,n, k=1,...,12

Anita Behme



Example 1: Small trend method
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Method 1l: MA-method

Step 1: First estimate the trend by a moving average, and the
periodicity p determines the length of the moving part of the time
series (window size).

p=2qg+1 odd: T, =
p=2q even: T: =

Jq:fq Xt
(3 Xe—q + Xe—g1
oot Xesgo1+ 5Xetq)

_|_‘ch—-‘ch—'

for g+ 1<t <n— q (use one-sided MA’s for t < g and
t>n-—q).

It is also possible to use non-uniform weights.

This removes rapid fluctuations (high frequencies) from data: “low
pass filter".

Anita Behme



Method 1l: MA-method

Step 2: Estimate seasonal component
For each k=1,..., p calculate W} as arithmetic mean of

Xk+jp—7A_k+jp7 g+1<k+jp<n—gq(kfixed,j € Z).

W), would be a possible estimator for Sy, but Z’;Zl Wi is not
necessarily equal to 0. Hence, choose

N

1 p
Sk = Wk_;ZVVH k:]-a"‘?pv
i=1

and §k = §k_p for k > p.
The deseasonalized data are then
Dt:Xt_§t7 t:l,...,n.

(Possibly reestimate a trend in the model without seasonal
component.)
The residuals are Y; ;= Xy — Ty — S, t=1,...,n.

Anita Behme



Example 1: MA deseasoning

temperature

rep(S_hat2, 8)
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Time Series Analysis in a nutshell
Example 2

Daily exchange rates MNT to USD (trading days only)
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Method |: Fitting a polynomial trend in X; = T; 4+ Y;

We may have reasons to assume that (T;) is a polynomial in t:
Te=ao+ait+axt> +-- +at’

with r € Ng, ag,...,ar € R.

» Fix r based on observed series (here r = 2)

» Estimate parameters by least squares estimation (LSE).

Anita Behme



Time Series Analysis in a nutshell

Example 2: log returns

original series
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Time Series Analysis in a nutshell

Method Il: Transforming the time series

Assumption: data X; is of the form
|nXt—|nXt7]_:/A+Yt, tEO,l,...,T,

where
w: mean value
Y:: random fluctuations (stationary)
or even more specifically
Y: ~ N(0,02?)
Then estimate z and 0 and compute normalized log returns

Zy =61 (In(Xe/Xe1) — f).

Anita Behme



Time Series Analysis in a nutshell

Example 2: log returns

original series
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Time Series Analysis in a nutshell

Reduction of time series to stationary time series

Attention:

» Various other models/methods for time series reduction exist!

» Choosing the right model can simplify the analysis drastically.
(and vice versal!)

Anita Behme



Time Series Analysis in a nutshell

Analyzing stationary time series

The autocovariance function
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Time Series Analysis in a nutshell

The autocovariance function

Definition: Let (X;),.; be a stochastic process with
Var (X:) < oo for all t € T. Then

vx (r,s) = Cov (X, Xs) = E[(Xr — EX;) (Xs — EXS)], r,s,€T
is called autocovariance function of (X)o7

For a weakly stationary stochastic process (X;),.; we have
vx (r,s) = vx (r —s,0) for all r,s. We define therefore

vx (h) = vx (h,0) = Cov (Xp1p, X¢) Vi, h;

i.e., 7x (h) is the covariance between observations at a distance h
(we say between observations with lag h).

Anita Behme 2015/08/13, 33



Time Series Analysis in a nutshell

The autocovariance function

Properties of ACF ~:
(i) ~(0) =0

(i) v(h)| <~(0)
(iii) v(h) =~(=h)
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Time Series Analysis in a nutshell

The autocovariance function

Properties of ACF ~:
(i) ~(0) =0

(i) v(h)| <~(0)
(iii) v(h) =~(=h)

Exercise: Prove these properties.
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Time Series Analysis in a nutshell

The autocovariance function

Properties of ACF ~:

(i) 7(0) =0

(i) v(h)| <~(0)

(iii) y(h) =~(=h)

Exercise: Prove these properties.

