Weak convergence and large deviation theory

- Large deviation principle
- Convergence in distribution
- The Bryc-Varadhan theorem
- Tightness and Prohorov's theorem
- Exponential tightness
- Tightness for processes
- (Exponential) tightness and results for finite dimensional distributions
- Conditions for (exponential) tightness

Joint work with Jin Feng

Second Lecture

Large deviation principle

(S,d) a (complete, separable) metric space.

 $X_n, n = 1, 2, \ldots$ S-valued random variables

 $\{X_n\}$ satisfies a *large deviation principle* (LDP) if there exists a lower semicontinuous function $I: S \to [0, \infty]$ such that for each open set A,

$$\liminf_{n \to \infty} \frac{1}{n} \log P\{X_n \in A\} \ge -\inf_{x \in A} I(x)$$

and for each closed set B,

$$\limsup_{n \to \infty} \frac{1}{n} \log P\{X_n \in B\} \le -\inf_{x \in B} I(x).$$

The rate function

I is called the *rate function* for the large deviation principle.

A rate function is good if for each $a \in [0, \infty)$, $\{x : I(x) \le a\}$ is compact. If I is a rate function for $\{X_n\}$, then

$$I_*(x) = \lim_{\epsilon \to 0} \inf_{y \in B_\epsilon(x)} I(y)$$

is also a rate function for $\{X_n\}$. I_* is lower semicontinuous.

If the large deviation principle holds with lower semicontinuous rate ${\cal I}$ function, then

$$I(x) = \liminf_{\epsilon \to 0} \liminf_{n \to \infty} \frac{1}{n} \log P\{X_n \in B_{\epsilon}(x)\} = \limsup_{\epsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log P\{X_n \in \overline{B}_{\epsilon}(x)\}$$

Convergence in distribution

 $\{X_n\}$ converges in distribution to X if and only if for each $f \in C_b(S)$

 $\lim_{n \to \infty} E[f(X_n)] = E[f(X)]$

Equivalent statements: Large deviation principle

 $\{X_n\}$ satisfies an LDP with a good rate function if and only if $\{X_n\}$ is exponentially tight and

$$\Lambda(f) \equiv \lim_{n \to \infty} \frac{1}{n} \log E[e^{nf(X_n)}]$$

for each $f \in C_b(S)$. Then

$$I(x) = \sup_{C_b(S)} \{ f(x) - \Lambda(f) \}$$

and

$$\Lambda(f) = \sup_{x \in S} \{ f(x) - I(x) \}$$

Bryc, Varadhan

Equivalent statements: Convergence in distribution

 $\{X_n\}$ converges in distribution to X if and only if

 $\liminf_{n\to\infty} P\{X_n\in A\}\geq P\{X\in A\}, \text{ each open } A,$

or equivalently

 $\limsup_{n \to \infty} P\{X_n \in B\} \le P\{X \in B\}, \text{ each closed } B$

LDP

Tightness

A sequence $\{X_n\}$ is *tight* if for each $\epsilon > 0$, there exists a compact set $K_{\epsilon} \subset S$ such that

 $\sup_{n} P\{X_n \notin K_\epsilon\} \le \epsilon.$

Prohorov's theorem

Theorem 1 Suppose that $\{X_n\}$ is tight. Then there exists a subsequence $\{n(k)\}$ along which the sequence converges in distribution.

Exponential tightness

 $\{X_n\}$ is *exponentially tight* if for each a > 0, there exists a compact set $K_a \subset S$ such that

$$\limsup_{n \to \infty} \frac{1}{n} \log P\{X_n \notin K_a\} \le -a.$$

Analog of Prohorov's theorem

Theorem 2 (Puhalskii, O'Brien and Vervaat, de Acosta) Suppose that $\{X_n\}$ is exponentially tight. Then there exists a subsequence $\{n(k)\}$ along which the large deviation principle holds with a good rate function.

Stochastic processes in $D_E[0,\infty)$

(E, r) complete, separable metric space $S = D_E[0, \infty)$

Modulus of continuity:

$$w'(x, \delta, T) = \inf_{\{t_i\}} \max_{i} \sup_{s, t \in [t_{i-1}, t_i)} r(x(s), x(t))$$

where the infimum is over $\{t_i\}$ satisfying

$$0 = t_0 < t_1 < \dots < t_{m-1} < T \le t_m$$

and $\min_{1 \le i \le n} (t_i - t_{i-1}) > \delta$

 X_n stochastic process with sample paths in $D_E[0,\infty)$

 X_n adapted to $\{\mathcal{F}_t^n\}$: For each $t \ge 0$, $X_n(t)$ is \mathcal{F}_t^n -measurable.

