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Abstract
Suppose that X = (Xt , t ≥ 0) is either a superprocess or a branching Markov process
on a general space E , with non-local branchingmechanism and probabilitiesPδx , when
issued from a unit mass at x ∈ E . For a general setting in which the first moment
semigroup of X displays a Perron–Frobenius type behaviour, we show that, for k ≥ 2
and any positive bounded measurable function f on E ,

lim
t→∞ gk(t)Eδx [〈 f , Xt 〉k] = Ck(x, f ),

where the constant Ck(x, f ) can be identified in terms of the principal right eigen-
function and left eigenmeasure and gk(t) is an appropriate deterministic normalisation,
which can be identified explicitly as either polynomial in t or exponential in t , depend-
ing on whether X is a critical, supercritical or subcritical process. The method we
employ is extremely robust and we are able to extract similarly precise results that
additionally give us the moment growth with time of

∫ t
0 〈 f , Xt 〉ds, for bounded mea-

surable f on E .
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1 Introduction andmain results

A fundamental question concerning general spatial branching processes, both super-
processes and branching Markov processes, pertains to their moments. Whilst the
setting of first and second moments has received quite some attention, limited infor-
mation seems to be known about higher moments, in particular, their asymptotic
behaviour with time. Relevant references that touch upon this topic include [12, 17,
18, 21, 24]. In this paper, we provide a single general result that pertains to both super-
processes and spatial branching Markov processes and which provides a very precise
and somewhat remarkable result for moment growth.

We show that, under the assumption that the first moment semigroup of the process
exhibits a natural Perron Frobenious type behaviour, the k-th moment functional of
either a superprocess or branching Markov process, when appropriately normalised,
limits to a precise constant. The setting in which we work is remarkably general, even
allowing for the setting of non-local branching; that is, where mass is created at a
different point in space to the position of the parent. Moreover, the methodology we
use appears to be extremely robust and we show that the asymptotic k-th moments
of the running occupation measure are equally accessible using essentially the same
approach. Our results will thus expand on what is known for branching diffusions
and superdiffusions e.g. in [10], [23], as well as giving precise growth rates for the
moments of occupations. In future work we hope to use the ideas in this paper to
develop general central limit theorems for the aforesaid class of processes.

To this end, let us spend some time providing the general setting in which we wish
to work. Let E be a Lusin space. Throughout, will write B(E) for the Banach space of
bounded measurable functions on E with norm ‖·‖, B+(E) for non-negative bounded
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measurable functions on E and B+
1 (E) for the subset of functions in B+(E) which

are uniformly bounded by unity. We are interested in spatial branching processes that
are defined in terms of a Markov process and a branching operator. The former can
be characterised by a semigroup on E , denoted by P = (Pt , t ≥ 0). We do not need
P to have the Feller property, and it is not necessary that P is conservative. That said,
if so desired, we can append a cemetery state {†} to E , which is to be treated as an
absorbing state, and regard P as conservative on the extended space E ∪ {†}, which
can also be treated as a Lusin space. Equally, we can extend the branching operator
to E ∪ {†} by defining it to be zero on {†}, i.e. no branching activity on the cemetery
state.

1.1 BranchingMarkov processes

Consider now a spatial branching process in which, given their point of creation,
particles evolve independently according to a P-Markov process. In an event which
we refer to as ‘branching’, particles positioned at x die at rate β(x), where β ∈ B+(E),
and instantaneously, new particles are created in E according to a point process. The
configurations of these offspring are described by the random counting measure

Z(A) =
N∑

i=1

δxi (A),

for Borel A in E . The law of the aforementioned point process depends on x , the point
of death of the parent, and we denote it by Px , x ∈ E , with associated expectation
operator given by Ex , x ∈ E . This information is captured in the so-called branching
mechanism

G[ f ](x) := β(x)Ex
[

N∏

i=1

f (xi ) − f (x)

]

, x ∈ E, (1)

where we recall f ∈ B+
1 (E) := { f ∈ B+(E) : supx∈E f (x) ≤ 1}. Without loss of

generality we can assume that Px (N = 1) = 0 for all x ∈ E by viewing a branching
event with one offspring as an extra jump in the motion. On the other hand, we do
allow for the possibility that Px (N = 0) > 0 for some or all x ∈ E .

Henceforth we refer to this spatial branching process as a (P,G)-branchingMarkov
process. It is well known that if the configuration of particles at time t is denoted
by {x1(t), . . . , xNt (t)}, then, on the event that the process has not become extinct or
exploded, the branching Markov process can be described as the co-ordinate process
X = (Xt , t ≥ 0) in the space of atomic measures on E with non-negative integer total
mass, denoted by N (E), where

Xt (·) =
Nt∑

i=1

δxi (t)(·), t ≥ 0.
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In particular, X is Markovian in N (E). Its probabilities will be denoted P := (Pμ,μ ∈
N (E)). With this notation in hand, it is worth noting that the independence that is
manifest in the definition of branching events and movement implies that if we define,

vt [ f ](x) = Eδx

[ Nt∏

i=1

f (xi (t))

]

, f ∈ B+
1 (E), t ≥ 0, (2)

then for μ ∈ N (E) given by μ = ∑n
i=1 δyi , we have

Eμ

[ Nt∏

i=1

f (xi (t))

]

=
n∏

i=1

vt [ f ](yi ), t ≥ 0. (3)

Moreover, for f ∈ B+(E) and x ∈ E ,

vt [ f ](x) = P̂t [ f ](x) +
∫ t

0
Ps

[
G[vt−s[ f ]]

]
(x)ds, t ≥ 0, (4)

where P̂t is defined similarly to Pt but returns a value of 1 on the event of killing. The
above equation describes the evolution of the semigroup vt : either the initial particle
has not branched (and has possibly been absorbed) by time t or at some time s ≤ t , the
initial particle has branched, producing offspring according to G. We refer the reader
to [19, 22] for a proof.

BranchingMarkov processes enjoy a very long history in the literature, dating back
as far as [30–32], with a broad base of literature that is arguably too voluminous to
give a fair summary of here. Most literature focuses on the setting of local branching.
This corresponds to the setting that all offspring are positioned at their parent’s point
of death (i.e. xi = x in the definition of G). In that case, the branching mechanism
reduces to

G[s](x) = β(x)

[ ∞∑

k=0

pk(x)s
k − s

]

, x ∈ E,

where s ∈ [0, 1] and (pk(x), k ≥ 0) is the offspring distribution when a parent
branches at site x ∈ E . The branching mechanism Gmay otherwise be seen in general
as a mixture of local and non-local branching.

1.2 Superprocesses

Superprocesses can be thought of as the high-density limit of a sequence of branching
Markov processes, resulting in a new family of measure-valued Markov processes;
see e.g. [6, 7, 13, 26, 34]. Just as branchingMarkov processes areMarkovian in N (E),
the former are Markovian in the space of finite Borel measures on E topologised by
the weak convergence topology, denoted by M(E). There is a broad literature base for
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superprocesses, e.g. [6, 15, 17, 26, 34], with so-called local branching mechanisms,
and later broadened to the more general setting of non-local branching mechanisms
in [7, 26]. Let us now introduce these concepts with an autonomous definition of what
we mean by a superprocess.

A Markov process X := (Xt : t ≥ 0) with state space M(E) and probabilities
P := (Pμ,μ ∈ M(E)) is called a (P, ψ, φ)-superprocess if it has transition semigroup
(Êt , t ≥ 0) on M(E) satisfying

Eμ

[
e−〈 f ,Xt 〉

]
=

∫

M(E)

e−〈 f ,ν〉Êt (μ, dν) = e−〈Vt [ f ],μ〉, μ ∈ M(E), f ∈ B+(E).

(5)

Here, we work with the inner product on B+(E) × M(E) defined by 〈 f , μ〉 =∫
E f (x)μ(dx) and (Vt , t ≥ 0) is a semigroup evolution that is characterised via

the unique bounded positive solution to the evolution equation

Vt [ f ](x) = Pt [ f ](x) −
∫ t

0
Ps

[
ψ(·,Vt−s[ f ](·)) + φ(·,Vt−s[ f ])

]
(x)ds. (6)

Here ψ denotes the local branching mechanism

ψ(x, λ) = −b(x)λ + c(x)λ2 +
∫

(0,∞)

(
e−λy − 1 + λy

)
ν(x, dy), λ ≥ 0, (7)

where b ∈ B(E), c ∈ B+(E) and (x ∧ x2)ν(x, dy) is a bounded kernel from E to
(0,∞), and φ is the non-local branching mechanism

φ(x, f ) = β(x) ( f (x) − ζ(x, f )) , (8)

where β ∈ B+(E) and ζ has representation

ζ(x, f ) = γ (x, f ) +
∫

M(E)◦
(1 − e−〈 f ,ν〉)
(x, dν), (9)

such that γ (x, f ) is a bounded function on E×B+(E) and ν(1)
(x, dν) is a bounded
kernel from E to M(E)◦ := M(E)\ {0} with

γ (x, f ) +
∫

M(E)◦
〈1, ν〉 
(x, dν) ≤ 1. (10)

We refer the reader to [7, 27] formore details regarding the above formulae. Lemma3.1
in [7] tells us that the functional ζ(x, f ) has the following equivalent representation

ζ(x, f ) =
∫

M0(E)

[

γ (x, π) 〈 f , π〉 +
∫ ∞

0

(
1 − e−u〈 f ,π〉) n(x, π, du)

]

G(x, dπ),

(11)
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where M0(E) denotes the set of probability measures on E , γ ≥ 0 is a bounded
function on E ×M0(E), un(x, π, du) is a bounded kernel from E ×M0(E) to (0,∞)

and G(x, dπ) is a probability kernel from E to M0(E) with

γ (x, π) +
∫ ∞

0
un(x, π, du) ≤ 1. (12)

The reader will note that we have deliberately used some of the same notation for
both branching Markov processes and superprocesses. In the sequel there should be
no confusion and the motivation for this choice of repeated notation is that our main
result is indifferent to which of the two processes we are talking about.

1.3 Main results: k-th moments

As alluded to above, in what follows, (X ,P) is taken as either a branching Markov
process or a superprocess as defined in the previous section. Our main results concern
understanding the growth of the k-th moment functional in time

T(k)
t [ f ](x) := Eδx

[
〈 f , Xt 〉k

]
, x ∈ E, f ∈ B+(E), k ≥ 1, t ≥ 0. (13)

For convenience, we will write T in preference of T(1) throughout.
Before stating our main theorem, we first introduce some assumptions that will be

crucial in analysing the moments defined above. First, we have a Perron–Frobenius-
type assumption.
(H1): There exists an eigenvalue λ ∈ R and a corresponding right eigenfunction
ϕ ∈ B+(E) and finite left eigenmeasure ϕ̃ such that, for f ∈ B+(E),

〈Tt [ϕ], μ〉 = eλt 〈ϕ,μ〉 and 〈Tt [ f ], ϕ̃〉 = eλt 〈 f , ϕ̃〉 ,

for all μ ∈ N (E) (resp. M(E)) if (X ,P) is a branching Markov process (resp. a
superprocess). Further let us define

t = sup
x∈E, f ∈B+

1 (E)

|ϕ(x)−1e−λtTt [ f ] (x) − 〈ϕ̃, f 〉 |, t ≥ 0.

We suppose that

sup
t≥0

t < ∞ and lim
t→∞ t = 0. (14)

Before explaining the heuristics behind (H1), we state are second assumption, which
is a moment condition on the offspring distribution.
(H2): Suppose k ≥ 1. If (X ,P) is a branching Markov process,

sup
x∈E

Ex (〈1,Z〉k) < ∞ (15)
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and if (X ,P) is a superprocess,

sup
x∈E

(∫ ∞

0
|y|kν(x, dy) +

∫

M(E)◦
〈1, ν〉k
(x, dν)

)

< ∞. (16)

Let us spend a little time considering these two assumptions in more detail. For a
lot of literature surrounding spatial branching processes, there has been emphasis on
results for which an underlying assumption of exponential ergodic growth in the first
moment is present as in (H1); see e.g. [1, 16, 19, 22, 27, 29]. Due to this, we may
characterise the process as supercritical if λ > 0, critical if λ = 0 and subcritical if
λ < 0.

One way to understand (14), is through the martingale that comes hand-in-hand
with the eigenpair (λ, ϕ), i.e.

Mϕ
t := e−λt 〈ϕ, Xt 〉, t ≥ 0. (17)

Normalising this martingale and using it as a change of measure results in the ubiq-
uitous spine decomposition; cf. [21, 22, 29]. Roughly speaking, under the change of
measure, the process is equal in law to a copy of the original process with a superim-
posed process of immigration, which occurs both in space and time along the path of
a single particle trajectory in E , the spine. Moreover, the assumption (14) implies that
the spine has a stationary limit with stationary measure ϕϕ̃.

The assumptions (15) and (16) of (H2) are natural to ensure that k-moments are
well defined for all t ≥ 0. If not explicitly stated in the literature, their need to ensure
that the functional moments T(k)

t [ f ](x) are finite for all t ≥ 0, f ∈ B+(E) and x ∈ E
is certainly folklore. The two conditions (15) and (16) are clearly natural analogues
of one another. Indeed, whereas for superprocesses, it is usual to separate out the non-
diffusive local branching behaviour from non-local behaviour, i.e via the measures
ν(x, dy) and 
(x, dν), the analogous behaviour is captured in the single point process
Z for branching Markov processes.

In terms of the eigenvalue in (H1), the following suite of results give us the precise
growth rates for k-th moments in each of the critical (λ = 0), supercritical (λ > 0)
and subcritical (λ < 0) settings. In all three results, (X ,P) is either a (P,G)-branching
particle system or a (P, ψ, φ)-superprocess on E .

Theorem 1 (Critical, λ = 0) Suppose that (H1) holds along with (H2) for some k ≥ 2
and λ = 0. Define


(�)
t = sup

x∈E, f ∈B+
1 (E)

∣
∣
∣t−(�−1)ϕ(x)−1T(�)

t [ f ](x) − 2−(�−1)�! 〈 f , ϕ̃〉� 〈V[ϕ], ϕ̃〉�−1
∣
∣
∣ ,

where

V[ϕ](x) = β(x)Ex
(
〈ϕ,Z〉2 − 〈ϕ2,Z〉

)
,
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if (X ,P) is a branching Markov process or

V[ϕ](x) = ψ ′′(x, 0+)ϕ(x)2 + β(x)
∫

M(E)◦
〈ϕ, ν〉2
(x, dν)

if (X ,P) is a superprocess. Then, for all � ≤ k

sup
t≥0


(�)
t < ∞ and lim

t→∞ 
(�)
t = 0. (18)

The novel contribution of Theorem 1 is the fact that no such result currently exists in
the literature at this level of generality. The only comparable results appear in [11],
which uses similar methods to derive the convergence for the critical Crump-Mode-
Jagers process1 and in [20], which inspired this paper but only deals with the special
case of a general critical branching particle processes where the test function f is
specifically taken to be the eigenfunction ϕ. We will discuss these examples in more
detail after stating our main results. We have been unable to find comparable results
for superprocesses.

There are two facts that stand out in Theorem 1. The first is the polynomial scaling,
which is quite a delicate conclusion given that there is no exponential growth to rely
on. The second is that, for k ≥ 3, the scaled moment limit is expressed not in terms
of the k-th moments in (15) and (16), but rather the second order moments.

In some sense, however, both the polynomial growth and the nature of the limiting
constant are not entirely surprising given the folklore for the critical setting. More
precisely, in at least some settings (see e.g. [20]), one would expect to see a Yaglom-
type result at criticality. The latter would classically see, conditional on survival,
convergence in law of t−1〈 f , Xt 〉 to an exponentially distributed random variable as
t → ∞, whose parameter is entirely determined by the second moment of X . This
implies that, conditional on survival, the limit of the k-th moment of 〈 f , Xt 〉 behaves
like k!tkck (i.e. the k-th moment of the aforesaid exponential distribution) as t → ∞,
where c > 0 is written in terms of a second moment functional of the spatial offspring
distribution. One can also expect aKolmogorov-type result for the survival probability,
which says that

Pδx (Nt > 0) ∼ cϕ(x)t−1, as t → ∞, (19)

where we recall that Nt = 〈1, Xt 〉 is the total mass of the process at time t ; see
for example [20] for the particle system setting and [29] in the superprocess setting.
Combining this with the moment asymptotic of

T(k)
t [ f ](x) = Eδx [〈 f , Xt 〉k |Nt > 0]Pδx (Nt > 0) (20)

implies that the k-th moment behaves like ϕ(x)tk−1k!ck , which is precisely the result
given in Theorem 1.