Which functions can be ACFs?
(— non-negative definite even functions)

Anita Behme 2015/08/13, 34



Time Series Analysis in a nutshell

The autocorrelation function

Definition: Let (X;),.; be a weakly stationary stochastic process
with Var (X;) < oo for all t € T. Then

_x(h)
px(h) = 7x(0)

is called autocorrelation function (ACorrF) of (Xt),cr-

Anita Behme



Time Series Analysis in a nutshell

Analyzing stationary time series

Common time series models

2015/08/13, 36



Time Series Analysis in a nutshell

White noise
White noise (Z;) ~ WN(0, o2)

> EZ, =0Vt
o2 ifh=0
’V(h)_{o if h#0
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Time Series Analysis in a nutshell

White noise

White noise (Z;) ~ WN(0, o2)

» EZ, =0V 1.“2

o if h=0

’V(h):{o if h#0
Etymology: White noise is a random signal (or process) with a flat
spectral density. The name is analogous to white light in which the
spectral density of the light is distributed such that the eye's three
color receptors (cones) are approximately equally stimulated.

Anita Behme 2015/08/13, 37



Time Series Analysis in a nutshell

White noise
White noise (Z;) ~ WN(0, o2)

> EZ, =0Vt
o2 ifh=0
’V(h)_{o if h#0

White noise with sigma=1 ACorrF for WN(0,1)
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Time Series Analysis in a nutshell

Moving average process of order g

MA(q)-process:

Xt = Zt+912t,1+...+9qzt,q, t e Z,
where (Z;) ~ WN(0, 02).

Anita Behme 2015/08/13, 38



Time Series Analysis in a nutshell

Moving average process of order g

MA(q)-process:

Xt = Zt+912t,1+...+9qzt,q, t e Z,
where (Z;) ~ WN(0, 02).

Example: MA(2
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Time Series Analysis in a nutshell

Moving average process of order g

MA(q)-process:

Xt = Zt+912t,1+...+9qzt,q, t e Z,
where (Z;) ~ WN(0, 02).

Example: MA(2
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Time Series Analysis in a nutshell

Moving average process of order g
The process defined via

q
Xe=) 0;Zj, teZ, (Z)~WN(0,0%),00=1,
j=0

is weakly stationary with

q
EX; = 0, VarXe=0%)» 07

=0
0 h>gq
q q L a
v(h) = E[ZOJ-Z,H- ZQthJrh—k} =402 ;)9j9j+h, h=0,..q
/=0 k=0 /=
: 7 (~h) h<0
-1
7 (h) S
Q(h) = 70 = Z%%w ij R h=1,...,q.
=0
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in a nutshell

Two MA(1) realisations

MA(1) with theta=0.2 MA(1) with theta=—0.9
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Time Series Analysis in a nutshell

Autoregressive process of order p

AR(p)-process:

Xe =1 Xe—1+ ...+ OpXep+ 4t, tEZ,
where (Z;) ~ WN(0, 02).

Anita Behme



Time Series Analysis in a nutshell

Autoregressive process of order p

AR(p)-process:

Xe =1 Xe—1+ ...+ OpXep+ 4t, tEZ,
where (Z;) ~ WN(0, 02).

Example: AR(2)
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Time Series Analysis in a nutshell

Autoregressive process of order p

AR(p)-process:

Xe =1 Xe—1+ ...+ OpXep+ 4t, tEZ,
where (Z;) ~ WN(0, 02).

Example: AR(2)

Gl ) () o=
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Time Series Analysis in a nutshell

Autoregressive process of order p

AR(p)-process:

Xe =1 Xe—1+ ...+ OpXep+ 4t, tEZ,
where (Z;) ~ WN(0, 02).

Example: AR(2)

Gl ) () o=
() (&) (@) () -

Note: AR(1) is a Markov process.

Anita Behme 2015/08/13, 41



Time Series Analysis in a nutshell

Autoregressive process of order 1

Question: Is there a stationary AR(1) process?

Anita Behme 2015/08/



Time Series Analysis in a nutshell

Autoregressive process of order 1

Question: Is there a stationary AR(1) process?

For |¢| < 1 there exists a unique solution (Xt),s to
X — ¢Xe—1 = Zt, (ZJ) ~ WN (070%)

that is weakly stationary with

2
—¢
d)h
W) = (s ok, hez
= p(h) = o' hez

Anita Behme 2015/08/13, 42



in a nutshell

Two AR(1) realisations

AR(1) with phi=0.8 AR(1) with phi=-0.3
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A combination of AR(p) and MA(q)

An ARMA(p, g)-process is a weakly stationary solution to:

P q
Xe=D 0iXei=) 0Zcj, te,
i=1 j=0

where (Z;) ~ WN(0,0%), and 6 = 1.
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A combination of AR(p) and MA(q)

An ARMA(p, g)-process is a weakly stationary solution to:

P q
Xe=D 0iXei=) 0Zcj, te,
i=1 j=0

where (Z;) ~ WN(0,0%), and 6 = 1.

