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What is a PDE?

An ordinary differential equation (ODE) is an equation which
involves an unknown function in one variable and some of its
derivatives.

A partial differential equation (PDE) is an equation which in-
volves an unknown function in several variables and some of its
partial derivatives. It can be written in the form

E(z,u(x), Du(z), ... ,Dku(m)) =0 inU
with
» U an open set in R? (with d > 2),
» k < IN the order of the PDE,
» u: U — R the unknown function (with derivatives D‘u),
» E:U xR x...x R" — R a given function.



What is a PDE good for?

PDEs can be used to describe a large variety of phenomena,
such as from . In
these applications

» w usually represents the relevant quantity (e.g. the distribu-
tion of heat or of particles),

» E is given in terms of underlying laws (or interactions with
external forces), according to which the quantity u evolves
or behaves.

Understanding the way, a system behaves in principle, should al-
low for predictions of the systems, once suitable initial or bound-
ary conditions are imposed. However, from the point of view of
modeling, one might also compare the mathematical predictions
with what one observes in reality — and see whether or not the
model is “justified” and contains all relevant laws.



What are we interested in?

In general, we want to understand some properties of solutions
to PDEs, such us

>

>

Existence of solutions?

Uniqueness of solutions (under suitable constraints, such
as initial and boundary conditions)?

How do solutions depend on the data (initial and boundary
conditions?

What are their qualitative properties (differentiability or, more
generally, regularity, boundedness, behavior at infinity or
close to singularities, explicit formulas etc.)?

In contrast to ODEs (Theorems of Peano and of Picard—

Lindel6f), there is no general existence theory for PDEs (it de-
pends crucially from the class of PDE under consideration).



What is a solution to a PDE?

The answer to the previous questions depend quite crucially
from the notion of solution. The simplest one (used here) is:

Definition
A function v: U — R is called a classical solution of the PDE
E(z,u(z), Du(z),...,D"u(z)) =0 inU,

provided that u € C*(U) holds and that this equation is satisfied
everywhere in U.

Obviously, not all PDEs admit a classical solution, e.g.

|Dul* +1=0.



What is a solution to a PDE?

The notion of a classical solution is quite strong, and
moreover, for general equations it is hard to prove the existence
of classical solutions. If instead one employs a concept of “weak
solutions”, then the existence of such solutions is guaranteed
more easily (for example by methods from functional analysis).
Here, the two requirements in the definition are relaxed as fol-
lows:

» weak solutions need not be of class C*, but usually only
differentiable in a weak sense (e.g. in a suitable Lebesgue
or Sobolev space, depending on k),

» the equations needs to be satisfied only in a weak sense
(e.g. “integrated against smooth, compactly supported test
functions”).



Some examples of PDEs —
the Laplace equation

d
Au=divDu=)» DDu=0 inU
=1
This is the prototype of a linear, equation.
» The differential operator A is called the Laplace operator,
» classical solutions of the Laplace equation are called har-
monic functions.
The Laplace equation and its inhomogeneous version (the Pois-
son equation) are employed in particular for the description of
various physical phenomena, such as the stationary (i.e. time-
independent) distribution of heat, electro-static and gravitational
potentials.



Some examples of PDEs —
Euler—Lagrange equations

div D, f(x,u, Du) = D, f(x,u, Du) inU

These equations arise typically in the study of (sufficiently reg-
ular) energy densities f: U x R x R? — R, while investigating
critical points (or minimizers) of the energy functional

Flw] ::/Uf(a:,w(:z:),Dw(m))dx

in some given class of functions w: U — R.



Some examples of PDEs —
Euler—Lagrange equations

Derivation in the simplest case f(z,u,z) € C?:

Consider a minimizer v of Flw] := [, f(z,w(z), Dw(x)) dz among all func-
tions in C*(U) N C°(U) with boundary values . Thus, we have

digF[ utep |= dis /U f(z,u(x) + ep(x), Du(x) + eDg(x)) doz = 0

“variation of u”

for all ¢ € C§°(U). Interchanging integration and differentiation, we find with
integration by parts

0= [ (Duf(@u(a). Dula))e(w) + D-f(e.u(w). Du(w)) - Dp(a)) da

:/U(Duf(:mu(:c),Du(x))—zd:DiDzif(x,u(:c),Du(x)))g@(az)dm.

=0 in U by fundamental theorem of calculus (¢ is arbitrary!)



Some examples of PDEs —
Minimal surface equation

. Du .
div ((1-|—’Du‘2)1/2) =0 inU.
This equation represents the Euler—Lagrange equation of the
area functional

Alw] = /U(1 + |Dw(z)|>)V/? dx .

If w € C2(U) N C°(U) is a minimizer of A to given continuous
boundary values, then the graph of u possesses the smallest
area among all functions attaining these boundary values, and
u further satisfies the minimal surface equation.



Some examples of PDEs —
Heat equation

Ou—Au=0 inR™ xU

This equation is the prototype of a linear, parabolic equation and
models general diffusion processes.

» Diffusion refers to the movement of particle in direction of
the concentration gradient, from location with high concen-
tration towards a location with lower concentration.

In particular, the distribution of heat follows this principle, and in
this case u(t, z) is interpreted as the temperature at point z in
space and time t.

If an inhomogeneous term f(¢,z,u) is allowed (e.g. a heater),
the equation is called a reaction diffusion equation and plays
a crucial role for the modeling of chemical processes.



Some examples of PDEs —
System of the Navier—Stokes equations

inRT x U .

oy —Au+u-Du = —Dp
divu = 0

This equation models the flow of incompressible fluids and is
actually a system of PDEs in the unknowns of

» the fluid field u: Rt x U — R4,
» the pressure p: R™ x U — R.



Some examples of PDEs —
Transport equation

du+bt,r)-Du=0 inRtxU.

This equation models the evolution of a concentration « along
a given velocity field b: RT x U — R% If b € R? is constant
and U = RY, then initial values uy € C'(RY) are transported
according to the formula u (¢, x) == ug(x — bt).



Some examples of PDEs —
Transport equation

du+bt,r)-Du=0 inRtxU.
This equation models the evolution of a concentration « along a
given velocity field b: Rt x U — R

For b = 1 and u(t, x) interpreted as the density of individuals of
age z at time t, the aging process is described. The renewal
equation

O+ Du = —du iNnRT xRT,
u(t,0) = [g+ By)n(t,y)dz fort e RT,

includes also birth and death processes, with initial population
density ug, death rate d: R — Ry and birth rate B: RT — Ry .



Some examples of PDEs —
Wave equation

Bttu—Au:O in]R*xU.

This equation is the prototype of a linear, equation
and describes oscillations in elastic media over space and time.
For example, it models

» the displacement of a string in one space dimension,
» the vibrations of a membrane in two space dimensions,

» the propagation of waves, such as sound waves, light waves
and water waves, in three space dimensions.



Part I:
The Laplace equation

@ Physical motivation

© Examples of harmonic functions and fundamental solution
© Mean value property

© Consequences of the mean value property

©@ Outlook: existence of solution to the Poisson equation



Physical motivation of the Laplace equation

The Laplace equation appears in a number of physical con-
texts, which describe a physical quantity « (e.g. concentration
of particles or distribution of heat) in . Mathemati-
cally, this means the net flux F' (i.e. the concentration, which
passes orthogonally to the flux through a unit area in one time
unit) through the boundary for each (smooth) test volume V- C U

is zero:
o:/ F-vdH&! .
ov



Reminder ...