1 The article [11] only came to light after submitting this article.
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It is also curious why, at criticality, all higher moments can be expressed in terms of
the constant c, which is written in terms of a second moment functional of the spatial
offspringdistribution.Wecangive some intuitionhere, at least in the branchingMarkov
setting, as to why this is the case. Let us recall the classical folklore that conditioning
on survival is equivalent to studying the process under the change of measure

dPϕ
δx

dPδx

∣
∣
∣
∣
∣
σ(Xs ,s≤t)

= 〈ϕ, Xt 〉
ϕ(x)

, x ∈ E, t ≥ 0, (21)

The above change of measure (21) yields the classical spine decomposition, cf.
[20]. In particular, this means that we can write, for f ∈ B+(E),

〈 f , Xt 〉 = f (ξt ) +
nt∑

i=1

Ni∑

j=1

〈 f , Xi, j
t−Ti

〉, (22)

where ξ = (ξt , t ≥ 0) is the motion of an immortal particle, called the spine, whose
semigroup is conservative, nt is the number of branching events along the spine,
which arrive at a rate which depends on the motion of ξ , Ni is the number of offspring
produced such that, at the i-th such branching event, which occurs at time Ti ≤ t ,
Xi, j
t−Ti

, j = 1, . . . , Ni are i.i.d copies of the original branching Markov process under
PξTi

, which provide mass at time t . In other words, this means that under Pϕ , the
process X can be decomposed into a single immortal trajectory, off which, copies of
the original process (X ,P) immigrate simultaneously to groups of siblings.

With this in mind, let us consider genealogical lines of descent that contribute to
the bulk of the mass of the k-th moment at large times t . For each copy of (X ,P) that
immigrates onto the spine at time s > 0, the probability that the process survives to time
t ≥ s, thus contributing to the bulk of the k-th moment at time t , is O(1/(t − s)) ≈
O(1/t); cf. (19). If there are multiple offspring at an immigration event at time s,
then the chance that at least two of these offspring contribute to the bulk of the k-th
moment at time t is O(1/t2). Moreover, the semigroup of the spine ξ is given by
Pϕ
t [ f ](x) = Pt [ϕ f ](x)/ϕ(x), which, under (H1), limits to a stationary distribution

ϕ(x)ϕ̃(dx), x ∈ E . This has the effect that the arrival of branching events along the
spine begin to look increasingly like a Poisson process as t → ∞. Hence, for large t ,
nt ≈ O(t).

Putting these pieces together, as t → ∞, there are approximately O(t) branch
points along the spine, each of which has the greatest likelihood of a single offspring
among immigrating siblings contributing to the bulk of the k-th moment at time t , with
probability of order O(1/t). Thus, it is clear that we only expect to see one of each
sibling groupof immigrants along the spine contributing to themass of the k-thmoment
at time t . Now let βϕ denote the spatial rate at which offspring immigrates onto the
spine and let {x1, . . . , xN } denote their positions at the point of branching including
the position of the spine at this instance. Let Pϕ denote the law of this offspring
distribution, and suppose that i∗ is the (random) index of the offspring that continues
the evolution of the spine. We have that the rate at which a ‘uniform selection’ of a
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single offspring which is not the spine at a branching event (seen through the function
f ∈ B+(E)) is given by

βϕ(x)Eϕ
x

[
N∑

i=1

f (xi )1(i �=i∗)

]

= β(x)
Ex [〈ϕ,Z〉]

ϕ(x)
Ex

⎡

⎢
⎢
⎣

〈ϕ,Z〉
Ex [〈ϕ,Z〉]

N∑

i=1

ϕ(xi )

〈ϕ,Z〉
N∑

i=1
j �=i

f (x j )

⎤

⎥
⎥
⎦

= β(x)

ϕ(x)
Ex

⎡

⎢
⎢
⎣

N∑

i=1

ϕ(xi )
N∑

i=1
j �=i

f (x j )

⎤

⎥
⎥
⎦

= β(x)

ϕ(x)
Ex [〈 f ,Z〉〈ϕ,Z〉 − 〈ϕ f ,Z〉] , (23)

where we have used, from [20], that βϕ(x) = β(x)Ex [〈ϕ,Z〉]/ϕ(x), Pϕ
x is abso-

lutely continuous with respect to Px with density 〈ϕ,Z〉/Ex [〈ϕ,Z〉] and, given
{x1, . . . , xN }, i∗ = i is empirically selected with probability proportional to ϕ(xi ).

We know from the the setting of first moments that it is the projection of 〈 f , Xt 〉 on
to 〈ϕ, Xt 〉, with coefficient 〈 f , ϕ̃〉, which dominates the mean growth; indeed a strong
law large numbers exists to this effect as well, see e.g. [19]. In this spirit, let us take
f = ϕ for simplicity and we see that in (23) we get precisely V[ϕ](x)/ϕ(x) on the
right-hand side. Hence, finally, we conclude our heuristic by observing that the rate at
which immigration off the spine contributes to the bulk of the k-th moment limit of
〈ϕ, Xt 〉 is determined by the second moment functional V[ϕ]; together with (20) and
the associated remarks above, this goes some way to explaining the appearance of the
limit in Theorem 1.

The next results present a significantly different picture for the supercritical and
subcritical cases. For those settings, the exponential behaviour of the first moment
semigroup becomes a dominant feature of the higher moments.

Theorem 2 (Supercritical, λ > 0) Suppose that (H1) holds along with (H2) for some
k ≥ 2 and λ > 0. Redefine


(�)
t = sup

x∈E, f ∈B+
1 (E)

∣
∣
∣ϕ(x)−1e−�λtT(�)

t [ f ](x) − �! 〈 f , ϕ̃〉� L�

∣
∣
∣ ,

where L1 = 1 and we define iteratively for k ≥ 2

Lk = 1

λ(k − 1)

〈

βE·
[ ∑

[k1,...,kN ]2k

N∏

j=1
j :k j>0

ϕ(x j )Lk j

]

, ϕ̃

〉

,
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where [k1, . . . , kN ]2k is the set of all non-negative N-tuples (k1, . . . , kN ) such that
∑N

i=1 ki = k and at least two of the ki are strictly positive2 if (X ,P) is a branching
Markov process, or

Lk(x) =
∑

{m1,...,mk−1}k
1

m1! . . .mk−1! (m1 + · · · + mk−1 − 1)!ϕ(x)m1+···+mk−1−1

k−1∏

j=1

(−L j (x)
)m j + 1

λ(k − 1)
〈Vk [ϕ] , ϕ̃〉

and iteratively with V2 [ϕ] (x) = V [ϕ] (x) (defined in the previous theorem) and for
k ≥ 3

Vk[ϕ](x) =
∑

{m1,...,mk−1}k
1

m1! . . .mk−1!
k−1∏

j=2

(〈
V j [ϕ] , ϕ̃

〉

λ( j − 1)

)m j

×
[
ψ(m1+···+mk−1)(x, 0+)(−ϕ(x))m1+···+mk−1 + β(x)

∫

M(E)◦
〈ϕ, ν〉m1+···+mk−1 
(x, dν)

]

if (X ,P) is a superprocess. Here the sums run over the set {m1, . . . ,mk−1}k of positive
integers such that m1 + 2m2 + · · · + (k − 1)mk−1 = k. Then, for all � ≤ k

sup
t≥0


(�)
t < ∞ and lim

t→∞ 
(�)
t = 0. (24)

Although we have not been able to find existing results of this kind in such gener-
ality for supercritical processes, we note that the asymptotics of branching diffusions
with either constant or compactly supported branching potentials were studied in [25].
Moreover, the asymptotics for the first and second moments of age-dependent branch-
ing processes were considered in [4] and [5], respectively. While Jensen’s inequality
easily shows that this is the minimal rate of growth, it turns out that it is the exact rate
of growth, implying that the k-th moment grows as the k-th power of the first moment,
i.e. using the terminology of [35], there is no intermittency. If we again appeal to folk-
lore then this is again not necessarily surprising. In a number of settings, we would
expect X to obey a strong law of large numbers (cf. [1, 16, 19, 27]) in the sense that

lim
t→∞ e−λt 〈 f , Xt 〉 = 〈ϕ̃, f 〉Mϕ∞,

where (Mϕ
t , t ≥ 0) was defined in (17) and the limit holds either almost surely or in

the sense of L p moments, for p > 1. Moreover, returning to the heuristic involving
the spine decomposition discussed after Theorem 1, in this case, the copies of the

2 We interpret
∑

∅ = 0 and
∏

∅ = 1.
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original process that branch off the spine are all supercritical so we expect them all to
survive to time t and hence why we see the sum over tuples with at least two positive
entries in the recurrence Lk (the argument for not seeing precisely one still holds).

It is also worth commenting on the difference in the dependence on x in the limit for
the two processes. In the case of the branching Markov process, the dependence on x
appears through the normalisation by ϕ(x), which appears due to the assumption (H1).
For superprocesses, this dependence is much more complicated. Thinking in terms of
what is known as the skeletal decomposition (see e.g. [2, 14]), the superprocess issued
from a unit mass at x can be seen at time t > 0 as the aggregation of a Poisson
point process of ‘superprocess excursions’ conditioned to survive beyond time t as
well as a copy of the superprocess conditioned to become extinct by time t . In the
supercritical setting, a finite Poisson number of these excursions will contribute to
the overall growth of the process, as t → ∞, with a rate proportional to p(x)δx ,
where p(x) is rate of survival of an excursion issued from x ∈ E . Moreover, in terms
of mass, each of the excursions is of the same order of magnitude as an analogous
branching particle system. Taking k-th moments of the x-dependent Poisson sum
of such excursions introduces an additional layer of complexity to its asymptotic
behaviour and, specifically, the dependency on x . This may go part way to explaining
the dependency of Lk on x in that setting.

Finally we turn to the growth of moments in the subcritical setting, which offers
the heuristically appealing result that the k-th moment decays slower than the k-th
moment of the linear semigroup.

Theorem 3 (Subcritical, λ < 0) Suppose that (H1) holds along with (H2) for some
k ≥ 2 and λ < 0. Redefine


(�)
t = sup

x∈E, f ∈B+
1 (E)

∣
∣
∣ϕ(x)−1e−λtT(�)

t [ f ](x) − �! 〈 f , ϕ̃〉� L�

∣
∣
∣ ,

where we define iteratively L1 = 1 and for k ≥ 2,

Lk = 〈 f k, ϕ̃〉
〈 f , ϕ̃〉k k! +

〈

βE·
[ k∑

n=2

1

|λ|(n − 1)

∑

[k1,...,kN ]nk

N∏

j=1
j :k j>0

ϕ(x j )Lk j

]

, ϕ̃

〉

,

where [k1, . . . , kN ]nk is the set of all non-negative N-tuples (k1, . . . , kN ) such that
∑N

i=1 ki = k and exactly 2 ≤ n ≤ k of the ki are strictly positive if (X ,P) is a
branching Markov process, or Lk = 〈Vk[ϕ], ϕ̃〉, where V1[ϕ](x) = ϕ(x) and for
k ≥ 2,

Vk[ϕ](x) =
∑

{m1,...,mk−1}k
1

m1! . . .mk−1!
1

λ(1 − m1 − · · · − mk−1)

k−1∏

j=1

〈
V j [ϕ] , ϕ̃

〉m j

×
[
ψ(m1+···+mk−1)(x, 0+)(−ϕ(x))m1+···+mk−1

123



Asymptotic moments of spatial branching processes

+β(x)
∫

M(E)◦
〈ϕ, ν〉m1+···+mk−1 
(x, dν)

]

if (X ,P) is a superprocess. Here the sums run over the set {m1, . . . ,mk−1}k of non-
negative integers such that m1 + 2m2 + · · · + (k − 1)mk−1 = k. Then, for all � ≤ k

sup
t≥0


(�)
t < ∞ and lim

t→∞ 
(�)
t = 0. (25)

As alluded to above, it is heuristically appealing that the the k-th moment does not
grow at the rate exp(−kλt). On the other hand the actual growth rate exp(−λt) is
slightly less obvious but nonetheless the obvious candidate. The decay in mass to zero
in the branching system would suggest that the k-th moment similarly does so, but no
slower that the first moment.

1.4 Main result: k-th occupationmoments

It also transpires that ourmethod is remarkably robust. Indeed, again taking an agnostic
position on whether X is a branching Markov process or a superprocess, as we will
show, careful consideration of the proofs of Theorems 1, 2 and 3 demonstrate that we
can also conclude results for the quantities

M(k)
t [g](x) := Eδx

[(∫ t

0
〈g, Xs〉 ds

)k
]

, x ∈ E, g ∈ B+(E), k ≥ 1, t ≥ 0.

We can think of
∫ t
0 〈g, Xs〉 ds as characterising the running occupation measure

∫ t
0 Xs(·)ds of the process X and hence we refer to M(k)

t [g](x) as the k-th moment
of the running occupation. The following results also emerge from our calculations,
mirroring Theorems 1, 2 and 3 respectively.

Theorem 4 (Critical, λ = 0) Suppose that (H1) holds along with (H2) for k ≥ 2 and
λ = 0. Define


(�)
t = sup

x∈E,g∈B+
1 (E)

∣
∣
∣t−(2�−1)ϕ(x)−1M(�)

t [g](x) − 2−(�−1)�! 〈g, ϕ̃〉� 〈V[ϕ], ϕ̃〉�−1L�

∣
∣
∣ ,

where L1 = 1 and Lk is defined through the recursion Lk = (
∑k−1

i=1 Li Lk−i )/(2k−1)
if (X ,P) is a branching Markov process or Lk = (

∑
{k1,k2}+ Lk1Lk2)/(2k − 1) where

{k1, k2}+ is the set of non-negative integers k1, k2 such that k1 + k2 = k if (X ,P) is a
superprocess. Then, for all � ≤ k

sup
t≥0


(�)
t < ∞ and lim

t→∞ 
(�)
t = 0. (26)
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Theorem 5 (Supercritical, λ > 0) Suppose that (H1) holds along with (H2) for some
k ≥ 2 and λ > 0. Redefine


(�)
t = sup

x∈E,g∈B+
1 (E)

∣
∣
∣ϕ(x)−1e−�λtM(�)

t [g](x) − �! 〈g, ϕ̃〉� L�

∣
∣
∣ ,

where Lk was defined in Theorem 2, albeit that L1 = 1/λ.
Then, for all � ≤ k

sup
t≥0


(�)
t < ∞ and lim

t→∞ 
(�)
t = 0. (27)

Theorem 6 (Subcritical, λ < 0) Suppose that (H1) holds along with (H2) for some
k ≥ 2 and λ < 0. Redefine


(�)
t = sup

x∈E,g∈B+
1 (E)

∣
∣
∣ϕ(x)−1M(�)

t [g](x) − �! 〈g, ϕ̃〉� L�

∣
∣
∣ ,

where L1 = 1/|λ| and for k ≥ 2, the constants Lk are defined recursively via

Lk = 1

|λ|

〈

βE
[ ∑

[k1,...,kN ]2k

N∏

j=1
j :k j>0

ϕ(x j )Lk j

]

, ϕ̃

〉

− 〈gϕ, ϕ̃〉
|λ|〈g, ϕ̃〉 Lk−1,

if X is a branching Markov process and

Lk(x) = (−1)k 〈Uk [ϕ] , ϕ̃〉 − Rk(x),

where

Rk(x)=
∑

{m1,...,mk−1}k
(−1)k

m1! . . .mk−1! (−ϕ(x))m1+···+mk−1−1(m1 + · · · + mk−1 − 1)!

k−1∏

j=1

L j (x)
m j ,

and where we define recursively, U1 [ϕ] (x) = −ϕ(x)/|λ| and for k ≥ 2,

Uk [ϕ] (x) = 1

|λ|

⎛

⎝Uk−1 [ϕ] (x) +
∑

{m1,...,mk−1}k
1

m1! . . .mk−1!
k−1∏

j=1

〈
U j [ϕ] , ϕ̃

〉m j

×
[
ψ(m1+···+mk−1)(x, 0+)(−ϕ(x))m1+···+mk−1 + β(x)

∫

M(E)◦
〈ϕ, ν〉m1+···+mk−1 
(x, dν)

])
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if X is a superprocess. Then, for all � ≤ k

sup
t≥0


(�)
t < ∞ and lim

t→∞ 
(�)
t = 0. (28)

The results in Theorems 4, 5 and 6 are slightly less predictable. Let us discuss this
point a little further in the particle setting for convenience. For the supercritical case,
the extra “linear” term arising from the time integral does not affect the exponential
growth of the process, and hence the leading order behaviour is still dominated by
ekλt . In the critical case, let us assume momentarily that we are permitted to assume
a Yaglom limit holds (see for example [20] in the branching Markov process setting).
In that setting, we know that, conditional on Nt > 0, 〈 f , Xt 〉 ∼ O(t) at t → ∞.
Conditional on survival, we thus have (up to a constant)

∫ t

0
〈 f , Xt 〉ds ∼

∫ t

0
sds = t2.

