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De Finetti's (1957) (discrete) model

{Xy 1t = 0,1,2,...} is a random walk w.p.
p>1/2.

{L::t=0,1,...} represents the total paid out
dividends at time t, where Lo =0 and AL; :=
Ly 1 — Lt should be chosen at time ¢.

Dividends can be paid out until the first time
the surplus U becomes negative (ruin time),
where

Ur=X; — Ly, te€{0,1,2,...}

L should be chosen such that the expected dis-
counted dividends paid out up until ruin are
maximized.

Optimal strategy is a barrier strategy, i.e. there
exists a* s.t. Ly, ; = (SUpp<s<t Xs —a*) VO or
ALf = (Ug—a*) VO.



Economic survival games

AXt = X441 — Xt € {...,—2,-1,0,1,2,...}
Z]_ ~Jp; > 0, where p; = P(AX; = j)
Optimal strategy is a band strategy, i.e. there

exists 2n—+1 integersag < b1 <anp <by...ap_1 <
b, < an, SUCh that

AL =0 if U < ap
AL?ZUt—CLk it ak<Ut§bk
AL =0 if b < Ui < ag

If p_o=p_3=...=0, then the optimal band

strategy is a barrier strategy.

If ppo = p3 = ... = 0, then X can be used
as a discrete approximation of the Crameér-
Lundberg model,

Ns

Xs=cs— )Y C; s€][0,00),

i=1
where ¢ > 0 is the premium rate and C; are iid
positive r.v. representing the claims.



Continuous time models

Gerber (1969) 'proved’ by using this approxi-
mation that a band strategy is optimal for the
Cramér-Lundberg model. When the claims are
exponential distributed, Gerber showed that a
barrier strategy is optimal.

Radner & Shepp (1996), Jeanblanc-Shiryaev
(1995), Asmussen & Taksar (1997) proved that
a barrier strategy is optimal when X is a Brow-
nian motion with drift.

Azcue & Muler (2005) reproved Gerber's re-
sults and gave an example for which the opti-
mal strategy is not a barrier strategy.

Avram, Palmowski & Pistorius (2007) consid-
ered the case when X is a spectrally negative
LLévy process.



X = {X; :t > 0} is a spectrally negative
Lévy process on (2, F,F ={F :t >0}, P),
with Lévy triplet (v,0,v(dx)). X represents
the risk process before dividends are de-
ducted.

m is a dividend/control strategy, i.e. ™ =
{LT :t > 0} is a non-decreasing, caglad F-
adapted process which starts at zero. L}
represents the cumulative dividends paid up
until time t.

U™ ={UJ :t > 0}, where U = X; — LT, is
the controlled risk process under the strat-
eqy .

o™ = inf{t > 0:UJ <0} is the ruin time.

q > 0 is the discount rate.



e v" is the value function when using the
strategy m, i.e.

vV (x) = E, [/Oa

e A strategy w is called admissible if ruin does
not occur by a dividend payout. Let Il be
the set of all admissible dividend policies.

T

e_qtdLZ{] ,

e v, IS the value function of the optimal con-
trol problem, i.e.

vx(x) = supv™(x).
mell

T he control problem consists of finding the op-
timal value function v« and an optimal policy
m € [l such that

v (x) = v«(x) for all x > 0.

Thisis an example of a singular stochastic con-
trol problem.



Definition 1 f belongs to the domain of the
extended generator if there exists a function g
with [§]9(Xs)|ds < co for each t, a.s. and

t
F(X0) = F(Xo) = | g(Xs)ds

is a local martingale.

Proposition 2 Let [T be the operator acting
on smooth functions f, defined by

52
M f(z) =vf'(z) + Ef”(a:) + (oo O)[f(ﬂﬂ +y)

— f(@) = F(@)yl_1cy<coylv(dy).

Then f(X)— J§T f(Xs)ds is a local martingale.
Hence the domain of the extended generator
contains C1(0,00) when X is of bounded vari-
ation and contains C2(0,c0) when X is of un-
bounded variation.



Need to prove f(X3) — f(Xo) — JET f(Xs)ds is a
local martingale, where

o2
rf(@) =vf'(@) + 5 (=) + ooyt Y)

— f@) — F@YLl{_1cyeoylv(dy).

From the Lévy-Ito decomposition it follows that
we can write X as

X; =t + 0B + X2 + X2,

where

(2) _
X7 = /[O,t] /yg—lyN(dS x dy)

(3) _
X — N(d dy) — t dy).
t /[O,t] /—1<y<0y (ds > dy) /_1<y<oyy( v)

Here N is the Poisson random measure with
intensity dt x v(dy) corresponding to the jumps
of X.



Verification theorem/HJB-equation

Theorem 3 (Verification theorem) Suppose
w : [0,00) — [0,00) is sufficiently smooth and
extend w to the negative half-line by putting
w(x) =0 for x < 0. Suppose further that

max{rw(z)—qw(zx),1—w'(x)} < 0. (HJB-equation)
Then w(x) > v«(x) for all x € R.



