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X = {X, : t > 0} with probabilities {P, : z € R} will always denote
a spectrally negative Lévy process (i.e. II(0,00) =0 and —X is not
a subordinator).

For & > 0 we may work with the Laplace exponent
() := log Eo(eX1).

For each ¢ > 0, the, so-called, g-scale function W@ R — [0, )
is defined by W(9)(z) = 0 for z < 0 and otherwise is continuous
satisfying
> 1
=Bz 117 (q) _
e WY (z)dr =
| e = S =4

for all g sufficiently large.
For convenience we shall write W for W (0.
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Sample fluctuation identities

For example, if 75 = inf{t > 0: X; < 0} and 7,7 = inf{¢t > 0: X; > a}
then

e The oldest one in the book (Takdcs 1966, Zolotarev 1964) (the ‘ruin
probability’ - in fact the Pollaczek-Khintchine formula in disguise)

P,(ry < 00) =1 - (Eo(X4) V 0) W (a)

for x > 0.
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Sample fluctuation identities

For example, if 75 = inf{t > 0: X; < 0} and 7,7 = inf{¢t > 0: X; > a}
then

e The oldest one in the book (Takdcs 1966, Zolotarev 1964) (the ‘ruin
probability’ - in fact the Pollaczek-Khintchine formula in disguise)

Pa(ry < o0) = 1 = (Eo(X1) V 0) W(2)
for z > 0.

e Resolvent in a strip: Forany a >0, z,y € [0,a], ¢ >0

/ e UP,(X; € dy, t < TS ATy )dt
0

_ { WD ()W (a - y)

W@ (a) ~ WD (g - y)} dy.
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Controlled Lévy risk processes

e Think of X as the wealth of an insurance company (X can be a
classical Cramér-Lundberg processes if you want).

e Suppose that £ = {L% : t > 0} is a stream of dividend payments or
‘dividend strategy': left continuous, non-negative, non-decreasing
process adapted to the filtration generated by X.

e Define the aggregate process Ut = X, — L§ when paying dividends
with strategy £ and let

o¢ =inf{t > 0: Uf <0}

be the ruin time of the aggregate process.

o A strategy ¢ is called admissible if L§+ — L5 < Uf for t < o¢ (ie.
ruin of the aggregate process does not result as a consequence of a
dividend payment).
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De Finetti’s control problem

An ‘old’ actuarial problem of the ‘modern’ probabilistic age proposed by
de Finetti 1957: find the value function and matching dividend strategy
&* such that

v(z) =supE, (/ e_qtdL§> =E, (/ e~ dL§ )
§ 0 0

where ¢ > 0 and the supremum is taken over all admissible dividend
strategies.
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It has been shown that the optimal strategy is of a ‘barrier type with
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L =(aVsup Xs) —a
s<t
for some optimal level a. These cases are:

1 (Gerber 1969) Cramér-Lundberg process with exponentially
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Reflection strategies

It has been shown that the optimal strategy is of a ‘barrier type with
reflection’:
L =(aVsup Xs) —a
s<t
for some optimal level a. These cases are:

1 (Gerber 1969) Cramér-Lundberg process with exponentially
distributed jumps X; = ¢t — 2 e,

2 (Jeanblanc & Shiryaev 1995 and many others) Linear Brownian
motion: X; = ut + o B;.

3 (Loeffen 2008) Any spectrally negative Lévy process whose jump
measure has a completely monotone density.

4 (K. Rivero and Song 2008) Any spectrally negative Lévy process
whose jump measure has a log-convex density.
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e Many variations on this theme have been examined for the case of
diffusions (Jeanblanc & Shiryaev 1995, Elena Boguslavskaya's Ph.D.
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jumps (Gerber & Shiu 2006) including the following:
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Restricted class of control strategies

e Many variations on this theme have been examined for the case of
diffusions (Jeanblanc & Shiryaev 1995, Elena Boguslavskaya's Ph.D.
thesis 2005) as well as the Cramér-Lundberg case with exponential
jumps (Gerber & Shiu 2006) including the following:

e The class of admissible strategies is further restricted to the case
that

t
U= X, — L = X, — / H(UP)ds (1)
0

where ¢ is measurable and uniformly bounded by, say, § > 0. Should
now think of ¢ as the control.