.. of the generalization of the fundamental theorem of calculus
to the multi-dimensional case.

Theorem (Gauss or divergence theorem)

Let U be a bounded open subset of R? with a C'-boundary oU .
If Fis a Co(U,R%) N CY(U,RY) vector field with div F € L' (U),

then we have
/ div F dz = / F-vdH® !,
U oU

where v (=vy) denotes the outward pointing unit normal field of
the boundary OU and He~! the (d — 1)-dimensional Hausdorff
(or surface) measure.




Physical motivation of the Laplace equation

The Laplace equation describe an state of a a physi-
cal quantity u. Mathematically, this means the net flux F' through
the boundary for each (smooth) test volume V' C U is zero:

0= F-yd%dl:/didex.
oV Vv

With V' arbitrary, this means div F =0in U.

In many situation it is reasonable to expect F' = —aDu for some
a > 0 (negative sign: the flow is from regions of higher to regions
of lower concentration), e.g.

» for diffusion of particles (with chemical concentration u) by
Fick’s law,

» for heat (with temperature distribution ) by Fourier’'s law of
heat conduction.



Physical motivation of the Laplace equation

The Laplace equation describe an state of a a physi-
cal quantity u. Mathematically, this means the net flux F' through
the boundary for each (smooth) test volume V' C U is zero:

0= F-yd%dl:/didex.
oV \%
With V' arbitrary, this means div F =0in U.

In many situation it is reasonable to expect F' = —aDu for some
a > 0 (negative sign: the flow is from regions of higher to re-
gions of lower concentration). Thus, we end up with the Laplace
equation for u:

div F = —div(aDu) = —aAu =0 inU .



Examples of harmonic functions

Definition

Classical solutions to the Laplace equation are called (C?-)har-
monic. If only one of the inequalities Au > 0 or Au < 0 is satis-
fied, then v is called (C-)subharmonic and (C?-)superharmonic,

respectively.




Examples of harmonic functions

(i) Every affine function is harmonic.
(i) For A € R the function u(x) = Y, ;4 Aijriz; is har-
monic if and only if Tr A = 0 holds.

(iiiy Harmonic functions on R? obtained by separation of vari-
ables are:
u(x1,x9) = exp(ax)sin(azs),

u(x1,x2) = exp(azy) cos(axe) fora e R.
Details: We look for a harmonic function of the form w(z1, z2) = v(z1)w(x2)
for C2-functions v and w. This implies
v (z1)w(z2) + v(z)w” (z2) = 0.

Hence, up to multiplication with a constant or interchanging the roles of v
and w, we find v(z1) = exp(az1) und w(z2) = sin(az2) or w(zz2) = cos(axz).



Examples of harmonic functions

(i) Every affine function is harmonic.
(i) For A € R the function u(x) = Y, ;4 Aijriz; is har-
monic if and only if Tr A = 0 holds.

(iiiy Harmonic functions on R? obtained by separation of vari-
ables are:
u(x1,x9) = exp(ax)sin(azs),

u(x1,x2) = exp(azy) cos(axe) fora e R.

(iv) The real and imaginary part of holomorphic functions are
harmonic.

Details: Let h: R> = C D U — C be holonomic. Then ui(z1,z2) =
Reh(z + iy) and wuz(z1,22) = Imh(z + iy) are smooth and satisfy the
Cauchy—Riemann equations Diu1 = Dsus and Daus = —Djus. This implies

Aul = D1D1U1 —|— D2D2U1 = D1D2u2 — D2D1U2 = 0 = AUQ .



The fundamental solution

We now look at a very particular harmonic function in R? \ {0}
and require

» radial symmetry (i.e. u(x) = v(|x|) for some function v),
» decays to zero as |z| — oc.
By harmonicity of « one obtains an ODE for v which can be
solved explicitly.
Definition
The function ®: R\ {0} — R, defined as

B(z) —(27)"!log |z| ford =2
xTr) =
(d(d — 2)wg) Yz~ ford >3

for z € R4\ {0} (and with wy = | B1(0)|), is called the fundamental
solution of the Laplace equation.




The mean value property

Even though the Laplace equations seems to be a condition only
on (some sum) of the second order derivatives, harmonic func-
tions enjoy a number of remarkable properties, the first one be-
ing the mean value property.

Notation: If A is a measurable set in R? with 0 < £4(A) < oo
and f € L'(A), we set

Afda::ﬁd(A)l/Afda:.

If M is a k-dimensional submanifold in R? with 0 < H*(M) < oo
and f € L'(M), then we set

][de’f HE (M /fd’Hk



The mean value property

Lemma

Let U be an open set in R?, Br(xo) C U andu € C*(U). Defin-
ing ¢: (0,R) — R via

o(r) = wdH 1 forr € (0,R),
OBy (z0)
we have o(r) — u(xo) asr \, 0 and ¢'(r) = r ][ Audz.
B’I"(ZO)

’

Note: the number r/d arises from a comparison between volume and surface
of balls. In fact, the application of the Gauss theorem to the ball B, = B,.(0) C
R? (with v () = z/|x|) and the vector field F(z) = x (with div F(z) = d) yields

dzld(BT):/ didex:/ lz| dH* " = rH T (OB,)
OB,

T

for every r» > 0.



The mean value property
Proof: We verify that

= dH!

o= § Lo
> satisfies ¢(r) — u(zo) as r \, 0, by continuity of u:
d—1
a U(xo | - ‘][65 (wo) - xO)) dH (x)’
<f ) - el @)
0By (z0)

< max |u(z)—u(zo)] 0 asr 0.
x€0Byr(x0)



The mean value property

Proof: We verify that
o(r) ::][ wdH*!
9By (z0)

> satisfies ¢(r) — u(zo) as r N\, 0, by continuity of w.

» is continuously differentiable, since we can first rewrite ¢ as a parameter-
dependent integral

A= fateo ) ),
8B1(0)
then interchange the order of integration and differentiation

¢m:f Du(zo +ry) -y dH*(y)
9B1(0)

X — X0

= ][ Du(z) - =—=2 dH* ! (x).
8B (w0) r

outer unit normal for B, (xq)



The mean value property

Proof: We verify that
o(r) ::][ wdH*!
9By (z0)

> satisfies ¢(r) — u(zo) as r N\, 0, by continuity of u

» is continuously differentiable, since we can first rewrite ¢ as a parameter-
dependent integral

_ , d—1
o(r) = ][651(0) u(wo + ry) dH (y) |

then interchange the order of integration and differentiation and apply
the Gauss theorem

#(r) = W /BBT(aco) Duta)-

1 / .
= div Du(z) dx = — Au(zx)dz .
HI=H(OBy) J B, () (=) d J B, (xo) )

X — X0

dH ™ (z)



The mean value property

Lemma

Let U be an open set in R?, Br(xo) C U andu € C*(U). Defin-
ing ¢: (0,R) — R via

o(r) = wdH 1 forr € (0,R),
OBy (z0)
we have o(r) — u(xo) asr \, 0 and ¢'(r) = r ][ Audz.
BT‘(ZO)

Corollary

Let U be an open set in R?, B,.(z¢) C U andu € C?(U). Then
Au>/=/>0inU implies

u($0)§/=/<][ udH?! andu(xo)§/=/<]i(ud:c.