Tightness in $D_E[0,\infty)$

Theorem 3 (Skorohod) Suppose that for $t \in \mathcal{T}_0$, a dense subset of $[0, \infty)$, $\{X_n(t)\}$ is tight. Then $\{X_n\}$ is tight if and only if for each $\epsilon > 0$ and T > 0

$$\lim_{\delta \to 0} \limsup_{n \to \infty} P\{w'(X_n, \delta, T) > \epsilon\} = 0.$$

Theorem 4 (Puhalskii) Suppose that for $t \in \mathcal{T}_0$, a dense subset of $[0, \infty)$, $\{X_n(t)\}$ is exponentially tight. Then $\{X_n\}$ is exponentially tight if and only if for each $\epsilon > 0$ and T > 0

$$\lim_{\delta \to 0} \limsup_{n \to \infty} \frac{1}{n} \log P\{w'(X_n, \delta, T) > \epsilon\} = -\infty.$$

Identification of limit distribution

Theorem 5 If
$$\{X_n\}$$
 is tight in $D_E[0,\infty)$ and
 $(X_n(t_1),\ldots,X_n(t_k)) \Rightarrow (X(t_1),\ldots,X(t_k))$
for $t_1,\ldots,t_k \in \mathcal{T}_0$, \mathcal{T}_0 dense in $[0,\infty)$, then $X_n \Rightarrow X$.

Identification of rate function

Theorem 6 If $\{X_n\}$ is exponentially tight in $D_E[0,\infty)$ and for each $0 \leq t_1 < \cdots < t_m$, $\{(X_n(t_1), \ldots, X_n(t_m))\}$ satisfies the large deviation principle in E^m with rate function I_{t_1,\ldots,t_m} , then $\{X_n\}$ satisfies the large deviation principle in $D_E[0,\infty)$ with good rate function

$$I(x) = \sup_{\{t_i\} \subset \Delta_x^c} I_{t_1,...,t_m}(x(t_1),...,x(t_m)),$$

where Δ_x is the set of discontinuities of x.

Conditions for tightness

 $S_0^n(T)$ collection of discrete $\{\mathcal{F}_t^n\}$ -stopping times $q(x,y) = 1 \wedge r(x,y)$

Suppose that for $t \in \mathcal{T}_0$, a dense subset of $[0, \infty)$, $\{X_n(t)\}$ is tight. Then the following are equivalent.

a) $\{X_n\}$ is tight in $D_E[0,\infty)$.

Conditions for tightness

b) For T > 0, there exist $\beta > 0$ and random variables $\gamma_n(\delta, T)$, $\delta > 0$, satisfying

$$E[q^{\beta}(X_n(t+u), X_n(t)) \wedge q^{\beta}(X_n(t), X_n(t-v)) | \mathcal{F}_t^n] \\\leq E[\gamma_n(\delta, T) | \mathcal{F}_t^n]$$
(1)

for $0 \le t \le T$, $0 \le u \le \delta$, and $0 \le v \le t \land \delta$ such that

 $\lim_{\delta \to 0} \limsup_{n \to \infty} E[\gamma_n(\delta, T)] = 0$

and

$$\lim_{\delta \to 0} \limsup_{n \to \infty} E[q^{\beta}(X_n(\delta), X_n(0))] = 0.$$
⁽²⁾

Kurtz

Conditions for tightness

c) Condition (2) holds, and for each T > 0, there exists $\beta > 0$ such that

$$C_n(\delta, T) \equiv \sup_{\tau \in S_0^n(T)} \sup_{u \le \delta} E[\sup_{v \le \delta \land \tau} q^\beta(X_n(\tau + u), X_n(\tau)) \\ \land q^\beta(X_n(\tau), X_n(\tau - v))]$$

satisfies $\lim_{\delta \to 0} \limsup_{n \to \infty} C_n(\delta, T) = 0.$

Aldous

Conditions for exponential tightness

 $S_0^n(T)$ collection of discrete $\{\mathcal{F}_t^n\}$ -stopping times $q(x,y) = 1 \wedge r(x,y)$

Suppose that for $t \in \mathcal{T}_0$, a dense subset of $[0, \infty)$, $\{X_n(t)\}$ is exponentially tight. Then the following are equivalent.

a) $\{X_n\}$ is exponentially tight in $D_E[0,\infty)$.

Conditions for exponential tightness

b) For T > 0, there exist $\beta > 0$ and random variables $\gamma_n(\delta, \lambda, T)$, $\delta, \lambda > 0$, satisfying

$$E[e^{n\lambda q^{\beta}(X_n(t+u),X_n(t))\wedge q^{\beta}(X_n(t),X_n(t-v))}|\mathcal{F}_t^n] \le E[e^{\gamma_n(\delta,\lambda,T)}|\mathcal{F}_t^n]$$

for $0 \le t \le T$, $0 \le u \le \delta$, and $0 \le v \le t \land \delta$ such that

$$\lim_{\delta \to 0} \limsup_{n \to \infty} \frac{1}{n} \log E[e^{\gamma_n(\delta, \lambda, T)}] = 0,$$

and

$$\lim_{\delta \to 0} \limsup_{n \to \infty} \frac{1}{n} \log E[e^{n\lambda q^{\beta}(X_n(\delta), X_n(0))}] = 0.$$
(3)

