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Weak convergence and large deviation theory

• Large deviation principle

• Convergence in distribution

• The Bryc-Varadhan theorem

• Tightness and Prohorov’s theorem

• Exponential tightness

• Tightness for processes

• (Exponential) tightness and results for finite dimensional distribu-
tions

• Conditions for (exponential) tightness

Joint work with Jin Feng

Second Lecture
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Large deviation principle

(S, d) a (complete, separable) metric space.

Xn, n = 1, 2, . . . S-valued random variables

{Xn} satisfies a large deviation principle (LDP) if there exists a lower
semicontinuous function I : S → [0,∞] such that for each open set A,

lim inf
n→∞

1

n
logP{Xn ∈ A} ≥ − inf

x∈A
I(x)

and for each closed set B,

lim sup
n→∞

1

n
logP{Xn ∈ B} ≤ − inf

x∈B
I(x).
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The rate function

I is called the rate function for the large deviation principle.

A rate function is good if for each a ∈ [0,∞), {x : I(x) ≤ a} is compact.

If I is a rate function for {Xn}, then

I∗(x) = lim
ε→0

inf
y∈Bε(x)

I(y)

is also a rate function for {Xn}. I∗ is lower semicontinuous.

If the large deviation principle holds with lower semicontinuous rate I
function, then

I(x) = lim
ε→0

lim inf
n→∞

1

n
logP{Xn ∈ Bε(x)} = lim

ε→0
lim sup
n→∞

1

n
logP{Xn ∈ Bε(x)}
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Convergence in distribution

{Xn} converges in distribution to X if and only if for each f ∈ Cb(S)

lim
n→∞

E[f(Xn)] = E[f(X)]
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Equivalent statements: Large deviation principle

{Xn} satisfies an LDP with a good rate function if and only if {Xn} is
exponentially tight and

Λ(f) ≡ lim
n→∞

1

n
logE[enf(Xn)]

for each f ∈ Cb(S). Then

I(x) = sup
Cb(S)
{f(x)− Λ(f)}

and
Λ(f) = sup

x∈S
{f(x)− I(x)}

Bryc, Varadhan
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Equivalent statements: Convergence in distribution

{Xn} converges in distribution to X if and only if

lim inf
n→∞

P{Xn ∈ A} ≥ P{X ∈ A}, each open A,

or equivalently

lim sup
n→∞

P{Xn ∈ B} ≤ P{X ∈ B}, each closed B

LDP
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Tightness

A sequence {Xn} is tight if for each ε > 0, there exists a compact set
Kε ⊂ S such that

sup
n
P{Xn /∈ Kε} ≤ ε.

Prohorov’s theorem

Theorem 1 Suppose that {Xn} is tight. Then there exists a subse-
quence {n(k)} along which the sequence converges in distribution.
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Exponential tightness

{Xn} is exponentially tight if for each a > 0, there exists a compact set
Ka ⊂ S such that

lim sup
n→∞

1

n
logP{Xn /∈ Ka} ≤ −a.

Analog of Prohorov’s theorem

Theorem 2 (Puhalskii, O’Brien and Vervaat, de Acosta) Suppose that
{Xn} is exponentially tight. Then there exists a subsequence {n(k)}
along which the large deviation principle holds with a good rate function.
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Stochastic processes in DE[0,∞)

(E, r) complete, separable metric space

S = DE[0,∞)

Modulus of continuity:

w′(x, δ, T ) = inf
{ti}

max
i

sup
s,t∈[ti−1,ti)

r(x(s), x(t))

where the infimum is over {ti} satisfying

0 = t0 < t1 < · · · < tm−1 < T ≤ tm

and min1≤i≤n(ti − ti−1) > δ

Xn stochastic process with sample paths in DE[0,∞)

Xn adapted to {Fn
t }: For each t ≥ 0, Xn(t) is Fn

t -measurable.
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Tightness in DE[0,∞)

Theorem 3 (Skorohod) Suppose that for t ∈ T0, a dense subset of
[0,∞), {Xn(t)} is tight. Then {Xn} is tight if and only if for each
ε > 0 and T > 0

lim
δ→0

lim sup
n→∞

P{w′(Xn, δ, T ) > ε} = 0.