Invoking the backshift operators and the polynomes

P(z) = 1—rz—...—¢ppzP
O(z) = 1401z+...4+ 0427

we can write the ARMA(p, g)-process also as

®(B)X; = O(B)Z,.

Anita Behme 2015/08/13, 44



A combination of AR(p) and MA(q)

An ARMA(p, g)-process is a weakly stationary solution to:

P q
Xe=D 0iXei=) 0Zcj, te,
i=1 j=0
where (Z;) ~ WN(0,0%), and 6 = 1.
An ARMA(2,1) realisation:

ARMA(2,1) with phi1=-0.2, phi2=0.4, theta=0.4 ACOITF for ARMA(2,1)

00 02 04 06 08 10

T T T
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Do ARMA(p, q) processes exist? Are they unique?

Assume that the characteristic polynomials ® and © have no
common zeros.

Then if ®(z) #0 Vz € C, |z| <1 a unique weakly stationary
solution to the ARMA equation

®(B)X; = O(B)Z,.

exists which is given by

)
Z¢Jzt_J, teZ with V(z Z¢sz B z| < 1.

j=0

Anita Behme 2015/08/13, 45



Do ARMA(p, q) processes exist? Are they unique?

Assume that the characteristic polynomials ® (z) and © (z) have
common zeros, then there are two possibilities:

» none of the common zeros lies on the unit circle: cancel the
common factor, then there remains a unique stationary
solution of the ARMA equation with polynomials ¢, © that
have no common zero.

> At least one of the common zeros lies on the unit circle. Then
there can be multiple stationary solutions.

Anita Behme



Time Series Analysis in a nutshell

Linear processes

Definition: The time series (X;),cy, is called linear process, if

oo
Xe= ) ¥iZej teL

j=—o0

oo
for some parameters (1)jcz C R such that ) |¢;] < co and

j=—o0

(Zt) ez, ~ WN (0,0%).
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Time Series Analysis in a nutshell

Linear processes

Definition: The time series (X;),cy, is called linear process, if

oo
Xe= ) ¥iZej teL

j=—o0

oo
for some parameters (1)jcz C R such that ) |¢;] < co and

j=—o0

(Zt) ez, ~ WN (0,0%).

All models that we have seen so far are linear.

Anita Behme



Time Series Analysis in a nutshell

Analyzing stationary time series

Estimating mean and ACF

2015/08/13, 48



Time Series Analysis in a nutshell

Estimating the mean

Consider observations Xi, ..., X, of a real-valued stationary time
series (Xt),cz with mean EX; = 1 and ACF .

A natural unbiased estimator of p is

_ 1 <&
X":”,;Xi’ neN.

Anita Behme



Time Series Analysis in a nutshell

Estimating the mean

Consider observations Xi, ..., X, of a real-valued stationary time
series (Xt),cz with mean EX; = 1 and ACF .

A natural unbiased estimator of p is
1 n
X, = n;X,, neN.
1=

> If y(n) — 0 as n — oo, then Vary":E(yn—M)Z%Oas
n — oo.

» If Y|y (n) ] < oo, then limy_oo nVar X, = >°02 _y(h).

Anita Behme 2015/08/13, 49



Time Series Analysis in a nutshell

Estimating the mean

Consider observations Xi, ..., X, of a real-valued stationary time
series (Xt),cz with mean EX; = 1 and ACF .

A natural unbiased estimator of p is
1 n
X, = n;X,, neN.
1=

> If y(n) — 0 as n — oo, then Vary":E(yn—M)Z%Oas
n — oo.

» If Y|y (n) ] < oo, then limy_oo nVar X, = >°02 _y(h).
Exercise: Proof this.
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Time Series Analysis in a nutshell

Estimating the mean
Consider observations Xi, ..., X, of a real-valued stationary time

series (Xt),cz with mean EX; = 1 and ACF .

A natural unbiased estimator of p is
1 n
X, = n;X,, neN.
1=

A Central Limit Theorem: If (X;),.; is linear,

ie. Xe =p+ Y jZij, with (Z)eez ~i.id. (0,02)
Jj=—00

and such that 3 7% [¢);| <ocoand 37F 4 # 0, then

Xo—t 4 N(0,1),

VoI

with v = 9(h) = 02 (£ ).



e e Y HEEE——SS
Estimating the ACF

Consider observations X, ..., X, of a real-valued stationary time
series (Xt);cz With mean EX; = 1 and ACF .