OBr(x0) x0)




The mean value property

Proof of the Corollary:

» The statements for “Au = 0” follows from the statements for inequality
“Au > 0", applied to the functions v and —u.

» Now we assume Au > 0. Then, in view of ©'(r) = % f B (20) Audz, we

observe that ¢ is monotone non-decreasing, and by continuity of ¢ we
find

u(zo) = lim p(r) < o(r) = ][ wdH* .
N0 8By (o)

The second assertion follows in turn, after integration (via polar coordi-
nates):

LB, (z0))u(zo) / HY(OB, (x0))ulxo) dp

/ / wdH*™ 1cl,o—/ udzx.
8B, (z0) By (z0)

» The case Au > 0 follows analogously (now ¢ is strictly increasing).



The mean value property

Theorem (Gauss)

Let U be an open set in R¢ and u € C*(U). The following prop-
erties are equivalent:

() wis harmonic, i.e. Au = 0 holds in U,
(ii) w satisfies the spherical mean value property, i.e.

u(zg) = ][ wdH* forall B,(z0) € U,
OB (x0)
(iii) w satisfies the mean value property on balls, i.e.

u(zo) = ]{B ( )uda: for all B, (zo) € U .
r(Z0o




The mean value property

Theorem (Gauss)

Let U be an open set in R¢ and u € C*(U). The following prop-
erties are equivalent:

() wis harmonic, i.e. Au = 0 holds in U,

(i) u satisfies the spherical mean value property,

(iii) u satisfies the mean value property on balls.

Proof:
» (i) = (ii), (iii): is the statement of the last Corollary.
» (ii) = (iii): follows by integration (polar coordinates).

» (i) = (i): is proved by contradiction. If Au(zo) # 0 for some zo € U,
then, w.l.o.g. we have Au > 0 in some ball B.(z¢) C U. This implies
strict inequality for the mean values, which is a contradiction to (iii).



The mean value property

Theorem (Gauss)

Let U be an open set in R¢ and u € C*(U). The following prop-
erties are equivalent:

() uis , I.e. Au= 0 holds inU,
(i) u satisfies the ,
(iii) u satisfies the

Note: The mean value property does not hold on arbitrary sets
(only on sets with spherical symmetry and such that the convex
hull is a subset of U)!

E.g. exp(ax1) sin(axy) is harmonic in R? for every a € R and has
vanishing average in every set of the form

{(:171,$2) S RQZ r € (al,bl),xg S (ag,ag —|—27T)}.




Consequences: maximum principles

Theorem

Let U be a bounded, open setin R¢ and v € C*>(U)n C(U) a
harmonic function. Then we have

() weak maximum principle: maxg v = maxay u,
(ily strong maximum principle: if U is connected and if there

exists an interior point xo € U with u(x¢) = maxg u, then u
is constant.

We further have the analogous minimum principles.




Consequences: maximum principles

Proof:
(i) Strong maximum principle: consider an interior point zo € U with u(zo) =
maxgu =: M. For each ball B,.(zq) € U, the mean value property on
balls yields

M:u(xo)z][ udmg][ Mdx =M,
Br () Br(zo)

implying u = M in B,(zo). Hence, the set Uy == {x € U: u(z) = M} is
open, and, as preimage of a closed set, relatively closed. Thus, because
of 2o € Uar (which excludes Uy = (}), we must have v = M in U.

(iy Weak maximum principle follows from (ii): suppose (i) is false. Then we
must have maxz u > maxsy v and we find an interior point zo € U with
u(zo) = maxg u. On the connected component U(zo) of zo in U we get

max ¢ = maxu > maxu > max u,
U(zo) U ou U (zo)

since U (xo) C OU. This contradicts the constancy of w in U(zo), by (ii).



Consequences: maximum principles

Note: Maximum principles do not rely on the mean values prop-
erty and hold also for linear elliptic PDEs of the form

d d
Z aijDiju + Z b;D;u >0 inU,
ig=1 =1

where (a); j=1,...q IS @ strictly positive definite matrix.
Idea of proof for the weak maximum principle:

» First assume strict inequality in the PDE: then, if w is a subsolution with
maximum in an interior point 2o € U, then Du = 0 and D?u < 0 hold.

Thus, ijzl a;;Diju < 0, which contradicts the assumption.

> In the general case consider u. = u + eexp(Az1) (which, for X large,
is a strict subsolution). By the first step every u. satisfies the maximum
principle, and the weak maximum principle for u then follows as ¢ \ 0.



Uniqueness and stability

The maximum principles has the following implications for solu-
tions to the Poisson equation (so in particular for harmonic func-
tions): Let U be bounded, open in R?, then we have

» Uniqueness: if u,v € C2(U) N C(U) satisfy Au = AvinU
and v = v on 9U, then we have u = v;

Alternatively, this can be seen from an energy method (involving L?-norms):
the integration by parts formula shows

0:/A(ufv)(ufv)dx:f/|Duva\2dx,
U U

which implies Du = Dv in U and then, as u = v on 9U, the claimu =wv in U.



Uniqueness and stability

The maximum principles has the following implications for solu-
tions to the Poisson equation (so in particular for harmonic func-
tions): Let U be bounded, open in R?, then we have

» Uniqueness: if u,v € C2(U) N C(U) satisfy Au = AvinU
and v = v on 9U, then we have u = v;

» Continuous dependence of the boundary data: if u,v €
C*(U)NC(U) satisfy Au = Av in U, then

—v) = —v) and min(u —v) = min(u —
max(u — v) I%?}X(u v) min(u — v) Ig(ljn(u v),
and we then conclude

max |u — v| = max { max(u — v), — min(u — v)}

= max{r%%x(u —v), —néliUn(u —v)} = I%%X’u —vl.



Consequences: Harnack’s inequality

Theorem

Let U be an bounded, open set in R¢ and consider an open
connected subset V€ U. Then there exists a positive constant
¢ = ¢(U,V) such that

supu < cinf u
\4 1%

for every non-negative, harmonic function v in U. In particular,
all values of w in V' are comparable in sense that

u(y) < cu(z) < Pu(y) forallz,y eV .




Consequences: Harnack’s inequality

Proof:

» First consider zo,z1 € V with distance |zo — z1| < dist(V,0U)/2 = r
(thus By(zo) C Bar(x1) C U). In view of the mean value property on
balls and the positivity of u we find

w(zo) = ][ wdz < 2d][ wdz = 2%u(z1).
By (z0) Bar(z1)

» For arbitrary =,y € V we consider a path ¢ € C([0, 1], V) joining y and =
(possible, since V' is connected). We select a finite number of points on
the path as follows: we cover V' with finitely many balls (B, /2(z:))o<i<n
and choose the numbering and the points (x;) on ([0, 1])

zo =y € By/2(20),
zr = p(tr) € Byja(zi) st tr :=sup{t € [0,1]: ¢(t) € By/2(z-1)}

for £ > 1. Note that |zx—1 — x| < r and each ball is chosen at most
once (thus z is reached after at most N steps). This gives

uly) < 2™u(),

and for Harnack we finally take the supremum or infimum, respectively.



Consequences: regularity

Even though the Laplace equation involves only second order
derivatives, it turn out that harmonic functions are smooth:

Theorem
Let U be an open set in R% and u € C(U) a function which

satisfies the spherical mean value property, i.e.

u(zg) = ]éB ( )ude_l for all B,(xg) € U .
r\Z0

Then u is of class C*°(U) and harmonic in U.