Theorem 4 (Puhalskii) Suppose that for t ∈ T0, a dense subset of
[0,∞), {Xn(t)} is exponentially tight. Then {Xn} is exponentially tight
if and only if for each ε > 0 and T > 0

lim
δ→0

lim sup
n→∞

1

n
logP{w′(Xn, δ, T ) > ε} = −∞.
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Identification of limit distribution

Theorem 5 If {Xn} is tight in DE[0,∞) and

(Xn(t1), . . . , Xn(tk))⇒ (X(t1), . . . , X(tk))

for t1, . . . , tk ∈ T0, T0 dense in [0,∞), then Xn ⇒ X.

Identification of rate function

Theorem 6 If {Xn} is exponentially tight in DE[0,∞) and for each
0 ≤ t1 < · · · < tm, {(Xn(t1), . . . , Xn(tm))} satisfies the large deviation
principle in Em with rate function It1,...,tm, then {Xn} satisfies the large
deviation principle in DE[0,∞) with good rate function

I(x) = sup
{ti}⊂∆c

x

It1,...,tm(x(t1), . . . , x(tm)),

where ∆x is the set of discontinuities of x.
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Conditions for tightness

Sn0 (T ) collection of discrete {Fn
t }-stopping times

q(x, y) = 1 ∧ r(x, y)

Suppose that for t ∈ T0, a dense subset of [0,∞), {Xn(t)} is tight.
Then the following are equivalent.

a) {Xn} is tight in DE[0,∞).
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Conditions for tightness

b) For T > 0, there exist β > 0 and random variables γn(δ, T ), δ > 0,
satisfying

E[qβ(Xn(t+ u), Xn(t)) ∧ qβ(Xn(t), Xn(t− v))|Fn
t ]

≤ E[γn(δ, T )|Fn
t ] (1)

for 0 ≤ t ≤ T , 0 ≤ u ≤ δ, and 0 ≤ v ≤ t ∧ δ such that

lim
δ→0

lim sup
n→∞

E[γn(δ, T )] = 0

and
lim
δ→0

lim sup
n→∞

E[qβ(Xn(δ), Xn(0))] = 0. (2)

Kurtz
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Conditions for tightness

c) Condition (2) holds, and for each T > 0, there exists β > 0 such
that

Cn(δ, T )

≡ sup
τ∈Sn0 (T )

sup
u≤δ

E[ sup
v≤δ∧τ

qβ(Xn(τ + u), Xn(τ))

∧qβ(Xn(τ), Xn(τ − v))]

satisfies limδ→0 lim supn→∞Cn(δ, T ) = 0.

Aldous
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Conditions for exponential tightness

Sn0 (T ) collection of discrete {Fn
t }-stopping times

q(x, y) = 1 ∧ r(x, y)

Suppose that for t ∈ T0, a dense subset of [0,∞), {Xn(t)} is exponen-
tially tight. Then the following are equivalent.

a) {Xn} is exponentially tight in DE[0,∞).
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Conditions for exponential tightness

b) For T > 0, there exist β > 0 and random variables γn(δ, λ, T ),
δ, λ > 0, satisfying

E[enλq
β(Xn(t+u),Xn(t))∧qβ(Xn(t),Xn(t−v))|Fn

t ] ≤ E[eγn(δ,λ,T )|Fn
t ]

for 0 ≤ t ≤ T , 0 ≤ u ≤ δ, and 0 ≤ v ≤ t ∧ δ such that

lim
δ→0

lim sup
n→∞

1

n
logE[eγn(δ,λ,T )] = 0,

and

lim
δ→0

lim sup
n→∞

1

n
logE[enλq

β(Xn(δ),Xn(0))] = 0. (3)
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Conditions for exponential tightness

c) Condition (3) holds, and for each T > 0, there exists β > 0 such
that for each λ > 0

Cn(δ, λ, T )

≡ sup
τ∈Sn0 (T )

sup
u≤δ

E[ sup
v≤δ∧τ

enλq
β(Xn(τ+u),Xn(τ))∧qβ(Xn(τ),Xn(τ−v))]

satisfies limδ→0 lim supn→∞
1
n logCn(δ, λ, T ) = 0.
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Example

