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When k-tribes go to war
(a point is all that you can score)
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WHAT HAPPENED ON RAPA NUI (EASTER ISLAND)?
THE (EUROPEAN) TALE OF THE TU’U AND THE ’OTU ’ITU
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k-TRIBES GO TO WAR

I Consider a population consisting of k ≥ 2 tribes
I Members of each tribe kill one another in conflict (including within-tribe conflict)
I Model the numbers in each tribe as a Markov chain

n(t) = (n1(t), · · · , nk(t)), t ≥ 0,

where ni(t) is the number of individuals alive in tribe i at time t ≥ 0
I The MC n lives on

Nk
∗ =

ν ∈ Nk
0 :

k∑
i=1

νi ≥ 1

 = Nk
0 \ {0},

where N0 = {0, 1, 2, · · · }where ni(t) is the number of individuals alive in tribe i at
time t ≥ 0.
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TRIBAL DYNAMICS

I Given that n(t) = (n1, · · · , nk) ∈ Nk
∗ with

∑k
i=1 ni > 1:

I For i ∈ {1, · · · , k} any two individuals from tribe i will fight at rate Ci,i, one of them
will kill the other and hence the total rate at which tribe i loses an individual through
infighting is Ci,i

(ni
2

)
.

I For i 6= j, both selected from {1, · · · , k}, an individual from tribe i will encounter an
individual of tribe j and will fight resulting in the former killing the latter. This occurs at
rate Ci,j. Hence the total rate at which someone from tribe i will kill some from tribe j is

k∑
i=1

k∑
j=1
j 6=i

Ci,jninj.

I The k states for which
∑k

i=1 ni = 1 are absorbing, representing the end of the
process in which there is one final surviving block.

I For reasons that will become apparent later on, we refer to the process
(n(t), t ≥ 0) as the replicator coalescent



6/ 24

EXAMPLE SAMPLE PATH (k = 3)
(There is no time in this picture)
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SIMILAR MODELS

Kingman’s Coalescent:
I Block counting process (n(t), t ≥ 0), any two blocks collide and merge at rate

c > 0 so that if n(t) = n then total merge rate is c
(n

2

)
.

I Has the advantage of relation to exchangeable partition structures on N.
I Fundamental result: coming down from infinity

lim
t↓0

tn(t) =
c
2
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SIMILAR MODELS

OK Corral:
I Model for the number of surviving shooters in a famous 19th Century Arizona 30

second shoot-out between lawmen and outlaws in 1881, in a town called
Tombstone.

I n(t) = (n1(t), n2(t)), t = 0, 1, 2, . . ., where n1(t) are the number of surviving
lawmen and n2(t) are the number of surviving outlaws

I

P
(

n1(t + 1) = n1(t)− 1, n2(t + 1) = n2(t) | (n1(t), n2(t))
)

=
n2(t)

n1(t) + n2(t)

P
(

n1(t + 1) = n1(t), n2(t + 1) = n2(t)− 1 | (n1(t), n2(t))
)

=
n1(t)

n1(t) + n2(t)

I Kingman (1999), Kingman & Volkov (2003, 2019) Investigate the probability of the
number of surviving gunmen and whether they are outlaws or lawmen
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QUESTIONS

I Does the replicator coalescent come down from infinity? X

I How does it come down from infinity? X

I What is the distribution on {1, . . . , k} of the tribe of the surviving individual? ×
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POLAR DECOMPOSITION

I Prefer to describe it via an L1-polar decomposition.

σ(t) = ||n(t)||1 = n1(t) + · · ·+ nk(t) ∈ N

and

r(t) := σ(t)−1n(t) ∈ Sk =

(x1, x2, ..., xk) ∈ Rk :
k∑

i=1

xi = 1, xi ≥ 0 ∀i


is the k-dimensional simplex.

I As such, we often refer to the process n as (σ, r).

I In particular, if η = (η1, · · · , ηk) ∈ Nk
∗, then, we will use Pη for the law of the

replicator coalescent issued from state n(0) = η.

I We think of such laws on the standard Skorokhod space (D,D), where D is the
space of càdlàg paths from [0,∞) to Nk

∗, equivalently on
N ◦ Sk := {(n, x) ∈ N× Sk : n× x ∈ Nk

∗}, and D is the Borel sigma algebra on D
generated from the usual Skorokhod metric.
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COMING DOWN FROM INFINITY

I We say that the replicator coalescent comes down from infinity if there exists a law
on P∞ on (D,D) which is consistent with P in the sense that,

P∞(n(t + s) = n) =
∑

n′∈Nk
∗

||n′||1≥||n||1

P∞(n(t) = n′)Pn′ (n(s) = n), s, t > 0, n ∈ Nk
∗,

P∞(σ(t) <∞) = 1, for all t > 0, and P∞(limt↓0 σ(t) =∞) = 1.
In essence, P∞ is an entrance law.