Classical estimators for v and p are
A(h) = 72 (Xe = Xn) (Xen — Xn), 0<h<n—1,

ph) = ()/’Y()7 0<h<n-1

» 4 (h) is in general biased, but asymptotically unbiased.
» Note: The estimate 4 (h) is bad for h close to n.
» One can prove a CLT for 4. (— Bartlett's formula)

Anita Behme 2015/08/13, 50



Example 1: Mean daily high temperatures

temperature

ACF

4 -2

-6

0.2 0.6 1.0

-0.2

series detrended via small trend

series detrended via MA

temperature

-10

T T T T T T T T T
2007 2008 2009 2010 2011 2012 2013 2014 2015

empirical autocorrelations - small trend

T T T T T T T T T
2007 2008 2009 2010 2011 2012 2013 2014 2015

empirical autocorrelations — MA

ACF
0.2 04 06 08 1.0

-0.2




Time Series Analysis in a nutshell

Example 2: Exchange rates

Normalized log returns
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Time Series Analysis in a nutshell

Analyzing stationary time series

Non-linear models: ARCH and GARCH
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Time Series Analysis in a nutshell

The ARCH - A nonlinear model

» 1982: Robert Engle proposes the ARCH (autoregressive
conditionally heteroskedastic) time series to model the
volatility of the UK inflation. The volatility is modeled as
autoregressive process of previous observations:
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The ARCH - A nonlinear model

» 1982: Robert Engle proposes the ARCH (autoregressive
conditionally heteroskedastic) time series to model the
volatility of the UK inflation. The volatility is modeled as
autoregressive process of previous observations:

q
Yt:Gt5t7 U?:0+Zaiyt‘27i7 tENv
i=1

where
> (¢¢)ten i.i.d. with E[e;] =0, Var(e;) =1 and
» &; independent of F;_; = o(Yi—k, k=1,2,...)
» 0>0, a; >0 with ag > 0.
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The ARCH - A nonlinear model

» 1982: Robert Engle proposes the ARCH (autoregressive
conditionally heteroskedastic) time series to model the
volatility of the UK inflation. The volatility is modeled as
autoregressive process of previous observations:

q
Yt:Gt5t7 U?:0+Zaiyt‘27i7 tENv
i=1

where
> (¢¢)ten i.i.d. with E[e;] =0, Var(e;) =1 and
» &; independent of F;_; = o(Yi—k, k=1,2,...)
» 0>0, a; >0 with ag > 0.

~> Nobel price 2003
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The  GARCH

» 1986: Bollerslev extends the ARCH model with an additional
term of past volatilities and introduces the GARCH(p,q)
(generalized ARCH) processes:

q P
Y: = 0t U? =60+ Za;Yf_; + Zﬁjaf_j, teN,
i=1 j=1

where
» (et)ten i.i.d. with E[e;] =0, Var(e;) =1 and
» ¢; independent of F;_1 = o(Yi—k, k=1,2,...)
» >0, a; >0, 8 >0 with a4, 3, > 0.
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The  GARCH

» 1986: Bollerslev extends the ARCH model with an additional
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Setting 5; = 0 yields the ARCH model.
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The COGARCH

» 1986: Bollerslev extends the ARCH model with an additional
term of past volatilities and introduces the GARCH(p,q)
(generalized ARCH) processes:

q P
2 2 2
Yt:O'tEt, Ut:0+zaiyt—i+zﬁja-t—j7 tEN,
i=1 j=1

where
» (et)ten i.i.d. with E[e;] =0, Var(e;) =1 and
» ¢; independent of F;_1 = o(Yi—k, k=1,2,...)
» >0, a; >0, 8 >0 with a4, 3, > 0.

Setting 5; = 0 yields the ARCH model.

> 2004: Kliippelberg et al. propose a continuous-time
GARCH(1,1) model: COGARCH(1,1).
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A GARCH(1,1) realisation

GARCH(1,1) with alpha=0.15, beta=0.6
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Further reading

> Brockwell and Davis (1991)
Time Series: Theory and Methods.
2nd edition, Springer.

> Brockwell and Davis (2002)
Introduction to Time Series and Forecasting.
2nd edition, Springer.

> Box, Jenkins and Reinsel (2008)
Time Series Analysis: Forecasting and Control.
4th edition, Wiley.

> Andersen, Davis, Kreiss and Mikosch (Eds.) (2009)
Handbook of Financial Time Series.
Springer.

> Franq and Zakoian (2010)
GARCH Models: Structure, Statistical Inference and Financial Applications.
Wiley.
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