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Self-similar Markov processes
Part II: higher dimensions

Andreas Kyprianou
University of Bath

A more thorough set of lecture notes can be found here:
https://arxiv.org/abs/1707.04343
Other related material found here
https://arxiv.org/abs/1511.06356
https://arxiv.org/abs/1706.09924
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§7. Isotropic stable processes in dimension d > 2 seen as Lévy processes
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ISOTROPIC a-STABLE PROCESS IN DIMENSION d > 2

Ford > 2,let X := (X; : t > 0) be a d-dimensional isotropic stable process.
> X has stationary and independent increments (it is a Lévy process)
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ISOTROPIC a-STABLE PROCESS IN DIMENSION d > 2

Ford > 2,let X := (X; : t > 0) be a d-dimensional isotropic stable process.
> X has stationary and independent increments (it is a Lévy process)
> Characteristic exponent ¥ () = — log Ey(e'?*1) satisfies

vO) =101, OeR
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ISOTROPIC a-STABLE PROCESS IN DIMENSION d > 2

Ford > 2,let X := (X; : t > 0) be a d-dimensional isotropic stable process.
> X has stationary and independent increments (it is a Lévy process)
> Characteristic exponent ¥ () = — log Ey(e'?*1) satisfies

vO) =101, OeR

> Necessarily, a € (0,2], we exclude 2 as it pertains to the setting of a Brownian
motion.
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[SOTROPIC a-STABLE PROCESS IN DIMENSION d > 2

Ford > 2,let X := (X; : t > 0) be a d-dimensional isotropic stable process.
> X has stationary and independent increments (it is a Lévy process)
> Characteristic exponent ¥ () = — log Ey(e'?*1) satisfies

wo) =lo]", ek

> Necessarily, o € (0,2], we exclude 2 as it pertains to the setting of a Brownian
motion.
> Associated Lévy measure satisfies, for B € B(IRY),
29T ((d + @) /2) 1
O = Zanr ) Jy e
_297I0((d 4 ) /2)1(d/2)
N 7| T(—a/2)]

oo 1
151 (dO / 15(r0) ——dr,
- (do) A ( )ra+d

where o1(d0) is the surface measure on S;_; normalised to have unit mass.

> X is Markovian with probabilities denoted by Py, x € R?
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[SOTROPIC a-STABLE PROCESS IN DIMENSION d > 2

Ford > 2,let X := (X; : t > 0) be a d-dimensional isotropic stable process.
> X has stationary and independent increments (it is a Lévy process)
> Characteristic exponent ¥ () = — log Ey(e'?*1) satisfies

wo) =lo]", ek

> Necessarily, o € (0,2], we exclude 2 as it pertains to the setting of a Brownian
motion.
> Associated Lévy measure satisfies, for B € B(IRY),
29T ((d + @) /2) 1
O = Zanr ) Jy e
_297I0((d 4 ) /2)1(d/2)
N 7|0 (—a/2)]

oo 1
151 (dO / 15(r0) ——dr,
- (do) A ( )ra+d

where o1(d0) is the surface measure on S;_; normalised to have unit mass.
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[SOTROPIC a-STABLE PROCESS IN DIMENSION d > 2

Ford > 2,let X := (X; : t > 0) be a d-dimensional isotropic stable process.
> X has stationary and independent increments (it is a Lévy process)
> Characteristic exponent ¥ () = — log Ey(e'?*1) satisfies

wo) =lo]", ek

> Necessarily, o € (0,2], we exclude 2 as it pertains to the setting of a Brownian
motion.

> Associated Lévy measure satisfies, for B € B(IRY),

20T((d + @) /2) 1
I(B) = /2|0 (—a/2)| Jp |y|o+d !
_ 22717((d + @) /2)T(d/2) h 1
= T i [T(—a/2)] SR de)/ O e

where o1(d0) is the surface measure on S;_; normalised to have unit mass.

> X is Markovian with probabilities denoted by Py, x € R?
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ISOTROPIC a-STABLE PROCESS IN DIMENSION d > 2

> Stable processes are also self-similar. For ¢ > 0 and x € R \ {0},

under Py, the law of (¢X.— o, t > 0) is equal to Pey.
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ISOTROPIC a-STABLE PROCESS IN DIMENSION d > 2

> Stable processes are also self-similar. For ¢ > 0 and x € R \ {0},

under Py, the law of (¢X.— o, t > 0) is equal to Pey.

> Tsotropy means, for all orthogonal transformations (e.g. rotations) U : R? +— R¥
and x € RY,
under Py, the law of (UX;,t > 0) is equal to Pyjy.
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[SOTROPIC a-STABLE PROCESS IN DIMENSION d > 2

> Stable processes are also self-similar. For ¢ > 0 and x € R \ {0},

under Py, the law of (¢X.— o, t > 0) is equal to Pey.

> Isotropy means, for all orthogonal transformations (e.g. rotations) U : R? s R?
and x € RY,
under Py, the law of (UX;,t > 0) is equal to Py,

> If (S¢,t > 0) is a stable subordinator with index «/2 (a Lévy process with Laplace
exponent — ! log E[e~*%] = A%) and (B, t > 0) for a standard (isotropic)
d-dimensional Brownian motion, then it is known that X; := \@Bst/ t>0,isa
stable process with index cv.

E[e?X] =k [e_ezsf] =117, 0 cR.
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SAMPLE PATH, o = 1.5
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SOME CLASSICAL PROPERTIES: TRANSIENCE

We are interested in the potential measure

U(x,dy) = / Py(X; € dy)dt = (/ pi(y — x)dt) dy, x,y € R.
0 0

Note: stationary and independent increments means that it suffices to consider
u(o, dy).
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SOME CLASSICAL PROPERTIES: TRANSIENCE

We are interested in the potential measure

U(x,dy) = / Py(X; € dy)dt = (/ pi(y — x)dt) dy, x,y € R.
0 0

Note: stationary and independent increments means that it suffices to consider
u(o, dy).

Theorem
The potential of X is absolutely continuous with respect to Lebesgue measure, in which case, its
density in collaboration with spatial homogeneity satisfies U(x, dy) = u(y — x)dy, x,y € R?,
where
M(Z) :2—a7r—d/2r((d_a)/2) |Z|m¢—d7 5 GRd.
I'(a/2)
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SOME CLASSICAL PROPERTIES: TRANSIENCE

We are interested in the potential measure

U(x,dy) = / Py(X; € dy)dt = (/ pi(y — x)dt) dy, x,y € R.
0 0

Note: stationary and independent increments means that it suffices to consider
u(o, dy).