Conditions for exponential tightness

c) Condition (3) holds, and for each T > 0, there exists $\beta > 0$ such that for each $\lambda > 0$

$$C_n(\delta, \lambda, T) \equiv \sup_{\tau \in S_0^n(T)} \sup_{u \le \delta} E[\sup_{v \le \delta \land \tau} e^{n\lambda q^\beta (X_n(\tau+u), X_n(\tau)) \land q^\beta (X_n(\tau), X_n(\tau-v))}]$$

satisfies $\lim_{\delta \to 0} \limsup_{n \to \infty} \frac{1}{n} \log C_n(\delta, \lambda, T) = 0.$

Example

 \boldsymbol{W} standard Brownian motion

$$\begin{aligned} X_n &= \frac{1}{\sqrt{n}} W \\ E[e^{n\lambda|X_n(t+u) - X_n(t)|} |\mathcal{F}_t^W] &= E[e^{\lambda\sqrt{n}|W(t+u) - W(t)|} |\mathcal{F}_t^W] \le 2e^{\frac{1}{2}n\lambda^2 u} \\ \text{so} \\ \lim_{\delta \to 0} \limsup_{n \to \infty} \frac{1}{n} \log E[e^{\gamma_n(\delta,\lambda,T)}] &= \lim_{\delta \to 0} \frac{1}{2}\lambda^2 \delta = 0. \end{aligned}$$

Equivalence to tightness for functions

Theorem 7 $\{X_n\}$ is tight in $D_E[0,\infty)$ if and only if

a) (Compact containment condition) For each T > 0 and $\epsilon > 0$, there exists a compact $K_{\epsilon,T} \subset E$ such that

 $\limsup_{n \to \infty} P(\exists t \le T \ni X_n(t) \notin K_{\epsilon,T}) \le \epsilon$

b) There exists a family of functions $F \subset C(E)$ that is closed under addition and separates points in E such that for each $f \in F$, $\{f(X_n)\}$ is tight in $D_R[0,\infty)$.

Kurtz, Jakubowski

Equivalence to exponential tightness for functions

Theorem 8 $\{X_n\}$ is exponentially tight in $D_E[0,\infty)$ if and only if

- a) For each T > 0 and a > 0, there exists a compact $K_{a,T} \subset E$ such that $\limsup_{n \to \infty} \frac{1}{n} \log P(\exists t \leq T \ni X_n(t) \notin K_{a,T}) \leq -a \qquad (4)$
- b) There exists a family of functions $F \subset C(E)$ that is closed under addition and separates points in E such that for each $f \in F$, $\{f(X_n)\}$ is exponentially tight in $D_R[0,\infty)$.

Schied

Large Deviations for Markov Processes

- Martingale problems and semigroups
- Semigroup convergence and the LDP
- Control representation of the rate function
- Viscosity solutions and semigroup convergence
- Summary of method

Markov processes

 $X_n = \{X_n(t), t \ge 0\}$ is a Markov process if $E[g(X_n(t+s))|\mathcal{F}_t^n] = E[g(X_n(t+s))|X_n(t)]$

The generator of a Markov process determines its short time behavior

 $E[g(X_n(t+\Delta t)) - g(X_n(t))|\mathcal{F}_t] \approx A_n g(X_n(t))\Delta t$

Martingale problems

 X_n is a solution of the martingale problem for A_n if and only if

$$g(X_n(t)) - g(X_n(0)) - \int_0^t A_n g(X_n(s)) ds$$
 (5)

is an $\{\mathcal{F}_t^n\}$ -martingale for each $g \in \mathcal{D}(A_n)$.

If g is bounded away from zero, (5) is a martingale if and only if

$$g(X_n(t))\exp\{-\int_0^t \frac{A_n g(X_n(s))}{g(X_n(s))}ds\}$$

is a martingale. (You can always add a constant to g.)

Nonlinear generator

Define $\mathcal{D}(H_n) = \{ f \in B(E) : e^{nf} \in \mathcal{D}(A_n) \}$ and set

$$H_n f = \frac{1}{n} e^{-nf} A_n e^{nf}.$$

Then

$$\exp\{nf(X_n(t)) - nf(X(0)) - \int_0^t nH_nf(X(s))ds\}$$

is a $\{\mathcal{F}_t^n\}$ -martingale.