W standard Brownian motion

Xn = 1√
n
W

E[enλ|Xn(t+u)−Xn(t)||FW
t ] = E[eλ

√
n|W (t+u)−W (t)||FW

t ] ≤ 2e
1
2nλ

2u

so

lim
δ→0

lim sup
n→∞

1

n
logE[eγn(δ,λ,T )] = lim

δ→0

1

2
λ2δ = 0.
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Equivalence to tightness for functions

Theorem 7 {Xn} is tight in DE[0,∞) if and only if

a) (Compact containment condition) For each T > 0 and ε > 0, there
exists a compact Kε,T ⊂ E such that

lim sup
n→∞

P (∃t ≤ T 3 Xn(t) 6∈ Kε,T ) ≤ ε

b) There exists a family of functions F ⊂ C(E) that is closed un-
der addition and separates points in E such that for each f ∈ F ,
{f(Xn)} is tight in DR[0,∞).

Kurtz, Jakubowski
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Equivalence to exponential tightness for functions

Theorem 8 {Xn} is exponentially tight in DE[0,∞) if and only if

a) For each T > 0 and a > 0, there exists a compact Ka,T ⊂ E such
that

lim sup
n→∞

1

n
logP (∃t ≤ T 3 Xn(t) 6∈ Ka,T ) ≤ −a (4)

b) There exists a family of functions F ⊂ C(E) that is closed un-
der addition and separates points in E such that for each f ∈ F ,
{f(Xn)} is exponentially tight in DR[0,∞).

Schied
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Large Deviations for Markov Processes

• Martingale problems and semigroups

• Semigroup convergence and the LDP

• Control representation of the rate function

• Viscosity solutions and semigroup convergence

• Summary of method
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Markov processes

Xn = {Xn(t), t ≥ 0} is a Markov process if

E[g(Xn(t+ s))|Fn
t ] = E[g(Xn(t+ s))|Xn(t)]

The generator of a Markov process determines its short time behavior

E[g(Xn(t+ ∆t))− g(Xn(t))|Ft] ≈ Ang(Xn(t))∆t
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Martingale problems

Xn is a solution of the martingale problem for An if and only if

g(Xn(t))− g(Xn(0))−
∫ t

0
Ang(Xn(s))ds (5)

is an {Fn
t }-martingale for each g ∈ D(An).

If g is bounded away from zero, (5) is a martingale if and only if

g(Xn(t)) exp{−
∫ t

0

Ang(Xn(s))

g(Xn(s))
ds}

is a martingale. (You can always add a constant to g.)
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Nonlinear generator

Define D(Hn) = {f ∈ B(E) : enf ∈ D(An)} and set

Hnf =
1

n
e−nfAne

nf .

Then

exp{nf(Xn(t))− nf(X(0))−
∫ t

0
nHnf(X(s))ds}

is a {Fn
t }-martingale.
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Tightness for solutions of MGPs

E[f(Xn(t+ u))− f(Xn(t))|Fn
t ]

= E[

∫ t+u

t

Anf(Xn(s))ds|Fn
t ] ≤ u‖Anf‖

For γn(δ, T ) = δ(‖Anf
2‖+ 2‖f‖‖Anf‖) (see (1))

E[(f(Xn(t+ u))− f(Xn(t)))
2|Fn

t ]

= E[

∫ t+u

t

Anf
2(Xn(s))ds|Fn

t ]

−2f(Xn(t))E[

∫ t+u

t

Anf(Xn(s))ds|Fn
t ]

≤ u(‖Anf
2‖+ 2‖f‖‖Anf‖) ≤ γn(δ, T )
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Exponential tightness

E[en(λf(Xn(t+u))−λf(Xn(t))−
∫ t+u
t

Hn[λf ](Xn(s))ds|Fn
t ] = 1

so
E[enλ(f(Xn(t+u))−f(Xn(t)))|Fn

t ] ≤ enu‖Hnλf‖

and
γn(δ, λ, T ) = δn(‖Hn[λf ]‖+ ‖Hn[−λf ]‖)

ET Conditions



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 27

The Markov process semigroup

Assume that the martingale problem for An is well-posed.

