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Super-Brownian motion

Consider a finite-measure-valued strong Markov process {Xt : t ≥ 0} on Rd

whose evolution is characterised via its log-laplace semi-group: For all
f ∈ C+

b (R), the space of positive, uniformly bounded, continuous functions on
Rd , and µ ∈MF (Rd) (the space of finite measure on Rd),

− logEµ(e−〈f ,Xt〉) =

∫
R
vf (x , t)µ(dx), t ≥ 0,

where vf (x , t) is the unique positive solution to the evolution equation for
x ∈ R and t > 0

∂

∂t
vf (x , t) =

1

2

∂2

∂x2
vf (x , t)− ψ(vf (x , t)),

with initial condition vf (x , 0) = f (x). The branching mechanism ψ satisifes:

ψ(λ) = −αλ+ βλ2 +

∫
(0,∞)

(e−λx − 1 + λx)ν(dx), (1)

for λ ≥ 0 where α = −ψ′(0+) ∈ (0,∞), β ≥ 0 and ν is a measure
concentrated on (0,∞) which satisfies

∫
(0,∞)

(x ∧ x2)ν(dx) <∞.
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Super-Brownian motion

Another way of representing the log-Laplace semi-group evolution is
via the integral equation:

vf (x , t) = Ex [f (ξt)]− Ex

[ ∫ t

0

ψ(vf (ξz , t − z)) dz
]
,

and ((ξz , z ≥ 0),Px) is an Rd -Brownian motion with ξ0 = x

Choosing f = 1 produces the log-Laplace exponent a CSBP with
branching mechanism ψ. That is to say the total mass process,
||Xt || := 〈1,Xt〉, t ≥ 0, is a CSBP.

This super-BM is the continuum analogue of Branching Brownian
motion with a general off-spring distribution (including allowing for
no offspring w.p.p.).

The constant −ψ′(0+) = α gives us the growth rate and hence
process is sub/super-critical with α < 0/α > 0. Largely indifferent
to criticality in this talk.
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Mass decay and Grey’s condition

Following the same property of all (non-monotone) CSBPs:

Pµ( lim
t→∞

||Xt || = 0 | ||X0|| = x) = e−λ
∗||µ||,

where ψ(λ∗) = 0 and µ ∈MF (Rd).

On the event {||Xt || → 0}, Grey (1974) gives us a nice dichotomy
between the two ways in which this can happen: either

{∃T (ω) > 0 s.t. ||XT+t || = 0 ∀t ≥ 0} (extinction)

or {||Xt || → 0 and ||Xt || > 0 ∀t > 0} (extinguishing)

accordingly as ∫ ∞ 1

ψ(λ)
dλ <∞ or =∞
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Sheu’s condition

For the case of super-Brownian motion, Sheu (1994) offers an
additional unusual condition for the event of compact support: Let

S =
⋃
t≥0

suppXt

Then for all compactly supported µ ∈MF (Rd),

Pµ(S is compact) = e−λ∗||µ||

if and only if ∫ ∞ 1√∫ λ
λ∗
ψ(θ) dθ

dλ <∞

and otherwise Pµ(S is compact) = 0.

What is the relation between this condition and Grey’s condition?
Sheu’s condition comes out of PDE analysis and it is unclear where
the condition comes from.

What is the relation between {S is compact} and {||Xt || → 0}?
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First passage branching process

Fix an initial radius r > 0 and let Ds := {x ∈ Rd : ||x || < s} be the
open ball of radius s ≥ r around the origin.

According to Dynkin’s theory of exit measures we can describe the
mass of X as it first exits the growing sequence of balls (Ds , s ≥ r)
as a sequence of random measures on Rd , known as branching
Markov exit measures.

We denote this sequence of branching Markov exit measures by
{XDs , s ≥ r}. Informally, the measure XDs is supported on the
boundary ∂Ds and it is obtained by ‘freezing’ mass of the
super-Brownian motion when it first hits ∂Ds . If X were a branching
Brownian motion, then XDs would be a stopping line à la
Chauvin-Neveu.

For s ≥ r , let Zs := ||XDs || denote the mass that is ‘frozen’ when it
first hits the boundary of the ball Ds . We can then define the mass
process (Zs , s ≥ r) which uses the radius s as its time-parameter.
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Z is a time-inhomogenous CSBP
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Z is a time-inhomogenous CSBP

Theorem

Let r > 0. The process Z = (Zs , s ≥ r) is a time-inhomogeneous
continuous-state branching process. Let r > 0 and µ ∈MF (∂Dr ) with
||µ|| = a. Then, for s ≥ r , we have

Ea,r [e
−θZs ] = e−u(r ,s,θ)a, θ ≥ 0,

where the Laplace functional u(r , s, θ) satisfies

u(r , s, θ) = θ −
∫ s

r

Ψ(z , u(z , s, θ)) dz ,

for a family of branching mechanisms (Ψ(r , ·), r > 0) satisfying the PDE

∂

∂r
Ψ(r , θ) +

1

2

∂

∂θ
Ψ2(r , θ) +

d − 1

r
Ψ(r , θ) = 2ψ(θ)

Ψ(r , λ∗) = 0,

for r > 0, θ ∈ (0,∞).
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Asymptotic behaviour of Z

Proposition

(i) For (sub)critical ψ, we have, for 0 < r ≤ s,

Ψ(r , θ) ≤ Ψ(s, θ) for all θ ≥ 0.

(ii) For supercritical ψ, we have, for 0 < r ≤ s,

Ψ(r , θ) ≥ Ψ(s, θ) for all θ ≤ λ∗
Ψ(r , θ) ≤ Ψ(s, θ) for all θ ≥ λ∗.