Tightness for solutions of MGPs

$$E[f(X_n(t+u)) - f(X_n(t))|\mathcal{F}_t^n]$$

= $E[\int_t^{t+u} A_n f(X_n(s)) ds |\mathcal{F}_t^n] \le u ||A_n f||$

For $\gamma_n(\delta, T) = \delta(||A_n f^2|| + 2||f|| ||A_n f||)$ (see (1)) $E[(f(X_n(t+u)) - f(X_n(t)))^2 |\mathcal{F}_t^n]$ $= E[\int_t^{t+u} A_n f^2(X_n(s)) ds |\mathcal{F}_t^n]$ $-2f(X_n(t)) E[\int_t^{t+u} A_n f(X_n(s)) ds |\mathcal{F}_t^n]$ $\leq u(||A_n f^2|| + 2||f|| ||A_n f||) \leq \gamma_n(\delta, T)$

Exponential tightness

$$E[e^{n(\lambda f(X_n(t+u)) - \lambda f(X_n(t)) - \int_t^{t+u} H_n[\lambda f](X_n(s))ds} | \mathcal{F}_t^n] = 1$$

 \mathbf{SO}

$$E[e^{n\lambda(f(X_n(t+u))-f(X_n(t)))}|\mathcal{F}_t^n] \le e^{nu\|H_n\lambda f\|}$$

and

$$\gamma_n(\delta, \lambda, T) = \delta n(\|H_n[\lambda f]\| + \|H_n[-\lambda f]\|)$$

ET Conditions

The Markov process semigroup

Assume that the martingale problem for A_n is well-posed. Define

$$T_n(t)f(x) = E[f(X_n(t))|X_n(0) = x]$$

By the Markov property

$$T_n(s)T_n(t)f(x) = T_n(t+s)f(x)$$

$$\lim_{t \to 0} \frac{T_n(t)f(x) - f(x)}{t} = A_n f(x)$$

Iterating the semigroup

For $0 \le t_1 \le t_2$,

$$E[f_1(X_n(t_1))f_2(X_n(t_2))|X_n(0) = x]$$

= $T_n(t_1)(f_1T_n(t_2 - t_1)f_2)(x)$

and in general

$$E[f_1(X_n(t_1))\cdots f_k(X_n(t_k))|X_n(0) = x]$$

= $E[f_1(X_n(t_1))\cdots f_{k-1}(X_n(t_{k-1}))]$
 $T_n(t_k - t_{k-1})f_k(X_n(t_{k-1}))|X_n(0) = x]$

Convergence of the semigroups implies convergence of the finite dimensional distributions.

A nonlinear semigroup (Fleming)

Assume that the martingale problem for A_n is well-posed. Define

$$V_n(t)f(x) = \frac{1}{n}\log E_x[e^{nf(X_n(t))}]$$

By the Markov property

$$V_n(s)V_n(t)f(x) = V_n(t+s)f(x)$$

$$\lim_{t \to 0} \frac{V_n(t)f(x) - f(x)}{t} = \frac{1}{n} e^{-nf} A_n e^{nf}(x) = H_n f(x)$$

Exponential generator

Iterating the semigroup

For $0 \le t_1 \le t_2$, define $V_n(t_1, t_2, f_1, f_2)(x) = V_n(t_1)(f_1 + V_n(t_2 - t_1)f_2)(x)$ and inductively

$$V_n(t_1, \dots, t_k, f_1, \dots, f_k)(x) = V_n(t_1)(f_1 + V_n(t_2, \dots, t_k, f_2, \dots, f_k))(x).$$

Then

$$E[e^{n(f_1(X_n(t_1))+\dots+f_k(X_n(t_k)))}]$$

= $E[e^{nV_n(t_1,\dots,t_k,f_1,\dots,f_k)(X_n(0))}]$

By the Bryc-Varadhan result, convergence of semigroup should imply the finite dimensional LDP

Weaker conditions for the LDP

A collection of functions $D \subset C_b(S)$ isolates points in S, if for each $x \in S$, each $\epsilon > 0$, and each compact $K \subset S$, there exists $f \in D$ satisfying $|f(x)| < \epsilon$, $\sup_{y \in K} f(y) \leq 0$, and

$$\sup_{y \in K \cap B^c_{\epsilon}(x)} f(y) < -\frac{1}{\epsilon}.$$

A collection of functions $D \subset C_b(S)$ is bounded above if $\sup_{f \in D} \sup_y f(y) < \infty$.

A rate determining class

Proposition 9 Suppose $\{X_n\}$ is exponentially tight, and let

$$\Gamma = \{ f \in C_b(S) : \Lambda(f) = \lim_{n \to \infty} \frac{1}{n} \log E[e^{nf(X_n)}] \text{ exists} \}.$$

If $D \subset \Gamma$ is bounded above and isolates points, then $\Gamma = C_b(S)$ and

$$I(x) = \sup_{f \in D} \{f(x) - \Lambda(f)\}.$$

Semigroup convergence and the LDP

Suppose $D \subset C_b(E)$ contains a set that is bounded above and isolates points.