This implies that (still conditional on survival) the k-th moment of the occupation
measure behaves like t2k . Recalling that, at criticality, the survival probability behaves
like 1/t , we obtain the scaling t2k−1. Finally, in the subcritical case, we know that the
total occupation

∫ ζ

0 〈g, Xs〉ds, where ζ = inf{t > 0 : 〈1, Xt 〉 = 0}, is finite, behaving
like an average spatial distribution ofmass, i.e. 〈g, ϕ̃〉, multiplied by ζ , meaning that no
normalisation is required to control the “growth” of the running occupation moments
in this case.

1.5 Examples for specific branching processes

We now give some examples to illustrate our results and the generality of this setting.
Continuous-time Galton–Watson process and CSBPs: Let us now consider the
simplest branching particle setting where the process is not spatially dependent. In
effect, we can take E = {0}, P to be the Markov process which remains at {0} and the
branching mechanism has no spatial dependence. This is the setting of a continuous-
time Galton–Watson process. Its branching rate β is constant, and the first and second
moments of the offspring distribution are given by m1 = E[N ] and m2 = E[N 2],
respectively, where N is the number of offspring produced at a branching event,
are key to characterising moment limits. When the process is independent of space,
we have λ = β(m1 − 1), ϕ = 1, ϕ̃ can be taken as δ{0} and (H1) trivially holds.
Theorem 1 now tells us that, at criticality, i.e. m1 = 1, the limit for the �-th moment
of the population size at time t , i.e. Nt , satisfies

t−(�−1)
E[N �

t ] ∼ 2−(�−1)�! (β(m2 − 1))�−1 , as t → ∞, (29)

when E[N �] < ∞ and � ≥ 1.
In the supercritical case, i.e. m1 > 1, the limit in Theorem 2 simplifies to

e−β(m1−1)�t
E[N �

t ] ∼ �!L�, as t → ∞, (30)
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where the iteration

L� = 1

(m1 − 1)(� − 1)
E

[ ∑

[k1,...,kN ]2�

N∏

j=1
j :k j>0

Lk j

]

, � ≥ 2,

holds. Here, although the simplified formula is still a little complicated, it demonstrates
more clearly that the moments in Theorem 2 grow according to the leading order terms
of the offspring distribution. Indeed, in the case � = 2, we have

L2 = 1

m1 − 1
E[card{[k1, . . . , kN ]22}] = 1

m1 − 1

E[N (N − 1)]
2

= m2 − m1

2(m1 − 1)
.

The constant L3 can now be computed explicitly in terms of L2 and L1 = 1, and so
on.

The limits in the subcritical case can be detailed similarly and only offer minor
simplifications of the constants Lk , k ≥ 1 presented in the statement of Theorem 3.
Hence we leave the details for the reader to check.

The analogue of the continuous-time Galton–Watson process in the superprocess
setting is that of a continuous-state branching process (CSBP). In this setting there is no
associated movement, ψ in (7) is not spatially dependent and the non-local branching
mechanism (8) satisfies φ ≡ 0. The right eigenvector and left eigenmeasure can be
structured in the same way as in the Galton–Watson setting, with eigenvalue given by
−ψ ′(0+) = b.

Similarly to (29), Theorem 1 tells us at criticality, i.e.−ψ ′(0+) = 0, that the CSBP
(Zt , t ≥ 0) satisfies

t−(�−1)
E[Z�

t ] ∼ 2−(�−1)�!ψ ′′(0+)�−1, as t → ∞,

when
∫ ∞
0 |y|�ν(dy) < ∞ and � ≥ 1. The situation at super- and subcriticality again

do not offer much more insight than the natural analogue of (30) with an induction on
the Lk constants. Hence we end our discussion of the CSBP example here.
Crump-Mode-Jagers (CMJ) processes: Consider a branching process in which par-
ticles live for a random amount of time ζ and during their lifetime, give birth to a
(possibly random) number of offspring at random times; in essence, the age of a par-
ent at the birth times forms a point process, say η(dt) on [0, ζ ]. We denote the law of
the latter by P . The offspring reproduce and die as independent copies of the parent
particle and the law of the process is denotes by P when initiated from a single indi-
vidual. Although this model, i.e. a CMJ process, is not covered in the present article,
it appears to be the only context in which comparable asymptotic moment results can
be found in the literature.

First let us consider the case where the number of offspring, N = η[0, ζ ], born
to the initial individual during its lifetime satisfies E[N ] = 1, which corresponds
to the critical case. (Note, criticality is usually described in terms of the Malthusian
parameter, however, the setting E[N ] = 1 is equivalent.) Further, let Zt denote the
number of individuals in the population at time t ≥ 0. Under the moment assumption
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E[Nk] < ∞ for some k ≥ 1, [11] showed that the factorial moments mk(t) :=
E[Zt (Zt − 1) · · · (Zt − k + 1)] satisfy

lim
t→∞

mk(t)

tk−1 = k!E[ζ ]k
b2k−1 (m2 − 1)k−1,

where m2 = E[N 2] and b = E[∫ ζ

0 tη(dt)]. We encourage the reader to compare this
to the spatially independent example considered above.

The proof in [11] echoes a similar approach to the one presented in the current
article. The author first develops a non-linear integral equation that describes the
evolution of mk(t) in terms of the lower order moments, cf. [11,Theorem 1]. An
inductive argument along with this evolution equation is then used to prove the above
asymptotics.
Branching Brownian motion in a bounded domain: In [28], the Yaglom limit for
branching Brownian motion (BBM) in a bounded domain was proved. In this setting,
the semigroup P corresponds to that of a Brownian motion killed on exiting a C1

domain, E . The branching rate is taken as the constant β > 0 and the offspring
distribution is not spatially dependent. Moreover, the first and secondmoments,m1 :=
E[N ] andm2 = E[N 2], are finite. In this setting, the right eigenfunction ϕ exists on E ,
satisfyingDirichlet boundary conditions, and is accompanied by the left eigenmeasure
ϕ(x)dx on E . The associated eigenvalue is identified explicitly as λ = β(m1−1)−λE ,
where λE is the ground state eigenvalue of the Laplacian on E . The critical regime
thus occurs when β(m1 − 1) = λE

Among the main results of [28], are the Kolmogorov limit,

Pδx (Nt > 0) ∼ 1

t

2(m1 − 1)ϕ(x)

λE (m2 − m1)
∫
E ϕ(x)3dx

=: 2ϕ(x)/�, x ∈ E,

as t → ∞ and the Yaglom distributional limit,

Law

( 〈 f , Xt 〉
t

∣
∣
∣
∣ Nt > 0

)

→ Law(e2/〈ϕ, f 〉�), as t → ∞,

where e〈ϕ, f 〉�/2 is an exponentially distributed random variable with rate 〈ϕ, f 〉�/2.
(Note, we understand 〈 f , ϕ〉 = ∫

E ϕ(x) f (x)dx in this context.) In particular these
two results allude to the limit of moments (albeit further moment assumptions would
be needed on N ), which, in the spirit of (20), can be heuristically read as

lim
t→∞

1

tk−1Eδx [〈 f , Xt 〉k] = lim
t→∞ tPδx (Nt > 0)Eδx

[ 〈 f , Xt 〉k
tk

∣
∣
∣
∣ Nt > 0

]

= k!2−(k−1)〈 f , ϕ〉k�k−1ϕ(x), x ∈ E, (31)
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for k ≥ 1. Taking into account the fact that ϕ̃(x) = ϕ(x)dx and β = λE/(m1 − 1),
we see that

〈V[ϕ](x), ϕ̃〉 = 〈βϕ2(m2 − m1), ϕ〉 = λE
(m2 − m1)

(m1 − 1)

∫

E
ϕ(x)3dx = �.

Hence (31) agrees precisely with Theorem 1.
Neutron branching processes: The neutron branching process (NBP), as introduced
in [3, 22], is our final example. Neutrons evolve in the configuration space E = D×V ,
where D ⊂ R

3 is a bounded, open set denoting the set of particle locations and
V := {υ ∈ R

3 : vmin ≤ |υ| ≤ vmax} with 0 < vmin ≤ vmax < ∞, denotes the
set of velocities. From an initial space-velocity configuration (r , υ), particles move
according to piecewise deterministic Markov processes characterised by σsπs, where
σs(r , υ) denotes the rate at which particles change velocity (also called scattering
events) at (r , υ), and πs(r , υ, υ ′)dυ ′ denotes the probability that such a scattering
event results in a new outgoing velocity υ ′. When at (r , υ) ∈ D × V , at rate σf(r , υ),
a branching (or fission) event occurs, resulting in the release of several new neutrons
with configurations (r , υ1), . . . , (r , υN ), say. The quantity πf(r , υ, υ ′)dυ ′ gives the
average number of neutrons produced with outgoing velocity υ ′ from a fission event
at (r , υ). Thus, the NBP is an example of a branching Markov process with non-local
branching, where the motion is a piecewise deterministic Markov process and the
non-locality at branching events appears in the velocity.

As previously mentioned, Theorem 1 was established for the NBP in [20] using
a spine decomposition approach but under more restrictive assumptions and only
when the test function f is taken to be the right eigenfunction ϕ. In [22], under the
assumptions

(A1) σs, πs, σf, πf are uniformly bounded from above.
(A2) infr∈Dυ,υ ′∈V (σs(r , υ)πs(r , υ, υ ′) + σf(r , υ)πf(r , υ, υ ′)) > 0,

it was shown that (H1) holds. Moreover, since only a finite number of neutrons can be
produced at a fission event, the number of offspring is uniformly bounded from above
and thus (H2) holds for all k ≥ 1. Hence, the results obtained in this paper hold for
the NBP.

Although there is no particular simplification of the limiting constants in Theo-
rems 1, 2, 3, 4, 5 and 6 in this setting, of particular interest is the notion of particle
clustering that appears in Monte Carlo criticality calculations [8, 9, 33]. This phe-
nomena occurs in critical reactors where particles exhibit strong spatial correlations.
Studying the moments M(k) and other correlation structures in this setting will shed
further light on this phenomenon.

1.6 Outline of the paper and strategy for proofs

In the remainder of the paper, there are two sections. One handling the proofs for the
branching Markov process setting, and another handling the proofs for the superpro-
cess setting. The proofs of the six main theorems follow a similar pattern and so we
will briefly provide a heuristic to their strategic approach here, and how this is laid
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out in the remainder of the paper. Roughly speaking, each of the proofs follows the
following fundamental steps.
Step 1:The first step in all of the proofs is to establish a non-linear semigroup equation
in the spirit of (4) for branching Markov processes and (5) for superprocesses, but for
the joint Markovian pair 〈 f , Xt 〉 and

∫ t
0 〈g, Xs〉ds, t ≥ 0. Moreover, we want this

semigroup equation to be written as an integral equation in terms of (Tt , t ≥ 0),
rather than (Pt , t ≥ 0); recall T = T(1) is the mean semigroup cf. (13). This is done
for branching Markov processes in detail in Sect. 2.1, whereas we simply state the
relationship for superprocesses in Sect. 3.1 as the proof is very similar.
Step 2: Next, we work with the simple observation that differentiating the non-linear
semigroup k times will give us access to the the k-th moment process (T(k)

t , t ≥ 0).
That is,

T(k)
t [ f ](x) = (−1)k

∂k

∂θk
Eδx [e−θ〈 f ,Xt 〉]

∣
∣
∣
∣
θ=0

,

with a similar formula holding for M(k). However, given the recursion of the non-linear
semigroup derived in the previous step, this turns out to give us a new recur-
sion of T(k) in terms of T(k−1),T(k−2), . . . ,T(1) and similarly for M(k) in terms of
M(k−1),M(k−2), . . . ,M(1); the two recursions are extremely close to one another, but
subtly different nonetheless.

Here we see a fundamental difference between the approaches we take for super-
processes and branching Markov processes. This is due to the way in which we
differentiate the branching mechanisms in the recursion of the non-linear semigroup
derived in Step 1. For the branchingMarkov process setting, the branchingmechanism
G that appears in the aforesaid recursion is written in terms of a product over particles
at a birth event. This allows us to use the Leibniz rule when differentiating across
the product; this is done in Sect. 2.2. In the case of superprocesses, the branching
mechanism is written in terms of an analytically smoother object, namely a Lévy-
Khintchine-type formula. With no representation in terms of particles, we must turn
instead to Fàa di Bruno’s rule in order to differentiate this branching mechanism; cf.
Sect. 3.2
Step 3: The differentiation in Step 2 yields two fundamentally different sets of equa-
tions for the k-th moment evolutions and k-th occupation moment evolutions for each
of the two classes of branching processes. In turn, this results in slightly different com-
binatorial formulae to work with when when completing the proofs of the theorems. In
essence the proof of all of themain results now pertains to identifying the leading order
terms in the aforesaid combinatorial formulae and appealing to an inductive argument;
for example, using the statement of Theorem 1 for � ≤ k to prove the statement of
that theorem for � = k + 1.

In Sect. 2.3 we give the full argument for the proof of Theorem 1 in the branching
Markov process setting. This sets the scene for all the other proofs for this class
of branching processes. Indeed, based on this proof, we then complete the proof of
Theorem 4 in Sect. 2.4, and Theorems 2, 3, 5 and 6 in Sect. 2.5, highlighting only the
main differences relative to the key arguments in the proof of Theorem 1.
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In the same spirit, we give a complete proof for Theorem 1 in Sect. 3.3 for super-
processes which gives the roadmap for all other proofs for this class of processes.
Thereafter, in Sect. 3.4, we highlight only the differences for the proofs of Theorems 2
and 3 for superprocesses. Finally, at even greater brevity than in the branchingMarkov
process setting (because of familiarity) we sketch the main differences for the proof
of Theorem 4, 5, and 6.

2 Proofs for branchingMarkov processes

The proof is a mixture of analytical and combinatorial computations which are based
around the behaviour of the linear and non-linear semigroups of X .

2.1 Linear and non-linear semigroup equations

For f ∈ B+(E), it is well known that the mean semigroup evolution satisfies

Tt [ f ](x) = Pt [ f ](x) +
∫ t

0
Ps

[
FTt−s[ f ]

]
(x)ds t ≥ 0, x ∈ E, (32)

where

F[ f ](x) = β(x)Ex
[

N∑

i=1

f (xi ) − f (x)

]

=: β(x)(m[ f ](x) − f (x)), x ∈ E .

See for example the calculations in [22]. Associated with every linear semigroup of
a branching process is a so-called many-to-one formula. Many-to-one formulae are
not necessarily unique and the one we will develop here is slightly different from the
usual construction because of non-locality.