Theorem
The potential of X is absolutely continuous with respect to Lebesgue measure, in which case, its
density in collaboration with spatial homogeneity satisfies U(x, dy) = u(y — x)dy, x,y € R?,
where
M(Z) :z—aﬂ_—d/ZF((d_a)/z) |Z|m¢—d7 5 GRd.
I'(a/2)

In this respect X is transient. It can be shown moreover that
lim |X;| = o0
t—o0

almost surely
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PROOF OF THEOREM

Now note that, for bounded and measurable f : RY — RY,

E [/Ooof(xt)dt] =E [/Ooof(\/iBst)dt}

- /O = ds /0 ~ 4tP(s; € ds) /R P(Bs € dx)f (v2x)

1 oo 2
- [y dse— V12 /45— 1+(a—d)/2
F(a/Z)Trd/ZZd /R y/O se S f(]/)

1 oo
d (a—d)/ dute—tty—1+d—a/2)
st [ vl [T e )

_ Nd=-a)/2)

_ (a—d)
"~ 20T (a/2)n/2 /R dy ly[**~f (y).
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SOME CLASSICAL PROPERTIES: POLARITY

> Kesten-Bretagnolle integral test, in dimension d > 2,

1 1 1
Re(—— = [ — -1 = oo.
/R e<1+\p(2))dz /Rl+|z|ad20</Rl+ra droy(df) = oo

> Po(rW < o0) =0, forx,y € RY.
> ie. the stable process cannot hit individual points almost surely.
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§8. Isotropic stable processes in dimension d > 2 seen as a self-similar Markov
process
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LAMPERTI-TRANSFORM OF |X|

Theorem (Caballero-Pardo-Perez (2011))
For the pssMp constructed using the radial part of an isotropic d-dimensional stable process,
the underlying Lévy process, £ that appears through the Lamperti has characteristic exponent
given by

F(%(—iz + a)) F(%(iz +d))

T T , zeR.
I(—3iz) TI'(3(z+d—a))

U(z) = 2%
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LAMPERTI-TRANSFORM OF |X|

Theorem (Caballero-Pardo-Perez (2011))

For the pssMp constructed using the radial part of an isotropic d-dimensional stable process,
the underlying Lévy process, £ that appears through the Lamperti has characteristic exponent
given by

o F(%(—iz + a)) F(%(iz +d))

Y@ =2 r(—liz) TI(l(z+d—a)

z € R.

Here are some facts that can be deduced from the above Theorem that are exercises in
the tutorial:
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LAMPERTI-TRANSFORM OF |X|

Theorem (Caballero-Pardo-Perez (2011))

For the pssMp constructed using the radial part of an isotropic d-dimensional stable process,
the underlying Lévy process, £ that appears through the Lamperti has characteristic exponent
given by

o F(%(—iz + a)) F(%(iz +d))

Y@ =2 r(—liz) TI(l(z+d—a)

z € R.

Here are some facts that can be deduced from the above Theorem that are exercises in
the tutorial:

> The fact that lim;—, o |X¢| = 00
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LAMPERTI-TRANSFORM OF |X|

Theorem (Caballero-Pardo-Perez (2011))
For the pssMp constructed using the radial part of an isotropic d-dimensional stable process,
the underlying Lévy process, £ that appears through the Lamperti has characteristic exponent
given by

F(%(—iz + a)) F(%(iz +d))

T T , zeR.
I(—3iz) TI'(3(z+d—a))

U(z) = 2%

Here are some facts that can be deduced from the above Theorem that are exercises in
the tutorial:

> The fact that lim;—, o |X¢| = 00

» The fact that
X;|*~4,  t>0,

is a martingale.
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CONDITIONED STABLE PROCESS

> We can define the change of measure

dPg - | X
dPy |z |x|a=d’

t>0,x#0
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CONDITIONED STABLE PROCESS

> We can define the change of measure

dPe
dP,

_ |Xt|o<7d
- |x|a—d )

t>0,x#0
Fi

> Suppose that f is a bounded measurable function then, for all ¢ > 0,

|CXC—°‘t|a_d

SRt €)= | D s )

|Xt|a—d
|Cx|d7a

— ex

f(sts < t):| = E?x[f(st ;5 < t)]
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CONDITIONED STABLE PROCESS

> We can define the change of measure

dPe
dP,

_ |Xt|a7d
- |x|a—d )

t>0,x#0
Fi

> Suppose that f is a bounded measurable function then, for all ¢ > 0,

|CXC—°‘t|a_d

SRt €)= | D s )

|Xt|a—d
|Cx|d7a

cxX

f(sts < t):| = E?x[f(st ;5 < t)]

> Markovian, isotropy and self-similarity properties pass through to (X, Py), x # 0.
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CONDITIONED STABLE PROCESS

> We can define the change of measure

dpe
dP,

_ |Xt|a7d
- |x|a—d )

t>0,x#0
Fi

> Suppose that f is a bounded measurable function then, for allc > 0,

|CXC—°‘t|a_d

SRt €)= | D s )

|Xt|a—d
|Cx|d7a

cxX

f(sts < t):| = E?x[f(st ;5 < t)]

> Markovian, isotropy and self-similarity properties pass through to (X, Py), x # 0.
> Similarly (|X],Pg), x # 01is a positive self-similar Markov process.
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CONDITIONED STABLE PROCESS

> Tt turns out that (X, PY), x # 0, corresponds to the stable process conditioned to be
continuously absorbed at the origin.

17/ 58



§7. §8. §9. §10. §11. §12. Exercises References

0000000000 00®000000000 000 0000000000000 000 0000 o o
I

CONDITIONED STABLE PROCESS

> Tt turns out that (X, PY), x # 0, corresponds to the stable process conditioned to be
continuously absorbed at the origin.

> More precisely, for A € o(Xs,s < t), if we set {0} to be ‘cemetery’ state and
k = inf{t > 0: X; = 0}, then
P2(A,t < k) = 111511@,((14, t < k|7 < o0),
a

where 7.7 = inf{t > 0: |X;| < a}.
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CONDITIONED STABLE PROCESS

> Tt turns out that (X, PY), x # 0, corresponds to the stable process conditioned to be
continuously absorbed at the origin.