Suppose $X_n(0) = x$ and $\{X_n(t)\}$ is exponentially tight. If $V_n(t)f(x) \to V(t)f(x)$ for each $f \in D$, then $\{X_n(t)\}$ satisfies a LDP with rate function

$$I_t(y|x) = \sup_{f \in D} \{ f(y) - V(t)f(x) \},\$$

and hence

$$V(t)f(x) = \sup_{y} \{f(y) - I_t(y|x)\}$$

Think of $I_t(y|x)$ as the large deviation analog of a transition density.

Iterating the semigroup

Suppose D is closed under addition, $V(t) : D \to D, t \ge 0$, and $0 \le t_1 \le t_2$. Define

$$V(t_1, t_2, f_1, f_2)(x) = V(t_1)(f_1 + V(t_2 - t_1)f_2)(x)$$

and inductively

$$V(t_1, \dots, t_k, f_1, \dots, f_k)(x) = V(t_1)(f_1 + V(t_2, \dots, t_k, f_2, \dots, f_k))(x)$$

Semigroup convergence and the LDP

Theorem 10 For each n, let $A_n \subset C_b(E) \times B(E)$, and suppose that existence and uniqueness holds for the $D_E[0,\infty)$ -martingale problem for (A_n,μ) for each initial distribution $\mu \in \mathcal{P}(E)$.

Let $D \subset C_b(E)$ be closed under addition and contain a set that is bounded above and isolates points, and suppose that there exists an operator semigroup $\{V(t)\}$ on D such that for each compact $K \subset E$

$$\sup_{x \in K} |V(t)f(x) - V_n(t)f(x)| \to 0, \quad f \in D.$$

Suppose that $\{X_n\}$ is exponentially tight, and that $\{X_n(0)\}$ satisfies a large deviation principle with good rate function I_0 . Define

$$\Lambda_0(f) = \lim_{n \to \infty} \frac{1}{n} \log E[e^{nf(X_n(0))}], \quad f \in C_b(E).$$

a) For each $0 \leq t_1 < \cdots < t_k$ and $f_1, \ldots, f_k \in D$,

$$\lim_{n \to \infty} \frac{1}{n} \log E[e^{nf_1(X_n(t_1)) + \dots + nf_k(X_n(t_k))}] = \Lambda_0(V(t_1, \dots, t_k, f_1, \dots, f_k)).$$

Recall

$$E[e^{n(f_1(X_n(t_1))+\dots+f_k(X_n(t_k)))}]$$

= $E[e^{nV_n(t_1,\dots,t_k,f_1,\dots,f_k)(X_n(0))}]$

b) For $0 \le t_1 < \ldots < t_k \{(X_n(t_1), \ldots, X_n(t_k))\}$ satisfies the large deviation principle with rate function

$$I_{t_1,\dots,t_k}(x_1,\dots,x_k)$$

$$= \sup_{\substack{f_1,\dots,f_k \in D \cap C_b(E) \\ -\Lambda_0(V(t_1,\dots,t_k,f_1,\dots,f_k))\}} \{f_1(x_0) + \sum_{i=1}^k I_{t_i-t_{i-1}}(x_i|x_{i-1}))$$

$$= \inf_{x_0 \in E} (I_0(x_0) + \sum_{i=1}^k I_{t_i-t_{i-1}}(x_i|x_{i-1}))$$
(6)

c) $\{X_n\}$ satisfies the large deviation principle in $D_E[0,\infty)$ with rate function

$$I(x) = \sup_{\{t_i\}\subset\Delta_x^c} I_{t_1,\dots,t_k}(x(t_1),\dots,x(t_k))$$

=
$$\sup_{\{t_i\}\subset\Delta_x^c} (I_0(x(0)) + \sum_{i=1}^k I_{t_i-t_{i-1}}(x(t_i)|x(t_{i-1})))$$

Example: Freidlin and Wentzell small diffusion

Let X_n satisfying the Itô equation

$$X_{n}(t) = x + \frac{1}{\sqrt{n}} \int_{0}^{t} \sigma(X_{n}(s-)) dW(s) + \int_{0}^{t} b(X_{n}(s)) ds,$$

and define $a(x) = \sigma^T(x) \cdot \sigma(x)$. Then

$$A_n g(x) = \frac{1}{2n} \sum_{ij} a_{ij}(x) \partial_i \partial_j g(x) + \sum_i b_i(x) \partial_i g(x),$$

Take $\mathcal{D}(A_n)$ to be the collection of functions of the form c + f, $c \in R$ and $f \in C_c^2(\mathbb{R}^d)$.