Consequences: regularity
Proof: Consider the e-regularization of u, defined as
uele) = vule) = [ o -ppu@dy= [ o put)dy
U Be ()
for e < dist(x,0U) and n € C§°(B1(0)) non-negative, radial with [, ndz =1

and n(z) == e n(z/e). This is a C°°-function (differentiation of parameter
dependent integrals).

We further have u(z) = u.(x) (by spherical mean value property and the fact
that 7. is radial and normalized):

u:(z) = /BE(I) ne(z — y)u(y) dy
= // ne(z — y)uly) dH* " (y) dr
o JoB.(a)
= u(a:)/o /aB ( )775(3: —y) d’Hd_l(y) dr = u(x).



Consequences: regularity

Even though the Laplace equation involves only second order
derivatives, it turns out that harmonic functions are smooth:

Theorem

Let U be an open set in R% and u € C(U) a function which
satisfies the spherical mean value property. Then u is of class
C*>(U) and harmonic in U.

Note: The regularity does not rely on the mean value property
(which nevertheless allows for an elementary proof), but rather
on the fact that every derivative of the solution satisfies an equa-
tion of the same type (here the derivatives satisfy even the same
equation).



Outlook: existence of solutions

Problem: We want to find a solution v € C*(U) N C°(U) to

—Au = f inU
u = g aufoUu

(for f, g and U sulfficiently regular), i.e. we want to solve the
with prescribed boundary values.

Since the equation is linear, we can split this into:

(a) Find a Ny to the Poisson equation —AN; = f in U, without
constraint on boundary conditions,

(b) find @ harmonic function h with boundary values g — N; on
ou,

then u := Ny + h is a solution.



Existence of solutions - Part (a)
For f sufficiently regular, we want to find a solution to
—Au=f inU.

Idea: use the fundamental solution of the Laplace equation

—(27) " tlog || ford =2,
O(x) = J
(d(d — 2)wg) " tx?>~¢ ford > 3.

Properties:
» O, |DP| e Llloc(]Rd),
» |D*®| ¢ Li (RY) (singularity in z = 0),

» A® = 0inR%\{0}. In fact, A® acts like the distribution —d.



Existence of solutions - Part (a)
For f sufficiently regular, we want to find a solution to

—Au=f inU.

Theorem (Ho6lder, 1882)

For U a bounded, open setin R and f € C%*(U)N L>(U), the
Newton potential Ny defined as

Ny(@) = @+ o) = [ Sla=)fw)dy fora R

satisfies Ny € C*(U)nCY(U) and —AN; = f inU.




Existence of solutions - Part (a)

Idea of proof: (for simplicity U = R?, f € CZ(R?), otherwise we need to work
with cancellation effects in the Newton potential)

Ni@ = [ ee-nrws= | 2=

» Differentiation under the integral leads to

DDy (@) = [ 8)D.,Desfla =)y

» In order to calculate ANy we cut out the singularity:

ANy @) = [ SwA S -ydy+ [ Bw)A S y)dy
B¢ (0) R4\ B (0)
@ The first term vanishes for ¢ — 0 (explicit estimate for ®, f € C?);
@ the second term is rewritten via Green’s formula and harmonic-
ity of ® as two boundary integrals on 9B.(0), one with integrand
®(y)Dy f(x — y) - v (vanishing with e — 0), the other one with inte-
grand D®(y) f(z — y) - v (yielding — f(x) for e — 0).



Existence of solutions - Part (b)
For g continuous, we want to find a solution to

—Auy = 0 inU,
u = g aufdU.

Theorem (Perron, 1923)

Let U be a bounded, open, regular set in R¢. Then for every g€
C(0U) there exists a unique harmonic function h € C*(U)NC(U)
withu = g on OU.




Poisson integral formula for balls
We first consider the case that U is a ball and construct in this case a so-

called Green’s function, which solves the Poisson problem, i.e. which provides
a representation formula for solutions to the Poisson equation

—Au
U

Starting point is Green’s representation formula

f inU,
g aufoUu.

u(z) = — /U B — y)Au(y) dy
+ [ (@ - )Duly) - u)D,2( ~ ) V) K ).

which is satisfied for any regular U and u € C*(U) N C*(U) with Au € L*(U)
(cp. calculations for the Newton-potential).

Note: Solutions u to the Poisson equation can be written in terms of the known
functions f, g and ®, but we still need D, u on oU.



Poisson integral formula for balls

Definition
Let U be an open set in R%. A function G: {(z,y) € U x U: z # y} — R is
called Green'’s function for U if for all z € U:

(i) y+— G(z,y) — ®(z —y) is of class C*(U) N C*(U) and harmonic in U;

(i) y+— G(z,y) vanishes on dU, i.e. we have lim,_,,, G(z,y) = 0 for
yo € OU (and also at infinity for U unbounded).

Note:

> y— G(z,y) — ®(z — y) is called the corrector function and is unique (if
existent) for U bounded.

» y — G(zx,y) has the same singularity in z as ®(z — y);

» G is symmetric if U is regular and bounded (hence, also = — G(z,y) is
harmonic in U \ {y}).




Poisson integral formula for balls

Definition
Let U be an open set in R%. A function G: {(z,y) € U x U: z # y} — R is
called Green'’s function for U if for all z € U:

(i) y+— G(z,y) — ®(z —y) is of class C*(U) N C*(U) and harmonic in U;

(i) y+— G(z,y) vanishes on dU, i.e. we have lim,_,,, G(z,y) = 0 for
yo € OU (and also at infinity for U unbounded).

Consequence: every solution « to the Poisson problem can now be written
as

/ G(z,y) f(y) dy — DyG(%y)g(y) w(y) dH (y)

(doesn’t yet seem that much better, since G is unknown — but at least, once
we know G, we can solve any boundary value problem on U).




Poisson integral formula for balls

In order to construct the Green'’s function for a ball B, (xo) we apply a reflexion
method. Idea: compensate a point charge in = € R% \ 8B, (xo) by another
point charge (of suitable magnitude) in the reflexion point

" =10 +r27m %o .
|z — 2ol
> With |2* — xo||z — x| = r* exactly one of the point z, z* lies in B, (xo);

» For points y € dB,.(x0) one easily checks |z* —y|? = r?|z—zo| |y —z|>.

Similarly, as the shifted fundamental solution y — ®(z — y) can be interpreted
as the potential caused by a point charge in =, we now put a point charge in
™ for compensation and find:

Lemma
The Green'’s function for B..(z0) C R is given fory € B,(xo) \ {z} by

®(z —y) — d(2=20l(y — 2*))  forz € B (o) \ {20},

Gla,y) = { D(z0 —y) — D(rer) forz = zo.




Poisson integral formula for balls

Summary:
We have derived the Green’s function on the ball

Dz —y) — d(L2=2ol(y —2)) f
Glarg) = { 20 = BBy =) ora g

O(xo —y) — D(re1) for z = z¢
for z # y € Br(zo). With the version of Green’s representation formula we
thus have established the desired representation of solutions to the Poisson
problem in terms of the data f, g (and B, (z0)):

u(z) = / G(a,y)f(y) dy — / D,G(z.y) - v(y) g(y) dH* (1)
By (xz0) 0By (zg) T~

1 Jz—zg|2—r2

dwg  rly—ald

which is known as Poisson integral formula.