> More precisely, for A € o(Xs,s < t), if we set {0} to be ‘cemetery’ state and
k = inf{t > 0: X; = 0}, then

PY(At < k) = 1iﬁ)11P’x(A, t < k|7® < o0),
a

where 7.7 = inf{t > 0: |X;| < a}.
> In light of the associated Esscher transform on &, we note that the Lamperti

transform of (|X|,Pg), x # 0, corresponds to the Lévy process with characteristic
exponent

F(3(—iz+d)) T(i(z+a))

M(-3(z+a—d) T(3iz)

0O (z) =2 zeR
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CONDITIONED STABLE PROCESS

> Tt turns out that (X, PY), x # 0, corresponds to the stable process conditioned to be
continuously absorbed at the origin.

> More precisely, for A € o(Xs,s < t), if we set {0} to be ‘cemetery’ state and
k = inf{t > 0: X; = 0}, then

PY(At < k) = 1iﬁ)11P’x(A, t < k|7® < o0),
a

where 7.7 = inf{t > 0: |X;| < a}.

> In light of the associated Esscher transform on &, we note that the Lamperti
transform of (|X|,Pg), x # 0, corresponds to the Lévy process with characteristic
exponent

F(3(—iz+d)) T(i(z+a))

M(-3(z+a—d) T(3iz)

0O (z) =2 zeR

> Given the pathwise interpretation of (X, P?), x # 0, it follows immediately that
lim¢ o0 & = —oo, PY almost surely, for any x # 0.
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R?-SELF-SIMILAR MARKOV PROCESSES

Definition

A Ri-valued regular Feller process Z = (Z;,t > 0) is called a R¥-valued self-similar

Markov process if there exists a constant a > 0 such that, for any x > 0 and ¢ > 0,
the law of (cZ.—a;,t > 0) under Py is Py,

where Py is the law of Z when issued from x.

18/ 58
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R?-SELF-SIMILAR MARKOV PROCESSES

Definition
A Ri-valued regular Feller process Z = (Z;,t > 0) is called a R¥-valued self-similar
Markov process if there exists a constant a > 0 such that, for any x > 0 and ¢ > 0,

the law of (cZ.—a;,t > 0) under Py is Py,

where Py is the law of Z when issued from x.

> Same definition as before except process now lives on R¥.
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R?-SELF-SIMILAR MARKOV PROCESSES

Definition
A Ri-valued regular Feller process Z = (Z;,t > 0) is called a R¥-valued self-similar
Markov process if there exists a constant a > 0 such that, for any x > 0 and ¢ > 0,

the law of (cZ.—a;,t > 0) under Py is Py,

where Py is the law of Z when issued from x.

> Same definition as before except process now lives on R¥.
> Is there an analogue of the Lamperti representation?
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LAMPERTI-KIU TRANSFORM

In order to introduce the analogue of the Lamperti transform in d-dimensions, we need
to remind ourselves of what we mean by a Markov additive process in this context.

Definition
An R X E valued regular Feller process (¢, ©) = ((&, ©¢) : t > 0) with probabilities
P, ¢, x € R, 6 € E, and cemetery state (—oo, T) is called a Markov additive process (MAP)
if © is a regular Feller process on E with cemetery state  such that, for every bounded
measurable functionf : (RU {—o0}) X (EU{f}) = R, t,s > 0and (x,0) € R x E, on
{t<s},

EX,9 [f(gt-FS — &, @H—S)|U((£u7 @u), u < t)] = EO,Gt [f(§57 95)]7

where ¢ = inf{t > 0: ©; = t}.

19/ 58
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LAMPERTI-KIU TRANSFORM

In order to introduce the analogue of the Lamperti transform in d-dimensions, we need
to remind ourselves of what we mean by a Markov additive process in this context.

Definition

An R X E valued regular Feller process (¢, ©) = ((&, ©¢) : t > 0) with probabilities

P, ¢, x € R, 6 € E, and cemetery state (—oo, T) is called a Markov additive process (MAP)
if © is a regular Feller process on E with cemetery state  such that, for every bounded
measurable function f : (RU {—o0}) x (EU{t}) = R, f,s > 0and (x,0) € R X E, on

{t <<},
EX,9 [f(&-FS — &, @H—S)|U((£u7 @u), u < t)] = E(),@t [f(§57 95)]7
where ¢ = inf{t > 0: ©; = t}.

> Roughly speaking, one thinks of a MAP as a ‘Markov modulated” Lévy process
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LAMPERTI-KIU TRANSFORM

In order to introduce the analogue of the Lamperti transform in d-dimensions, we need
to remind ourselves of what we mean by a Markov additive process in this context.

Definition
An R X E valued regular Feller process (¢, ©) = ((&, ©¢) : t > 0) with probabilities
P, ¢, x € R, 6 € E, and cemetery state (—oo, T) is called a Markov additive process (MAP)
if © is a regular Feller process on E with cemetery state  such that, for every bounded
measurable function f : (RU {—o0}) x (EU{t}) = R, f,s > 0and (x,0) € R X E, on
{t<s},

EX,9 [f(&-#s — &, @H—S)|U((£u7 @u), u < t)] = E(),@t [f(§57 95)]7

where ¢ = inf{t > 0: ©; = t}.

> Roughly speaking, one thinks of a MAP as a ‘Markov modulated” Lévy process

> It has ‘conditional stationary and independent increments’

19/ 58



§7. §8. §9. §10. §11. §12. Exercises References
0000000000 0000@0000000 000 0000000000000 000 0000 o o

LAMPERTI-KIU TRANSFORM

In order to introduce the analogue of the Lamperti transform in d-dimensions, we need
to remind ourselves of what we mean by a Markov additive process in this context.

Definition
An R X E valued regular Feller process (¢, ©) = ((&, ©¢) : t > 0) with probabilities
P, ¢, x € R, 6 € E, and cemetery state (—oo, T) is called a Markov additive process (MAP)
if © is a regular Feller process on E with cemetery state  such that, for every bounded
measurable function f : (RU {—o0}) x (EU{t}) = R, f,s > 0and (x,0) € R X E, on
{t<s},

EX,9 [f(&-FS — &, @H—S)|U((£u7 @u), u < t)] = E(),@t [f(§57 95)]7

where ¢ = inf{t > 0: ©; = t}.

> Roughly speaking, one thinks of a MAP as a ‘Markov modulated” Lévy process
> It has ‘conditional stationary and independent increments’

> Think of the E-valued Markov process © as modulating the characteristics of £
(which would otherwise be a Lévy processes).
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LAMPERTI-KIU TRANSFORM

Theorem
Fix a > 0. The process Z is a ssMp with index « if and only if there exists a (killed) MAP,
(£,0) on R x Sy_1 such that

Z = e5¢(')9(p(t) s t<Ie,

where .
o(t) :inf{s >0 ;/ e dy > t}, F< I,
0

and Is =[5 e®&sds is the lifetime of Z until absorption at the origin. Here, we interpret
exp{—oo} x T := 0and inf () := co.