Convergence of the nonlinear generator

$$H_n f(x) = \frac{1}{2n} \sum_{ij} a_{ij}(x) \partial_{ij} f(x) + \frac{1}{2} \sum_{ij} a_{ij}(x) \partial_i f(x) \partial_j f(x) + \sum_i b_i(x) \partial_i f(x).$$

and $Hf = \lim_{n \to \infty} H_n f$ is $Hf(x) = \frac{1}{2} (\nabla f(x))^T \cdot a(x) \cdot \nabla f(x) + b(x) \cdot \nabla f(x).$

A control problem

Let (E, r) and (U, q) be complete, separable metric spaces, and let $A : \mathcal{D}(A) \subset C_b(E) \to C(E \times U)$

Let H be as above, and suppose that that there is a nonnegative, lower semicontinuous function L on $E \times U$ such that

$$Hf(x) = \sup_{u \in U} (Af(x, u) - L(x, u)).$$

 $\{V(t)\}$ should be the Nisio semigroup corresponding to an optimal control problem with "reward" function -L.

(cf. Book by Dupuis and Ellis)

Dynamics of control problem

Require

$$f(x(t)) - f(x(0)) - \int_{U \times [0,t]} Af(x(s), u) \lambda_s(du \times ds) = 0,$$

for each $f \in \mathcal{D}(A)$ and $t \geq 0$, where $x \in D_E[0,\infty)$ and $\lambda \in \mathcal{M}_m(U)$, the space of measures on $U \times [0,\infty)$ satisfying $\lambda(U \times [0,t]) = t$.)

For each $x_0 \in E$, we should have

$$V(t)g(x_0) = \sup_{(x,\lambda)\in\mathcal{J}_{x_0}^t} \{g(x(t)) - \int_{[0,t]\times U} L(x(s),u)\lambda(du\times ds)\}$$

Representation theorem

Theorem 11 Suppose (E, r) and (U, q) are complete, separable, metric spaces. Let $A : \mathcal{D}(A) \subset C_b(E) \to C(E \times U)$ and lower semicontinuous $L(x, u) \geq 0$ satisfy

1. $\mathcal{D}(A)$ is convergence determining.

- 2. For each $x_0 \in E$, there exists $(x, \lambda) \in \mathcal{J}$ such that $x(0) = x_0$ and $\int_{U \times [0,t]} L(x(s), u) \lambda(du \times ds) = 0, t \ge 0.$
- 3. For each $f \in \mathcal{D}(A)$, there exists a nondecreasing function $\psi_f : [0, \infty) \to [0, \infty)$ such that

$$|Af(x,u)| \le \psi_f(L(x,u)), \ (x,u) \in E \times U,$$

and $\lim_{r\to\infty} r^{-1}\psi_f(r) = 0.$

4. There exists a tightness function Φ on $E \times U$, such that $\Phi(x, u) \leq L(x, u)$ for $(x, u) \in E \times U$.

Let $\{V(t)\}$ be an LDP limit semigroup and satisfy the control identity. Then

$$I(x) = I_0(x(0)) + \inf_{\lambda:(x,\lambda)\in\mathcal{J}} \{ \int_{U\times[0,\infty)} L(x(s),u)\lambda(du\times ds) \}.$$

Small diffusion

$$Hf(x) = \frac{1}{2} (\nabla f(x))^T \cdot a(x) \cdot \nabla f(x) + b(x) \cdot \nabla f(x)$$

For

$$Af(x,u) = u \cdot \nabla f(x)$$

and

$$L(x,u) = \frac{1}{2}(u - b(x)a(x)^{-1}(u - b(x)),$$
$$Hf(x) = \sup_{u \in \mathbb{R}^d} (Af(x,u) - L(x,u))$$

$$I(x) = \int_0^\infty \frac{1}{2} (\dot{x}(s) - b(x(s))a(x(s))^{-1}(\dot{x}(s) - b(x(s)))ds$$

Alternative representation

For

$$Af(x, u) = (u^T \sigma(x) + b(x))\nabla f(x)$$

and

$$L(x,u) = \frac{1}{2}|u|^2,$$

again

$$Hf(x) = \sup_{u \in \mathbb{R}^d} (Af(x, u) - L(x, u))$$
$$I(x) = \inf\{\int_0^\infty \frac{1}{2} |u(s)|^2 ds : \dot{x}(t) = u^T(t)\sigma(x(t)) + b(x(t))\}$$

Legendre transform approach

If $Hf(x) = H(x, \nabla f(x))$, where H(x, p) is convex and continuous in p, then

$$L(x, u) = \sup_{p \in \mathbb{R}^d} \{ p \cdot u - H(x, p) \}$$

and

$$H(x,p) = \sup_{u \in \mathbb{R}^d} \{ p \cdot u - L(x,u) \},\$$

so taking $Af(x, u) = u \cdot \nabla f(x)$,

$$Hf(x) = \sup_{u \in R^d} \{ u \cdot \nabla f(x) - L(x, u) \}$$

Viscosity solutions

Let E be compact, $H \subset C(E) \times B(E)$, and $(f,g) \in H$ imply $(f+c,g) \in H$. Fix $h \in C(E)$ and $\alpha > 0$.

