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Walk-on-spheres

Suppose that D is an open domain in Rd , d ≥ 2, with sufficiently smooth
boundary. We are interested in the existence of twice differentiable
solutions to the partial differential equation

4u(x) = 0, u ∈ D

u(x) = f (x), x ∈ ∂D,

where f is a continuous function.

Feynman–Kac representation: if u ∈ C 2(D) is a solution iff

u(x) = Ex [f (BτD )], x ∈ D,

where τD = inf{t > 0 : Bt 6∈ D} and B := (Bt , t ≥ 0) is a standard
d-dimensional Brownian motion with probabilities (Px , x ∈ Rd).
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Monte-Carlo approximation

Thanks to the SLLN

u(x) = lim
n→∞

1

n

n∑
i=1

f (B
(i)

τ
(i)
D

)

where (B
(i)
t : t ≥ 0), i ≥ 1, are iid BMs with τ

(i)
D = inf{t > 0 : B

(i)
t 6∈ D}. If

e.g. f ,D bounded, then rate of convergence is optimal thanks to CLT.

Figure: Images sourced from Wolfram: Here D is the unit sphere.
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Walk-on-sphere

A method proposed by M. Muller in 1956 for the case that D is convex,

set ρ0 = x for x ∈ D and define r1 to be the radius of the largest sphere
circumscribed in D that is centred at x . This sphere we will call
S1 = {y ∈ Rd : |y − x | = r1}.
Now set ρ1 ∈ D to be a point uniformly distributed on S1

Construct the remainder of the sequence (ρn, n ≥ 1) inductively.

Given ρn−1, we may define the radius, rn, of the largest sphere
circumscribed in D that is centred at ρn−1. Calling this sphere Sn, we have
that Sn = {y ∈ Rd : |y − ρn−1| = rn}. We now select ρn to be a point that
is uniformly positioned on Sn.

Theorem

We have for all x = ρ0 ∈ D, limn→∞ ρn =d BτD .



Brownian walk-on-sphere Stable walk-on-sphere Numerical experiments Fractional Poisson problem

Walk-on-sphere

Algorithm never ends, spheres become smaller as algorithm approaches the
boundary
Artificially end algorithm at N(ε) = inf{n ≥ 0 : supy∈∂D |ρn − y | < ε}
Run MC algorithm with f (ρN).

Figure: Sourced from: https://en.wikipedia.org/wiki/Walk-on-spheres_method

https://en.wikipedia.org/wiki/Walk-on-spheres_method
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Rate of convergence

Theorem (Muller 1956/Motoo 1959)

Suppose that D is bounded and convex. There exist constants c1, c2 > 0 such
that Ex [N(ε)] ≤ c1 |log ε|+ c2, ε ∈ (0, 1).

Define
ζ1 = min

{
ε, inf

z∈∂V (ρ0)
|ρ1 − z |

}
;

where ∂V (ρ0) is the tangent hyperplane of nearest point on ∂D to ρ0.
Next, define θ1, the angle that subtends at ρ0 between ρ1 and the closest
point on ∂D to ρ0, recall that symmetry implies that θ1 ∼ U[0, 2π].
Simple geometric considerations tell us that, on {ζ1 > ε}

ζ1 = ζ0(1− cos(θ1)).

Note that the event {ζ1 = ε} corresponds to θ1 ∈ [−θ∗(ζ0), θ∗(ζ0)]

θ∗(ζ0) = arccos

(
ζ0 − ε
ζ0

)
.

Simple geometric computations give us

Eρ0 [
√
ζ1] ≤

√
εPρ0 (θ1 ∈ (−θ∗(ζ0), θ∗(ζ0))) + Eρ0

[
1(θ1 6∈(−θ∗(ζ0),θ∗(ζ0)))

√
ζ1

]
≤ λ

√
ζ0, for some λ ∈ (0, 1)
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Sequentially define (ζn, n ≥ 0) (writing ζn+k = ε, k ≥ 1, if ζn = ε) and
note (λ−n√ζn, n ≥ 0) is a supermartingale.

We have N(ε) ≤ N ′(ε) := min{n ≥ 0 : ζn = ε}.
Jensen’s inequality gives us, for ρ0 = x ∈ D,

ελ−Ex [N′(ε)] ≥ Ex [λ−N′(ε)ε] ≤
√
ζ1.

The result now follows by taking logarithms.
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Dirichlet problem for the fractional Laplacian

The Dirichlet problem for fractional Laplacian −(−4)α/2, α ∈ (0, 2),
requires one to find a solution to the system

−(−4)α/2u(x) = 0, u ∈ D,

u(x) = f (x), x ∈ Dc,

where f is a suitably regular function.