Suppose that ξ = (ξt , t ≥ 0), with probabilities P = (Px , x ∈ E), is the Markov
process corresponding to the semigroup P. Let us introduce a new Markov process
ξ̂ = (ξ̂t , t ≥ 0) which evolves as the process ξ but at rate β(x)m[1](x) the process is
sent to a new position in E , such that for all Borel A ⊂ E , the new position is in Awith
probability m[1A](x)/m[1](x). We will refer to the latter as extra jumps. Note the law
of the extra jumps is well defined thanks to the assumption (15), which ensures that
supx∈E m[1](x) = supx∈E Ex (〈1,Z〉) < ∞. Accordingly we denote the probabilities
of ξ̂ by (P̂x , x ∈ E). We can now state our many-to-one formula.

Lemma 1 Write B(x) = β(x)(m[1](x) − 1), x ∈ E. For f ∈ B+(E) and t ≥ 0, we
have

Tt [ f ](x) = Êx

[

exp

(∫ t

0
B(ξ̂s)ds

)

f (ξ̂t )

]

. (33)

The proof is classical and follows standard reasoning for semigroup integral equa-
tions e.g. as in [19, 22]: First conditioning the right-hand side of (33) on the time of

123



Asymptotic moments of spatial branching processes

the first extra jump, then using the principle of transferring between multiplicative
and additive potentials in the resulting integral equation (cf. Lemma 1.2, Chapter 4 in
[13]) shows that (32) holds. Grönwall’s Lemma, the fact that β ∈ B+(E) and (15) for
k = 1 ensure that the relevant integral equations have unique solutions.

We now define a variant of the non-linear evolution equation (2) associated with X
via

ut [ f , g](x) = Eδx

[
1 − e−〈 f ,Xt 〉−

∫ t
0 〈g,Xs 〉ds

]
, t ≥ 0, x ∈ E, f , g ∈ B+(E). (34)

For f ∈ B+
1 (E), define

A[ f ](x) = β(x)Ex
[

N∏

i=1

(1 − f (xi )) − 1 +
N∑

i=1

f (xi )

]

, x ∈ E .

Our first preparatory result relates the two semigroups (ut , t ≥ 0) and (Tt , t ≥ 0).

Lemma 2 For all f , g ∈ B+(E), x ∈ E and t ≥ 0, the non-linear semigroup
ut [ f , g](x) satisfies

ut [ f , g](x) = Tt [1 − e− f ](x) −
∫ t

0
Ts

[
A[ut−s[ f , g]] − g(1 − ut−s[ f , g])

]
(x)ds.

(35)

Proof Again, the proof uses standard techniques for integral evolution equations so
we only sketch the proof. Instead of considering ut [ f , g], we will first work instead
with

vt [ f , g] = Eδx

[
e−〈 f ,Xt 〉−

∫ t
0 〈g,Xs 〉ds

]
, t ≥ 0, x ∈ E, f , g ∈ B+(E), (36)

which will turn out to be more convenient for technical reasons.
By splitting the expectation in (36) on the first branching event and appealing to

the Markov property, we get, for f , g ∈ B+(E), t ≥ 0 and x ∈ E ,

vt [ f , g](x) = Ex

[
e− ∫ t

0 β(ξs )dse− f (ξt )−
∫ t
0 g(ξs )ds

]

+ Ex

[∫ t

0
β(ξs)e

− ∫ s
0 β(ξu)+g(ξu)duH[vt−s[ f , g]](ξs)ds

]

,

where

H[g](x) = Ex
[

N∏

i=1

g(xi )

]

, g ∈ B+(E), x ∈ E .

Using similar reasoning to Lemma 1.2, Chapter 4 in [13] we can move the multiplica-
tive potential with rate β + g to an additive potential in the above evolution equation
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to obtain

vt [ f , g](x) = P̂t [e− f ](x) +
∫ t

0
Ps

[
G[vt−s[ f , g]] − gvt−s[ f , g]

]
(x)ds. (37)

Now define

D[ f ](x) = β(x)Ex
[

N∏

i=1

f (xi ) −
N∑

i=1

f (xi )

]

= β(x) (H[ f ](x) − m[ f ](x)) , f ∈ B+
1 (E), x ∈ E

and (ṽt , t ≥ 0) via

ṽt [ f , g](x) = Tt [e− f ](x) +
∫ t

0
Ts

[
D

[
ṽt−s[ f , g]

] − gṽt−s[ f , g]
]
(x)ds

= Êx

[
e

∫ t
0 B(ξ̂s )dse− f (ξ̂t )

]

+ Êx

[∫ t

0
e

∫ s
0 B(ξ̂u)du

(
D

[
ṽt−s[ f , g]

]
(ξ̂s) − g(ξ̂s)ṽt−s[ f , g](ξ̂s)

)
ds

]

,

(38)

for x ∈ E, t ≥ 0 and f , g ∈ B+(E). Note that for the moment we don’t claim a
solution to (38) exists.

For convenience, we will define

Kt [ f , g](x) = Êx

[∫ t

0
e

∫ s
0 B(ξ̂u)du

(
D

[
ṽt−s[ f , g]

]
(ξ̂s) − g(ξ̂s)ṽt−s[ f , g](ξ̂s)

)
ds

]

,

so that ṽt [ f , g](x) = Tt [e− f ](x) + Kt [ f , g](x). By conditioning the right-hand side
of (38) on the first jump of ξ̂ (bearing in mind the dynamics of ξ̂ given just before
Lemma 1) with the help of the Markov property (recalling that B(x) − βm[1] = β),
we get

ṽt [ f , g](x)

= Ex

[
e− ∫ t

0 β(ξs )dse− f (ξt )
]

+ Ex

[∫ t

0
β(ξ�)m[1](ξ�)e

− ∫ �
0 β(ξs )ds m[Tt−�[e− f ]](ξ�)

m[1](ξ�)
d�

]

+ Ex

[

e− ∫ t
0 β(ξu )m[1](ξu )du

∫ t

0
e

∫ s
0 B(ξu)du

(
D

[
ṽt−s[ f , g]

]
(ξs) − g(ξs)[ṽt−s[ f , g]

)
ds

]

+ Ex

[ ∫ t

0
β(ξ�)m[1](ξ�)e

− ∫ �
0 β(ξu )m[1](ξu )du

( ∫ �

0
e

∫ s
0 B(ξu)du

(
D

[
ṽt−s[ f , g]

]
(ξs) − g(ξs)vt−s[ f , g](ξs)

)
ds

+ e
∫ �
0 B(ξu)du m[Kt−�[g]](ξ�)

m[1](ξ�)

)

d�

]

.
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Gathering terms and exchanging the order of integration in the double integral, this
simplifies to

ṽt [ f , g](x)
= Ex

[
e− ∫ t

0 β(ξs )dse− f (ξt )
]

+ Ex

[∫ t

0
β(ξ�)e

− ∫ �
0 β(ξs )dsm[ṽt−�[ f , g](x)](ξ�)d�

]

Ex

[

e− ∫ t
0 β(ξu)m[1](ξu)du

∫ t

0
e

∫ s
0 B(ξu)du

(
D

[
ṽt−s[ f , g]

]
(ξs) − g(ξs)[ṽt−s[ f , g]

)
ds

]

+ Ex

[ ∫ t

0

∫ t

0
1(s≤�)β(ξ�)m[1](ξ�)e

− ∫ �
0 β(ξu)m[1](ξu)due

∫ s
0 B(ξu)du

(
D

[
ṽt−s[ f , g]

]
(ξs) − g(ξs)ṽt−s[ f , g](ξs))

)
d� ds

]

= Ex

[
e− ∫ t

0 β(ξs )dse− f (ξt )
]

+ Ex

[∫ t

0
β(ξ�)e

− ∫ �
0 β(ξs )dsm[ṽt−�[g](x)](ξ�)d�

]

+ Ex

[∫ t

0
e− ∫ s

0 β(ξu)du
(
D

[
ṽt−s[ f , g]

]
(ξs) − g(ξs)ṽt−s[ f , g](ξs))

)
ds

]

.

Finally, appealing to the change of multiplicative potential to additive potential in the
spirit of e.g. Lemma 1.2, Chapter 4 of [13], we get

ṽt [ f , g](x) =P̂t [e− f ](x) +
∫ t

0
Pt

[
G

[
ṽt−s[ f , g]

] − gṽt−s[ f , g]
]
(x)ds

and hence (ṽt , t ≥ 0) is a solution to (37). Reversing these arguments also shows
that solutions to (37) solve (38). As such, a standard argument using β ∈ B+(E),
the assumption (15) for k = 1 and Grönwall’s Lemma tells us that all of the integral
equations thus far have unique solutions. In conclusion, (vt [g], t ≥ 0) and (ṽt [g], t ≥
0) agree.

To complete the lemma, note that

1 − Tt [e− f ](x) = Tt [1 − e− f ](x) + 1 − Tt [1](x)

moreover,

1 − Tt [1](x) = Êx

[∫ t

0
B(ξ̂s)e

∫ s
0 B(ξ̂u)duds

]

=
∫ t

0
Ts[B](x)ds.

Hence, working form (38) and the definitions of D and A, which are related via

D[1 − f ](x) = β(x)Ex
[

∏

i

(1 − f (xi )) −
N∑

i=1

(1 − f (xi ))

]

= A[ f ](x) + B(x), x ∈ E, f ∈ B+
1 (E),
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we get

ut [ f , g](x) = 1 − vt [ f , g](x)
= 1 − Tt [e− f ](x)

−
∫ t

0
Ts

[
D

[
1 − ut−s[ f , g]

] − g(1 − ut−s[ f , g])
]
(x)ds

= Tt [1 − e− f ](x) −
∫ t

0
Ts

[
A

[
ut−s[ f , g]

] − g(1 − ut−s[ f , g])
]
(x)ds,

as required. ��

2.2 Evolution equations for the k-th moment of branchingMarkov processes

Next we turn our attention to the evolution equation generated by the k-th moment
functional T(k)

t , t ≥ 0. To this end, we start by observing that

T(k)
t [ f ](x) = (−1)k+1 ∂k

∂θk
ut [e−θ f ](x)

∣
∣
∣
∣
θ=0

. (39)

The following result gives us an iterative approach to writing the k-th moment func-
tional in terms of lower order moment functionals.

Proposition 1 Fix k ≥ 2. Under the assumptions of Theorem 1, with the additional
assumption that

sup
x∈E,s≤t

T(�)
s [ f ](x) < ∞, � ≤ k − 1, f ∈ B+(E), t ≥ 0, (40)

it holds that

T(k)
t [ f ](x) = Tt [ f k](x) +

∫ t

0
Ts

[
βη

(k−1)
t−s [ f ]

]
(x) ds, t ≥ 0, (41)

where

η
(k−1)
t−s [ f ](x) = Ex

⎡

⎢
⎣

∑

[k1,...,kN ]2k

(
k

k1, . . . , kN

) N∏

j=1

T
(k j )
t−s [ f ](x j )

⎤

⎥
⎦ ,

and [k1, . . . , kN ]2k is the set of all non-negative N-tuples (k1, . . . , kN ) such that
∑N

i=1 ki = k and at least two of the ki are strictly positive.

Proof Recall from (35) that

ut [θ f , 0](x) = Tt [1 − e−θ f ](x) −
∫ t

0
Ts

[
A[ut−s[θ f , 0]]] (x)ds, t ≥ 0. (42)
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It is clear that differentiating the first term k times and setting θ = 0 on the right-
hand side of (42) yields

∂k

∂θk
Tt [1 − e−θ f ](x)

∣
∣
∣
∣
θ=0

= (−1)k+1T[ f k](x). (43)

Thus it remains to differentiate the second term on the right-hand side of (42) k times.
To this end, without concern for passing derivatives through expectations, using the
Leibniz rule in Lemma A.2 of the Appendix, we have

− ∂k

∂θk
A[ut [θ f , 0]](x)

∣
∣
∣
∣
θ=0

= ∂k

∂θk
β(x)Ex

[

1 −
N∏

i=1

Eδxi
[e−θ〈 f ,Xt 〉] −

N∑

i=1

Eδxi
[1 − e−θ〈 f ,Xt 〉]

]

= −β(x)Ex
⎡

⎣
∑

k1+···+kN=k

(
k

k1, . . . , km

) N∏

j=1

(−1)k jT
(k j )
t [ f ](x j )

+(−1)k+1
N∑

i=1

T(k)
t [ f ](xi )

]

= β(x)Ex
⎡

⎣(−1)k+1
∑

k1+···+kN=k

(
k

k1, . . . , km

) N∏

j=1

T
(k j )
t [ f ](x j )

+(−1)k
N∑

i=1

T(k)
t [ f ](xi )

]

. (44)

where the sum is taken over all non-negative integers k1, . . . , kN such that
∑N

i=1 ki =
k.

Next let us look in more detail at the sum/product term on the right-hand (44).
Consider the terms where only one of the ki in the sum is positive, in which case
ki = k and

(
k

k1, . . . , km

)

= 1.

There are N ways this can happen in the sum of the sum-product term and hence

∑

k1+···+kN=k

(
k

k1, . . . , km

) N∏

j=1

T
(k j )
t [ f ](x j )

=
N∑

i=1

T(k)[ f ](xi ) +
∑

[k1,...,kN ]2k

(
k

k1, . . . , kN

) N∏

j=1

T
(k j )
t [ f ](x j ),
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where [k1, . . . , kN ]2k is the set of all non-negative N -tuples (k1, . . . , kN ) such that
∑N

i=1 ki = k and at least two of the ki are strictly positive. Substituting this back into
(44) yields

− ∂k

∂θk
A[ut [e−θ f ]]

∣
∣
∣
∣
θ=0

= (−1)k+1β(x)Ex

⎡

⎢
⎣

∑

[k1,...,kN ]2k

(
k

k1, . . . , kN

) N∏

j=1

T
(k j )
t [ f ](x j )

⎤

⎥
⎦ .

Now let us return to the justification that we can pass the derivatives through the
expectation in the above calculation, we first note that derivatives are limits and so
an ‘epsilon-delta’ argument will ultimately require dominated convergence. This is
where the assumption (15) and (40) come in. On the right-hand side of (44), each

of the T
(k j )
t [ f ](x j ) in the sum term are uniformly bounded by the assumption (40)

and the collection [k1, . . . , kN ]2k means that 0 ≤ k j ≤ k − 1 for each j = 1, . . . , N .
Moreover, there can be at most k items in the sum/product. Noting that

∑

k1+···+kN=k

(
k

k1, . . . , km

)

= Nk, (45)

the assumption (15) allows us to use a domination argument with the k-th order
moment.

Combining this with (43) and (42), using an easy dominated convergence argument
to pull the k derivatives through the integral in t , then dividing by (−1)k+1, we get
(41), as required. ��

2.3 Completing the proof of Theorem 1: critical case

We will prove Theorem 1 by induction, starting with the case k = 1. In this case, (18)
reads

sup
t≥0

t < ∞ and lim
t→∞ t = 0,

which holds due to (14).
We now assume that the theorem holds true in the branchingMarkov process setting

for some k ≥ 1 and proceed to show that (18) holds for all � ≤ k + 1. As alluded to
in the introduction, the strategy for the proof is to use equation (40), since this allows
us to write the k-th moment in terms of the lower order moments. To prove that the
right-hand side of this equation converges to the limit appearing in the statement of
the theorem, we use Theorem A.1 stated in the appendix along with the induction
hypothesis.
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To this end, first note that the induction hypothesis implies that (40) holds. Hence
Proposition 1 tells us that

ϕ(x)−1t−kT(k+1)
t [ f ](x)

= ϕ(x)−1t−kTt [ f (k+1)](x)

+ ϕ(x)−1t−k
∫ t

0
Ts

⎡

⎢
⎣E·

⎡

⎢
⎣

∑

[k1,...,kN ]2k+1

(
k + 1

k1, . . . , kN

) N∏

j=1

T
(k j )
t−s [ f ](x j )

⎤

⎥
⎦

⎤

⎥
⎦ (x)ds

= ϕ(x)−1t−kTt [ f (k+1)](x) + ϕ(x)−1t−(k−1)

∫ 1

0
Tut

⎡

⎢
⎣E·

⎡

⎢
⎣

∑

[k1,...,kN ]2k+1

(
k + 1

k1, . . . , kN

) N∏

j=1

T
(k j )
t(1−u)[ f ](x j )

⎤

⎥
⎦

⎤

⎥
⎦ (x)du, (46)

where we have used the change of variables s = ut in the final equality.
We nowmake some observations that will simplify the expression on the right-hand

side of (46) as t → ∞. First note that due to (14), the first term on the right-hand side
of (46) will vanish as t → ∞. Next, note that, if more than two of the ki in the sum are
strictly positive, then the renormalising by tk−1 will cause the associated summand to
go to zero as well. For example, suppose without loss of generality that k1 and k2 are
both strictly positive, we can write tk−1 = t (k+1)−2 = tk1−1tk2−1tk3 . . . tkN . Now the
induction hypothesis tells us that the correct normalisation of each of the terms in the

product is tk j−1, which means that the item T
(k j )
t(1−u) for a third k j > 0 will be ‘over

normalised to zero’ in the limit.
To make this heuristic rigorous, we can employ Theorem A.1 from the Appendix.