 $\overline{f} \in B(E)$ is a viscosity subsolution of

$$f - \alpha H f = h \tag{7}$$

if and only if \overline{f} is upper semicontinuous and for each $(f_0, g_0) \in H$ there exists $x_0 \in E$ satisfying $(\overline{f} - f_0)(x_0) = \sup_x(\overline{f}(x) - f_0(x))$ and

$$\frac{\overline{f}(x_0) - h(x_0)}{\alpha} \le (g_0)^*(x_0)$$

or equivalently

$$\overline{f}(x_0) \le \alpha(g_0)^*(x_0) + h(x_0)$$

 $\underline{f} \in B(E)$ is a viscosity supersolution of (7) if and only if \underline{f} is lower semicontinuous and for each $(f_0, g_0) \in H$ there exists $x_0 \in E$ satisfying $(f_0 - \underline{f})(x_0) = \sup_x (f_0(x) - \underline{f}(x))$ and

$$\frac{\underline{f}(x_0) - h(x_0)}{\alpha} \ge (g_0)_*(x_0)$$

or

$$\underline{f}(x_0) \ge \alpha(g_0)_*(x_0) + h(x_0)$$

A function $f \in C(E)$ is a viscosity solution of $f - \alpha H f = h$ if it is both a subsolution and a supersolution.

Comparison principle

The equation $f - \alpha H f = h$ satisfies a *comparison principle*, if \overline{f} a viscosity subsolution and \underline{f} a viscosity supersolution implies $\overline{f} \leq \underline{f}$ on E.

Viscosity approach to semigroup convergence

Theorem 12 Let (E, r) be a compact metric space, and for n = 1, 2, ..., assume that the martingale problem for $A_n \subset B(E) \times B(E)$ is well-posed.

Let

$$H_n f = \frac{1}{n} e^{-nf} A_n e^{nf}, \quad e^{nf} \in \mathcal{D}(A_n),$$

and let $H \subset C(E) \times B(E)$ with $\mathcal{D}(H)$ dense in C(E). Suppose that for each $(f,g) \in H$, there exists $(f_n, g_n) \in H_n$ such that $||f - f_n|| \to 0$ and $||g - g_n|| \to 0$.

Fix $\alpha_0 > 0$. Suppose that for each $0 < \alpha < \alpha_0$, there exists a dense subset $D_{\alpha} \subset C(E)$ such that for each $h \in D_{\alpha}$, the comparison principle holds for

$$(I - \alpha H)f = h.$$

Then there exists $\{V(t)\}$ on C(E) such that

$$\sup_{x} |V(t)f(x) - V_n(t)f(x)| \to 0, \quad f \in C(E).$$

If $\{X_n(0)\}\$ satisfies a large deviation principle with a good rate function. Then $\{X_n\}\$ is exponentially tight and satisfies a large deviation principle with rate function I given above (6).

Proof of a large deviation principle

- 1. Verify convergence of the sequence of operators H_n and derive the limit operator H. In general, convergence will be in the extended limit or graph sense.
- 2. Verify exponential tightness. Given the convergence of H_n , exponential tightness typically follows provided one can verify the exponential compact containment condition.
- 3. Verify the range condition or the comparison principle for the limiting operator H. The rate function is characterized by the limiting semigroup.
- 4. Construct a variational representation for H. This representation typically gives a more explicit representation of the rate function.

\mathbb{R}^{d} -valued processes

Let $a = \sigma \sigma^T$, and define

$$\begin{split} A_n f(x) &= n \int_{\mathbb{R}^d} (f(x + \frac{1}{n}z) - f(x) - \frac{1}{n}z \cdot \nabla f(x))\eta(x, dz) \\ &+ b(x) \cdot \nabla f(x) + \frac{1}{2n} \sum_{ij} a_{ij}(x) \partial_i \partial_j f(x) \end{split}$$

● First ● Prev ● Next ● Go To ● Go Back ● Full Screen ● Close ● Quit 53

Nonlinear generator

The operator
$$H_n f = \frac{1}{n} e^{-nf} A_n e^{nf}$$
 is given by

$$H_n f(x) = \int_{R^d} (e^{n(f(x+\frac{1}{n}z)-f(x))} - 1 - z \cdot \nabla f(x))\eta(x, dz) + \frac{1}{2n} \sum_{ij} a_{ij}(x)\partial_i \partial_j f(x) + \frac{1}{2} \sum_{ij} a_{ij}(x)\partial_i f(x)\partial_j f(x) + b(x) \cdot \nabla f(x)$$

● First ● Prev ● Next ● Go To ● Go Back ● Full Screen ● Close ● Quit 54

Limiting operator

$$\begin{split} Hf(x) \; = \; \int_{R^d} &(e^{\nabla f(x) \cdot z} - 1 - z \cdot \nabla f(x))\eta(x, dz) \\ &+ \frac{1}{2} \sum_{ij} a_{ij}(x) \partial_i f(x) \partial_j f(x) + b(x) \cdot \nabla f(x) \end{split}$$

