Weak convergence and large deviation theory

e Large deviation principle

e Convergence in distribution

e The Bryc-Varadhan theorem

e Tightness and Prohorov’s theorem
e Exponential tightness

e Tightness for processes

e (Exponential) tightness and results for finite dimensional distribu-
tions

e Conditions for (exponential) tightness

Joint work with Jin Feng
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Large deviation principle

(S,d)  a (complete, separable) metric space.
X,,mn=1,2,... S-valued random variables
{X,} satisfies a large deviation principle (LDP) if there exists a lower

semicontinuous function I : S — [0, o] such that for each open set A,

1

liminf —log P{X, € A} > — inf I(z)
n—oo T x€A

and for each closed set B,

1
limsup —log P{X,, € B} < — inf I(z).
n zeb

n—oo
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The rate function

I is called the rate function for the large deviation principle.
A rate function is good if for each a € [0,00), {z : I(z) < a} is compact.

If I is a rate function for {X,}, then

L(z) = lﬁ%y;ﬁﬁx) 1(y)

is also a rate function for {X,,}. I, is lower semicontinuous.

If the large deviation principle holds with lower semicontinuous rate [/
function, then

1 1 —
I(z) = lim lim inf —log P{X,, € B.(z)} = lim limsup —log P{X,, € B.(x)}

6—)0 n—oo n n—oo n
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Convergence in distribution
{X,} converges in distribution to X if and only if for each f € Cy(S5)
lim E[f(X,)] = E[f(X)
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Equivalent statements: Large deviation principle

{X,} satisfies an LDP with a good rate function if and only if {X,,} is
exponentially tight and

A(f) = lim l1og Elem Xn)]

n—oo N

for each f € Cy(S). Then
I(z) = SUE){f(x) —A(f)}

Cy(

and

A(f) = sup{f(x) — I(z)}

res

Bryc, Varadhan
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Equivalent statements: Convergence in distribution

{X,} converges in distribution to X if and only if
liminf P{X, € A} > P{X € A}, each open A,

n—oo

or equivalently

limsup P{X, € B} < P{X € B}, each closed B

n—oo

LDP
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Tightness

A sequence {X,} is tight if for each € > 0, there exists a compact set
K, C S such that
sup P{X, ¢ K.} <e.
n

Prohorov’s theorem

Theorem 1 Suppose that {X,} is tight. Then there exists a subse-
quence {n(k)} along which the sequence converges in distribution.
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Exponential tightness

{X,} is exponentially tight if for each a > 0, there exists a compact set
K, C S such that

1
limsup — log P{X,, ¢ K,} < —a.

n—oo N

Analog of Prohorov’s theorem

Theorem 2 (Puhalskii, O’Brien and Vervaat, de Acosta) Suppose that
{X,} is exponentially tight. Then there exists a subsequence {n(k)}
along which the large deviation principle holds with a good rate function.
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Stochastic processes in Dg|0, 00)
(E,7) complete, separable metric space
S = DE[O, OO)

Modulus of continuity:

w'(x,0,T) =infmax sup r(z(s),z(t))
{ti} ¢ S,tE[tifl,ti)

where the infimum is over {¢;} satisfying
O=to<ti < - <ty 1 <T <ty

and miny<;<,(t; —t;_1) > 6

X, stochastic process with sample paths in Dg[0, o)

X, adapted to {F'}: For each t > 0, X,,(t) is F;-measurable.
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Tightness in Dgl|0, 0o)

Theorem 3 (Skorohod) Suppose that for t € Ty, a dense subset of
[0,00), {X,(t)} is tight. Then {X,} is tight if and only if for each
e>0andT >0

(I;im lim sup P{w'(X,,d8,T) > e} = 0.

n—o0

Theorem 4 (Puhalskii) Suppose that for t € Ty, a dense subset of
0,00), {X,.(t)} is exponentially tight. Then {X,} is exponentially tight
iof and only if for each e >0 and T > 0

1
lim lim sup — log P{w'(X,,,8,T) > ¢} = —oc.
n

0—0 pooo
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Identification of limit distribution

Theorem 5 If {X,} is tight in Dg|0,00) and
forty, ... .t € 1y, Ty dense in [0,00), then X, = X.