Define
Tn(t)f(x) = E[f(Xn(t))|Xn(0) = x]

By the Markov property

Tn(s)Tn(t)f(x) = Tn(t+ s)f(x)

lim
t→0

Tn(t)f(x)− f(x)

t
= Anf(x)
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Iterating the semigroup

For 0 ≤ t1 ≤ t2,

E[f1(Xn(t1))f2(Xn(t2))|Xn(0) = x]

= Tn(t1)(f1Tn(t2 − t1)f2)(x)

and in general

E[f1(Xn(t1)) · · · fk(Xn(tk))|Xn(0) = x]

= E[f1(Xn(t1)) · · · fk−1(Xn(tk−1))

Tn(tk − tk−1)fk(Xn(tk−1))|Xn(0) = x]

Convergence of the semigroups implies convergence of the finite dimen-
sional distributions.
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A nonlinear semigroup (Fleming)

Assume that the martingale problem for An is well-posed.

Define

Vn(t)f(x) =
1

n
logEx[e

nf(Xn(t))]

By the Markov property

Vn(s)Vn(t)f(x) = Vn(t+ s)f(x)

lim
t→0

Vn(t)f(x)− f(x)

t
=

1

n
e−nfAne

nf(x) = Hnf(x)

Exponential generator
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Iterating the semigroup

For 0 ≤ t1 ≤ t2, define

Vn(t1, t2, f1, f2)(x) = Vn(t1)(f1 + Vn(t2 − t1)f2)(x)

and inductively

Vn(t1, . . . , tk, f1, . . . , fk)(x)

= Vn(t1)(f1 + Vn(t2, . . . , tk, f2, . . . , fk))(x).

Then

E[en(f1(Xn(t1))+···+fk(Xn(tk)))]

= E[enVn(t1,...,tk,f1,...,fk)(Xn(0))]

By the Bryc-Varadhan result, convergence of semigroup should imply
the finite dimensional LDP
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Weaker conditions for the LDP

A collection of functions D ⊂ Cb(S) isolates points in S, if for each
x ∈ S, each ε > 0, and each compact K ⊂ S, there exists f ∈ D
satisfying |f(x)| < ε, supy∈K f(y) ≤ 0, and

sup
y∈K∩Bcε (x)

f(y) < −1

ε
.

A collection of functionsD ⊂ Cb(S) is bounded above if supf∈D supy f(y) <
∞.
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A rate determining class

Proposition 9 Suppose {Xn} is exponentially tight, and let

Γ = {f ∈ Cb(S) : Λ(f) = lim
n→∞

1

n
logE[enf(Xn)] exists}.

If D ⊂ Γ is bounded above and isolates points, then Γ = Cb(S) and

I(x) = sup
f∈D
{f(x)− Λ(f)}.
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Semigroup convergence and the LDP

Suppose D ⊂ Cb(E) contains a set that is bounded above and isolates
points.

Suppose Xn(0) = x and {Xn(t)} is exponentially tight. If Vn(t)f(x)→
V (t)f(x) for each f ∈ D, then {Xn(t)} satisfies a LDP with rate func-
tion

It(y|x) = sup
f∈D
{f(y)− V (t)f(x)},

and hence
V (t)f(x) = sup

y
{f(y)− It(y|x)}

Think of It(y|x) as the large deviation analog of a transition density.
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Iterating the semigroup

Suppose D is closed under addition, V (t) : D → D, t ≥ 0, and 0 ≤
t1 ≤ t2. Define

V (t1, t2, f1, f2)(x) = V (t1)(f1 + V (t2 − t1)f2)(x)

and inductively

V (t1, . . . , tk, f1, . . . , fk)(x)

= V (t1)(f1 + V (t2, . . . , tk, f2, . . . , fk))(x)
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Semigroup convergence and the LDP

Theorem 10 For each n, let An ⊂ Cb(E) × B(E), and suppose that
existence and uniqueness holds for the DE[0,∞)-martingale problem for
(An, µ) for each initial distribution µ ∈ P(E).

Let D ⊂ Cb(E) be closed under addition and contain a set that is
bounded above and isolates points, and suppose that there exists an op-
erator semigroup {V (t)} on D such that for each compact K ⊂ E

sup
x∈K
|V (t)f(x)− Vn(t)f(x)| → 0, f ∈ D.
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Suppose that {Xn} is exponentially tight, and that {Xn(0)} satisfies a
large deviation principle with good rate function I0. Define

Λ0(f) = lim
n→∞

1

n
logE[enf(Xn(0))], f ∈ Cb(E).

a) For each 0 ≤ t1 < · · · < tk and f1, . . . , fk ∈ D,

lim
n→∞

1

n
logE[enf1(Xn(t1))+...+nfk(Xn(tk))]

= Λ0(V (t1, . . . , tk, f1, . . . , fk)).