To this end, let us set

F[ f ](x, u, t) := 1

ϕ(x)tk−1 Ex

⎡

⎢
⎣

∑

[k1,...,kN ]3k+1

(
k + 1

k1, . . . , kN

) N∏

j=1

T
(k j )
t(1−u)[ f ](x j )

⎤

⎥
⎦

(47)

where [k1, . . . , kN ]3k+1 is the subset of [k1, . . . , kN ]2k+1, for which at least three of the
ki are strictly positive (which can be an empty set). We will show that conditions (A.1)
and (A.2) are satisfied via

sup
x∈E, f ∈B+

1 (E),u∈[0,1]
ϕ(x)F[ f ](x, u, t) < ∞ and

lim
t→∞ sup

u∈[0,1], f ∈B+
1 (E),x∈E

ϕ(x)F[ f ](x, u, t) = 0. (48)

First note that there are no more than k + 1 of the ki that are strictly greater than 1 in
the product in (47). This follows from the fact that it is not possible to partition the set
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{1, . . . , k + 1} into more than k + 1 non-empty blocks. Next note that

1

tk−1

N∏

j=1
j :k j>0

T
(k j )
t(1−u)[ f ](x j ) = (t(1 − u))k+1−#{ j :k j>0}

tk−1

N∏

j=1
j :k j>0

ϕ(x j ) · 1

ϕ(x j )

T
(k j )
t(1−u)[ f ](x j )

(t(1 − u))k j−1 .

The product term on the right-hand side is uniformly bounded in x j and t(1 − u) on
compact intervals due to boundedness of ϕ and the fact that (18) is assumed to hold
for all � ≤ k by induction. Moreover, if #{ j : k j > 0} ≤ 1, the set [k1, . . . , kN ]3k+1
is empty, otherwise, the term (t(1 − u))k+1−#{ j :k j>0}/tk−1 is finite for all t ≥ 1, say.
From (45) and (15), we also observe that

sup
x∈E

Ex

⎡

⎢
⎣

∑

[k1,...,kN ]3k+1

(
k + 1

k1, . . . , kN

)
⎤

⎥
⎦ ≤ sup

x∈E
Ex

[
〈1,Z〉k+1

]
< ∞.

Taking these facts into account, it is now straightforward to see that the earlier given
heuristic can be made rigorous and (48) holds. In particular, we can use dominated
convergence to pass the limit in t through the expectation in (47) to achieve the second
statement in (48).

As F belongs to the class of functions C, defined just before Theorem A.1 in the
Appendix, the aforesaid theorem tells us that

lim
t→∞ sup

x∈E, f ∈B+
1 (E)

∣
∣
∣
∣

1

ϕ(x)

∫ 1

0
Tut [ϕF[ f ](·, u, t)](x)du

∣
∣
∣
∣ = 0. (49)

Returning to (46), since the sum there requires that at least two of the ki are positive,
this means that the only surviving terms in the limit are those that are combinations
of two strictly positive terms ki and k j such that i �= j and ki + k j = k + 1. This can
be thought of as choosing i, j ∈ {1, . . . N } with i �= j , choosing ki ∈ {1, . . . , k} and
then setting k j = k + 1− ki . One should take care however to avoid double counting
each pair (ki , k j ). Thus, we have

1

tkϕ(x)
T(k+1)
t [ f ](x) = 1

ϕ(x)

∫ 1

0
Tut

[
β(·)
2tk−1 E·

[ N∑

i=1

N∑

j=1
j �=i

k∑

ki=1

(
k + 1

ki , k + 1 − ki

)

× T(ki )
t(1−u)[ f ](xi )T(k+1−ki )

t(1−u) [ f ](x j )
]]

(x)du, (50)

where the factor of 1/2 appears to compensate for the aforementioned double counting.
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In order to show that the right-hand side above delivers the required finiteness and
limit (18), we again turn to Theorem A.1. For x ∈ E , t ≥ 0 and 0 ≤ u ≤ 1, in
anticipation of using this theorem, we now re-define

F[ f ](x, u, t) := β(x)

2ϕ(x)tk−1

Ex
[ N∑

i=1

N∑

j=1
j �=i

k∑

ki=1

(
k + 1

ki , k + 1 − ki

)

T(ki )
t(1−u)[ f ](xi )T(k+1−ki )

t(1−u) [ f ](x j )
]

.

After some rearrangement, we have

F[ f ](x, u, t)

= β(x)(1 − u)k−1

2ϕ(x)
Ex

[ N∑

i=1

N∑

j=1
j �=i

k∑

ki=1

(
k + 1

ki , k + 1 − ki

)

× ϕ(xi )ϕ(x j )
T(ki )
t(1−u)[ f ](xi )

ϕ(xi )(t(1 − u))ki−1

T(k+1−ki )
t(1−u) [ f ](x j )

ϕ(x j )(t(1 − u))k−ki

]

. (51)

Using similar arguments to those given previously in the proof of (49) may, again,
combine the induction hypothesis, simple combinatorics and dominated convergence
to pass the limit as t → ∞ through the expectation and show that

F[ f ](x, u) := lim
t→∞ F[ f ](x, u, t)

= (k + 1)!(〈ϕ̃,V[ϕ]〉/2)k−1〈ϕ̃, f 〉k+1k
(1 − u)k−1

2ϕ(x)
V[ϕ](x), (52)

for which one uses that

(k + 1)!(〈ϕ̃, βV[ϕ]〉/2)k−1〈ϕ̃, f 〉k+1kV[ϕ](x)

= Ex
[ N∑

i=1

N∑

j=1
j �=i

k∑

ki=1

(
k + 1

ki , k + 1 − ki

)

ϕ(xi )ϕ(x j )

× ki ! 〈 f , ϕ̃〉ki 〈V[ϕ], ϕ̃〉ki−1

2(ki−1)

(k + 1 − ki )! 〈 f , ϕ̃〉k+1−ki 〈V[ϕ], ϕ̃〉k−ki

2(k−ki )

]

.

Note that, thanks to the assumption (H2), the expression for F(s, x) clearly satisfies
(A.1).

Subtracting the right-hand side of (52) from the right-hand side of (51), again
appealing to the induction hypotheses, specifically the second statement in (18), it is
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not difficult to show that, for each ε ∈ (0, 1),

lim
t→∞ sup

x∈E,u∈[0,ε), f ∈B+
1 (E)

|ϕ(x)F[ f ](x, u, t) − ϕ(x)F[ f ](x, u)| = 0.

On the other hand, the first statement in the induction hypothesis (18) also implies that
three exists a constant Ck > 0 (which depends on k but not ε) such that

lim
t→∞ sup

x∈E,u∈[ε,1], f ∈B+
1 (E)

|ϕ(x)F(x, u, t) − ϕ(x)F(x, u)| ≤ Ck(1 − ε)k−1.

Since we may take ε arbitrarily close to 1, we conclude that (A.2) holds.
In conclusion, since the conditions of Theorem A.1 are now met, we get the two

statements of (18) as a consequence. ��

2.4 Proof of Theorem 4

Next we turn our attention to the evolution equation generated by the k-th moment
functional M(k)

t , t ≥ 0. To this end, we start by defining observing that

M(k)
t [g](x) = (−1)k+1 ∂k

∂θk
ut [0, θg](x)

∣
∣
∣
∣
θ=0

. (53)

Taking account of (35), we see that

ut [0, θg](x) = −
∫ t

0
Ts

[
A[ut−s[0, θg]] − θg(1 − ut−s[0, θg])

]
(x)ds. (54)

Given the proximity of (54) to (42), it is easy to see that we can apply the same
reasoning that we used for T(k)

t [ f ](x) to M(k)
t [g](x) and conclude that, for k ≥ 2,

M(k)
t [g](x) =

∫ t

0
Ts

[
βη̂

(k−1)
t−s [g]

]
(x) − kTs[gM(k−1)

t−s [g]](x)ds, (55)

where η̂k plays the role of ηk albeit replacing themoment operatorsT( j) by themoment
operators M( j).

We now proceed to prove Theorem 4, also by induction. First we consider the
setting k = 1. In that case,

1

t
M(1)[g](x) = 1

t
Eδx

[∫ t

0
〈g, Xs〉ds

]

= 1

t

∫ t

0
Ts[g](x)ds =

∫ 1

0
Tut [g](x)du.
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Referring now to Theorem A.1 in the Appendix, we can take F(x, s, t) = f (x)/ϕ(x),
since f ∈ B+(E), the conditions of the theorem are trivially met and hence

lim
t→∞ sup

x∈E,g∈B+
1 (E)

∣
∣
∣
∣
1

t
M(1)[g](x) − 〈g, ϕ̃〉

∣
∣
∣
∣ = 0.

Note that this limit sets the scene for the polynomial growth in tn(k) of the higher
moments for some function n(k). If we are to argue by induction, whatever the choice
of n(k), it must satisfy n(1) = 1.

Next suppose that Theorem4holds for all integermoments up to and including k−1.
To make the inductive step, we follow similar arguments to the proof of Theorem 1.
That is, we use Theorem A.1 and the induction hypothesis to show that the limit of
the right-hand side of (55) is precisely the limit that appears in the statement of the
theorem.

We have from (55) that

1

t2k−1M
(k)
t [g](x) = 1

t2k−1

∫ t

0
Ts

[
βη̂

(k−1)
t−s [g]

]
(x)ds

− 1

t2k−1

∫ t

0
kTs[gM(k−1)

t−s [g]](x)ds. (56)

Let us first deal with the right most integral in (56). It can be written as

1

t2k−2

∫ 1

0
kTut [ϕF(·, u, t)] (x)du

=
∫ 1

0
(1 − u)2k−2kTut

[

g
1

(t(1 − u))2k−2M
(k−1)
t(1−u)[g]

]

(x)du.

Arguing as in the spirit of the proof of Theorem 1, our induction hypothesis ensures
that

lim
t→∞ F[g](x, u, t) = lim

t→∞ g(1 − u)2k−2k
1

(t(1 − u))2k−2

M(k−1)
t(1−u)[g](x)

ϕ(x)
= 0

=: F(x, u)

satisfies (A.1) and (A.2). Theorem A.1 thus tells us that, uniformly in x ∈ E and
g ∈ B+

1 (E),

lim
t→∞

1

t2k−1

∫ t

0
kTs[gM(k−1)

t−s [g]](x) = 0. (57)

Now turning our attention to the first integral on the right-hand side of (56) and
again following the style of the reasoning in the proof of Theorem 1, we can pull out
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the leading order terms, uniformly for x ∈ E and g ∈ B+
1 (E),

lim
t→∞

1

t2k−1

∫ t

0
Ts

[
βη̂

(k−1)
t−s [g]

]
(x)ds

= lim
t→∞

∫ 1

0
Tut

[
β(·)
2

(1 − u)2k−2E·
[ N∑

i=1

N∑

j=1
j �=i

k−1∑

ki=1

(
k

ki , k − ki

)

ϕ(xi )ϕ(x j )

× M(ki )
t(1−u)[g](xi )

ϕ(xi )(t(1 − u))2ki−1

M(k−ki )
t(1−u)[g](x j )

ϕ(x j )(t(1 − u))2k−2ki−1

]]

(x)du. (58)

It is again worth noting here that the choice of the polynomial growth in the form tn(k)

also constrains the possible linear choices of n(k) to n(k) = 2k−1 if we are to respect
n(1) = 1 and the correct distribution of the index across (58).

Identifying

F[g](x, u, t) = β(x)

2ϕ(x)
(1 − u)2k−2Ex

[ N∑

i=1

N∑

j=1
j �=i

k−1∑

ki=1

(
k

ki , k − ki

)

ϕ(xi )ϕ(x j )

× M(ki )
t(1−u)[g](xi )

ϕ(xi )(t(1 − u))2ki−1

M(k−ki )
t(1−u)[g](x j )

ϕ(x j )(t(1 − u))2k−2ki−1

]

,

our inductionhypothesis allowsus to conclude that F[g](x, u) := limt→∞ F[g](x, u, t)
exists and

ϕ(x)F[g](x, u) = (1 − u)2k−2k!β(x)V[ϕ](x)
2k−1 〈g, ϕ̃〉k〈V[ϕ], ϕ̃〉k−1

k−1∑

�=1

L�Lk−�.

Thanks to our induction hypothesis, we can also easily verify (A.1) and (A.2). Theo-
rem A.1 now gives us the required uniform (in x ∈ E and g ∈ B+

1 (E)) limit

lim
t→∞

1

t2k−1

∫ t

0
Ts

[
βη̂

(k−1)
t−s [g]

]
(x)ds = k!〈V[ϕ], ϕ̃〉k−1〈g, ϕ̃〉k

2k−1 Lk . (59)

Putting (59) together with (57) we get the statement of Theorem 4. ��

2.5 Remaining proofs in the non-critical cases

We now give an outline of the main steps in the proof of Theorem 1 for the sub and
supercritical cases. As previously mentioned, the ideas used in this section will closely
follow those presented in the previous section for the proof of the critical case and so
we leave the details to the reader. We first note that the Perron Frobenius behaviour
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in (H1) ensures the base case for the induction argument, regardless of the value of λ.
We thus turn to the inductive step, assuming the result holds for k − 1.

Proof of Theorem 2 (supercritical case) From the evolution equation (41), we have

lim
t→∞

e−λkt

ϕ(x)
T(k)
t [ f ](x)

= lim
t→∞

e−λkt

ϕ(x)

∫ t

0
Ts

⎡

⎢
⎣βEx

⎡

⎢
⎣

∑

[k1,...,kN ]2k

(
k

k1, . . . , kN

) N∏

j=1

T
(k j )
t−s [ f ](x j )

⎤

⎥
⎦

⎤

⎥
⎦ (x)ds.

(60)

It then follows that

lim
t→∞ sup

x∈E, f ∈B+
1 (E)

∣
∣
∣ϕ(x)−1e−kλtT(k)

t [ f ](x) − 〈 f , ϕ̃〉k Lk

∣
∣
∣

= lim
t→∞ sup

x∈E, f ∈B+
1 (E)

∣
∣
∣
∣ϕ(x)−1e−kλt

∫ t

0
Ts

⎡

⎢
⎣βEx

⎡

⎢
⎣

∑

[k1,...,kN ]2k

(
k

k1, . . . , kN

) N∏

j=1

T
(k j )
t−s [ f ](x j )

⎤

⎥
⎦

⎤

⎥
⎦ (x)ds

−
∫ t

0
e−(k−1)λsds 〈 f , ϕ̃〉kλ(k − 1)Lk

∣
∣
∣
∣. (61)

Noting that
∑N

j=1 k j = k, we may again share the exponential term across the product
in the right-hand side above as follows,

e−λkt

ϕ(x)

∫ t

0
Ts

⎡

⎢
⎣βE·

⎡

⎢
⎣

∑

[k1,...,kN ]2k

(
k

k1, . . . , kN

) N∏

j=1

T
(k j )
t−s [ f ](x j )

⎤

⎥
⎦

⎤

⎥
⎦ (x)ds

= t
∫ 1

0
e−λ(k−1)ut e

−λut

ϕ(x)
Tut

[

k!βE·
( ∑

[k1,...,kN ]2k

N∏

j=1

ϕ(x j )
e−λk j t(1−u)T

(k j )
t(1−u)[ f ](x j )

k j !ϕ(x j )

)]

(x)du.