Note that H has the form

$$Hf(x) = H(x, \nabla f(x))$$

for

$$H(x,p) = \frac{1}{2} |\sigma^{T}(x)p|^{2} + b(x) \cdot p + \int_{R^{d}} (e^{p \cdot z} - 1 - p \cdot z)\eta(x,dz)$$

 \mathbf{pc}

Gradient limit operators

Condition 13

1. For each compact $\Gamma \subset \mathbb{R}^d$, there exist $\mu_m \to +\infty$ and $\omega : (0, \infty) \to [0, \infty]$ such that $\{(x_m, y_m)\} \subset \Gamma \times \Gamma$, $\mu_m |x_m - y_m|^2 \to 0$, and $\sup_m H_*(y_m, \mu_m(x_m - y_m)) < \infty$

imply

$$\liminf_{m \to \infty} [\lambda H^*(x_m, \frac{\mu_m(x_m - y_m)}{\lambda}) - H_*(y_m, \mu_m(x_m - y_m))] \le \omega(\lambda)$$

and

$$\lim_{\epsilon \to 0} \inf_{|\lambda - 1| \le \epsilon} \omega(\lambda) \le 0.$$

2. If $x_m \to \infty$ and $p_m \to 0$, then $\lim_{m\to\infty} H(x_m, p_m) = 0$.

Conditions for comparison principle

Lemma 14 If Condition 13 is satisfied, then for $h \in C(E)$ and $\alpha > 0$, the comparison principle holds for

$$(I - \alpha H)f = h.$$

Sufficient conditions

Lemma 15 Suppose σ and b are bounded and Lipschitz and $\eta = 0$. Then Condition 13 holds with

$$\omega(\lambda) = \begin{cases} 0 & \lambda > 1\\ \infty & \lambda \le 1. \end{cases}$$

If H is continuous and for each $x, p \in \mathbb{R}^d \lim_{r\to\infty} H(x, rp) = \infty$, then Condition 13.1 holds with

$$\omega(\lambda) = \begin{cases} 0 & \lambda = 1\\ \infty & \lambda \neq 1. \end{cases}$$

If σ and b are bounded and

$$\lim_{|p|\to 0} \sup_{x} \int_{R^d} (e^{p \cdot z} - 1 - p \cdot z) \eta(x, dz) = 0,$$

then Condition 13.2 holds.

Diffusions with periodic coefficients (Baldi)

Let σ be periodic (for each $1 \leq i \leq d$, there is a period $p_i > 0$ such that $\sigma(y) = \sigma(y + p_i e_i)$ for all $y \in \mathbb{R}^d$), and let X_n satisfy the Itô equation

$$dX_n(t) = \frac{1}{\sqrt{n}}\sigma(\alpha_n X_n(t))dW(t),$$

where $\alpha_n > 0$ and $\lim_{n\to\infty} n^{-1}\alpha_n = \infty$. Let $a = \sigma \sigma^T$. Then

$$A_n f(x) = \frac{1}{n} \sum_{ij} a_{ij}(\alpha_n x) \frac{\partial^2}{\partial x_i \partial x_j} f(x),$$

and

$$H_n f(x) = \frac{1}{2n} \sum_{ij} a_{ij}(\alpha_n x) \partial_{ij} f(x) + \frac{1}{2} \sum_{ij} a_{ij}(\alpha_n x) \partial_i f(x) \partial_j f(x).$$

Limit operator

Let
$$f_n(x) = f(x) + \epsilon_n h(x, \alpha_n x)$$
, where $\epsilon_n = n\alpha_n^{-2}$.
 $\epsilon_n \alpha_n = n\alpha_n^{-1} \to 0$

If h has the same periods in y as the a_{ij} and

$$\frac{1}{2}\sum_{ij}a_{ij}(y)\left(\frac{\partial^2}{\partial y_i\partial y_j}h(x,y)+\partial_i f(x)\partial_j f(x)\right)=g(x)$$

for some g independent of y, then

$$\lim_{n \to \infty} H_n f_n(x, y) = g(x).$$

It follows that

$$g(x) = \frac{1}{2} \sum_{ij} \overline{a}_{ij} \partial_i f(x) \partial_j f(x),$$

where \overline{a}_{ij} is the average of a_{ij} with respect to the stationary distribution for the diffusion on $[0, p_1] \times \cdots \times [0, p_d]$ whose generator is

$$A_0 f(y) = \frac{1}{2} \sum_{i,j} a_{ij}(y) \frac{\partial^2}{\partial y_i \partial y_j} f(y)$$

with periodic boundary conditions. In particular,

$$h(x,y) = \frac{1}{2} \sum_{ij} h_{ij}(y) \partial_i f(x) \partial_j f(x),$$

where h_{ij} satisfies

$$A_0h_{ij}(y) = \overline{a}_{ij} - a_{ij}(y).$$