Recall

E[en(f1(Xn(t1))+···+fk(Xn(tk)))]

= E[enVn(t1,...,tk,f1,...,fk)(Xn(0))]
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b) For 0 ≤ t1 < . . . < tk {(Xn(t1), . . . , Xn(tk))} satisfies the large
deviation principle with rate function

It1,...,tk(x1, . . . , xk) (6)

= sup
f1,...,fk∈D∩Cb(E)

{f1(x1) + . . .+ fk(xk)

−Λ0(V (t1, . . . , tk, f1, . . . , fk))}

= inf
x0∈E

(I0(x0) +
k∑
i=1

Iti−ti−1
(xi|xi−1))

c) {Xn} satisfies the large deviation principle in DE[0,∞) with rate
function

I(x) = sup
{ti}⊂∆c

x

It1,...,tk(x(t1), . . . , x(tk))

= sup
{ti}⊂∆c

x

(I0(x(0)) +
k∑
i=1

Iti−ti−1
(x(ti)|x(ti−1)))
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Example: Freidlin and Wentzell small diffusion

Let Xn satisfying the Itô equation

Xn(t) = x+
1√
n

∫ t

0
σ(Xn(s−))dW (s) +

∫ t

0
b(Xn(s))ds,

and define a(x) = σT (x) · σ(x). Then

Ang(x) =
1

2n

∑
ij

aij(x)∂i∂jg(x) +
∑
i

bi(x)∂ig(x),

Take D(An) to be the collection of functions of the form c + f , c ∈ R
and f ∈ C2

c (Rd).
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Convergence of the nonlinear generator

Hnf(x) =
1

2n

∑
ij

aij(x)∂ijf(x) +
1

2

∑
ij

aij(x)∂if(x)∂jf(x)

+
∑
i

bi(x)∂if(x).

and Hf = limn→∞Hnf is

Hf(x) =
1

2
(∇f(x))T · a(x) · ∇f(x) + b(x) · ∇f(x).



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 40

A control problem

Let (E, r) and (U, q) be complete, separable metric spaces, and let
A : D(A) ⊂ Cb(E)→ C(E × U)

Let H be as above, and suppose that that there is a nonnegative, lower
semicontinuous function L on E × U such that

Hf(x) = sup
u∈U

(Af(x, u)− L(x, u)).

{V (t)} should be the Nisio semigroup corresponding to an optimal con-
trol problem with “reward” function −L.

(cf. Book by Dupuis and Ellis)
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Dynamics of control problem

Require

f(x(t))− f(x(0))−
∫
U×[0,t]

Af(x(s), u)λs(du× ds) = 0,

for each f ∈ D(A) and t ≥ 0, where x ∈ DE[0,∞) and λ ∈ Mm(U),
the space of measures on U × [0,∞) satisfying λ(U × [0, t]) = t.)

For each x0 ∈ E, we should have

V (t)g(x0)

= sup
(x,λ)∈J tx0

{g(x(t))−
∫

[0,t]×U
L(x(s), u)λ(du× ds)}
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Representation theorem

Theorem 11 Suppose (E, r) and (U, q) are complete, separable, met-
ric spaces. Let A : D(A) ⊂ Cb(E)→ C(E × U) and lower semicontin-
uous L(x, u) ≥ 0 satisfy

1. D(A) is convergence determining.

2. For each x0 ∈ E, there exists (x, λ) ∈ J such that x(0) = x0 and∫
U×[0,t] L(x(s), u)λ(du× ds) = 0, t ≥ 0.

3. For each f ∈ D(A), there exists a nondecreasing function ψf :
[0,∞)→ [0,∞) such that

|Af(x, u)| ≤ ψf(L(x, u)), (x, u) ∈ E × U,

and limr→∞ r
−1ψf(r) = 0.
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4. There exists a tightness function Φ on E × U , such that Φ(x, u) ≤
L(x, u) for (x, u) ∈ E × U .