Identification of rate function
Theorem 6 If {X,} is exponentially tight in Dg[0,00) and for each
0<ty < <tm, {(Xu(tr),..., Xn(tm))} satisfies the large deviation

principle in E™ with rate function Iy, . 4., then {X,} satisfies the large
deviation principle in Dg[0, c0) with good rate function

where A, is the set of discontinuities of x.
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Conditions for tightness
S§(T)  collection of discrete {F}'}-stopping times

Q(xa y) =1A ’I“(ZU, y)

Suppose that for ¢ € 7y, a dense subset of [0,00), {X,(t)} is tight.
Then the following are equivalent.

a) {X,} is tight in Dg[0, c0).
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Conditions for tightness

b) For T' > 0, there exist § > 0 and random variables v,(d,7), d > 0,
satisfying
Elg” (Xt +u), Xa(t)) A ¢”(Xn(t), Xo(t —0))|F]
< Blya(6, T)| 7 (1)

for 0<t<T,0<u<d,and 0 <ov <tAJ such that

(lsim lim sup Ev,(5,7)] =0

n—oo

and
lim lim sup E[¢" (X, (8), X,,(0))] = 0. (2)

0—=0 pooo
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Conditions for tightness

c¢) Condition (2) holds, and for each T" > 0, there exists § > 0 such
that

Cn(0,7T)

= sup sup E[sup qﬂ(Xn(T—l_u)vXn(T))
TESH(T) uss  v<oAT

NG (Xn(7), Xa(T = 0))]

satisfies lims_,olimsup,,_,., Cy,(9,7) = 0.

Aldous
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Conditions for exponential tightness
S§(T)  collection of discrete {F}'}-stopping times

Q(xa y) =1A ’I“(ZU, y)

Suppose that for t € 7, a dense subset of [0,00), {X,,(t)} is exponen-
tially tight. Then the following are equivalent.

a) {X,} is exponentially tight in Dp[0, c0).
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Conditions for exponential tightness

b) For T" > 0, there exist § > 0 and random variables ~,(5,\, T,
9, A > 0, satisfying

E[en/\qB(Xn(t+u),Xn(t))/\qﬁ(Xn(t),Xn(t—v))‘En] < E[efyn(é,A,T)l:Ftn]
for 0<t<T,0<u<d,and 0 <wv <tAJ such that

lim lim sup — log E[e™ ] = 0,
and 1
lim lim sup — log E[e™¢"(Xn(0):X:(00)] — . (3)
n

=0 pooo
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Conditions for exponential tightness

c¢) Condition (3) holds, and for each T" > 0, there exists § > 0 such
that for each A > 0

Cn(6,\,T)
= sup supFE[sup e

TESHT) usd  v<oAT

nAG? (X (7+u), X (7)) A’ (Xn(T),Xn(T—v))]

satisfies limg_o lim sup,,_, % log Cp,(0,\,T) = 0.
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Example

W standard Brownian motion

— L
X, = LW
E[ nA| X, (t+u)— ||fW] [ M| W (t4u)— ||]:~ ] < 2€%n)\2u
SO

lim lim sup — log EleAD] = lim = /\25 = 0.
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Equivalence to tightness for functions

Theorem 7 {X,} is tight in Dg|0,00) if and only if

a) (Compact containment condition) For each T > 0 and € > 0, there
exists a compact K.p C E such that

limsup P(Ft <T > X, (t) € K1) <€

n—oo

b) There exists a family of functions F' C C(FE) that is closed un-
der addition and separates points in E such that for each f € F,
{f(X,)} s tight in Dg[0, c0).