In dimension two or greater, up to a multiplicative constant,

−(−4)α/2u(x) = − Γ((d + α)/2)

2απd/2Γ(−α/2)
lim
ε↓0

∫
Rd\B(0,ε)

[u(y)− u(x)]

|y − x |d+α
dy , x ∈ Rd ,

where B(0, ε) = {x ∈ Rd : |x | < ε} and u is smooth enough for the limit
to make sense.
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Fractional Laplacian

The Laplacian serves as the infinitesimal generator of Brownian motion, in
the sense that, for appropriately smooth functions f ,

lim
t→0

Ex [f (Bt)]− f (x)

t
=

1

2
4f (x), x ∈ Rd .

The fractional Laplacian is similarly related to a stable process, a strong
Markov process with stationary and independent increments, say
X = (Xt , t ≥ 0) with probabilities (Px , x ∈ Rd), whose semi-group is
represented by the Fourier transform

E0[ei〈θ,Xt〉] = e−|θ|
αt , θ ∈ Rd , t ≥ 0,

where 〈·, ·〉 represents the usual Euclidian inner product.

The stability index α ∈ (0, 2). The case α = 2 is Brownian motion.

In a small period of time [t, t + dt], the process will experience a
discontinuity, say (∆|x |,∆Argx) = (r , θ) with probability

C

(
1

r 1+α
σ(dθ)dr

)
dt + o(dt),

where C is a constant and σ(dθ) is the uniform measure on Sd−1.
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Three special properties of stable processes like Brownian motion

Spatial homogeneity: We have for any x ∈ Rd ,

((Xt − x , t ≥ 0),Px) is equal in law to ((Xt , t ≥ 0),P0).

Scaling: For α-stable Lévy processes, we have the following important
scaling property: for all c > 0,

((cXc−αt , t ≥ 0),P0) is equal in law to ((Xt , t ≥ 0),P0).

Rotational invariance: Suppose that U corresponds to a rotation in
space, then

((UXt , t ≥ 0),Px) is equal in law to ((Xt , t ≥ 0),PUx).
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Solving Dirichlet problem for the fractional Laplacian

For any function f on Rd , we say it belongs to L1
α(Rd) if it is a non-negative

measurable function that satisfies∫
Rd

f (x)

1 + |x |α+d
dx <∞.

Theorem

For dimension d ≥ 2, suppose that D is a bounded convex domain in Rd and
that f is a non-negative continuous in L1

α(Rd).Then there exists a unique
continuous solution to the Dirichlet problem for fractional Laplacian in L1

α(Rd),
which is given by

u(x) = Ex [f (XσD )], x ∈ D,

where σD = inf{t > 0 : Xt 6∈ D}.
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Stable walk-on-spheres

What happens to the walk-on-spheres approach for stable processes?

Stable processes exit spheres by a jump and hence one can no longer
select the exit point uniformly on the boundary of the sphere, but from an
isotropic distribution on the complement of the sphere.

Theorem (Blumenthal, Getoor, Ray, 1961)

Suppose that B(0, 1) is a unit ball centred at the origin and write
σB(0,1) = inf{t > 0 : Xt 6∈ B(0, 1)}. Then,

P0(XσB(0,1)
∈ dy) = π−(d/2+1) Γ(d/2) sin(πα/2)

∣∣∣1− |y |2∣∣∣−α/2

|y |−d dy ,

for |y | > 1.

Scaling allows us to convert this result to give the exit distribution for a
sphere of any radius.

The algorithm no longer needs to be stopped on approaching an ε-skin,
can now work with

N = inf{n ≥ 0 : ρn 6∈ D}.
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Super fast sampling

Theorem

Suppose that D is convex (does not need to be bounded). For all x ∈ D, there
exists a constant p = p(α, d) > 0 (independent of x) and a random variable Γ
such that N ≤ Γ almost surely, where

P(Γ = k) = (1− p)k−1p, k ∈ N.

Or said another way,

Px(N > n) ≤ P(Γ > n) = (1− p)n
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Proof of Theorem

Scaling and spatial homogeneity tells us:

X (x)
σB1
− x =d |x |(X (i)

σB(i,1)
− i),

x

B1

i

0

B(i, 1)

∂V (x)

∂V (i)

V (x)

V (i)

Define
ID(x) = 1{X (x)

σB1
6∈D} and IV (x) = 1{X (x)

σB1
∈V (x)}.

Then ID(x) ≥ IV (x) and, independently of x ∈ D, P(IV (x) = 1) = p(α, d),
where

p(α, d) := Pi(XσB(i,1)
∈ V (i)) =

Γ(d/2)

π(d+2)/2
sin(πα/2)

∫
x1<−1

∣∣∣1− |x |2∣∣∣−α/2

|x |−d dx .
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Proof of Theorem

Compare each step of the algorithm with exiting the scaled ball into the
tangent hyperplane and this gives the stochastic upper bound by a
geometric random variable whose distribution does not depend on x .