Note: Also the reverse implication is true, i.e. for f,g regular this formula
defines the unique solution to the Poisson problem. In particular, every contin-
uous function on a sphere can be extended to a harmonic function in the full
ball (known as Schwarz Theorem).



Existence of solutions - Part (b)

Idea: semi-explicit construction, based on:
@ For balls B, (2), the function

1 72— |z —x0)? a1
hx:/ - g(y)dH y) forz € Br(xo
@ =] e ) (x0)

is harmonic with boundary values g (Poisson integral formula);
@ by Perron’s method one can then find harmonic functions, starting from

{u subharmonic with u < g on oU } .

@ The supremum of these subharmonic functions provides a har-
monic function (otherwise one could replace the resulting function
on balls by its harmonic extension and find a contradiction);

@ under a suitable regularity condition on U, this limit also attains the
prescribed boundary values.



Existence of solutions - Part (b)

Comments:

» Perron’s method is still quite elementary and is easily ex-
tended to more general elliptic equations of second order,
as it essentially relies on subsolutions (which always exist),
the maximum principle and the solvability of the Dirichlet
problem for arbitrary continuous boundary values;

» Conceptually similar is the (tracing back
to Poincaré):

e exploit U by a sequence of balls (B,, (x))ken,

e define a sequence of subsolutions, starting from a fixed sub-
solution with boundary values g and replacing inductively the
predecessor v,_; on By, (z1) by the harmonic extension,

e show that this sequence converges to the desired harmonic
function.



Outlook: probabilistic representation

Harmonic functions can be represented via the expectation of a
Brownian motion, which is stopped at the boundary of the do-
main. This is a particular case of the

Theorem

Consider D a bounded, open, regular set in R¢, g € C(dU) and
B, a d-dimensional Brownian motion. Let

T:TD::inf{t>0:m+Bt¢D}

be the first exit time from D for a Brownian motion started in x.
Then the unique harmonic function u on D with boundary values
g Is represented as

u(z) = Elg(z + B;)] .




Outlook: probabilistic representation

Idea: by Ité’s formula we have (u is regular)

t t
u(x + Bt) —u(x) = / Du(z + Bs) dBs + %/ Au(z + Bs) ds
0 0

Then, by taking the expectation and using the solution property of u, we get
u(z) = Efu(x)] = E[u(z + B;)] = E[g(z + B-)].

Comments:

» The existence of the harmonic function (which is only true for U suffi-
ciently regular) is due to Perron’s theorem, this is why regularity of U is
required;

> If B.(z0) C U, then we find

u(mo) = E[u(xo + BTBT(xO))} s
with 7 now denoting the exit time from B, (z¢). Since the Brownian mo-

tion is isotropic in space, this can be interpreted as the spherical mean
value property of harmonic function

u(zo) = ]{93 ( )ud?-{,d_l.
r(Z0



Part Il
The heat equation

@ Physical motivation

© The fundamental solution

© Mean value property

© Existence of solutions (full space)



Physical motivation of the heat equation

The heat equation describes the change in time and space of a
diffusive quantity « (e.g. concentration of particles, heat), which
flows from regions of higher to regions of lower concentration
and which thus evolves towards an . Mathematically,
this means the rate of change of v equals the negative net flux
F through the boundary for each (smooth) test volume V C U:

Oyu = — F-I/del——/didex,
v 1%
hence d,u = —div F'in R* x U. Assuming again F = —aDwu for

some constant ¢ > 0 on the flux, we find
Oru = alAu inR™ x U,

which for a = 1 is the heat equation.



Examples of caloric functions

For studying time-dependent problems like the heat equation,
one typically does not work on general subsets in R%*!, but
rather on sets of the form I x U for a (possibly infinite) interval
in R. We shall use the notation:
» parabolic cylinder Ur == (0,T] x U ¢ R,
» parabolic boundary 8,Ur:=({0})xU) U ([0, T]xdU) C dUr
(initial values on {0})xU, boundary values on [0, T'|xdU).

Since the heat equation involves second order space derivatives
and first order time derivatives, it is convenient to work with the
spaces

C*(Ur) = {we CY(Ur): D;Djw € C(Ur) fori,j € {1,... ,d}}

for classical solutions.



Examples of caloric functions

Definition

Classical solutions to the heat equation are called (C%-)caloric.
If only one of the inequalities 0,u — Au < 0 or dyu — Au > 0 is
satisfied, then w is called (C%-)subcaloric and (C?-)supercaloric,
respectively.




Examples of caloric functions

(i) Every harmonic function is caloric.

(i) Caloric functions on R* x R obtained by separation of vari-
ables are:

u(t, 1) = exp(a®t)(cy sinh(azq) + ¢ cosh(azy)),
u(t,z1) = exp(—a’t)(c1 sin(az1) + c2 cos(az1)) ,
for a,c1,co € R. Also for d > 1 one obtains functions in

this way (but then it involves the eigenvalue problem for the
Laplace operator).

Details: We look for a caloric function of the form wu(t,z) = T'(t)X(z) for
C?-functions v and w. This implies

T ()X (21) — T(H)X" (w1) =0,

which again leads to ODEs which can be solved explicitly.



The fundamental solution

Also in the case of the heat equation we look for a very particular
caloric function, which satisfies

» radial symmetry in space (i.e. u(t,z) = o(t,|x|) for some
function v),

» invariance under suitable space-time dilatations arising from
the structure of the PDE (i.e. u(t,z) = t~"/25(t~'/2x) for
some function ),

» decay to zero as t — oc.

These requirements on a caloric function lead to an ODE which
can be solved.



The fundamental solution

Definition
The function ®: RT x R? — R, defined as

U(t,x) = (471't)_g exp ( — ‘Zf) ,

is called fundamental solution of the heat equation or heat ker-
nel.

Note:
» By construction, we have 9,¥ — AV =0 in RT x RY;

» There is a singularity for ¢ = 0: limy_,0 ¥(¢,0) = oo and
limy_0 W(¢,z) = 0 for z # 0;
» Fors,t > 0holds W(¢,-) « U(s,:) = U(s+t,-).




The heat ball

Before addressing a mean value-type property of caloric func-
tion, we first define specific sets in R x R?. We recall that the
mean value property for harmonic functions holds on balls and
spheres, which are very special in the sense that they are su-
perlevel of level sets of the fundamental solution of the Laplace
equation. This should motivate

Definition

Consider ty € R, 2o € R% and » > 0. We define the heat ball
W (to, zo) at (to, o) as the subset

Wr(to,l'o) = {(t,.’E)Z t < tpand \I/(to —t, 29 — l’) > ’I“_d}

of (—OO,to) x R

Attention: (to,l‘o) S OWr(to,Io)!