> In the above representation, the time to absorption in the origin,
¢ =inf{t >0:Z; =0},

satisfies ¢ = I;.
> Note x € R? if and only if
x = (|x], Arg(x)),
where Arg(x) = x/|x| € S4_1. The Lamperti-Kiu decomposition therefore gives

us a d-dimensional skew product decomposition of self-similar Markov processes. >/
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LAMPERTI-STABLE MAP

> The stable process X is an R?-valued self-similar Markov process and therefore fits
the description above
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LAMPERTI-STABLE MAP

> The stable process X is an R?-valued self-similar Markov process and therefore fits
the description above

> How do we characterise its underlying MAP (¢, ©)?
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LAMPERTI-STABLE MAP

> The stable process X is an R?-valued self-similar Markov process and therefore fits
the description above

> How do we characterise its underlying MAP (¢, ©)?

> We already know that |X| is a positive similar Markov process and hence £ is a
Lévy process, albeit corollated to ©

21/ 58
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LAMPERTI-STABLE MAP

> The stable process X is an R?-valued self-similar Markov process and therefore fits
the description above

> How do we characterise its underlying MAP (¢, ©)?

> We already know that |X]| is a positive similar Markov process and hence ¢ is a
Lévy process, albeit corollated to ©

» What properties does © and what properties to the pair (¢, ©) have?

21/ 58
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MAP 1ISOTROPY

Theorem
Suppose (€, ©) is the MAP underlying the stable process. Then ((£,U~10), Py o) is equal in

law to ((€,©), P, ;—14), for every orthogonal d-dimensional matrix U and x € RY, 0 € Sy_1.
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MAP 1ISOTROPY

Theorem
Suppose (£, ©) is the MAP underlying the stable process. Then ((£, U~1©), P, ) is equal in

law to ((€,©), P, ;—14), for every orthogonal d-dimensional matrix U and x € RY, 0 € Sy_1.

Proof.
First note that ¢(t) = fot | Xy |~ *du. It follows that

(&,01) = (log [Xal, Arg(Xa)),  t>0,

where the random times A(t) = inf {s > 0 : [; [Xy|~“du > t} are stopping times in
the natural filtration of X.
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MAP ISOTROPY

Theorem
Suppose (£, ©) is the MAP underlying the stable process. Then ((£, U~1©), P, ) is equal in
law to ((€,©), P, ;—14), for every orthogonal d-dimensional matrix U and x € R, 6 € Sy_1.

Proof.
First note that ¢(t) = fot | Xy |~ *du. It follows that

(&,01) = (log [Xal, Arg(Xa)),  t>0,

where the random times A(t) = inf {s > 0 : [; [Xy|~“du > t} are stopping times in
the natural filtration of X.

Now suppose that U is any orthogonal d-dimensional matrix and let X’ = U~!X. Since
X is isotropic and since |X’| = |X|, and Arg(X’) = U~ Arg(X), we see that, for x € R
and 0 € Sy;_1

((57 u_1®)7 I)log \x\,@) = (IOg |XA() |7 u_lArg(XA(-)))7 PX)

(
L ((log [Xa(y |, Arg(Xa()))s Py—1y)
((&7 6)1 l)log \x\,u—le)

as required. O s
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MAP CORROLATION

> We will work with the increments A& = & — &— € R, t >0,
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MAP CORROLATION

> We will work with the increments A& = & — &— € R, t >0,

Theorem (Bo Li, Victor Rivero, Bertoin-Werner (1996))

Suppose that f is a bounded measurable function on [0, 00) X R x R X Sy_1 X Sy_1 such that
f(,+,0,-,-) =0, then, forall 0 € Sy_1,

EO,O <Zf(sa fs— ) Afs: (—)S—: @s)>

s>0

- [ __cla)er
_/0 /R/Sd,l /Sd?l/RVe(ds,dx,dﬁ)01(d¢)dy|ey¢_19|a+df(s,x,y,19,¢),

where
Vg (ds,dx,dd) = Py g(& € dx, ©s € dv)ds, xeR, Y eS;_1,8s>0,

is the space-time potential of (£, ©) under Pg g, o1 () is the surface measure on Sy_q
normalised to have unit mass and

c(a) =272 70((d + @) /2)T(d/2)/|T(—/2)].
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MAP OF (X, P°)
> Recall that (|X;|*~,t > 0), is a martingale.
> Informally, we should expect £h = 0, where h(x) = |x|*~ and L is the
infinitesimal generator of the stable process, which has action

Lf(x) = a Vi) + [ [flx+y) =f() =Ly <ny - VAOIIAy),  |x[ >0,
R4

for appropriately smooth functions.
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MAP OF (X, P°)
> Recall that (|X;|*~,t > 0), is a martingale.
> Informally, we should expect £h = 0, where hi(x) = |x|*~¢ and L is the
infinitesimal generator of the stable process, which has action

Lf(x) = a- Vf(x) + /Rd[f(x +y) =f) =1y <y - VA@OILdy),  [x] >0,

for appropriately smooth functions.
> Associated to (X, Py), x # 0 is the generator

£OF(x) = lim EFFXOI —f(0) _ .0 Ex[|Xe |~ (Xe)] — [x]*~f (x)
"o t "o |x|e—dt

)

24/ 58
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MAP OF (X, P°)
> Recall that (|X;|*~,t > 0), is a martingale.
> Informally, we should expect £h = 0, where hi(x) = |x|*~¢ and L is the
infinitesimal generator of the stable process, which has action

Lf(x) = a- Vf(x) + /Rd[f(x +y) =f) =1y <y - VA@OILdy),  [x] >0,

for appropriately smooth functions.
> Associated to (X, Py), x # 0 is the generator

BRI —f() _ o BaIX T (X)) — (¢ "’f(X)

1o t tL0 x|t

Lof(x) =
> That is to say

LF(x) = = L(hf) (x),

h()
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MAP OF (X, P°)
> Recall that (|X;|*~,t > 0), is a martingale.
> Informally, we should expect £h = 0, where hi(x) = |x|*~¢ and L is the
infinitesimal generator of the stable process, which has action

Lf(x) = a- Vf(x) + /Rd[f(x +y) =f) =1y <y - VA@OILdy),  [x] >0,

for appropriately smooth functions.
> Associated to (X, Py), x # 0 is the generator

BRI —f() _ o BaIX T (X)) — (¢ "’f(x)