Kurtz, Jakubowski
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Equivalence to exponential tightness for functions

Theorem 8 {X,,} is exponentially tight in Dg[0,00) if and only if

a) For each T > 0 and a > 0, there exists a compact K,7 C E such
that 1
lim sup - log P(3t <T > X,(t) € Ko1) < —a (4)
b) There exists a family of functions F' C C(FE) that is closed un-
der addition and separates points in E such that for each f € F,
{f(X,)} is exponentially tight in Dgl0, o).
Schied
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Large Deviations for Markov Processes

e Martingale problems and semigroups

e Semigroup convergence and the LDP

e Control representation of the rate function

e Viscosity solutions and semigroup convergence

e Summary of method
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Markov processes
X, = {X,(t),t > 0} is a Markov process if
Elg(Xn(t + 8))[F'] = Elg(Xa(t + 5))| X ()]

The generator of a Markov process determines its short time behavior

Elg(Xa(t + At)) — g(Xa ()| Fi] = Ang(Xa(t)) Al
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Martingale problems

X, is a solution of the martingale problem for A, if and only if

9(Xut)) — 9(X,(0)) — / A,9(Xa(s))ds (5)

is an {F]'}-martingale for each g € D(A ).

If g is bounded away from zero, is a martlngale if and only if

t)) exp{— / Ang(Xnls)) ds}

is a martingale. (You can always add a constant to g.)
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Nonlinear generator

Define D(H,,) = {f € B(E) : ™/ € D(A,)} and set
1

H,f == A, e
n

Then
exp{nf (X, (£)) — nf(X(0)) - / nH, f(X(s))ds)

is a {F}'}-martingale.
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Tightness for solutions of MGPs

E[f(Xn(t +:f_)) o f(Xn(t»'ftn]
— g / An F(Xo())ds|FT] < ull Anf]
For 1(6,T) = 6(1Anfll + 21 A 1 Anf1) (see (1))
BIF (Xt + 1) = X))
B[ AL
(X, (0B A f (X)) dsl )
< (HAnf2|| A IAS < 76, T)
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Exponential tightness

Bl M (XaltHw) A (Xa()= [ HaM(Xa())ds| m] —

SO
E[en/\(f(Xn(t+U))—f(Xn(t)))|]:tn] < eMuHRAT|

and

ET Conditions
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The Markov process semigroup

Assume that the martingale problem for A, is well-posed.

Define
To(1) f(z) = E[f(Xn(t))]X,(0) = 2]

By the Markov property
T(8)T(t) f(z) = T (t + ) f(2)

t—0
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Iterating the semigroup
For O S tl S tg,

Elfi(Xn(t1)) [2(Xn(t2))] X (0) = 2]
=T,(t)(iTo(t2 — t1) f2)(x)

and in general

Elfi(Xu(t1)) - -+ fr(Xn(tk))|[ X0 (0) = 2]
= E[fi(Xu(t1)) - fim1(Xn(tr-1))
Ttk — te-1) [ (X (te-1))| X0n(0) = 2]

Convergence of the semigroups implies convergence of the finite dimen-
sional distributions.
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A nonlinear semigroup (Fleming)

Assume that the martingale problem for A,, is well-posed.

Define |
Vo(t) f(z) = —log E,[e"X)]

n
By the Markov property
Va(s)Va(t) f(z) = Vot + 5) f (x)

%1_{% Vn(t)f(a;) — f(l’) _ %e—annenf(x) _ an(.fli)

Exponential generator
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Iterating the semigroup
For 0 < t; < ty, define

Via(ti, ta, f1, f2)(z) = Vi(t) (fi + Valta — 1) f2) ()

and inductively
Vn(tb R 7t/€7f17 <o 7fk‘)($)
= vn(tl)(fl + Vn(tg, SR 7tk7 f27 ) fk))(ﬁl?)
Then

E[en(ﬁ (Xn(tl))"""+fk(Xn(tk)))]
— E[enVn (tl ..... ti, f1,e-- fk)<Xn (0))]

By the Bryc-Varadhan result, convergence of semigroup should imply
the finite dimensional LDP
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Weaker conditions for the LDP

A collection of functions D C Cy(S) isolates points in S, if for each
x € S, each € > 0, and each compact K C S, there exists f € D
satisfying |f(z)| < €, sup,c f(y) <0, and

1

sup  f(y) < ——.
yeKNBE(x) €

A collection of functions D C Cy(.S) is bounded above if sup ;. p sup,, f(y) <
0.
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A rate determining class

Proposition 9 Suppose {X,,} is exponentially tight, and let

I'={f e CyS): A(f) = lim 1 log E[e"/ X)) exists}.

n—oo 1,

If D C T is bounded above and isolates points, then I' = Cy(S) and
I(z) = sup{f(z) — A(f)}.
feD
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Semigroup convergence and the LDP

Suppose D C Cy(F) contains a set that is bounded above and isolates
points.