The heat ball

Properties:

vV v.v Yy

Monotonicity: For r <  there holds W,.(to, z0) C Wi (to, z0);

Behavior under translations: W (to, xo) = (to, o) + W»(0,0);

Parabolic scaling: (t,z) € W.(0,0) < (r~2t,r~'z) € W1(0,0);

Explicit representation: for t € (—r?/(4x),0) we can rewrite the inequal-
ity in the definition of the heat ball as % > log(r*d(—47rt)%). Defining
br: R™ xRY— Ras

j?

x
br(t, ) == T

+dlogr — g log(—4mt),
we find

W,(0,0) = {(t,z) € R~ x R": b(t,z) > 0} (bounded set),
and similarly 9W,.(0, 0) is represented via b, (¢, z) = 0;

. 1 ||
Weigh / — — =1.
‘eighted volume e /WT(O’O) 2 d(t,x)



The mean value property

Lemma
Letu € C?(Wg(0,0)). Defining+: (0, R) — R via

1 |z

P(r) u(t,ac)t—2 d(t,z) forre (0,R),

"~ 4rd W(0,0)
we have ¢ (r) — u(0,0) and

V() = /WT(QO) [— Buu(t,2) + Ault, 2)]by(t,2) d(t, ) .

v



The mean value property

L wtt, ) 2L it )

Proof: We verify that ¢ (r o
W, (0,0) t

(r) = rd
> satisfies ¢ (r) — u(0,0) as r \, 0, by continuity of u:

2
o001 = 5], 101000 e
1 |CE|2
= 47 /wr(o,o) futt, 2) = u(0,0)|%- d(t, @)

< supfult,a) —u(0,0)] = 0
(t,x)EW,(0,0)



The mean value property

L wtt, ) 2L it )

Proof: We verify that ¢ (r o
W, (0,0) t

()::@

> satisfies ¢ (r) — u(0,0) as r \, 0, by continuity of u;

» is continuously differentiable, since we can first rewrite ¢ as a parameter-
dependent integral

1 2
v =1 [ s disy).
W1(0,0) s

then interchange the order of integration and differentiation

2
1//(7“) = 1 / [@u(rzs, ry)2rs + DU(TQS, ry) - y] % d(s,y)
4 W1(0,0) S
-1 / [Oru(t, z)2t + Du(t, z) - z] @ d(t,z)
4rd+l W (0,0) ’ ’ t2 P



The mean value property

2
L u(t, ) 7L a(t, 2)

Proof: We verify that ¢ (r
W, (0,0) t

()::@

> satisfies ¢ (r) — u(0,0) as r \, 0, by continuity of
» is continuously differentiable with

) = - ot ) 2 Dute) - o2 age, )
1/1(7")7617+1 u(t, © u(t, ) -z ,T).

T Jwe0,0) 2t 4
=Db,(t,x) x =—0tb,(t,x)x—dDb,(t,z)

Applying integration by parts, for the first term in = and for the second
in t, and finally again in = (note that all boundary integrals vanish, due to
b-(t,z) = 0 on W,.(0,0)), we get

e g [ (020 (12) — Dut,2) - Dbt )] dlt,2)
= 7";% [ — dwu(t,z) + Au(t, )b, (t, ) d(t, z) .

W,.(0,0)



The mean value property

Corollary

Let U be an open set in R, T > 0, W,.(tg,z0) € Ur und u €
C3(Ur). Then dyu — Au < / = / < 0 in Uy implies

1 T — %
u(to,xo) </ =/ < — u(t,x)——= d(t,x) .
tor0) S/ =/ < g [ )0y d,2)

Moreover, we get the equivalence of
» u is caloric, i.e. dyu — Au = 0in Uy,
» v satisfies the mean value property on heat balls, i.e.

|x—m0|2

1
u(to, zo) = o /W . )U(tw’U)m d(t,z)
r{t0,Zo

for all Wr(to, 33‘0) Cc Ur.



Consequences: maximum principles

Theorem

Let U be a bounded, open setin R? and u € C3(Ur) N C(Ur) a
caloric function. Then we have

(i) weak maximum principle: MaXp U = Maxg,u, U,

(i) strong maximum principle: ifU is connected and if there ex-
ists an interior point (to, zo) € Ur with u(to, zo) = maxg- u,
then w is constant on Uy,.

We further have the analogous minimum principles.

y

Remark: The strong maximum principle does not state constancy on all of
Ur, but only up to time ¢, (heat balls are defined “for past times”).



Consequences: maximum principles

Theorem

Let U be a bounded, open setin R? and u € C3(Ur) N C(Ur) a
caloric function. Then we have
(i) weak maximum principle: MaXp U = Maxg,u, U,
(i) strong maximum principle: ifU is connected and if there ex-
ists an interior point (to, zo) € Ur with u(to, zo) = maxg- u,
then w is constant on Uy,.

We further have the analogous minimum principles.

y

Also these maximum principles hold for more general parabolic PDEs, e.g. for

d d
atu — Z aijDiju + Z biD;u < 0 in UT,

i,j=1 i=1

where (a); j=1,...,q is a strictly positive definite matrix.



Consequences: maximum principles

Proof:
(i) follows from (ii) exactly as for harmonic functions, via contradiction.

(i) We consider an interior point (to, z0) € Ur With u(to, 7o) = maxg-u =:
M und take » > 0 such that W, (to,xz0) C Us,. From the mean value
property for caloric functions, we see

M = u(to x0)<i/ u(t x)Md(t ) <M.
’ = Ard Wi (to,z0) Tt —to)? T

Hence, we have u = M in W, (to,x0), but, since W, (to,z0) is not a
neighborhood of (o, 20), this does not imply yet that «~* (M) is relatively
open in Uy,.

However, if (¢, zo) is joined to a point (¢1,z1) with t1 < to by a straight
line in Uy, , then L, is connected in Uy, andw = M on Ly (asu™*(M)NL;
is both relatively open, see above, and closed, by continuity of w). This
shows u(t*,x2*) = M for any tx < to and x* € U, by joining (to, o) and
(t*,z™) via finitely many such lines. Hence, by continuity of « we end up
with u = M in Uy,.



Consequences of the maximum principles

Let U be bounded, open in R? and T' > 0, then we have

» Uniqueness of solutions to the inhomogeneous heat equa-
tion: if u,v € C?(Ur) N C(Ur) satisfy dyu — Au = v — Av
in Ur and v = v on d,Ur, then we have u = v;

Alternatively, this can be seen from an energy method: we associate to a
caloric function w the energy

e(t) ::/U|w(t,x)|2dx.

Then, by integration by parts, we find
ie(t) = 2/ Orwwdr = 2/ Awwdz = 72/ |Dw|*dz <0,
dt U U U

hence, the energy is non-increasing. For w = v — u we have ¢(0) = 0, which
implies u = v in Ur.



Consequences of the maximum principles

Let U be bounded, open in R? and T' > 0, then we have

» Uniqueness of solutions to the inhomogeneous heat equa-
tion: if u,v € C?(Ur) N C(Ur) satisfy dyu — Au = v — Av
in Ur and v = v on d,Ur, then we have u = v;

» Infinite propagation speed: if U is connected, the initial
values on {0} x U are somewhere positive and the bound-
ary values on [0, T x9U are non-negative, then caloric func-
tions are positive everywhere in Ur.

» Long time behavior: if u € C2(Ur)NC(Ur) is a solution to
Ou—Au = f inUr
u = g on|0,T] xoU

with regular, time-independent f and g, then u converges
uniformly in z, as t — oo, to the stationary solution.



Existence of solutions in full space

Problem: We want to find a solution « € CZ([0, 7] x R%) to

ou—Au = f in[0,T] x R?
v = g on{0} x R?

(for £, g), i.e. we want to solve the inhomogeneous heat equation

with given initial condition (but no boundary values, since we

work in the full space).

Since the equation is linear, we can split this into:

(a) Find a solution uy to the initial value problem for the heat
equation,

(b) Find a special solution u; to the inhomogeneous heat equa-
tion (with zero initial values),

then u := uy, + u; is the solution.