1o t tL0 x|t

Lo (x) =

> That is to say

O
(x) = == L(f) (x),
Lof h( yEf
> Straightforward algebra using £h = 0 gives us

L) = 2 VH) + [ [+ 9) ~ ) ~ 1cny - TF St

h(x)

I(dy), x>0
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MAP OF (X, P°)
> Recall that (|X;|*~,t > 0), is a martingale.
> Informally, we should expect £h = 0, where hi(x) = |x|*~¢ and L is the
infinitesimal generator of the stable process, which has action

Lf(x) = a- Vf(x) + /Rd[f(x +y) = f(0) =Ly <py - VIOII(dy), x>0,

for appropriately smooth functions.
> Associated to (X, Py), x # 0 is the generator

BRI —f() _ o BaIX T (X)) — (¢ "’f(x)

£ = 1o t tL0 x|t
> That is to say
O
(x) = - L) (),
Lof h( ) if
> Straightforward algebra using £h = 0 gives us
h(x +
L7 = 2 V) + [ [Fx+) =) =gy SF0I D), e >0
> Equivalently, the rate at which (X, P?), x # 0 jumps given by
297I0((d + ) /2)T(d/2) dr |x 4 re|e—
I1°(x, B) := doq (¢ 15(rd _
( ) Tl'd|1—‘(7a/2)| Su 1( ) (0,00) B( )Ta+1 |x\°‘—d
24/ 58

for |x| > 0and B € B(R?).
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MAP OF (X, P°)

Theorem

Suppose that f is a bounded measurable function on [0,00) x R X R x Sg_1 X Sg_1 such that
f(-,-,0,+,+) =0, then, forall 0 € Sy_1,

ES,G (Zf(s’ 55—7 A£S7 @S— ) @s)>

s>0

_/ / /Sd ) /s,, 1 / Vi (ds,dx, d0)on (d9)dy 520 y;(a)z|a+df(s Xy, 9,),

where
Vo (ds,dx,dd) = Pg »(& € dx, ©s € do)ds, xeR,YES;_1,5s>0,

is the space-time potential of (¢, ©) under P§ .

Comparing the right-hand side above with that of the previous Theorem, it now
becomes immediately clear that the the jump structure of (§, ©) under P¢ ,, x € R,

0 € Sy_1, is precisely that of (-, ©) under Py g, x € R, 0 € Sy_1.
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MAP OF (X, P.)

Theorem

Suppose that f is a bounded measurable function on [0,00) x R X R x Sg_1 X Sg_1 such that
f(-,-,0,+,+) =0, then, forall 0 € Sy_1,

E 0 (Zf(s755—7A£57®5—7@5)>

s>0

/ // / / Vo(ds, . do)on (do)dy 0 y;(a)§|a+df(s %y, 9, ),

where
Vi (ds, dx,dy) = Py g (& € dx, ©s € do)ds, x€R, Y E€Sy_1,5 >0,

is the space-time potential of (£, ©) under P§ ,.

Comparing the right-hand side above with that of the previous Theorem, it now
becomes immediately clear that the the jump structure of (§, ©) under P¢ ,, x € R,

0 € Sy_1, is precisely that of (-, ©) under Py g, x € R, 0 € Sy_1.
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§9. Riesz-Bogdan-Zak transform
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RIESZ—BOGDAN—ZAK TRANSFORM
» Define the transformation K : R — R%, by

X
Kx = - e RN\{0}.
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RIESZ—BOGDAN—ZAK TRANSFORM
» Define the transformation K : R — R%, by
x d
Kx = — x € R"\{0}.

2’

> This transformation inverts space through the unit sphere {x € R? : |x| = 1}.
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RIESZ—BOGDAN—ZAK TRANSFORM
» Define the transformation K : R — R%, by

X
Kx = - e RN\{0}.

> This transformation inverts space through the unit sphere {x € R? : |x| = 1}.
> Write x € R? in skew product form x = (|x|, Arg(x)), and note that

Ke = (ja| !, Arg(x)),  x € RN\{0},

showing that the K-transform ‘radially inverts’ elements of R through S;_;.
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RIESZ—BOGDAN—ZAK TRANSFORM
» Define the transformation K : R — R%, by

X
Kx = - e RN\{0}.

> This transformation inverts space through the unit sphere {x € R? : |x| = 1}.
> Write x € R? in skew product form x = (|x|, Arg(x)), and note that
Ke= (x| 7", Arg(x)),  x€R\{0},

showing that the K-transform ‘radially inverts’ elements of R through S;_;.

» In particular K(Kx) = x
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RIESZ—BOGDAN—ZAK TRANSFORM
» Define the transformation K : R — R%, by

X
Kx = - e RN\{0}.

> This transformation inverts space through the unit sphere {x € R? : |x| = 1}.
> Write x € R? in skew product form x = (|x|, Arg(x)), and note that
Ke= (x| 7", Arg(x)),  x€R\{0},

showing that the K-transform ‘radially inverts’ elements of R through S;_;.

» In particular K(Kx) = x

Theorem (d-dimensional Riesz—Bogdan—Zak Transform, d > 2)
Suppose that X is a d-dimensional isotropic stable process with d > 2. Define

S
n(t) =inf{s > 0: / |Xu|72%du > t}, >0, 1)
0

Then, for all x € R\{0}, (KX (1), t = 0) under Py is equal in law to (X, PR.).
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PROOF OF RIESZ-BOGDAN-ZAK TRANSFORM
We give a proof, different to the original proof of Bogdan and Zak (2010).

P> Recall that X; = efe @«p(t)/ where

P(t)
/ e dy = t, £>0.
0

29/ 58
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PROOF OF RIESZ-BOGDAN-ZAK TRANSFORM
We give a proof, different to the original proof of Bogdan and Zak (2010).

P> Recall that X; = efe @«p(t)/ where

@(t)
/ e dy = t, £>0.
0

> Note also that, as an inverse,

n(t) )
/ Xu|20du—t >0,
0
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PROOF OF RIESZ-BOGDAN-ZAK TRANSFORM
We give a proof, different to the original proof of Bogdan and Zak (2010).