Suppose X,,(0) = x and {X,,(¢)} is exponentially tight. If V,,(¢)f(z) —
V(t)f(z) for each f € D, then {X,(t)} satisfies a LDP with rate func-
tion

Ii(ylz) = sup{f(y) = V(£)f(z)},

feD

and hence

V(t)f(z) = Sl;p{f(y) — Li(y|w)}

Think of I;(y|x) as the large deviation analog of a transition density.
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Iterating the semigroup

Suppose D is closed under addition, V(¢) : D — D, t > 0, and 0 <
t1 < ty. Define

Vit t2, f1, fo) (@) = V(t1)(f1 + V(t2 — t1) f2) ()

and inductively

V(ty, .o ote, fro0 fi) (@)
- V(tl)(fl + V(t27 ce atk7f27 . 7fk))(x)

O®First ®Prev ONext ®Go To ®Go Back @Full Screen ®Close ®Quit 34



Semigroup convergence and the LDP

Theorem 10 For each n, let A, C Cy(E) x B(E), and suppose that
existence and uniqueness holds for the Dg|0, 0o)-martingale problem for
(Ap, i) for each initial distribution p € P(E).

Let D C Cy(FE) be closed under addition and contain a set that is
bounded above and isolates points, and suppose that there exists an op-
erator semigroup {V (t)} on D such that for each compact K C E

Sup V) f(z) = Va) f(zx)] =0, feD.
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Suppose that {X,,} is exponentially tight, and that {X,(0)} satisfies a
large deviation principle with good rate function Iy. Define

1
Ao(f) = lim —log E[e"/*)] e Cy(E).

n—oo 1

a) For each 0 <ty < --- <ty and f1,...,fr € D,

lim L log e (Xalt)osn (X, ()]

n—oo M
=No(V(t1, -tk f1,-- 5 i)
Recall

B[+ (X))
— E[enVn(tl ..... tkafl ..... fk)(Xn(O))]
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b) For 0 < t; < ... <t {(Xu(t1),...,X,(tr))} satisfies the large
deviation principle with rate function

Itl ..... tk(iUl, e ,l’k) (6)
= sup  {fi(@1) + ...+ fulag)

fiys fr€DNCH(E)

—AO(V(th -. 7tk7 fla .- 7fk))}

k
= inf (Io T —f-zlt —ti1 xz|xz 1))

zoel
=1

c) {X,} satisfies the large deviation principle in Dgl0, 00) with rate
function

I(.ZC) = sup Itl ..... tk(x(t1>7‘-'ax(tk))
{ti}CAg
=  sup )+ L4, ( (i1
w0 z ol )
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Example: Freidlin and Wentzell small diffusion

Let X, satisfying the It0 equation

Xu(t) =+ —/ W(s) + /0 b(X,(s))ds,
and define a(x) = o7 (z) - o(x). Then
Apg(z) = %Zam x)0;0j9(x +Zb

Take D(A,) to be the collection of functions of the form ¢+ f, c € R
and f € C?(RY).
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Convergence of the nonlinear generator

an(l') - % § azg 8z]f + E a’L] (1’)
]
+3 bi(a)

and Hf = lim, ., H,f is

Hf(x) = %(Vf(w))T ~afx) - V() +0(x) - V().
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A control problem

Let (E,r) and (U,q) be complete, separable metric spaces, and let
A:D(A) C Cy(E) — C(E xU)

Let H be as above, and suppose that that there is a nonnegative, lower
semicontinuous function L on E x U such that

H f(x) = sup(Af(z,u) — L(z, u)).

uelU

{V(t)} should be the Nisio semigroup corresponding to an optimal con-
trol problem with “reward” function —L.

(cf. Book by Dupuis and Ellis)
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Dynamics of control problem

Require

f@@»—fum»—/‘ Af(a(s), wAs(du x ds) = 0,

U x[0,t]

for each f € D(A) and ¢t > 0, where z € Dpgl0,00) and A € M,,(U),
the space of measures on U X [0, 00) satisfying AM(U x [0,t]) = t.)