Existence of solutions in full space - Part (a)

For g bounded and continuous, we want to find a solution to the
initial value problem
O —Au = 0 in[0,7] x R,
u = g on{0}xR9.

Idea: use the fundamental solution of the heat equation

d X 2
U(t,x) = (4mt)” 2 exp ( — !ﬁ) ,
Properties:

» O, — AV =0in Rt x R,

» normalization [, ¥(t,x)dz = 1 for all t > 0 (which can be
interpreted as mass conservation),

» behavior for ¢t ™\, 0: we have limy o V(t,z) = 0 for z # 0
and limp o ¥(t,0) = co. In fact, ¥ acts on {0} x R like do!



Existence of solutions in full space - Part (a)

For g bounded and continuous, we want to find a solution to the
initial value problem
O —Au = 0 in[0,7] x R,
u = g on{0}xR9.

Theorem
Letg € C(RY)NL>(RY). Then the functionuy,: (0,00)xR% — R,
defined as

un(t, z) = (B(t, ) * g)(z) = / Wb~ y)olo) dis

Rd

is of class C?((0,00) x RY) N C(]0,00) x R?) and satisfies the
heat equation with initial values v = g on {0} x R,

v




Existence of solutions in full space - Part (a)

(o) = (V) 0)(o) = [ Wt = v)au)dy

Proof:
» Interior regularity of u,, follows from differentiation under the integral sign;
> In this way, we also see

Orun(t, x) — Aup(t,z) = / (at\ll(t, x—y)— A U(t, x—y))g(y) dy =0;

R



Existence of solutions in full space - Part (a)

(o) = (V) 0)(o) = [ Wt = v)au)dy

Proof:
» Interior regularity of u,, follows from differentiation under the integral sign;
» In this way, we also see that u, is caloric in Rt x R¢;

» Attainment of initial values: we show lim; 0 «—z, u(t,z) = g(xo) for all
zo € R?, using that on the one hand g varies little close to z, and that
on the other hand ¥ (0, ¢) is small away from 0. Indeed, we have

ut.2) = @) = | [ ¥tz = 0)(a(s) - a(a0)) ]

< sup lg(y) — glzo)| +2]gll / U(t,o —y)dy .

y€Bs(z0) R4\ B;s(z0)

arbitrarily small, for § small arbitrarily small, once § is fixed,
by choosing t sufficiently small



Existence of solutions in full space - Part (b)
For f sufficiently regular, we want to find a solution to

Ou—Au = f in[0,T] x R?,
u = 0 on{0}xR?.

Idea: Apply Duhamel’s principle which allows to reduce the
inhomogeneous problem to solving a family of initial value prob-
lems for the homogeneous equation. The candidate for the so-
lution is

ui<t7x>:=/0t [ vt =sa—prady s,

caloric, with initial values f(s,z) attimet=s




Existence of solutions in full space - Part (b)
For f sufficiently regular, we want to find a solution to
ou—Au = f in[0,T] x RY,
u = 0 on{0} xR

Theorem

Consider f € C?([0,0) x R?) with spt(f) € [0,00) x R Then
the function u;: (0,00) x R — R, defined as

t
ol ) o= /0 /R Wt 5,2~ 9)f(s,9) dyds

is of class C%((0,00) x R%) N C([0,00) x R?¥) and satisfies the
equation d;u — Au = f in (0,00) x RZ.




Existence of solutions in full space - Part (b)

u (t, x) = /ot/lad Ut —s,x—y)f(s,y)dyds
:/Ot/]Rd\I/(s,y)f(t—s,x—y)dyds

Proof:
» Interior regularity of u; follows from differentiation under the integral sign,
with
t
Oru;(t,x) = / / U(s,y)0:f(t — s,z —y)dyds
0 JRd
+/ (t,y)f(0,z —y)dy,
R4

t
DiDjUi(t,{L'):// V(s,y) Dz, Da,; f(t — s, —y) dyds;
0 JRd



Existence of solutions in full space - Part (b)

Proof:
» Interior regularity of u; follows from differentiation under the integral sign,

with
Oru;(t, ) :/Ot /Rd U(s,y)0:f(t — s,z —y)dyds
+/ U(t,y) f(0,z —y)dy,

]Rd
t
D;Dju;(t,z) = / / V(s,y) Dz, Da, f(t — s, —y) dyds;
0 JRd

> wu; can be extended continuously by 0 for ¢ X\, 0 (integrability of ¥, bound-
edness of f);

» solution property is shown by cutting out the singularity at (0, 0)
Orui(t, ) — Au;i(t,x) = / / (5,9)(0r — Ag) f(t — s,z —y)dy ds
R
+ [ weso.e -y
Rd



Existence of solutions in full space - Part (b)

Proof:
» Interior regularity of u; follows from differentiation under the integral sign.

> wu; can be extended continuously by 0 for ¢ X\, 0 (integrability of ¥, bound-
edness of f);

» solution property is shown by cutting out the singularity at (0,0) and
applying integration by parts formula

Orus(t, ) — Au;(t,x) = /OE /]Rd U(s,y)(0: — Az)f(t — s,z —y)dyds
+/ /}Rd V(s,y)(=0s — Ay) f(t — s,z —y)dyds
+ [ w0 =y

= Cet [ Wt —cw =)y = f(t0).



Existence of solutions in full space - Result

Theorem

Letg € C(R%) N L=(R%) and f € C%([0,00) x RY) with spt(f) €
[0,00) x R®. Then the function u: (0,00) x R¢ — R, defined as

t
uto) = [ Wto-pg@dys [ [ We-sa-y)f(s.0)dyds
R4 0 JRd
is of class C%((0,00) x R%) N C([0,00) x RY) and is a classical
solution to

Ou—Au = f inRT xRY,
u = g on{0}xR%.




Outlook: probabilistic representation

Similarly as for harmonic functions, also caloric functions can be
represented via the expectation of a Brownian motion.
Theorem

Let g € C(RY) N L>(RY) and B; a d-dimensional Brownian mo-
tion. Then the unique function u on Rt x R? solving

du—3Au = 0 inRT xRY,
u = g on{0} xR%.

is the function
u(t, z) = Elg(z + By)].




Outlook: probabilistic representation
Idea: by It6’s formula we have (u is regular)
u(t, ) — u(0,z + B,) = /Ot Du(t — s,z + B.) dB.
+/Ot [ Owu(t — s,z + Bs) + s Au(t — s,z + By)] ds..

Then, by taking the expectation and using the solution property of u, we get
u(t,z) = Elu(t,z)] = E[u(0,z + B:)] = El[g(z + B:)].
Comment: Similarly to the representation of solutions via (stochastic) charac-

teristics, this can be interpreted as following the Brownian motion backwards
in time until it arrives at ¢t = 0.



Part i

Connection between PDEs and optimization
problems

@ Introduction to the calculus of variations
© Direct vs. indirect approach

© Euler-Lagrange equations

© Brachistochrone problem



Calculus of variations

The aim of the calculus of variations is to find optimal (to be
specified) solutions to a (variational) problem and to describe
their properties. As for PDEs, many problems arise from natural
sciences, geometry or economy, and simple examples are

» what is the shortest connection between two points?
» what is the largest area to a fixed perimeter?
» what is the state of lowest energy?

In order to formulate such questions rigorously, one has to ex-
press the relevant quantities mathematically (such as distance,
area, perimeter, energy), to determine the relations between the
various quantities, and to choose a class of admissible “states”
or “configurations” (incorporating also constraints), among which
a solution should be determined.