P> Recall that X; = efe @«p(t)/ where

@(t)
/ e dy = t, £>0.
0

> Note also that, as an inverse,

n(t) )
/ Xu|20du—t >0,
0

> Differentiating,

dn(t)

de(t) _ —ato) and % =e?eonn,  p(t) < 710},

dt
and chain rule now tells us that
d(pomn)(t) _ de(s)

= dn(t) = ea5¢°n(t),
dt ds

dt

s=n(t)
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PROOF OF RIESZ-BOGDAN-ZAK TRANSFORM
We give a proof, different to the original proof of Bogdan and Zak (2010).
> Recall that X; = e © (1), where

@(t)
/ e dy = t, £>0.
0

> Note also that, as an inverse,

n(t) )
/ Xu|20du—t >0,
0

> Differentiating,

dn(t)

de(t) _ —ato) and % =e?eonn,  p(t) < 710},

dt
and chain rule now tells us that

dlpon)(t) _ de(s)

= dn(t) = ea5¢°n(t)_
dt ds

dt

s=n(t)
> Said another way,
won(f)
/ e udy = ¢, t>0,
0

or
S
pon(t)=inf{s >0: / e “Sudy > t} 29/ 58
0
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PROOF OF RIESZ-BOGDAN-ZAK TRANSFORM

> Next note that

KX,y = e Sven0© >0,

won(t)
and we have just shown that

S
pon(t) =inf{s >0: / e Sudy > .
0
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PROOF OF RIESZ-BOGDAN-ZAK TRANSFORM

> Next note that

KX,y = e Sven0© >0,

won(t)
and we have just shown that

S
pon(t) =inf{s >0: / e Sudy > .
0

> It follows that (KX, (), > 0) is a self-similar Markov process with underlying
MAP (—¢,0)
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PROOF OF RIESZ-BOGDAN-ZAK TRANSFORM

> Next note that

KX, = e Seon© t>0,

won(t)
and we have just shown that

S
won(t) =inf{s >0: / e Sudy > .
0

> It follows that (KX, (), > 0) is a self-similar Markov process with underlying
MAP (—¢,0)

> We have also seen that (X, P?), x # 0, is also a self-similar Markov process with
underlying MAP given by (—¢, ©).
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PROOF OF RIESZ-BOGDAN-ZAK TRANSFORM

> Next note that

KX, = e Seon© t>0,

won(t)
and we have just shown that

S
won(t) =inf{s >0: / e Sudy > .
0

> It follows that (KX, (), > 0) is a self-similar Markov process with underlying
MAP (—¢,0)

> We have also seen that (X, P?), x # 0, is also a self-similar Markov process with
underlying MAP given by (—¢, ©).

> The statement of the theorem follows.
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§10. Hitting spheres
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PORT’S SPHERE HITTING PROBABILITY

> Recall that a stable process cannot hit points
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PORT’S SPHERE HITTING PROBABILITY

> Recall that a stable process cannot hit points

> We are ultimately interested in the distribution of the position of X on first hitting
of the sphere S;_; = {x € R? : |x| = 1}.
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PORT’S SPHERE HITTING PROBABILITY

> Recall that a stable process cannot hit points
> We are ultimately interested in the distribution of the position of X on first hitting
of the sphere S;_; = {x € R? : |x| = 1}.

> Define
@ =inf{t >0:[X| = 1}.
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PORT’S SPHERE HITTING PROBABILITY

> Recall that a stable process cannot hit points
> We are ultimately interested in the distribution of the position of X on first hitting
of the sphere S;_; = {x € R? : |x| = 1}.

> Define
@ =inf{t >0:[X| = 1}.

> We start with an easier result
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PORT’S SPHERE HITTING PROBABILITY

> Recall that a stable process cannot hit points
> We are ultimately interested in the distribution of the position of X on first hitting
of the sphere S;_; = {x € R? : |x| = 1}.

> Define
@ =inf{t >0:[X| = 1}.

> We start with an easier result

Theorem (Port (1969))
Ifa € (1,2), then

Py(79 < 00)
r (QT” - 1) r(9) { 2F1((d — @)/2,1— a/2,d/2; |x?) 1> |x]
T (%) la—1) [x[¢=%F (d — ) /2,1 — a/2,d/2;1/|x[?) 1< |x|.

Otherwise, if a € (0, 1], then Py(1© = o0) = 1 forall x € RY.
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PROOF OF PORT’S HITTING PROBABILITY

> If (&, ©) is the underlying MAP then
]P’x(‘l'@ < OO) = Plog M(T{O} < oo) = PO(T{IOg(l/‘xD} < OO),

where 717} = inf{t > 0: & =z}, z € R. (Note, the time change in the
Lamperti-Kiu representation does not level out.)
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PROOF OF PORT’S HITTING PROBABILITY

> If (&, ©) is the underlying MAP then
Pr(7% < 00) = Py M(‘r{o} < o0) = Py (r1loe/ 1D} < o),

where 717} = inf{t > 0: & =z}, z € R. (Note, the time change in the
Lamperti-Kiu representation does not level out.)

> Using Sterling’s formula, we have, |I'(x + iy)| = v2me™ Zll |y|"*% (1+0(1)), for
X,y € R, as y — oo, uniformly in any finite interval —oo < a <x <b < oco.
Hence,
1 (i) rlz+d—a)
U(z)  T(i(-iz4a) T(3(z+4d)

uniformly on R as |z| — oo.

~ 27
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PROOF OF PORT’S HITTING PROBABILITY

> If (&, ©) is the underlying MAP then
Pe(7® < o0) = | M(T{O} < 00) = Py(rlles(/D} < o),

where 717} = inf{t > 0: & =z}, z € R. (Note, the time change in the
Lamperti-Kiu representation does not level out.)

> Using Sterling’s formula, we have, |I'(x + iy)| = v2me™ Zll |y|"*% (1+0(1)), for
X,y € R, as y — oo, uniformly in any finite interval —oo < a <x <b < oco.
Hence,
1 (i) rlz+d—a)
U(z)  T(i(-iz4a) T(3(z+4d)

uniformly on R as |z| — oo.

~ 27

> From Kesten-Brestagnolle integral test we conclude that (1 + W(z)) ™! is
integrable and each sphere S;_; can be reached with positive probability from
any x with |x| # 1 if and only if o« € (1, 2).
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PROOF OF PORT’S HITTING PROBABILITY
> Note that
P(3(-iz+a)) T(5(iz+4d))
I(—%iz) T(3(z+d-a))
so that W(—iz), is well defined for Re(z) € (—d, ) with roots at 0 and o — d.
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PROOF OF PORT’S HITTING PROBABILITY
> Note that
P(3(-iz+a)) T(5(iz+4d))
I(—%iz) T(3(z+d-a))
so that W(—iz), is well defined for Re(z) € (—d, ) with roots at 0 and o — d.
> We can use the identity

ug (log(1/1x[))

PX(TG < OO) = uE(O)

providing

1 e d R
Ue(X) = — z, x e R,
5( ) 27i /C+ﬂR \IJ(—iZ)

forc € (e —d,0).
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PROOF OF PORT’S HITTING PROBABILITY
> Note that
F(3(-iz+a)) T(i(iz+4)
I(—%iz) T(3(z+d-a))
so that W(—iz), is well defined for Re(z) € (—d, ) with roots at 0 and o — d.
> We can use the identity

_ ug(log(1/]x))
Pe(7® < o0) = 7145 0) ,
providing

e—Zx
= — —d R
te(x) = 2mi /+1]R U (—iz) = rew

forc € (e —d,0).
» Build the contour integral around simple poles at {—2n — (d — «) : n > 0}.