e Immediate problem: (1) can be a stochastic differential equation of
the degenerate type. Does it even have a unique weak solution?
(possible bad cases: X has no Gaussian component).

e Could one at least investigate (1) for the optimal strategies that
have appeared in the aforementioned articles?
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Refraction strategies (Loeffen and K. 2008)

e A refraction strategy refers to the control ¢(z) = 01 ;) for some
threshold level b > 0. Thus the controlled process would need to
solve the stochastic differential equation

t
Ut = Xt - (S/ 1(U€>b)d8.
0

e When X has a Gaussian part then classical theory gives us a unique
strong solution.

e When X has paths of bounded variation, then solution can be
constructed pathwise.

e When X has unbounded variation, no Gaussian part, solution can be
strongly approximated by solutions from the bounded variation case:

aup X, — X 0= sup |7 = U] 0
s€[0,1] s€(0,1]

as n 1 oo for some stochastic process U* (which is a limit point in
the (D[0,1],]] - ||c) Banach space.
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0 (U™ >0b)

we have that U* is a refracted process as soon as one can prove
that P, (U, = b) = 0 for Lebesgue almost every s > 0.
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e Since

Up =X, — 6 lim

nfoo Jo 1( UM >b) e

we have that U* is a refracted process as soon as one can prove
that P, (U, = b) = 0 for Lebesgue almost every s > 0.
e Do this by noting that for 7, ¢ > 0:
(Ur =6} C{U™ € (b—n,b+n) ev.}
I3 e P (U = b)dt < [;F e”“ liminf, P, (U™ € (b—n,b+n))dt
[ e P, (UF = b)dt
< limsup,) o liminf, [;° e™ %P, (U, " e (b—mn,b+n))dt
e Amazingly this can be done because a expression for the resolvent
can be found semi-explicitly in terms of scale functions.



Refracted Lévy processes
LAdaptation of de Finetti’s control problem

Resolvent

e Suppose that X has paths of bounded variation and R(9)(z,-) is the
resolvent measure of U under P,.



Refracted Lévy processes
LAdaptation of de Finetti’s control problem
Resolvent
e Suppose that X has paths of bounded variation and R(9)(z,-) is the

resolvent measure of U under P,.
e For z,b € R, Borel B and ¢ > 0,

]EI (/0 e_Qtl{ULEB}dS>
x
_ /Bm[b ){ (e<1>(q)<w—b> +5¢(q)e—¢<q>b1{12b}/[) (@) (5 ZW)

.%(q‘l;(q)e—mm—b) _ W@ (g — y)}dy

+/ { (eé(q)(:v—b) +5‘I>((1)e_q>(Q)b1{z>b}/ e2(D2w(a) (5 — z)dz)
BN(—o0,b) ~Jb

() = 2(9) p(q1s

= e @2 W@ (5 _ y)dz
@(q) /b ( )

— <W(Q)(x —y) + 01>y / WD (g — 2)w (@ (7 — y)dz) }dy.
- b
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Uniqueness

m We have established existence of a strong solution for all driving
spectrally negative Lévy processes X.

m Uniqueness: Suppose that U and U®) are two strong solutions.
Then writing

t
At _ Ut(l) _ Ut(2) — _5‘/0 (1{U5(1)>b} - 1{U5<2)>b})ds’

it follows from classical calculus that

t
2
A% = _25/0 AS(l{U_fl)>b} = 1{U‘f2)>b})d3'

Now note that thanks to the fact that 17, is an increasing
function, it follows from the above representation that, for all ¢ > 0,
Af < 0 and hence A; = 0 almost surely.
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Sample identities for U

Some nice identities fall out of this analysis. Suppose that
ko =1inf{t > 0: U, < 0}.

Forg>0and x >0

Fo
E, </ 6qt51{Ut>b}d$>
0
(z—b)VO
= —5/ WD (2)dz
0

WD (z) + 61550} [, WO (z — y) WO (y)dy
©(q) f0°° e=(@y W (@ (y + b)dy ’
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