Let {V (t)} be an LDP limit semigroup and satisfy the control identity.
Then

I(x) = I0(x(0)) + inf
λ:(x,λ)∈J

{
∫
U×[0,∞)

L(x(s), u)λ(du× ds)}.
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Small diffusion

Hf(x) =
1

2
(∇f(x))T · a(x) · ∇f(x) + b(x) · ∇f(x)

For
Af(x, u) = u · ∇f(x)

and

L(x, u) =
1

2
(u− b(x)a(x)−1(u− b(x)),

Hf(x) = sup
u∈Rd

(Af(x, u)− L(x, u))

I(x) =

∫ ∞
0

1

2
(ẋ(s)− b(x(s))a(x(s))−1(ẋ(s)− b(x(s)))ds
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Alternative representation

For
Af(x, u) = (uTσ(x) + b(x))∇f(x)

and

L(x, u) =
1

2
|u|2,

again
Hf(x) = sup

u∈Rd
(Af(x, u)− L(x, u))

I(x) = inf{
∫ ∞

0

1

2
|u(s)|2ds : ẋ(t) = uT (t)σ(x(t)) + b(x(t))}
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Legendre transform approach

If Hf(x) = H(x,∇f(x)), where H(x, p) is convex and continuous in p,
then

L(x, u) = sup
p∈Rd
{p · u−H(x, p)}

and
H(x, p) = sup

u∈Rd
{p · u− L(x, u)},

so taking Af(x, u) = u · ∇f(x),

Hf(x) = sup
u∈Rd
{u · ∇f(x)− L(x, u)}
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Viscosity solutions

Let E be compact, H ⊂ C(E)×B(E), and (f, g) ∈ H imply (f+c, g) ∈
H. Fix h ∈ C(E) and α > 0.

f ∈ B(E) is a viscosity subsolution of

f − αHf = h (7)

if and only if f is upper semicontinuous and for each (f0, g0) ∈ H there
exists x0 ∈ E satisfying (f − f0)(x0) = supx(f(x)− f0(x)) and

f(x0)− h(x0)

α
≤ (g0)

∗(x0)

or equivalently
f(x0) ≤ α(g0)

∗(x0) + h(x0)



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 48

f ∈ B(E) is a viscosity supersolution of (7) if and only if f is lower
semicontinuous and for each (f0, g0) ∈ H there exists x0 ∈ E satisfying
(f0 − f)(x0) = supx(f0(x)− f(x)) and

f(x0)− h(x0)

α
≥ (g0)∗(x0)

or
f(x0) ≥ α(g0)∗(x0) + h(x0)

A function f ∈ C(E) is a viscosity solution of f−αHf = h if it is both
a subsolution and a supersolution.
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Comparison principle

The equation f − αHf = h satisfies a comparison principle, if f a
viscosity subsolution and f a viscosity supersolution implies f ≤ f on
E.
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Viscosity approach to semigroup convergence

Theorem 12 Let (E, r) be a compact metric space, and for n =
1, 2, . . ., assume that the martingale problem for An ⊂ B(E)×B(E) is
well-posed.

Let

Hnf =
1

n
e−nfAne

nf , enf ∈ D(An),

and let H ⊂ C(E)×B(E) with D(H) dense in C(E). Suppose that for
each (f, g) ∈ H, there exists (fn, gn) ∈ Hn such that ‖f − fn‖ → 0 and
‖g − gn‖ → 0.
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Fix α0 > 0. Suppose that for each 0 < α < α0, there exists a dense
subset Dα ⊂ C(E) such that for each h ∈ Dα, the comparison principle
holds for

(I − αH)f = h.

Then there exists {V (t)} on C(E) such that

sup
x
|V (t)f(x)− Vn(t)f(x)| → 0, f ∈ C(E).

If {Xn(0)} satisfies a large deviation principle with a good rate function.
Then {Xn} is exponentially tight and satisfies a large deviation principle
with rate function I given above (6).
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Proof of a large deviation principle

1. Verify convergence of the sequence of operators Hn and derive the
limit operator H. In general, convergence will be in the extended
limit or graph sense.

2. Verify exponential tightness. Given the convergence of Hn, ex-
ponential tightness typically follows provided one can verify the
exponential compact containment condition.

3. Verify the range condition or the comparison principle for the lim-
iting operator H. The rate function is characterized by the limiting
semigroup.