1 c+iR ez
P / —dz
27 c—iR ‘I/(—IZ)
1 e

=—— —dz
271 JoqRei® 0 (nr /2,37 /2) W (—i2)

+ > Res(\p( = :—2n—(d—a)>.

1<n<|R|

R
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PROOF OF PORT’S HITTING PROBABILITY
> Now fix x < 0 and recall estimate [1/¥(—iz)| 5 |z|~ . The assumption x < 0 and
the fact that the arc length of {c + Re'? : 6 € (7/2,37/2)} is 7R, gives us

—XZ
/ € dzl <CcrR (@D 0
c+Rei®:0¢ (/2,37 /2) V(—iz)

as R — oo for some constant C > 0.
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PROOF OF PORT’S HITTING PROBABILITY
> Now fix x < 0 and recall estimate [1/¥(—iz)| 5 |z|~ . The assumption x < 0 and
the fact that the arc length of {c + Re'? : 6 € (7/2,37/2)} is 7R, gives us

<cr=(e=D 49

e—xz
/ —dz
c+Rei®:0¢ (/2,37 /2) V(—iz)

as R — oo for some constant C > 0.
» Moreover,

—ZX

ue(x) = ZRes (ﬁ;z =—2n—(d— a)>

= " I(n+(d—a)/2) e¥=
- %:(_1) - T(—n+a/2)T(n+d/2) n

= e 75((;‘%;&//22)) 2F1((d — @) /2,1 — 0/2,d/2;e%),

Which also gives a value for u¢(0).
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PROOF OF PORT’S HITTING PROBABILITY
> Now fix x < 0 and recall estimate [1/¥(—iz)| 5 |z|~ . The assumption x < 0 and
the fact that the arc length of {c + Re'? : 6 € (7/2,37/2)} is 7R, gives us

<cr=(e=D

e—xz
/ —dz
c+Rei®:0¢ (/2,37 /2) V(—iz)

as R — oo for some constant C > 0.

> Moreover,
Z Res (
n>1 )

zx

—2n— (d — a)>

S i Pn+(d-a)/2) ™
20: b +1 (—n+a/2)T(n+d/2) n!
_ tli—a) T(d = )/2)
[(a/2)I'(d/2)

Which also gives a value for u¢(0).
> Hence, for 1 < |x|,

ug (0)
r(ef -1)r(e
- MIX\‘!*%H(W—&)/ZJ —a/2,d/2|x72). s
r (E) IMla—1)

2F1((d — ) /2,1 — a/2,d/2;e™),

Py(7¢ < 00) =
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PROOF OF PORT’S HITTING PROBABILITY

> To deal with the case |x| < 1, we can appeal to the Riesz-Bogdan-Zak transform
to help us.
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PROOF OF PORT’S HITTING PROBABILITY

> To deal with the case |x| < 1, we can appeal to the Riesz-Bogdan-Zak transform
to help us.

> To this end we note that, for |x| < 1, |Kx| > 1

X o

1
PKX(TQ < o0) = P;(TQ < o0) =Ey |x|o¢—dl("'®<0<>):| = WPX(T@ < )
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PROOF OF PORT’S HITTING PROBABILITY

> To deal with the case |x| < 1, we can appeal to the Riesz-Bogdan-Zak transform
to help us.

> To this end we note that, for |x| < 1, [Kx| > 1

X o

1
IPKX(TG < o0) = P;(TQ < o0) =Ey |x|o¢—dl(7'®<0<>):| = WPX(T@ < )

> Hence plugging in the expression for |x| < 1,
(e -1)r(s)
r (g) C(a—1)

thus completing the proof.

Py(r® < 00) = 2Fi((d = ) /2,1 — a/2,d/2; |x]),

> To deal with the case x = 0, take limits in the established identity as |x| — 0.
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RIESZ REPRESENTATION OF PORT’S HITTING PROBABILITY

Theorem
Suppose a € (1,2). Forall x € RY,

r(ed —1)r(9)
PX(TG < OO) — (2)2/ |Z _ x|°‘_dal(dz),
r (g) Cla—1) Jsiq
where o1 (dz) is the uniform measure on Sy_q, normalised to have unit mass. In particular, for
Y E€Si—1,
r (g) T(a—1)

/Sd_l Iz — y|* oy (dz) = m-
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PROOF OF RIESZ REPRESENTATION OF PORT’S HITTING PROBABILITY
> We know that |X; — z|*~%, > 0 is a martingale.
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PROOF OF RIESZ REPRESENTATION OF PORT’S HITTING PROBABILITY
> We know that |X; — z|*~%, > 0 is a martingale.
> Hence we know that

M, ;:/ |z = X, 0% 90i(d2), >0,
Sa—1

is a martingale.
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PROOF OF RIESZ REPRESENTATION OF PORT’S HITTING PROBABILITY
> We know that |X; — z|*~4, t > 0is a martingale.
> Hence we know that

M, ::/ |z = X, 0% 90i(d2), >0,
Sa—1

is a martingale.
> Recall that lim;—, o |X¢| = 0 and o < d and hence

. —d d
Moo := lim M; = /Sd_1 Iz = X 0" "01(d2)1(;0 co0) = CL(r0 <00
where, despite the randomness in X_¢, by rotational symmetry,

c= [ |z-1*oy(da),

Sg—1

and 1 = (1,0,---,0) € R is the ‘North Pole’ on Sy_;.
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PROOF OF RIESZ REPRESENTATION OF PORT’S HITTING PROBABILITY
> We know that |X; — z|*~4, t > 0is a martingale.
> Hence we know that

M, ::/ |z = X, 0% 90i(d2), >0,
Sa—1

is a martingale.
> Recall that lim;—, o |X¢| = 0 and o < d and hence

. —d d
Moo := lim M; = /Sd_1 Iz = X 0" "01(d2)1(;0 co0) = CL(r0 <00
where, despite the randomness in X_¢, by rotational symmetry,
c=[  -1"o(da),
Sg—1
and 1 = (1,0,---,0) € R? is the ‘North Pole’ on Sy_1.