Barrier strategy

Let mq = {L§{ : t > 0} denote the barrier strat-
egy at level a, i.e. L =0 and for ¢t >0

Lg‘::<sup Xs—a>\/0
0<s<t

Let U% 0% and v, be resp. the controlled risk
process, ruin time and value function when us-
ing the dividend policy .

Theorem 4 Assume W0 ¢ ©1(0,0). For
r < a we have

va(a) = W (D ()
YT W@ ()
For x > a, vg(x) =:1:—a—|—MM//((qq—)),((Z)).

Define the optimal barrier level by
a* = sup {a >0: W(qy(a) < W(qy(a:) for all z > O} .

Note that a* < oo, because lim;— W(Q)’(a;) =

0.
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Review scale functions

For each ¢ > O there exists a function w(a) .
R — [0,00), such that W(@(z) = 0 for z <
O and on [0, o), w(4@) is continuous, strictly

increasing and
1

> o= Bryy (@) —
/Oe Wq(x)dx—¢(ﬁ)_q for B8 > ®(q),

where ¥(8) = logE (eﬁXl) and ®(q) = sup{g:
v(B8) = q}.

Further we have for x <a and ¢q > 0

) B W (D ()
(<o) — w@(a)

Also we have W(@(0) = 0, w@'(0) > 0 if
X is of UBV and W@ () = 1/¢, w(@'(0) =
(v(—00,0) 4+ q)/c? when X is of BV.
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Theorem 5 Suppose v(dx) < dx or o > 0 and
w@'(a) < WD)  forall a* <a<b.

Then the barrier strategy with barrier at a* is
an optimal strategy and hence vy = v x.

Proof By Chan & Kyprianou (2007) W(@) s
sufficiently smooth when v(dz) < dx or o >
0. It follows that v« is sufficiently smooth,
since v, is sufficiently smooth at a* (smooth
pasting).

Further, by definition of a*, we have v/.(z) > 1
for  <a*. For > a*, we have v/ .(z) = 1.

12



Let ¢ > 0. Since
_|_
Eg (e 91 |]-“>
*”““( {raf <o 3|7t
(q)
Wi (Xt/\TO/\T;_>

— e —q(tATy AT )
W(Q) (a,)

Y

— ot
: —q(tATH ATG ) :
it follows that e 0 ,Ua(Xt/\TO_/\TC;I_> is a

P.-martingale. But by Itd's formula

-
—q(tATG AT ), _ —
e 0 Vg (Xt/\TO /\7'(;'_) v(Xp) =
t/\TO_/\TC;'_ <
/O e 9 [Moa(Xs) ~qua(Xs)]ds M, .

This implies lNvg(z) — qug(x) = 0 for 0 < x < a.

In particular this holds for a = a*.
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Let a* > 0. Suppose there exist x > a™ such
that lMu «(x) — quo«(x) > 0. Then by the next
lemma we have (I — ¢q)vz(x) > 0, which is a
contradiction.

We have now shown that v, + satisfies the con-
ditions of the verification theorem and hence
v+ > Ux. Because m + is an admissible strategy,
we also have v x < vye. Hence v x = vy and mx
is an optimal strategy. B
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Lemma 6 Under the conditions of the above
theorem, let x > a* > 0. Then

(M = Qugx(x) < (I = Quz(x).

Proof Because = > a*, we have v, (z) = v/.(z) =
1 and therefore

o2
(M= @) (vgx —va) () = —E(vg(w) — vg())

/_Ooo[(’va* — vx)(:c —|— z) — (Ua,* — Ua:)(a?)]u(dz)
— q(vg*x — vg) ().

Since vj(z) > 0 = vli(x), (v« —vy)(y) > 0O for
y € [0,z] and v «(a*) > vz(a™), the conclusion
of the lemma follows. B
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Examples

Let Xy = ct — Zf\il C;, where N is a poisson
process with parameter A and C; are iid positive
hyperexponential distributed random variables

n n
P(Cl > CU) = Z Aje_o‘jx, Ozj,Aj > 0, Z AJ = 1.
j=1 j=1

The Laplace exponent is given by

w(u)—cu—)\—l—)\leA oz]—l-u

It can be shown (by partial fraction expansion)
that the scale function is given by

n
_ 0 ;
W(Q)(Qj) = Z Dje Jx,
=0
where (0, ) _o are the roots of ¥(u) = ¢ and
where GO,DO >0 and 60;,D; <0 for j > 0.

It follows that W(@D"(z) = ¥n_y D;63e%* > 0
and hence a barrier strategy is optimal for the
control problem.
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Azcue-Muler example

Again let X; = Ct—Zf;\il C;, but now the claims
have a Gamma(2, o)-distribution. Let ¢ = 21.4,
A=10,a=1 and ¢q = 0.1.
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Same as the previous example, but now a Brow-
nian motion is added in, i.e.

In the first example ¢ = 1.4, in the second

o= 2.
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