ρ0 = x

ρ1

ρ3

ρ4

r1
r3

r2B1

B2

B3
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Non-convex domains

Definition

A domain D in Rd is said to satisfy the uniform exterior-cone condition,
henceforth written UECC, if there exist constants η > 0, r > 0 and a cone

Cone(η) = {x = (x1, · · · , xd) ∈ Rd : |x | < ηx1}

such that, for every z ∈ ∂D, there is a cone Cz with vertex z , isometric to
Cone(η) satisfying Cz ∩ B(z , r) ⊂ Dc .

We say that D satisfies the regularised uniform exterior-cone condition,
written RUECC, if it is UECC and the following additional condition holds:
for each x ∈ D, suppose that ∂(x) is a closest point on the boundary of D
to x . Then the isometric cone that qualifies D as UECC can be placed with
its vertex at ∂(x) and symmetrically oriented around the line that passes
through x and ∂(x).

It is well known that, for example, bounded C 1,1 domains satisfy (UECC).
We need a slightly more restrictive class of domains than those respecting
UECC.
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Non-convex domains

x

∂(x)

Theorem

Suppose that D is bounded and satisfies RUECC. Then, for each x ∈ D, there
exists a random variable Γ̂ such that N ≤ Γ̂ almost surely and

P(Γ̂ = k) = (1− p̂)k−1p̂, k ∈ N,

for some p̂ = p̂(α,D).
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Non-convex domains: only openness and boundedness

Theorem

Suppose that D is open and bounded. Then for all x ∈ D, there exists a
constant qε = qε(α,D) > 0 (independent of x) and a random variable Γε such
that N ≤ Γε almost surely, where

Px(Γε = k) = (1− qε)
k−1qε, k ∈ N.

Moreover, qε = O(εα) as ε ↓ 0. In particular

Ex [N(ε)] = O(ε−α), as ε ↓ 0.

In this case, we compare the exit from every sphere in the algorithm
against a global sphere which completely surrounds the domain D (and
hence we need that it is bounded).
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Numerical experiments: D = B(0, 1)
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Figure: All four cases consider boundary data g(x , y) = 1(x>0) for different α (in

decreasing order).
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Numerical experiments: D = B(0, 1)
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Figure: All three cases consider boundary data g(x , y) = cos(x) sin(y) for different α
(in decreasing order)
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Numerical experiments: Geometric steps

Figure: x = (0.001, 0.001) (left) and x = (0.6, 0.6) (right)

Figure: x very close to the boundary
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Numerical experiments: Comparison with exact solution on D = B(0, 1)

0 0.5 1 1.5 2
,

9.995

9.996

9.997

9.998

9.999

10

E
st

im
at

or
 s

ta
nd

ar
d 

de
vi

at
io

n

#10 -5

0 0.5 1 1.5 2
,

10 -3

10 -2

10 -1

S
am

pl
e 

va
ria

nc
e

0 0.5 1 1.5 2
,

10 -6

10 -5

10 -4

10 -3

A
bs

ol
ut

e 
er

ro
r

0 0.5 1 1.5 2
,

106

107

108

N
um

be
r 

of
 s

am
pl

es
 a

nd
 s

te
ps

Figure: Example simulation with the walk-on-spheres algorithm based on desired
tolerance of 10−4. From top left to bottom right, we see the standard deviation of the
estimator, the sample variance, the absolute error (using a quadrature approximation
for the integral in Blumenthal-Getoor-Ray formula for the reference value), and the
amount work (number of samples × mean number of steps).
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Fractional Poisson problem

Introduce inhomogeneity

−(−4)α/2u(x) = −g(x), x ∈ D,

u(x) = f (x), x ∈ Dc,
(1)

for suitably regular functions g : D → R and f : D → R.

Theorem

Let d ≥ 2 and assume that D is a bounded convex domain in Rd . Suppose that
f is a non-negative continuous function which belongs to L1

α(Rd). Moreover,
suppose that g is a function in Cα+ε(Rd) for some ε > 0. Then there exists a
unique non-negative continuous solution to (1) in L1

α(Rd) which is given by

u(x) = Ex [f (XσD )] + Ex

[∫ σD

0

g(Xs)ds

]
, x ∈ D,

where σD = inf{t > 0 : Xt 6∈ D}.
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Fractional Poisson problem

Theorem (Blumenthal, Getoor, Ray 1961)

If we write

Vr (x , dy) :=

∫ ∞
0

Px(Xt ∈ dy , t < σB(x,r)) dt, x ∈ Rd , |y | < 1, r > 0,

then

V1(0, dy) = 2−α π−d/2 Γ(d/2)

Γ(α/2)2
|y |α−d

(∫ |y|−2−1

0

(u + 1)−d/2uα/2−1du

)
dy .

For x ∈ D, using the strong Markov property we have the representation

u(x) = Ex [f (ρN)] + Ex

[
N−1∑
n=0

V1(0, rαn g(ρn + rn·))

]
Hence this suggests the Monte-Carlo algorithm using walk-on-sphere
quantities (ρn, rn), n ≤ N,

f (ρN) +
N−1∑
n=0

rαn V1(0, g(ρn + rn·)), x ∈ D,
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Thank you!
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