Combining this with to (61) and changing variables in the final integral of the latter,
we have
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lim
t→∞ sup

x∈E, f ∈B+
1 (E)

∣
∣
∣ϕ(x)−1e−kλtT(k)

t [ f ](x) − 〈 f , ϕ̃〉k Lk

∣
∣
∣

≤ lim
t→∞ sup

x∈E, f ∈B+
1 (E)

t

∣
∣
∣
∣

∫ 1

0
e−λ(k−1)ut

(e−λut

ϕ(x)
Tut [ϕF(·, u, t)] − 〈 f , ϕ̃〉kλ(k − 1)Lk

)
du

∣
∣
∣
∣ ,

(62)

where we have defined

F[ f ](x, u, t) := k!β(x)

ϕ(x)
Ex

⎡

⎢
⎣

∑

[k1,...,kN ]2k

N∏

j=1

ϕ(x j )
e−λk j t(1−u)T

(k j )
t(1−u)[ f ](x j )

k j !ϕ(x j )

⎤

⎥
⎦ .

It is easy to see that, pointwise in x ∈ E and u ∈ [0, 1], using the induction
hypothesis and (H2),

F[ f ](x, u) := lim
t→∞ F[ f ](x, u, t)

= k!β(x)

ϕ(x)
Ex

⎡

⎢
⎢
⎣

∑

[k1,...,kN ]2k

(
k

k1, . . . , kN

) N∏

j=1
j :k j>0

ϕ(x j )Lk j

⎤

⎥
⎥
⎦ 〈 f , ϕ̃〉k,

where we have again used the fact that the k j s sum to k to extract the 〈 f , ϕ̃〉k term.
Similarly to the critical setting we can also verify using the induction hypothesis and
(H2) that (A.1) and (A.2) hold.

This is sufficient to note that, by using a triangle inequality similar spirit to the one
found in (A.4) and appealing to (14) of the assumption (H1), we have that

sup
x∈E,u∈[0,1], f ∈B+

1 (E),t≥0

∣
∣
∣
∣
e−λut

ϕ(x)
Tut [ϕF[ f ](·, u, t)] − k!〈 f , ϕ̃〉k Lk

∣
∣
∣
∣ < ∞.

This means that for t sufficiently large, we can control the modulus in the integral on
the right-hand side of (62) by a global constant. The remainder of integral, yields a
bound of ε(1 − e−λ(k−1)t )/λ(k − 1), which tends to zero as t → ∞. ��
Proof of Theorem 3 (subcritical case) We now outline the subcritical case. First note
that since we only compensate by e−λt , the term Tt [ f k](x) that appears in equation
(41) does not vanish after the normalisation. Due to assumption (H1), we have

lim
t→∞ ϕ−1(x)e−λtTt [ f k](x) = 〈 f k, ϕ̃〉.

Next we turn to the integral term in (41). Define [k1, . . . , kN ]nk , for 2 ≤ n ≤ k to be
the set of tuples (k1, . . . , kN ) with exactly n positive terms and whose sum is equal to
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k. Similar calculations to those given above yield

e−λt

ϕ(x)

∫ t

0
Ts

⎡

⎢
⎣βEx

⎡

⎢
⎣

∑

[k1,...,kN ]2k

(
k

k1, . . . , kN

) N∏

j=1

T
(k j )
t−s [ f ](x j )

⎤

⎥
⎦

⎤

⎥
⎦ (x)ds

= t
k∑

n=2

∫ 1

0
eλ(n−1)ut e

−λt(1−u)

ϕ(x)
Tt(1−u)

[

k!βE·

[ ∑

[k1,...,kN ]nk

N∏

j=1

ϕ(x j )
e−λutT

(k j )
ut [ f ](x j )

k j !ϕ(x j )

]]

(x)du (63)

Again, we leave the details to the reader but the idea is that the induction hypothesis
will take care of the product of the lower order moments and the second part of (14) in
assumption (H1) will then take care of the asymptotic behaviour semigroup Tt(1−u).
The second part of (14) allows one to control the difference between this term and its
limit. In a similar manner to the final step in the proof of Theorem 2, the difference of
(41) and its limit can be reduced to the limit as t → ∞ of ε(1 − e−|λ|(n−1)t )/|λ|(n−1),
which is bounded above by ε. ��

Proof of Theorem 5 For the case k = 1, we have

∣
∣
∣
∣e

−λtϕ(x)−1
∫ t

0
Ts[g](x)ds − 〈g, ϕ̃〉

λ

∣
∣
∣
∣

=
∣
∣
∣
∣e

−λt t
∫ 1

0
eλut

(
e−λutϕ(x)−1Tut [g](x) − 〈g, ϕ̃〉

)
du − e−λt 〈g, ϕ̃〉

λ

∣
∣
∣
∣

≤ e−λt t
∫ 1

0
eλut

∣
∣
∣e−λutϕ(x)−1Tut [g](x) − 〈g, ϕ̃〉

∣
∣
∣ du + e−λt 〈g, ϕ̃〉

λ
. (64)

Thanks to (H1) and similar arguments to those used in the proof of Theorem 2, we
may choose t sufficiently large such that the modulus in the integral is bounded above
by ε > 0, uniformly in g ∈ B+

1 (E) and x ∈ E . Then, the right-hand side of (64) is
bounded above by ελ−1(1 − e−λt ) + e−λt 〈g, ϕ̃〉/λ. Since ε can be taken arbitrarily
small, this gives the desired result and also pins down the initial value L1 = 1/λ.

Now assume the result holds for all � ≤ k−1. Reflecting on proof of Theorem 2, we
note that in this setting the starting point is almost identical except that the analogue
of (60), which is derived from (55), is now the need to evaluate

lim
t→∞

e−λkt

ϕ(x)
M(k)
t [g](x) = lim

t→∞
e−λkt

ϕ(x)

∫ t

0
Ts

⎡

⎢
⎣βE·

⎡

⎢
⎣

∑

[k1,...,kN ]2k

(
k

k1, . . . , kN

) N∏

j=1

M
(k j )
t−s [g](x j )

⎤

⎥
⎦

⎤

⎥
⎦ (x)ds
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− k lim
t→∞

e−λkt

ϕ(x)

∫ t

0
Ts[gM(k−1)

t−s [g]](x)ds. (65)

The first term on the right-hand side of (65) can be handled in essentially the same
way as in the proof of Theorem 2. The second term on the right-hand side of (65) can
easily be dealt with along the lines that we are now familiar with from earlier proofs,
using the induction hypothesis. In particular, its limit is zero. Hence combined with
the first term on the right-hand side of (65), we recover the same recursion equation
for Lk . ��
Proof of Theorem 6 The case k = 1 is relatively straightforward and, again in the
interest of keeping things brief, we point the reader to the fact that, as t → ∞, we
have

1

ϕ(x)
M(1)
t [g](x) =

∫ t

0

Ts[g](x)
ϕ(x)

ds

=
∫ t

0
eλse−λs Ts[g](x)

ϕ(x)
ds ∼ t〈g, ϕ̃〉

∫ 1

0
eλutdu ∼ 〈g, ϕ̃〉

|λ| . (66)

Now suppose the result holds for all � ≤ k−1.We again refer to (55), which means
we are interested in handling a limit which is very similar to (65), now taking the form

M(k)
t [g](x)
ϕ(x)

= t

ϕ(x)

∫ 1

0
eλute−λutTut

⎡

⎢
⎣βE·

⎡

⎢
⎣

∑

[k1,...,kN ]2k

(
k

k1, . . . , kN

) N∏

j=1

ϕ(x j )
M

(k j )
t(1−u)[g](x j )

ϕ(x j )

⎤

⎥
⎦

⎤

⎥
⎦ (x)du

− k
t

ϕ(x)

∫ 1

0
eλute−λutTut

[

gϕ
M(k−1)
t(1−u)[g]

ϕ

]

(x)du. (67)

Again skipping the details, we can quickly see from (67) the argument in (66), and
the induction hypothesis gives us

M(k)
t [g](x)
ϕ(x)

∼ k! 〈g, ϕ̃〉k
|λ|

〈

βE
[ ∑

[k1,...,kN ]2k

N∏

j=1
j :k j>0

ϕ(x j )Lk j

]

, ϕ̃

〉

−k! 〈gϕ, ϕ̃〉〈g, ϕ̃〉k−1

|λ| Lk−1, (68)

which gives us the required recursion for Lk . ��
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3 Proofs for superprocesses

For the proof of Theorems 1, 2 and 3 in the setting of superprocesses we follow a
similar approach. One difference is that we cannot work with the k-th moment as a
product of an almost surely finite sum. As such the use of the Leibniz formula as in the
previous section is no longer helpful. Instead, we use the Faà di Bruno formula (see
Lemma A.1) to assist with multiple derivatives of the non-linear evolution equation
(5).

3.1 Linear and non-linear semigroup equations

The evolution equation for the expectation semigroup (Tt , t ≥ 0) is well known and
satisfies

Tt [ f ] (x) = Pt [ f ](x) +
∫ t

0
Ps

[
β(m[Tt−s[ f ]] − 1) + b

]
(x)ds, (69)

for t ≥ 0, x ∈ E and f ∈ B+(E), where, with a meaningful abuse of our branching
Markov process notation, we now define

m[ f ](x) =
∫

M0(E)

[

γ (x, π) 〈 f , π〉 +
∫ ∞

0
u 〈 f , π〉 n(x, π, du)

]

G(x, dπ)

= γ (x, f ) +
∫

M(E)◦
〈 f , ν〉
(x, ν). (70)

See for example equation (3.24) of [7].
In the spirit of Lemma 1 we can give a second representation of Tt [ f ] in terms

of an auxiliary process, the so called many-to-one formula. To this end, if, as before,
we work with the process (ξ,P) to represent the Markov process associated to the
semigroup (Pt , t ≥ 0), then, although we have redefined the quantity m[ f ](x), we can
still meaningfully work with the process (ξ̂ , P̂) as defined just before Lemma 1.

Lemma 3 Let ϑ(x) = B(x) + b(x) = β(x)(m[1](x) − 1) + b(x), then, for t ≥ 0 and
f ∈ B+(E),

Tt [ f ] (x) = Êx

[

exp

(∫ t

0
ϑ(ξ̂s)ds

)

f (ξ̂t )

]

. (71)

As with Lemma 1, the proof is classical, requiring only that we take the right-hand side
of (71) and condition on the first extra jump of (ξ̂ , P̂) to show that it also solves (70). It
is a straightforward application of Grönwall’s inequality to show that (70) has a unique
solution and hence (69) holds. The reader will note that because we have separated
out the local and non-local branching mechanisms of the superprocess, the deliberate
repeat definition of m[ f ] for superprocesses is only the analogue of its counter part
for branching Markov processes in the sense of non-local activity. The mean local
branching rate has otherwise been singled out as the term b.
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Similarly to the branching Markov process setting, let us re-write an extended
version of the non-linear semigroup evolution (Vt , t ≥ 0), defined in (6), i.e. the
natural analogue of (35), in terms of the linear semigroup (Tt , t ≥ 0). To this end,
define

Vt [ f , g] (x) = Ex

[
e−〈 f ,Xt 〉−

∫ t
0 〈g,Xs 〉ds

]
,

Analogously to Theorem 2 we have the following result.

Lemma 4 For all f , g ∈ B+(E), x ∈ E and t ≥ 0, the non-linear semigroup
Vt [ f , g](x) satisfies

Vt [ f , g](x) = Tt [ f ](x) −
∫ t

0
Ts

[
J[Vt−s[ f , g]] − gVt−s [ f , g]

]
(x)ds, (72)

where, for h ∈ B+(E) and x ∈ E,

J[h](x) = ψ(x, h(x)) + φ(x, h) + β(x)(m[h](x) − h(x)) + b(x)h(x).

The proof is essentially the same as the proof of Lemma 2 and hence we leave the
details to the reader.

3.2 Evolution equations for the k-th moment of a superprocesses

Recall that we defined T(k)
t [ f ] (x) := Eδx [〈 f , Xt 〉k], t ≥ 0, f ∈ B+(E), k ≥ 1.

As with the setting of branching Markov processes, we want to establish an evolution
equation for (T(k)

t , t ≥ 0), from which we can establish the desired asymptotics. To
this end, let us introduce the following notation.

For x ∈ E , k ≥ 2 and t ≥ 0, define

Rk(x, t) =
∑

{m1,...,mk−1}k
k!

m1! . . .mk−1! (−1)m1+···+mk−1−1

(m1 + · · · + mk−1 − 1)!
k−1∏

j=1

(
(−1) jT( j)

t [ f ] (x)

j !

)m j

, (73)

and

Kk(x, t) =
∑

{m1,...,mk−1}k
k!

m1! . . .mk−1!ψ
(m1+···+mk−1)(x, 0+)

k−1∏

j=1

(
(−1) j+1T( j)

t [ f ] (x) − R j (x, t)

j !

)m j

, (74)
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and finally

Sk(x, t) =
∫

M(E)◦

∑

{m1,...,mk−1}k
k!

m1! . . .mk−1! (−1)m1+···+mk−1

k−1∏

j=1

⎛

⎝

〈
(−1) j+1T( j)

t [ f ] − R j (·, t), ν
〉

j !

⎞

⎠

m j


(x, dν), (75)

and the sums run over the set of non-negative integers {m1, . . . ,mk−1} such that
m1 + 2m2 + · · · + (k − 1)mk−1 = k.

Theorem 7 Fix k ≥ 2. Suppose that (H1) and (H2) hold, with the additional assump-
tion that

sup
x∈E,s≤t

T(�)
s [ f ](x) < ∞, � ≤ k − 1, f ∈ B+(E), t ≥ 0. (76)

Then,

T(k)
t [ f ] (x) = (−1)k+1Rk(x, t) + (−1)k

∫ t

0
Ts [Uk(·, t − s)] ds, (77)

where

Uk(x, t) = Kk(x, t) + β(x)Sk(x, t). (78)

Proof First note that similarly to the Markov branching process case, defining

et [ f ](x) := Eδx

[
e−〈 f ,Xt 〉

]
, t ≥ 0, f ∈ B+(E),

we have

e(k)
t [θ f ](x) := ∂k

∂θk
et [θ f ](x) = (−1)kEδx

[
〈 f , Xt 〉k e−θ〈 f ,Xt 〉

]

and

e(k)
t [θ f ](x)|θ=0 = (−1)kT(k)

t [ f ] (x). (79)

To prove (77), recall the definition (5) and let

v(k)
t [ f ](x) := ∂k

∂θk
Vt [θ f , 0](x)

∣
∣
∣
∣
θ=0

= − ∂k

∂θk
log et [θ f ](x)

∣
∣
∣
∣
θ=0

, t ≥ 0, f ∈ B+(E), k ≥ 1
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The idea is to use Lemma A.1 to obtain two equivalent expressions for v(k)
t [ f ](x)

that, when equated, yield (77).
To this end, not that due to Faà di Bruno’s Lemma A.1, we have

v(k)
t [ f ](x)

= ∂k

∂θk
− log et [θ f ](x)

∣
∣
∣
∣
θ=0

= −
∑

{m1,...,mk }k

k!
m1! . . .mk !

(−1)m1+···+mk−1(m1 + · · · + mk − 1)!
et [θ f ](x)m1+···+mk

k∏

j=1

(
e( j)[θ f ])

j !

)m j
∣
∣
∣
∣
∣
∣
θ=0

= −
∑

{m1,...,mk }k

k!
m1! . . .mk ! (−1)m1+···+mk−1(m1 + · · · + mk − 1)!

k∏

j=1

(
(−1) jT( j)

t [ f ] (x)

j !

)m j

,

where the sum runs over the set of non-negative integers {m1, . . . ,mk}k such that

m1 + 2m2 + · · · + kmk = k.