4. Construct a variational representation for H. This representation
typically gives a more explicit representation of the rate function.
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Rd-valued processes

Let a = σσT , and define

Anf (x)

= n

∫
Rd

(f (x +
1

n
z)− f (x)− 1

n
z · ∇f (x))η(x, dz)

+b(x) · ∇f (x) +
1

2n

∑
ij

aij(x)∂i∂jf (x)
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Nonlinear generator

The operator Hnf = 1
ne
−nfAne

nf is given by

Hnf (x) =

∫
Rd

(en(f(x+ 1
nz)−f(x)) − 1− z · ∇f (x))η(x, dz)

+
1

2n

∑
ij

aij(x)∂i∂jf (x)

+
1

2

∑
ij

aij(x)∂if (x)∂jf (x) + b(x) · ∇f (x)
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Limiting operator

Hf (x) =

∫
Rd

(e∇f(x)·z − 1− z · ∇f (x))η(x, dz)

+
1

2

∑
ij

aij(x)∂if (x)∂jf (x) + b(x) · ∇f (x)

Note that H has the form

Hf (x) = H(x,∇f (x))

for

H(x, p) =
1

2
|σT (x)p|2 + b(x) · p+

∫
Rd

(ep·z − 1− p · z)η(x, dz)

pc



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 56

Gradient limit operators

Condition 13

1. For each compact Γ ⊂ Rd, there exist µm → +∞ and ω : (0,∞)→
[0,∞] such that {(xm, ym)} ⊂ Γ× Γ, µm|xm − ym|2 → 0, and

sup
m
H∗(ym, µm(xm − ym)) <∞

imply

lim inf
m→∞

[λH∗(xm,
µm(xm − ym)

λ
)−H∗(ym, µm(xm − ym))] ≤ ω(λ)

and
lim
ε→0

inf
|λ−1|≤ε

ω(λ) ≤ 0.

2. If xm →∞ and pm → 0, then limm→∞H(xm, pm) = 0.



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 57

Conditions for comparison principle

Lemma 14 If Condition 13 is satisfied, then for h ∈ C(E) and α > 0,
the comparison principle holds for

(I − αH)f = h.
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Sufficient conditions

Lemma 15 Suppose σ and b are bounded and Lipschitz and η = 0.
Then Condition 13 holds with

ω(λ) =

{
0 λ > 1
∞ λ ≤ 1.

If H is continuous and for each x, p ∈ Rd limr→∞H(x, rp) = ∞, then
Condition 13.1 holds with

ω(λ) =

{
0 λ = 1
∞ λ 6= 1.

If σ and b are bounded and

lim
|p|→0

sup
x

∫
Rd

(ep·z − 1− p · z)η(x, dz) = 0,

then Condition 13.2 holds.
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Diffusions with periodic coefficients (Baldi)

Let σ be periodic (for each 1 ≤ i ≤ d, there is a period pi > 0 such that
σ(y) = σ(y + piei) for all y ∈ Rd), and let Xn satisfy the Itô equation

dXn(t) =
1√
n
σ(αnXn(t))dW (t),

where αn > 0 and limn→∞ n
−1αn =∞. Let a = σσT . Then

Anf(x) =
1

n

∑
ij

aij(αnx)
∂2

∂xi∂xj
f(x),

and

Hnf(x) =
1

2n

∑
ij

aij(αnx)∂ijf(x) +
1

2

∑
ij

aij(αnx)∂if(x)∂jf(x).
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Limit operator

Let fn(x) = f(x) + εnh(x, αnx), where εn = nα−2
n .

εnαn = nα−1
n → 0

If h has the same periods in y as the aij and

1

2

∑
ij

aij(y)

(
∂2

∂yi∂yj
h(x, y) + ∂if(x)∂jf(x)

)
= g(x)

for some g independent of y, then

lim
n→∞

Hnfn(x, y) = g(x).
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It follows that

g(x) =
1

2

∑
ij

aij∂if(x)∂jf(x),

where aij is the average of aij with respect to the stationary distribution
for the diffusion on [0, p1]× · · · × [0, pd] whose generator is

A0f(y) =
1

2

∑
i,j

aij(y)
∂2

∂yi∂yj
f(y)

with periodic boundary conditions. In particular,

h(x, y) =
1

2

∑
ij

hij(y)∂if(x)∂jf(x),

where hij satisfies
A0hij(y) = aij − aij(y).