For each zy € E, we should have
V(t)g(o)

_ wp{maowi/ L(z(s), u)M(du x ds)}
(z,\ETL, [0,¢]xU
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Representation theorem

Theorem 11 Suppose (E,r) and (U, q) are complete, separable, met-
ric spaces. Let A : D(A) C Cy(E) — C(E x U) and lower semicontin-
uous L(z,u) > 0 satisfy

1. D(A) is convergence determining.

2. For each xy € E, there exists (x,\) € J such that x(0) = z¢ and
Jirion L(x(s), w)A(du x ds) = 0, £ > 0.

3. For each f € D(A), there exists a nondecreasing function )y :
[0,00) — [0,00) such that

|Af(z,u)| <Yr(L(z,u)), (z,u) € E XU,

and lim,_,o 7 1¢(r) = 0.
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4. There exists a tightness function ® on E x U, such that ®(z,u) <
L(z,u) for (z,u) e ExU.

Let {V (t)} be an LDP limit semigroup and satisfy the control identity.
Then

I(x) = Iy(z(0)) + /\:(i’l}\gej{/ljx[om) L(z(s),u)\(du x ds)}.
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Small diffusion

Hf(r) = 5(Vf (@) ala) - V(x) +b(z) - V£ (2)

For
Af(z,u) =u-Vf(z)

and
Lww) = (= ba()(u = b))

Hf(x) = sup (Af(z,u) — Lz, u))

ucRd
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Alternative representation

For
Af(z,u) = (u'o(x) + b(2))V f ()
and ]
L(ZL’,U) - §|U|27
again

Hf(x) = sup (Af(z,u) — L(z,u))

ucRd

I(z) = inf{/ooo %IU(S)IZCZS s a(t) = ' (o (a(t) + bla(t))}
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Legendre transform approach

If Hf(x) = H(z,Vf(z)), where H(x,p) is convex and continuous in p,
then

L(z,u) = S;l}gl{p cu— H(z,p)}

and
H(x,p) = sup{p-u— L(x,u)},

u€R

so taking Af(x,u) = u- Vf(x),
Hf(x) = sup{u- V1(x) — Lz, u)}

uc R4
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Viscosity solutions

Let E be compact, H C C(E)x B(E), and (f,g) € H imply (f+c¢,g) €
H. Fix h € C(E) and a > 0.

f € B(E) is a viscosity subsolution of
foaHf=h 7)

if and only if f is upper semicontinuous and for each (fy, go) € H there
exists 7y € F satisfying (f — fo)(zo) = sup,(f(x) — fo(x)) and

f(xo) — h(x0)

«

< (90)" (o)

or equivalently

f(xo) < a(go)(x0) + h(xo)
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f € B(E) is a wiscosity supersolution of (7) if and only if f is lower
semicontinuous and for each (fy, go) € H there exists xy € F satisfying

(fo — f)(xo) = sup,(fo(z) — f(z)) and
i(fco) - h(fﬁo)

«

> (90)«(o)

f(x0) > a(go)«(x0) + h(o)

A function f € C(F) is a viscosity solution of f —aH f = h if it is both
a subsolution and a supersolution.
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Comparison principle

The equation f — aHf = h satisfies a comparison principle, if f a
viscosity subsolution and [ a viscosity supersolution implies f < f on
E.
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Viscosity approach to semigroup convergence

Theorem 12 Let (E,r) be a compact metric space, and for n =

1,2,..., assume that the martingale problem for A, C B(E) x B(F) is
well-posed.

Let ]
H,f = —e ™A, e eD(4A,),
n
and let H C C(F) x B(FE) with D(H) dense in C(E). Suppose that for
each (f,g) € H, there exists (f,,gn) € H, such that ||f — fu]| — 0 and
Hg o gn” — 0.
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Fiz oy > 0. Suppose that for each 0 < a < «, there exists a dense
subset D, C C(F) such that for each h € D, the comparison principle
holds for

(I —aH)f = h.

Then there exists {V (t)} on C(FE) such that

Sup V(E)f(x) = Va(t) f(x)] = 0, feCE).