I What are the possible infinities to come down from? They are (∞, r) with

r ∈ Sk
+ :=

(x1, x2, ..., xk) ∈ Rk :
k∑

i=1

xi = 1, xi > 0 ∀i

 .

Theorem
For any sequence (ηN,N ≥ 1) in Nk

∗ such that (||ηN||1, arg(ηN))→ (∞, r) with r ∈ Sk
+,

the replicator coalescent comes down from infinity and we can take P∞ = limN→∞ PηN on
(D,D).
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HOW DOES IT COME DOWN FROM INFINITY?

I In the field of evolutionary game theory, there is a theory of a k-typed population
described as a continuum x(t) = (x1(t), . . . , xk(t)), t ≥ 0 in Sk.

I The evolution of (x(t), t ≥ 0) is described by a dynamical system (the replicator
equations)

ẋi(t) = xi(t)(fi(x(t))− f (x(t))), i = 1, · · · , k, t ≥ 0,

where fi(x) is the fitness of type i and f (x) =
∑n

i=1 xifi(x) is the average
population fitness, when the population density is given by x.

I Fitness is often assumed to depend linearly upon the population distribution
I Population types survive according to their accumulated payoff in an iterated

two-player game with payoff matrix A. The entry Ai,j describes the reward per
unit of population of type i player whose per unit of opponent is of type j.

I As such

fi(x) =

n∑
j=1

Ai,jxj.

I The replicator equation simplifies to the A-replicator equation

ẋi(t) = xi(t)([Ax(t)]i − x(t)TAx(t)), i = 1, · · · , k, t ≥ 0,



13/ 24

THE A-REPLICATOR EQUATION

I If the replicator equations can be solved by a fixed point in the simplex, i.e.
xi(t) = x∗i , i = 1, · · · , k, for some vector x∗ = (x∗1 , · · · , x

∗
k ) ∈ Sk, then we see that,

necessarily,
[Ax∗]i = (x∗)TAx∗ i = 1, · · · , k.

I If x∗ satisfies the relation

(x∗)TAx > xTAx, x ∈ Sk,

then it is called an evolutionary stable state (ESS) and standard evolutionary game
theory gives us that

lim
t→∞

x(t) = x∗.
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THE LINK WITH THE REPLICATOR COALESCENT

I If we were to try and match the replicator coalescent as closely as possible to a
replicator equation dynamical system, what would A look like?

I Let us henceforth define

Ai,j = −
(

Cj,i1j6=i +
1
2

Ci,i

)
.

I Thanks to some standard theory and the assumed properties of the matrix C, this
offers us the existence of an ESS, x∗
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COMING DOWN FROM INFINITY: AT THE VERY BEGINNING

Theorem
For a sequence (ηN,N ≥ 1) in Nk

∗ such that (||ηN||1, arg(ηN))→ (∞, r) with r ∈ Sk
+, let

R(t) = r(τ(t)), t ≥ 0 where

τ(t) = inf{s > 0 :

∫ s

0
σ(u) d u > t}, t ≥ 0.

Suppose x(t) = (x1(t), · · · , xk(t)) solves the corresponding A-replicator equation, then

lim
N→∞

EηN [|Ri(t)− xi(t)|] = 0, i = 1, · · · , k,

and in particular,

lim
t↑∞

lim
N→∞

EηN [|Ri(t)− x∗i |] = 0, i = 1, · · · , k.
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COMING DOWN FROM INFINITY: JUST AFTER THE VERY BEGINNING

Theorem
For any sequence (ηN,N ≥ 1) in Nk

∗ such that (||ηN||1, arg(ηN))→ (∞, r) and r ∈ Sk
+

and for i = 1, · · · , k,

lim
m→∞

lim
N→∞

EηN [|ri(γm)− x∗i |] = 0, i = 1, · · · , k,

where
γm = inf{t > 0 : σ(t) = m} m ∈ N.
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SIMULATIONS WITH k = 2
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SIMULATIONS WITH k = 3
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SOME REMARKS ON THE PROOFS
I Understanding coming down from infinity requires two key ingredients:

I Comparison with Kingman’s coalescent:
total rate of mergers given by

λ(n) =
k∑

i=1

∑
j 6=i

Cjinjni +
Ci,i

2
ni(ni − 1)

 , n ∈ Nk
∗

and

C
(||n||1

2

)
< λ(n) < C

(||n||1
2

)
n ∈ Nk

∗

which can be used to show

µm(n) = lim
N→∞

P
ηN (n(γm) = n) where γn = inf{t > 0 : n(t) = n}

I Time reversal and ensuring that there is explosion (which is the same as coming down
from infinity): A natural function with which to change measure is

h(n) = Eµm

[∫ ∞
0

1(n(t)=n) d t
]
= µ||n||1 (n)/qn, ||n||1 ≤ m.

If we suppose qn,n′ for ||n||1 = ||n′||1 + 1 are the transition then standard Markov
duality will tell us that

q̂n,n′ =
h(n′)
h(n)

qn′,n, ||n′||1 = ||n||1 + 1

are the transitions of the time-reversed chain, which we can show explodes in finite
time. Hence there exists a process with the transitions of (n(t), t ≥ 0) which comes
down from infinity.
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SOME REMARKS ON THE PROOFS

I Understanding the relationship with the A-replicator equations and the ESS x∗
revolves around the following semimartingale decomposition:

y(t) =

 r(t ∧ γ1)

1/σ(t ∧ γ1)

 , t ≥ 0,

where γ1 = inf{t > 0 : σ(t) = 1}.

y(t) = y(0) + m(t) + α(t), t ≥ 0

where (m(t), t ≥ 0) is a martingale taking the form

m(t) =
∑

s≤t∧γ1

∆y(s)−α(t), t ≥ 0,

such that ∆y(t) = y(t)− y(t−) and (α(t), t ≥ 0) is a compensator taking the form

α(t) =

∫ t∧γ1

0

σ(s)
σ(s)− 1

k∑
i=1

σ(s)(r(s)− ei)

1

 ri(s)[σ(s)−1diag(A)1− Ar(s)]i d s.
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SOME REMARKS ON THE PROOFS

I Define the sequence of stopping times (τ(t), t ≥ 0), which are defined by the right
inverse,

τ(t) = inf{u > 0 :

∫ u

0
σ(s) d s > t}, t ≥ 0.

I Then yτ := y ◦ τ has semimartingale decomposition yτ = mτ + ατ , where
mτ := m ◦ τ is a martingale and, for t ≥ 0,

ατ (t) =

∫ t∧τ−1(γ1)

0

σ(τ(s))
σ(τ(s))− 1

k∑
i=1


r(τ(s))− ei

1
σ(τ(s))

 ri(τ(s))[σ(τ(s))−1diag(A)1− Ar(τ(s))]i d s

I We can show mτ → 0 in L2

I Recall yτ = (r ◦ τ, 1/σ ◦ τ), focusing on the entry R := r ◦ τ as we take limits
under PηN as N →∞, roughly speaking we see that

Ri(t) ≈ ri(0) +

∫ t

0
Ri(s)

(
[AR(s)]i − R(s)TAR(s))

)
d s,

which is the A-replicator equations in integral form.
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OPEN PROBLEM: THE LAST ONE STANDING

I Eventually everyone is dead except one individual

I The tribal index I of that individual is distributed on {1, · · · , k}

I Problem (very hard):
Given initial configuration n ∈ Nk

∗, what is the distribution of I?

I Problem (hard):
What is the distribution of I when the process comes down from infinity?
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†FOOTNOTE: WHAT REALLY HAPPENED ON RAPA NUI?
There are conflicting theories as to the collapse of society on Rapa Nui as there is very
poor recorded observational evidence of what happened on the island.
I Deforestation may have been the result of uncontrolled an Polynesian rat

population, a species that was brought with the first Polynesian settlers

I Deforestation did not necessarily lead to societal collapse and there is evidence
that the Rapa Nui people adapted farming methods

I Accounts of the first Dutch explorers did not indicate starvation nor warfare

I After a second Spanish explorers visit in 1770 in which the island was surveyed,
there was a noted population decrease but still no evidence of warfare

I The British (James Cook) 1774 arrived thereafter noting that virtually all of the
Moai statues had been toppled since the Spanish visit

I The first Dutch expedition brought disease, which killed up to 80% of the
population, which was reinforced two-three generations later by the Spanish
visitors. After the Spanish visit, the islanders lost faith in their spiritual beliefs,
which saw the Moai monoliths (protective guardians) toppled.
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Thank you!