θ

Ψ(·, θ)

λ∗

Figure: Shape of the branching mechanism Ψ(r , ·) as r →∞ in the
supercritical case
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Asymptotic behaviour of Z

Lemma

For each θ ≥ 0, the limit limr↑∞Ψ(r , θ) = Ψ∞(θ) is finite and the
convergence holds uniformly in θ on any bounded, closed subset of R+.
For any θ ≥ 0, we have

Ψ∞(θ) = 2 sgn(ψ(θ))

√∫ θ

λ∗
ψ(λ) dλ,

with λ∗ = 0 in the (sub)critical case.

∂

∂r
Ψ(r , θ) +

1

2

∂

∂θ
Ψ2(r , θ) +

d − 1

r
Ψ(r , θ) = 2ψ(θ)

Ψ(r , λ∗) = 0,

for r > 0, θ ∈ (0,∞).
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Burgers’ equation

∂

∂r
Ψ(r , θ) + Ψ(r , θ)

∂

∂θ
Ψ(r , θ) +

d − 1

r
Ψ(r , θ) = 2ψ(θ)

Ψ(r , λ∗) = 0,

for r > 0, θ ∈ (0,∞).
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Burgers’ equation

∂

∂r
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Asymptotic behaviour of Z

Lemma

Denote by ((Z∞s , s ≥ 0),P∞) the standard CSBP associated with the
limiting branching mechanism Ψ∞, with unit initial mass at time 0.
Then, for any s > 0, θ ≥ 0,

lim
r→∞

Er ,1[e−θZr+s ] = E∞[e−θZ
∞
s ].
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Sheu’s condition is Grey’s condition

Sheu’s condition is Grey’s condition for Z∞.∫ ∞ 1√∫ λ
λ∗
ψ(θ) dθ

dλ =

∫ ∞ 1

Ψ∞(λ)
dλ.

There is no hierarchy: {||Xt || → 0} 6⇒ {S is compact}.
Take e.g. the supercritical branching mechanism
ψ(λ) = λ− (λ+ 2)α + 2α for α ∈ (0, 1). This branching mechanism
respects

∫∞
1/ψ(λ)dλ =∞ (extinguishing) but∫∞

1/(
∫ λ
λ∗
ψ(θ) dθ)1/2dλ =∞ (no compact support).

In principle it could happen that ψ is such that we have a process
that becomes extinct but which is not compactly supported.
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Martingales

On the one hand, using the semi-group equations,

Mλ
s = e−λ

∗Zs −
∫ s

r

Ψ(v , λ∗)Zve
−λ∗Zv1{Zv<∞}dv , s ≥ r ,

is a martingale.

On the other hand exp{−λ∗||Xt ||}, t ≥ 0 is a martingale since

Eµ
[
1{||Xu||→0}

∣∣∣σ(||Xs ||, s ≤ t)
]

= e−λ
∗||Xt ||, t ≥ 0,

and hence so is

Eµ[1{||Xu||→0} | σ(||XDv ||, r ≤ v ≤ s)] = e−λ
∗||XDs || = e−λ

∗Zs ,

Comparing tells us that Ψ(r , λ∗) = 0 for all r > 0.
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Branching mechanism PDE

On the one hand: Let r > 0 and µ ∈MF (∂Dr ) with ||µ|| = a.
Then, for s ≥ r , we have

Ea,r [e
−θZs ] = e−u(r ,s,θ)a, θ ≥ 0,

where the Laplace functional u(r , s, θ) satisfies

u(r , s, θ) = θ −
∫ s

r

Ψ(z , u(z , s, θ)) dz ,

On the other hand: Recalling that the radial part of an Rd -Brownian
motion is a Bessel process, Dynkin’s semigroup theory for branching
Markov exit measures gives us

u(r , s, θ) = θ − ER
r

∫ τs

0

ψ(u(R`, s, θ)) d`, 0 < r ≤ s, θ ≥ 0,

where (R,PR) is a d-dimensional Bessel process and
τs := inf{l > 0 : Rl > s} its first passage time above level s
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Branching mechanism PDE

Define ϕ(s) =
∫ r2s

0
R−2` d`, s ≥ 0, then

Bs = log(r−1Rr2ϕ−1(s)), s ≥ 0,

is a one-dimensional Brownian motion with drift d
2 − 1.

the Last semi-group equation can be developed into

u(r , s, θ) = θ − Elog r

∫ Tlog s

0

ψ(u(eBl , s, θ))e2B` d`

= Elog r

∑
log r≤u≤log s

∫ ζ(u)

0

ψ(u(eu−eu(l), s, θ))e2(u−eu(`)) d`

= θ − 2

∫ s

r

v1−d
∫ v

0

ψ(u(z , s, θ)) zd−1 dz dv .
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∫ ζ(u)

0

ψ(u(eu−eu(l), s, θ))e2(u−eu(`)) d`

= θ − 2

∫ s

r

v1−d
∫ v

0

ψ(u(z , s, θ)) zd−1 dz dv .
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Branching mechanism PDE

Line up the two representations of the semi-group equation:

u(r , s, θ) = θ − 2

∫ s

r

v1−d
∫ v

0

ψ(u(z , s, θ)) zd−1 dz dv .

and

u(r , s, θ) = θ −
∫ s

r

Ψ(z , u(z , s, θ)) dz ,

Fiddling with derivatives in s, r and θ, gives the desired PDE

∂

∂r
Ψ(r , θ) +

1

2

∂

∂θ
Ψ2(r , θ) +

d − 1

r
Ψ(r , θ) = 2ψ(θ)

Ψ(r , λ∗) = 0,

for r > 0, θ ∈ (0,∞).
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∂

∂r
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1

2

∂
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d − 1

r
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for r > 0, θ ∈ (0,∞).
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Thankyou


	Problem
	Exit measure indexed proces
	Sheu's condition
	Notes on the proofs