If{X,(0)} satisfies a large deviation principle with a good rate function.
Then { X, } is exponentially tight and satisfies a large deviation principle
with rate function I given above (6).
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Proof of a large deviation principle

1. Verify convergence of the sequence of operators H, and derive the
limit operator H. In general, convergence will be in the extended
limit or graph sense.

2. Verify exponential tightness. Given the convergence of H,, ex-
ponential tightness typically follows provided one can verify the
exponential compact containment condition.

3. Verify the range condition or the comparison principle for the lim-
iting operator H. The rate function is characterized by the limiting
semigroup.

4. Construct a variational representation for H. This representation
typically gives a more explicit representation of the rate function.
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R’ valued processes

Let a = oo, and define
A, f ()
1 1
—n [ (fa+22)~ f@) — 2 V@), dz)
R4

n n

+b(z) - Vf(zr)+ % Z aij(x)0;0; f(x)

i
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Nonlinear generator

The operator H,, f = %e‘”f A, e is given by
H,f(z) = / (e tma =) _ 1 — 5V f(2))n(z, dz)
Rd
1
+o- > ay(2)0,0;f (x)
ij

+% Z aij(2)0; f(2)0; f(x) + blx) - V f(x)
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Limiting operator

Hf(x) = / (I 1 2 V() d2)
45 S (@0 ()0, () + bla) - Y (x)

j
Note that H has the form
Hf(r) = H(z,Vf(x))

for

H(z,p) = %|0T(af)p!2 +b(z)-p+ /Rd(ep'z —1—p-2)n(z,dz)

pc
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Gradient limit operators

Condition 13

1. For each compact I' C R?, there exist fi,, — +0o and w : (0,00) —
[0, 00] such that {(xp, ym)} CT X T, pimlzm — ym|? — 0, and

sup Hu (Y, o (T — Ym)) < 00
m

imply

lim iV (z,,, PmlEm =)y Y] < w(N)

m—oo by
and

lim inf w(A) <0.
e—0 |A—1|<e

2. If x,, — o0 and py, — 0, then lim,, o H(xp, pm) = 0.
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Conditions for comparison principle

Lemma 14 If Condition 13 is satisfied, then for h € C(E) and o > 0,
the comparison principle holds for

(I —aH)f =h.
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Sufficient conditions

Lemma 15 Suppose o and b are bounded and Lipschitz and n = 0.
Then Condition 13 holds with

0 A>1
cUO\):{OO A <1.

If H is continuous and for each x,p € R® lim, o, H(x,7p) = oo, then
Condition 15.1 holds with

aw={ 21

If o and b are bounded and

lim sup/ (e’ —1—p-2)n(x,dz) =0,
Rd

Ip|—0 &z

then Condition 15.2 holds.

O®First ®Prev ONext ®Go To ®Go Back ®@Full Screen ®Close ®Quit 58



Diffusions with periodic coefficients (Baldi)

Let o be periodic (for each 1 < i < d, there is a period p; > 0 such that
o(y) = oy + pie;) for all y € RY), and let X,, satisfy the Itd equation

0, (1) = %amn (D) (1),

where a;, > 0 and lim,, o n " 'a,, = 0. Let @ = oo’. Then

1 0*
Anf () =~ > aij(an) Pudr, f(z),

ij

and

Hof(r) = 5= 3 ai(0n)y £ (@) + Zaw )0, f ()0, (2).

v
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Limit operator

Let f.(z) = f(z) + e h(x, a,z), where €, = na, 2.

€n0ly = na;l — 0

If h has the same periods in y as the a;; and

2

2 S0 (g ) + 1001 ) = ot

for some g independent of y, then

lim Hy fol2,y) = g(x).
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It follows that 1

g(x) = ) Zﬁijaif(x)ajf(x)a
ij
where @;; is the average of a;; with respect to the stationary distribution
for the diffusion on [0, p1] X - -+ X [0, pg] whose generator is

1 0?
Aofly) =3 > aij(y)ayiﬁyj

]

f()

with periodic boundary conditions. In particular,
1
h(z,y) = 5 Z hij(y) 0 f (x)0; f (z),
ij

where h;; satisfies
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