Note that mk > 0 if and only if mk = 1 and m1 = m2 = · · · = mk−1 = 0, so the
k-th moment term T(k)

t [ f ] appears only once and with a factor (−1)k+1, that is,

v(k)
t [ f ](x) = (−1)k+1T(k)

t [ f ] (x) − Rk(x, t), (80)

where all the terms in Rk(x, t) are products of two or more lower order moments.
Thus it remains to show that

v(k)
t [ f ](x) = −

∫ t

0
Ts [Uk(·, t − s)] ds.

Differentiating the evolution equation (72) k times at θ = 0, momentarily not
worrying about passing derivatives through integrals, we get

v(k)
t [ f ](x) = −

∫ t

0
Ts

[
∂k

∂θk

(
ψ(·,Vt−s [θ f , 0] (·))

+φ(·,Vt−s [θ f , 0]) + F[Vt−s[θ f , 0]]
)∣

∣
∣
θ=0

]
(x)ds,

123



Asymptotic moments of spatial branching processes

where

F[g](x) = β(x)(m[g] − g) + b(x)g, x ∈ E, g ∈ B+(E).

We first deal with the k-th derivative of the term involving ψ in the above integral.
For this, we again use Lemma A.1 to get

∂k

∂θk
ψ (x,Vt [θ f , 0] (x))

∣
∣
∣
∣
θ=0

=
∑

{m1,...,mk }k

k!
m1! . . .mk !ψ

(m1+···+mk )(x,Vt [θ f , 0])

k∏

j=1

⎛

⎝
∂ j

∂θ j Vt [θ f , 0] (x)

j !

⎞

⎠

m j
∣
∣
∣
∣
∣
∣
θ=0

=
∑

{m1,...,mk }k

k!
m1! . . .mk !ψ

(m1+···+mk )(x, 0+)

k∏

j=1

(
v( j)
t [ f ](x)

j !

)m j

= −b(x)v(k)
t [ f ](x) + Kk(x, t),

where the last equality holds because mk = 1 if and only if m1 = · · · = mk−1 = 0
and ψ ′(x, 0+) = −b(x).

Similarly, for the the kth derivative of the remaining terms, recalling (8), (9) and
(70), we have

∂k

∂θk

(
φ(x,Vt [θ f , 0]) + F[Vt [θ f , 0]]

)

= b(x)
∂k

∂θk
Vt [θ f , 0]

− β(x)
∫

M0(E)

∫ ∞

0

∂k

∂θk

(
1 − e−u〈Vt [θ f ,0],π〉 − u 〈Vt [θ f , 0] , π〉

)

n(x, π, du)G(x, dπ).

Using Lemma A.1 yields

∂k

∂θk

(
1 − e−u〈Vt [θ f ,0],π〉 − u 〈Vt [θ f , 0] , π〉

)

=
∑

{m1,...,mk−1}k
k!

m1! . . .mk ! (−1)m1+···+mk+1e−u〈Vt [θ f ,0],π〉
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k∏

j=1

⎛

⎝
u

〈
∂ j

∂θ j Vt [θ f , 0] , π
〉

j !

⎞

⎠

m j

+
(
e−u〈Vt [θ f ,0],π〉 − 1

)
u

〈
∂k

∂θk
Vt [θ f , 0] , π

〉

,

where, in the final equality, we have singled out the case that mk = 1 and m1 = · · · =
mk−1 = 0 in the Faà di Bruno formula. Using the definition of m[ f ](x) in (70) and
the same observation as above about the m j ’s, we get

∂k

∂θk

(
φ(x,Vt [θ f , 0]) + F[Vt [θ f , 0]]

)∣
∣
∣
∣
θ=0

= b(x)v(k)
t [ f ](x) + β(x)Sk(x, t). (81)

Putting the pieces together, we obtain

v(k)
t [ f ](x) = −

∫ t

0
Ts [Uk(·, t − s)] (x)ds. (82)

Combining this with equation (80) yields

(−1)k+1T(k)
t [ f ] (x) = Rk(x, t) −

∫ t

0
Ts [Uk(·, t − s)] (x)ds,

which is the desired result.
There is one final matter we must attend to, which is the ability to move derivatives

through integrals. In this setting, this follows from the assumption (76), (H2) and the
Lévy-Khintchine-type formulae for ψ and φ. ��

3.3 Completing the proof of Theorem 1: critical case

We will prove Theorem 1 for superprocesses using induction, similarly to the setting
of branching Markov processes. The case k = 1 follows from assumption (H1).

Now assume that the statement of Theorem 1 holds in the superprocess setting for
all � ≤ k. Our aim is to prove that the result holds for k + 1. Using Theorem 7 and a
change of variables, we have that

1

ϕ(x)tk
T(k+1)
t [ f ] (x) = (−1)k

ϕ(x)tk
Rk+1(x, t)

+ (−1)k+1

ϕ(x)tk−1

∫ 1

0
Tst

[
Uk+1(·, t(1 − s))

]
(x)ds, (83)

where R and U were defined in equations (73) and (78), respectively. As with the
particle system,we first aim to simplify the right-hand side before showing that its limit
is equivalent to the expression given in the statement of the theorem. In particular, we

123



Asymptotic moments of spatial branching processes

will first show that for each x ∈ E , the limit of the right-hand side of (83) is equivalent
to

lim
t→∞

1

2ϕ(x)tk−1

∫ 1

0
Tst

[
K (2)
k+1(·, t(1 − s)) + β(·)S(2)

k+1(·, t(1 − s))
]
(x)ds, (84)

where

K (2)
k+1(x, t) :=

∑

{k1,k2}+

(k + 1)!
k1!k2! ψ ′′(x, 0+)T(k1)

t [ f ] (x)T(k2)
t [ f ] (x) (85)

and

S(2)
k+1(x, t) =

∫

M(E)◦

∑

{k1,k2}+

(k + 1)!
k1!k2! 〈T(k1)

t [ f ] , ν〉〈T(k2)
t [ f ] , ν〉
(x, dν), (86)

such that {k1, k2}+ is defined to be the set of positive integers k1, k2 such that k1+k2 =
k + 1.

To this end, writing c(m1, . . . ,mk) for the constants preceding the product sum-
mands in (73), observe that

lim
t→∞

1

tk
Rk+1(x, t)

= lim
t→∞

(k + 1)!
tk

∑

{m1,...,mk }k+1

c(m1, . . . ,mk)

k∏

j=1

(
(−1) jT( j)

t [ f ] (x)

j !

)m j

= (−1)k(k + 1)! lim
t→∞

∑

{m1,...,mk }k+1

c(m1, . . . ,mk)

tm1+···+mk−1

k∏

j=1

(
1

j !
T( j)
t [ f ] (x)

t j−1

)m j

= 0,

where the final equality is due to the induction hypothesis and the fact thatm1 +· · ·+
mk > 1, which follows from the fact that m1 + 2m2 +· · ·+ · · ·+ kmk = k + 1. Note,
moreover that the induction hypothesis ensures that the limit is uniform in x ∈ E and,
in fact, that

sup
t≥0,x∈E

1

t�−1 R�(x, t) < ∞ and lim
t→∞ sup

x∈E
1

t�−1 R�(x, t) = 0 � = 1, . . . , k + 1.

(87)

We now return to (83), to deal with the term involving Uk+1, which we recall
is a linear combination of Kk+1 and Sk+1, which were defined in (73) and (75),
respectively. Note that if any of the summands in either Kk+1 or Sk+1 have more than
two of the m j positive, the limit of that summand, when renormalised by 1/tk−1, will
be zero. In essence, the argument here is analogous to those that led to (49) in the
branching Markov process setting. This implies that the only terms in the sums of
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(73) and (75) that remain in the limit of (83) are those for which mk1 = mk2 = 1 and
m j = 0 for all j �= k1, k2, with k1 < k2 such that k1 + k2 = k + 1, and if k + 1 is
even, the terms in which m(k+1)/2 = 2 and m j = 0 for all j �= (k + 1)/2.

Let us now convert all of the above heuristics into rigorous computation, for which
we appeal to Theorem A.1. We write

F[ f ](x, s, t) := 1

ϕ(x)tk−1

(
K (3+)
k+1 (x, t(1 − s)) + β(x)S(3+)

k+1 (x, t(1 − s))
)

, (88)

where K (3+)
k+1 and S(3+)

k+1 contain the terms in Kk+1 and Sk+1, respectively, for which the
summ1+· · ·+mk is greater than or equal to 3.Wewill prove that limt→∞ F(x, s, t) =
0 and that (A.1) and (A.2) hold.

Due to (16) and boundness of ϕ, dominated convergence implies that

lim
t→∞

1

ϕ(x)tk−1 K
(3+)
k+1 (x, t(1 − s))

= (k + 1)!
ϕ(x)

∑

{m1,...,mk }3k+1

ψ(m1+···+mk )(x, 0+)

m1! . . .mk !

lim
t→∞

1

tm1+···+mk−2

k∏

j=1

⎛

⎝
(−1) j+1T( j)

t(1−s) [ f ] (x) − R j (x, t(1 − s))

j !t j−1

⎞

⎠

m j

,

where the set {m1, . . . ,mk}3k+1 is the subset of {m1, . . . ,mk}k+1 for whichm1+· · ·+
mk ≥ 3. Using the induction hypothesis and (87), we get that the right-hand side
above is zero. The same arguments also imply that the limit of S(3+)

k+1 is zero. Thus
F[ f ](x, s) := limt→∞ F[ f ](x, s, t) = 0. The condition (A.1) trivially holds. For
(A.2), the required uniformity follows from the induction hypothesis and (87).

Using Theorem A.1 in the Appendix, we conclude that

lim
t→∞ sup

x∈E

∣
∣
∣
∣

1

ϕ(x)tk−1

∫ 1

0
Tst [ϕF[ f ](·, s, t)] (x)ds

∣
∣
∣
∣ = 0.

Let us now define {k1 < k2} to be the elements in Kk+1 for which mk1 = mk2 = 1
with k1 < k2 such that k1 + k2 = k + 1 and m j = 0 for all other indices and, in the
case where k + 1 is even, m(k+1)/2 = 2 and m j = 0 for all j �= (k + 1)/2. Restricting
the sum to this set in Kk+1 we get the following expression

K (2)
k+1(x, t) =

∑

{k1<k2}

(k + 1)!
k1!k2! ψ ′′(x, 0+)(−1)k+1T(k1)

t [ f ] (x)T(k2)
t [ f ] (x)

+ 1(k+1 is even)
1

2

(
k + 1

k/2

)

ψ ′′(x, 0+)(−1)k+1
(
T(k/2)
t [ f ] (x)

)2

= (−1)k+1

2

∑

{k1,k2}+

(k + 1)!
k1!k2! ψ ′′(x, 0+)T(k1)

t [ f ] (x)T(k2)
t [ f ] (x),
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wherewe recall {k1, k2}+ is the set of positive integers k1, k2 such that k1+k2 = k+1.
Similarly, we obtain the following expression for Sk+1:

S(2)
k+1(x, t) =

∫

M(E)◦

∑

k1<k2

(k + 1)!
k1!k2! (−1)k+1〈T(k1)

t [ f ] , ν〉〈T(k2)
t [ f ] , ν〉
(x, dν)

+ 1(k+1 is even)

∫

M(E)◦

(
k + 1

k/2

)
(−1)k+1

2
〈T((k+1)/2)

t [ f ] , ν〉2
(x, dν)

= (−1)k+1

2

∫

M(E)◦

∑

{k1,k2}+

(k + 1)!
k1!k2! 〈T(k1)

t [ f ] , ν〉〈T(k2)
t [ f ] , ν〉
(x, dν).

This shows that the right-hand side of (83) is equivalent to (84).
To conclude the proof,wewill again useTheoremA.1 to show that (84) is equivalent

to V given in the theorem. To this end, define

F[ f ](x, s, t) := 1

2ϕ(x)tk−1

(
K (2)
k+1(x, t(1 − s)) + β(x)S(2)

2 (x, t(1 − s))
)

. (89)

Due to (16) and the induction hypothesis,

lim
t→∞

1

2ϕ(x)tk−1 K
(2)
k+1(x, t(1 − s))

= (1 − s)k−1

2ϕ(x)

∑

{k1,k2}+

(k + 1)!
k1!k2! ψ ′′(x, 0+) lim

t→∞
T(k1)
t(1−s) f (x)

(t(1 − s))k1−1

T(k2)
t(1−s) f (x)

(t(1 − s))k2−1

= (1 − s)k−1ϕ(x)
∑

{k1,k2}+
(k + 1)!2−kψ ′′(x, 0+) 〈 f , ϕ̃〉k+1 〈V [ϕ] , ϕ̃〉k−1

= k(1 − s)k−1ϕ(x)(k + 1)!2−kψ ′′(x, 0+) 〈 f , ϕ̃〉k+1 〈V [ϕ] , ϕ̃〉k−1 ,

where the last equality holds because the total number of ways of splitting one set of
size k + 1 into two non empty sets is equal to k. To obtain the limit for S(2)

k+1, we use
(16), the induction hypothesis, dominated convergence and linearity to obtain

lim
t→∞

S(2)
k+1(x, t(1 − s))

2ϕ(x)tk−1

= (1 − s)k−1

2ϕ(x)

∫

M(E)◦

∑

{k1,k2}+

(k + 1)!
k1!k2! lim

t→∞
〈T(k1)

t(1−s) [ f ] , ν〉
(t(1 − s))k1−1

〈T(k2)
t(1−s) [ f ] , ν〉

(t(1 − s))k2−1 
(x, dν)

= (1 − s)k−1

2kϕ(x)

∫

M(E)◦

∑

{k1,k2}+
(k + 1)! 〈 f , ϕ̃〉k+1 〈V [ϕ] , ϕ̃〉k−1 〈ϕ, ν〉2 
(x, dν)

= k(1 − s)k−1

2kϕ(x)
(k + 1)! 〈 f , ϕ̃〉k+1 〈V [ϕ] , ϕ̃〉k−1

∫

M(E)◦
〈ϕ, ν〉2 
(x, dν).
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Combining these two limits, we get that

F[ f ](x, s) := lim
t→∞ F[ f ](x, s, t)

= k(1 − s)k−1

ϕ(x)

(k + 1)!
2k

〈 f , ϕ̃〉k+1 〈V [ϕ] , ϕ̃〉k−1
V [ϕ] (x).

To complete the proof it remains to verify assumptions (A.1) and (A.2) in order to
apply Theorem A.1 to (84). By now the reader will be familiar with the arguments
required to check these assumptions and thus, we exclude the details. Hence, it follows
that

lim
t→∞

1

ϕ(x)tk
T(k+1) [ f ] (x) = (k + 1)!

2k
〈 f , ϕ̃〉k+1 〈V [ϕ] , ϕ̃〉k−1

∫ 1

0
k(1 − s)k−1 〈V [ϕ] , ϕ̃〉 ds

= (k + 1)!
2k

〈 f , ϕ̃〉k+1 〈V [ϕ] , ϕ̃〉k ,

where the limit is uniform in x ∈ E . Moreover, supt≥0,x∈E T(k+1) [ f ] (x)/ϕ(x)tk <

∞.

3.4 Proofs for moments in the non-critical cases

In this section we present the main ideas behind the proof of Theorems 2 and 3. The
methods follow a similar reasoning to the critical case and the details are left to the
reader. The base case is given by the Perron Frobenius behaviour in (H1) for both sub
and supercritical cases. Thus, we assume the result for k − 1 and proceed to give the
outline of the inductive step of the argument.

Proof of Theorem 2 (supercritical case) The main difference here, compared to the crit-
ical case, is that all the terms in Rk(x, t) will survive after the normalisation e−λkt

since the exponential term shares across the product. From the evolution equation (77)
and the definition of Lk we have that

|ϕ(x)−1e−λktT(k)
t [ f ] (x) − k! 〈 f , ϕ̃〉k Lk(x)|

≤
∣
∣
∣ϕ(x)−1e−λkt (−1)k+1Rk(x, t)

−〈 f , ϕ̃〉k
∑

{m1,...,mk−1}
k!

m1! . . .mk−1! (m1 + · · · + mk−1 − 1)!ϕ(x)m1+···+mk−1−1

k−1∏

j=1

(−L j (x)
)m j

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
ϕ(x)−1e−λkt (−1)k

∫ t

0
Ts [Uk(·, t − s)] (x)ds − k! 〈 f , ϕ̃〉k

λ(k − 1)
〈Vk [ϕ] , ϕ̃〉

∣
∣
∣
∣
∣
.
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The first terms in the right hand side goes to zero uniformly since

e−λkt

ϕ(x)
(−1)k+1Rk(x, t) =

∑

{m1,...,mk−1}k
k!

m1! . . .mk−1! (−1)m1+···+mk−1

× (m1 + · · · + mk−1 − 1)!
k−1∏

j=1

(
e−λ j tT( j)

t [ f ] (x)

ϕ(x) j !