Legendary: the brachistochrone problem

How the field of the calculus of variations was born: in 1696
Johann Bernoulli published the following challenge in a journal
for his colleagues:

Given two points A and B in the vertical plane, with A
not lower than B, find the curve on which a mass point,
starting at rest from A and moving along the curve with-
out friction and under constant gravity, moves to B in
shortest time!

Such curves are called

More legend: solutions were sent by Isaac Newton, Jakob Bernoulli, Gottfried
Leibniz, Ehrenfried Walther von Tschirnhaus and Guillaume de I'Hopital. It
had taken Johann Bernoulli 2 weeks to solve the problem, while Newton came
up with the solution after only one day.



Legendary: the brachistochrone problem

For the mathematical formulation, only a minimal knowledge of physics is re-
quired.

Let A = (a,uq),B = (b,uy) be points in R?, with a < b and ug > up. If
the mass point moves along the graph of a curve « € C*([a, b]), with time-
dependence (z(t),u(z(t))) for ¢t € [0,7] such that z(0) = e« and z(T) = b,
then conservation of energy yields the velocity of the mass point: for ¢ € [0, T']

it is given by
12

300 = (ua — u(z(1))g,

where g is the constant gravity.
Alternatively, v(¢) can be determined by differentiation (w.r.t. time) of the path
length up to x(1), that is [*)(1 + |u'(s)|?)? ds, which gives

u(t) = (1+ o/ (()?) 22/ ().

Hence, we need to minimize

r=J = Gt ) 0= [ G )



Calculus of variations

In case of the brachistochrone problem we have a functional
F (of variational form) and we want to determine a minimizer «
among all C*-functions which satisfy the boundary condition u(a) =
ug and u(b) = uy.

General problem: Given some vector space X and a functional
F: X — R, determine a minimizer, i.e. z € X such that F(z) <
F(y) forally € X.

Typical examples for X are the spaces C*(U) of continuously dif-
ferentiable functions or the Sobolev spaces WP (U), and for F
the variational functional of the form

Flu] ::/Uf(ac,u(x),Du(a:))dx

for some given integrand f.



Direct vs. indirect approach

We now look at different approaches for finding minimizers. For
comparison, let us first consider f: X — R with X a set in R“.
We might follow

@ aindirect approach: If f € C'(X), then we can first deter-
mine the (interior) critical points x € X such that Df(x) =0
and then see, which of the critical points is a minimizer
(e.g. for f convex, all critical points are minimizers);

@ a direct approach: There always exists a minimizing se-
quence (zg)ken in X, i.e. with limg_, o f(xg) = infx f.
If (x)re is relatively compact in X, we find a convergent
subsequence with limit z, and if f is also lower semicontin-
uous, then z is a minimizer:

J(@) < Jim f(e) =inf f -



Direct vs. indirect approach

For variational problems one can proceed similarly (but now X
is usually infinite dimensional).

@ classical (indirect) approaches: trace back to Euler, Hamil-
ton, Hilbert, Jacobi, Lagrange, Legendre, Hadamard, . .. and
consist in

e find a necessary criterion for minimality,
@ determine criteria which allow to decide whether such a can-
didate is a minimizer;

© semiclassical approaches: somewhere in between ...

© direct method of the calculus of variations: traces back to
Hilbert, Lebesgue, Tonelli, ... and consists in
e Choose a space Y D X and a topology such that we have
compactness (to be able to select a convergent subsequence
from a minimizing subsequence) and lower semicontinuity
of F' (which guarantees that the limit is a minimizer),
e show that the minimizer belongs to X.



Euler—Lagrange equation

We consider variational functionals

Flu] ::/Uf(x,u(x),Du(x))dac.

Definition
We say that a function u € C'(U) is a minimizer of F if

Flu] < Flu+ ] forallg e CH(U).




Euler—Lagrange equation

We have already derived a necessary criterion for minimality, the
Euler—Lagrange equation in its simplest form:

Theorem

Let f € CY(U x R x RY). Then every minimizer v € C*(U) of F
satisfies the weak Euler—-Lagrange equation

/ [D-f(z, 4, Du) - Dy + Dy f (2,1, Du)g] d = 0
U

for all o € CL(U). If in addition D, f € C*(U x R x R¢ R%) and
u € C?(U) hold, then also the Euler—-Lagrange equation holds:

div D, f(x,u, Du) = D, f(z,u, Du) inU.




Euler—Lagrange equation

Comments:
» Not every solution to the (weak) Euler—Lagrange equation
is @ minimizer (e.g. a maximizer);

> If (u,z) = f(z,u,z) is convexfor all z € U, then we have a
sufficient criterion for minimality: every solution v € C*(U)
of the weak Euler—Lagrange equation is a minimizer;

Proof: If a function g: R* — R is convex, we have
9(y) > g(yo) + Dg(yo) - (y — o) forally,yo € R*.
Thus, for all p € C3(U) and = € U we get
f(x,u+<p,Du+D<p) > f(x,u,Du)
+ Dy f(z,u,Du) - o + D. f(z,u, Du) - Dyp.

Since u solves the weak Euler-Lagrange equation, integration over U shows
the claim Flu] < Flu + ¢] for all ¢ € C(U).



Euler—Lagrange equation

Comments:

>

Not every solution to the (weak) Euler—Lagrange equation
is @ minimizer (e.g. a maximizer);

If (u,2) — f(x,u,z)is convexforall z € U, then we have a
sufficient criterion for minimality: every solution v € C*(U)
of the weak Euler—Lagrange equation is a minimizer;

If (u,2) — f(z,u,z) is strictly convex, then the minimizer is
also unique;

The regularity assumption on « is often not reasonable;

This is not an existence result. Existence of solutions to the
(weak) Euler—Lagrange equation (not necessarily minimiz-
ers) can sometimes be proved by PDE-techniques.



Euler—Lagrange equation for d = 1

For d = 1 we have

d N !
asz(x,u,u) = Duf(z,u,u)

in an interval (a,b) C R, and in some special cases we can extract further
information:

» forintegrands of the form f(z,u, z) = f(z): here we have (D, f(u')) =0
in (a,b), hence D, f(u') = cin (a, b) for some constant c and in particular,
all straight lines are solutions to the Euler-Lagrange equation;

» for integrands of the form f(z,u, z) = f(u, z): here we compute
% (sz(u7 ul)u/ - f(u7 ’LL/))
= % (sz(u7 u/))u/ + sz(u, ul)uH - Duf(“? u/)ul - sz(u7 ul)u//
= (%sz(uaul) - Duf(uau/))ul = 07

=0

hence D, f(u,u')uv’ — f(u,u’) = cin (a,b) for some constant c.



Back to the brachistochrone problem
We need to minimize
b 1+ |u'(s))? 3
/u (Z(ua - u(s)ua)g) ds

among all functions u € C*([a, b)) with u(a) = ua > u(b) = up. The integrand
of this functional is of the form

_ (11N
J)= ()"
which, by constancy of D, f (u,u")u’ — f(u,u) in (a,b), yields
|u/|2 B 1+ "LL/‘Z %_
(1 + [@/]?) (ua — )]/ ( [— ) -

and can be rewritten as
(ue —u)(1 4+ |u’|2) =c.

This is a cycloid equation, and the constant ¢ is determined via the boundary
condition. This is the solution to the brachistochrone problem.
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