)m j

ϕ(x)m1+···+mk−1−1,

and the induction hypothesis implies that

lim
t→∞

e−λkt

ϕ(x)
(−1)k+1Rk(x, t) = 〈 f , ϕ̃〉k

∑

{m1,...,mk−1}k
k!

m1! . . .mk−1!

× (m1 + · · · + mk−1 − 1)!ϕ(x)m1+···+mk−1−1
k−1∏

j=1

(−L j (x)
)m j . (90)

For the second term, define for k ≥ 2

Ik(x, t) :=
∫ t

0
Ts [Uk(·, t − s)] (x)ds = (−1)kT(k)

t [ f ] (x) + Rk(x, t).

We will use induction to prove that for k ≥ 2

lim
t→∞ sup

x∈E, f ∈B+
1 (E)

∣
∣
∣
∣
∣
e−λkt

ϕ(x)
(−1)k Ik(x, t) − k! 〈 f , ϕ̃〉k

λ(k − 1)
〈Vk [ϕ] , ϕ̃〉

∣
∣
∣
∣
∣
= 0, (91)

which will complete the proof of the theorem.
First notice that for any k ≥ 2 due to a change of variable, we have that

e−λkt

ϕ(x)
(−1)k Ik(x, t)

= t
∫ 1

0
e−λ(k−1)ut e

−λut

ϕ(x)
Tut

[
(−1)ke−λkt(1−u)Uk(·, t(1 − u))

]
(x)du,

where

(−1)ke−λktUk(x, t) = (−1)ke−λkt Kk(x, t) + β(x)(−1)ke−λkt Sk(x, t).

Recalling the definitions of Kk and Sk given in (74) and (75) respectively, and using
the fact that I j (x, t) = −((−1) j+1Tt [ f ] (x) − R j (x, t)) for j = 2, . . . , k − 1, after
sharing the exponential term across the products, we obtain

(−1)ke−λkt Kk(x, t) =
∑

{m1,...,mk−1}k
k!

m1! . . .mk−1!
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ψ(m1+···+mk−1)(x, 0+)
(−e−λtTt [ f ] (x)

)m1

k−1∏

j=2

(

− 1

j ! (−1) j e−λ j t I j (x, t)

)m j

and

(−1)ke−λkt Sk(x, t)

=
∫

M(E)◦

∑

{m1,...,mk−1}k
k!

m1! . . .mk−1! (−1)m1+···+mk−1
〈−e−λtTt [ f ] , ν

〉m1

k−1∏

j=2

1

j !
〈
−(−1) j e−λ j t I j (·, t), ν

〉m j

(x, dν).

From these expressions and the definition of V2, the case k = 2 follows easily. Now
we assume (91) holds for � = 1, . . . , k − 1, then similarly to the branching Markov
process case it follows that

lim
t→∞ sup

x∈E, f ∈B+
1 (E)

∣
∣
∣
∣
∣
e−λkt

ϕ(x)
(−1)k Ik − k! 〈 f , ϕ̃〉k

λ(k − 1)
〈Vk [ϕ] , ϕ̃〉

∣
∣
∣
∣
∣

≤ lim
t→∞ sup

x∈E, f ∈B+
1 (E)

t

∣
∣
∣
∣

∫ 1

0
e−λ(k−1)ut

(
e−λut

ϕ(x)
Tut [ϕF(·, u, t)] − k! 〈 f , ϕ̃〉k 〈Vk [ϕ] , ϕ̃〉

)

du

∣
∣
∣
∣ ,

(92)

where we have defined

F[ f ](x, u, t)

= ϕ(x)−1
(
(−1)ke−λkt(1−u)Kk(x, t(1 − u)) + β(x)(−1)ke−λkt(1−u)Sk(x, t(1 − u))

)

= 1

ϕ(x)

∑

{m1,...,mk−1}k
k!

m1! . . .mk−1!

×
[

ψ(m1+···+mk−1)(−ϕ)m1+···+mk−1

(
e−λt(1−u)Tt(1−u) [ f ] (x)

ϕ(x)

)m1

k−1∏

j=2

(
(−1) je−λ j t(1−u) I j (x, t(1 − u))

ϕ(x) j !

)m j

+β(x)
∫

M(E)◦

〈
eλt(1−u)Tt(1−u) [ f ]

ϕ
ϕ, ν

〉m1 k−1∏

j=2

1

j !
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〈
(−1) j e−λ j t(1−u) I j (·, t(1 − u))

ϕ
ϕ, ν

〉m j


(x, dν)

]

.

It is easy to see that, pointwise in x ∈ E and for u ∈ (0, 1), using the induction
hypothesis for Ik and the assumed Perron Frobenius behaviour (H1) forTt(1−u) [ f ] (x)
we have

F[ f ](x, u) := lim
t→∞ F[ f ](x, u, t)

= 1

ϕ(x)

∑

{m1,...,mk−1}k
k!

m1! . . .mk−1! 〈 f , ϕ̃〉m1

k−1∏

j=2

(
〈 f , ϕ̃〉 j 〈

V j [ϕ] , ϕ̃
〉

λ( j − 1)

)m j

×
[
ψ(m1+···+mk−1)(x, 0+)(−ϕ(x))m1+···+mk−1

+β(x)
∫

M(E)◦
〈ϕ, ν〉m1+···+mk−1 
(x, dν)

]

= k!
ϕ(x)

〈 f , ϕ̃〉k Vk[ϕ](x).

Weagain verify that the conditions (A.1) and (A.2) hold using the induction hypoth-
esis and (H2). To complete the proof of (91), we again proceed along the same lines
as in the branching Markov processes setting. Similar arguments to those given in the
proof of Theorem A.1

sup
x∈E,u∈[0,1],
f ∈B+

1 (E),t≥0

∣
∣
∣
∣
e−λut

ϕ(x)
Tut [ϕF[ f ](x, u, t)] − k! 〈 f , ϕ̃〉k Vk [ϕ]

∣
∣
∣
∣ < ∞,

it follows that the remainder of the integral in (92) can be bounded by ε(1 −
e−λ(k−1)t )/λ(k−1), which can be bounded by ε. Combining this with (90) we get the
desired result. ��
Proof of Theorem 3 (subcritical case) We now outline the proof for the subcritical case.
Again we use an inductive argument. The case k = 1 follows from (H1) and the fact
that 〈ϕ, ϕ̃〉 = 1. Now assume the result to be true for � = 1, . . . , k − 1. We first note
first that the term Rk(x, t) in (77) vanishes in the limit after the normalisation e−λt .
To see this, note from (73) that

∣
∣
∣
∣
e−λt

ϕ(x)
Rk(x, t)

∣
∣
∣
∣ ≤

∑

{m1,...,mk−1}k
c(m1, . . . ,mk−1)

k−1∏

j=1

∣
∣
∣
∣
∣
e−λtT( j)

t [ f ] (x)

ϕ(x) j !

∣
∣
∣
∣
∣

m j

× ϕ(x)m1+···+mk−1eλ(m1+···+mk−1−1)t ,

where c(m1, . . . ,mk−1) is a constant depending only on m1, . . . ,mk−1. Since each
of the terms in the product is bounded, λ < 0, and m1 + · · · + mk−1 > 1 for any
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partition, the limit of the right-hand side above is zero. Using this, along with the
induction hypothesis, assumption (H1) and the evolution equation (77) we see that

lim
t→∞ sup

x∈E, f ∈B+
1 (E)

∣
∣
∣ϕ(x)−1e−λtT(k)

t [ f ] (x) − k! 〈 f , ϕ̃〉k 〈Vk [ϕ] , ϕ̃〉
∣
∣
∣

= lim
t→∞ sup

x∈E, f ∈B+
1 (E)

∣
∣
∣
∣
e−λt

ϕ(x)

∫ t

0
Ts

[
U∗
k (·, t − s)

]
(x)ds − k! 〈 f , ϕ̃〉k 〈Vk [ϕ] , ϕ̃〉

∣
∣
∣
∣ ,

(93)

where

U∗
k (x, t) =

∑

{m1...,mk−1}k
k!

m1! . . .mk−1!

⎡

⎣ψ(m1+···+mk−1)(x, 0+)

k−1∏

j=1

(

−T( j)
t [ f ] (x)

j !

)m j

+β(x)
∫

M(E)◦

k−1∏

j=1

(
1

j !
〈
T( j)
t [ f ] , ν

〉)m j


(x, dν)

⎤

⎦ .

Then, similar calculations to those above yield

e−λt

ϕ(x)

∫ t

0
Ts

[
U∗
k (·, t − s)

]
(x)ds

= t
∑

{m1,...,mk−1}k

k!
m1! . . .mk−1!

∫ 1

0
e−λt(1−u)(1−m1−···−mk−1))

e−λtu

ϕ(x)
Ttu

⎡

⎣ψ(m1+···+mk−1)(·, 0+)(−ϕ(·))m1+···+mk−1

k−1∏

j=1

⎛

⎝
e−λt(1−u)T( j)

t(1−u) [ f ] (·)
ϕ(·) j !

⎞

⎠

m j

+β(·)
∫

M(E)◦

k−1∏

j=1

〈

ϕ
e−λt(1−u)

ϕ j ! T( j)
t [ f ] , ν

〉m j


(x, dν)

⎤

⎦ (x)du.

To finish the proof, we use induction hypothesis to deal with the lower order
moments, dominated convergence and (H1) to deal with the limit of Tt(1−u). Sim-
ilarly to the last part of the proof of Theorem 2 we get that (93) is bounded as t → ∞
by ε(1 − e−λt(1−m1−···−mk ))/λ(1 − m1 − · · · − mk), which is bounded by ε since
m1 + · · · + mk−1 > 1. We once more leave the details of the rest of the proof to the
reader. ��

3.5 Proofs for occupationmoments, Theorems 4, 5 and 6

Given the proofs we have now seen for the branching particle setting for these three
theorems, as well as the proofs of Theorem 1, 2 and 3, we mention only that a similar
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calculation to the one presented in Theorem 7 tells us that

M(k)
t [g] (x) = (−1)k+1 R̃k(x, t) + (−1)k

∫ t

0
Ts

[
Ũk(·, t − s)

]
(x)ds

− k
∫ t

0
Ts

[
g[M(k−1)

t−s [g] + (−1)k−1 R̃k−1(·, t − s)]
]
(x)ds,

where

Ũk(x, t) = K̃k(x, t) + β(x)S̃k(x, t)

and R̃, K̃ and S̃ are defined as R, K and S in (73), (74), (75), respectively, albeit
replacing T( j) by M( j). From here we can consider the claimed asymptotics using the
the inductive reasoning as in the proof of Theorems 1, 2 and 3, respectively. �
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Appendix

We first state two fundamental combinatorial results for complex derivatives, the clas-
sical Faà di Bruno and Leibniz rules. In both cases, for a sufficiently smooth function
g on R, we will denote by g(k) by its k-th derivative.

Lemma A.1 (Faà di Bruno rule) Let f and g k-times continuously differentiable func-
tions on R. Then the k-th derivative is given by the following formula

dk

dxk
f (g(x)) =

∑

{m1,...,mk }k

k!
m1! . . .mk ! f

(m1+···+mk )(g(x))
k∏

j=1

(
g( j)(x)

j !

)m j

,

where the sum goes over the set {m1, . . . ,mk}k of non-negative integers such that

m1 + 2m2 + · · · + kmk = k.

Lemma A.2 (Leibniz rule) Suppose g1, . . . , gm are k-times continuously differentiable
functions on R, for k ≥ 1. Then

dk

dxk

(
m∏

i=1

gi (x)

)

=
∑

k1+···+km=k

(
k

k1, . . . , km

) m∏

�=1

g(k�)
� (x),
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where the sum is taken over all non-negative integers k1, . . . , km such that
∑m

i=1 ki =
k.

The third result of the appendix is a general ergodic limit theorem which is key to
the moment convergence. We will only state the result in the critical case, since we
will only apply it in the proof of Theorem 1, however, the result can easily be extended
to the non-critical case by including the normalisation e−λut in the first integral.

In order to state it, let us introduce a class of functions C on B+
1 (E) × E × [0, 1] ×

[0,∞) such that F belongs to class C if

F[g](x, s) := lim
t→∞ F[g](x, s, t), g ∈ B+

1 (E), x ∈ E, s ∈ [0, 1],

exists,

sup
x∈E,s∈[0,1],g∈B+

1 (E)

|ϕF[g](x, s)| < ∞, (A.1)

and

lim
t→∞ sup

x∈E,s∈[0,1],g∈B+
1 (E)

ϕ(x)|F[g](x, s) − F[g](x, s, t)| = 0. (A.2)

Theorem A.1 Assume (H1) holds, λ = 0 and that F ∈ C. Define

�t = sup
x∈E,g∈B+

1 (E)

∣
∣
∣
∣

1

ϕ(x)

∫ 1

0
Tut [ϕF[g](·, u, t)](x)du −

∫ 1

0
〈F[g](·, u), ϕϕ̃〉du

∣
∣
∣
∣ ,

t ≥ 0.

Then

sup
t≥0

�t < ∞ and lim
t→∞ �t = 0. (A.3)

Proof We will show that

lim
t→∞ sup

x∈E,g∈B+
1 (E)

∣
∣
∣
∣

1

ϕ(x)
Tut [ϕF[g](·, u, t)](x) − 〈ϕ̃ϕ, F[g](·, u)〉

∣
∣
∣
∣ = 0,

since then

lim
t→∞ sup

x∈E,g∈B+
1 (E)

∣
∣
∣
∣

∫ 1

0

1

ϕ(x)
Tut [ϕF[g](·, u, t)](x)du −

∫ 1

0
〈ϕ̃ϕ, F[g](·, u)〉du

∣
∣
∣
∣

≤
∫ 1

0
lim
t→∞ sup

x∈E,g∈B+
1 (E)

∣
∣
∣
∣

1

ϕ(x)
Tut [ϕF[g](·, u, t)](x) − 〈ϕ̃ϕ, F[g](·, u)〉

∣
∣
∣
∣ du = 0.
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First note that,

∣
∣
∣
∣

1

ϕ(x)
Tut [ϕF[g](·, u, t)](x) − 〈ϕ̃ϕ, F[g](·, u)〉

∣
∣
∣
∣

≤ 1

ϕ(x)
Tut [|ϕF[g](·, u, t) − ϕF[g](·, u)|](x)

+
∣
∣
∣
∣

1

ϕ(x)
Tut [ϕF[g](·, u)](x) − 〈ϕ̃, ϕF[g](·, u)〉

∣
∣
∣
∣

Due to assumption (A.2), for t sufficiently large, the first term on the right-hand side
above can be controlled byϕ−1(x)Tut [ε](x). Combining this with the above inequality
yields

sup
x∈E,g∈B+

1 (E)

∣
∣
∣
∣

1

ϕ(x)
Tut [ϕF[g](·, u, t)](x) − 〈ϕ̃ϕ, F[g](·, u)〉

∣
∣
∣
∣

≤ sup
x∈E

∣
∣
∣ϕ−1(x)Tut [ε](x) − 〈ϕ̃, ε〉

∣
∣
∣ + ε‖ϕ̃‖1

+ sup
x∈E,g∈B+

1 (E)

∣
∣
∣
∣

1

ϕ(x)
Tut [ϕF[g](·, u)](x) − 〈ϕ̃, ϕF[g](·, u)〉

∣
∣
∣
∣ . (A.4)

We note that (A.1) and the first (resp. second) statement of (14) in (H1), together with
dominated convergence, immediately imply that the first (resp. second) statement in
(A.3) holds. ��
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