> Since M is a Ul martingale, taking expectations of M

/ 12 — x|y (dz) = Ex[Mo] = Ex[Moo] = CPy(r® < 0)
Sq—1
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PROOF OF RIESZ REPRESENTATION OF PORT’S HITTING PROBABILITY
> We know that |X; — z|*~4, t > 0is a martingale.
> Hence we know that

M; ::/ |z = X, 0% 90i(d2), >0,
Sa—1

is a martingale.
> Recall that lim;—, o |X¢| = 0 and o < d and hence

. —d d
Moo := lim M; = /Sd_1 Iz = X 0" "01(d2)1(;0 co0) = CL(r0 <00
where, despite the randomness in X_¢, by rotational symmetry,
c=[  -1"o(da),
Sg—1
and 1 = (1,0,---,0) € R? is the ‘North Pole’ on Sy_1.

> Since M is a Ul martingale, taking expectations of M

/ 12 — x|y (dz) = Ex[Mo] = Ex[Moo] = CPy(r® < 0)
Sq—1

> Taking limits as |x| — 0,
C=1/P(+® <oo)=r(g) I(a—1)/T (O‘T”—l)r(%). /58
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Sphere inversions
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SPHERE INVERSIONS

> Fixa point b € R? and a value r > 0.
> The spatial transformation x* : R\ {b} + R\ {b}

~
X =b+ ———(x—0),

x —bJ?

is called an inversion through the sphere Sq_1(b,r) := {x € R : [x — b] = r}.

Eal

Figure: Inversion relative to the sphere S;_1 (b, r).
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INVERSION THROUGH S;_1(b, r): KEY PROPERTIES

Inversion through S;_4 (b, )

copy b
=0+ X2 (x =),
The following can be deduced by straightforward algebra

> Self inverse

—pyp &0
T e

> Symmetry
2 = |x* —bl||x — b|

» Difference

|x*_y*|: ”2|x*y\
|x —blly — bl
> Differential
N 24
dx* = mdx
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INVERSION THROUGH S;_1(b,7): KEY PROPERTIES

> The sphere S;_1(c, R) maps to itself under inversion through S;_1 (b, r) provided
the former is orthogonal to the latter, which is equivalent to 12 + R* = |c — b|?.

1\
)

> In particular, the area contained in the blue segment is mapped to the area in the
red segment and vice versa.
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SPHERE INVERSION WITH REFLECTION

A variant of the sphere inversion transform takes the form

oy " b
T

and has properties
> Self inverse 5
— r <
x=>b-— m (x* =),
> Symmetry
P = k® —bllx — b,

> Difference

|x<>_y<>| — 7’2|x_y‘ .
|x —blly — bl
> Differential
dx® = de
|x — b
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SPHERE INVERSION WITH REFLECTION

> Fixb € R? and r > 0. The sphere S;_1 (¢, R) maps to itself through S;_1 (b, )
providing |c — b|? + 12 = R2.

> However, this time, the exterior of the sphere S;_1 (¢, R) maps to the interior of the
sphere S;_1(c, R) and vice versa. For example, the region in the exterior of
S4—1(c, R) contained by blue boundary maps to the portion of the interior of
S4—1(c, R) contained by the red boundary.
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§11. Spherical hitting distribution
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PORT’S SPHERE HITTING DISTRIBUTION

A richer version of the previous theorem:

Theorem (Port (1969))
Define the function

oy = YT ) e -yt
r

— +d—2
()r@-1n K-ve
for|x| #1, ly| = 1. Then, if o € (1,2),
Px(X 0 € dy) = h® (x,y)o1(dy)1(x21) + 0 (@) 1(x=1), Iyl =1,
where o1 (dy) is the surface measure on Sy_1, normalised to have unit total mass.

Otherwise, if o € (0,1], Px(7© = 00) = 1, forall |x| # 1.
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PROOF OF PORT’S SPHERE HITTING DISTRIBUTION

> Write u$ (dz) = Py(X,o € dz) onS;_; where x € R\S;_;.
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PROOF OF PORT’S SPHERE HITTING DISTRIBUTION

> Write u$ (dz) = Py(X,o € dz) onS;_; where x € R\S;_;.
> Recall the expression for the resolvent of the stable process in Theorem 1 which
states that, due to transience,

/ P(X; € dy)dt = C(a)|x —y|*"Idy,  x,y € RY,
0

where C() is an unimportant constant in the following discussion.
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PROOF OF PORT’S SPHERE HITTING DISTRIBUTION

> Write u$ (dz) = Py(X,o € dz) onS;_; where x € R\S;_;.

> Recall the expression for the resolvent of the stable process in Theorem 1 which
states that, due to transience,

/ P(X; € dy)dt = C(a)|x —y|*"Idy,  x,y € RY,
0

where C() is an unimportant constant in the following discussion.

» The measure ,u,? is the solution to the ‘functional fixed point equation”
—d —d
-yt = [ -y, yeSi
d—1

Note that y € Sy_1, so the occupation of y from x, will at least see the the process
pass through the sphere S;_; somewhere first (if not ).

> With a little work, we can show it is the unique solution in the class of probability
measures.
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PROOF OF PORT’S SPHERE HITTING DISTRIBUTION
Recall, for y* € Sy_1, from the Riesz representation of the sphere hitting probability,

r(g) [(a—1)
(et -1)r(s)

we are going to manipulate this identity using sphere inversion to solve the fixed point
equation first assuming that |x| > 1

- / 2 — |y (dz").
Sa—1
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PROOF OF PORT’S SPHERE HITTING DISTRIBUTION
Recall, for y* € Sy_1, from the Riesz representation of the sphere hitting probability,

r (g) [(a—1)
d
(e -1)r(s)
we are going to manipulate this identity using sphere inversion to solve the fixed point
equation first assuming that |x| > 1
> Apply the sphere inversion with respect to the sphere S;_; (x, (]x|> — 1)1/2)
remembering that this transformation maps S;_ to itself and using

1
T o1(dz)

z — x|

2_1 _
(e —1) = |" —xlle x| and |z —y7| = P DEY
ey ]

=/’|f—fP4mey
Sq—1

1
1)
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PROOF OF PORT’S SPHERE HITTING DISTRIBUTION
Recall, for y* € Sy_1, from the Riesz representation of the sphere hitting probability,

r (g) [(a—1) ]

= [y i),
r(et-1r(g)  Jeo

we are going to manipulate this identity using sphere inversion to solve the fixed point

equation first assuming that |x| > 1

> Apply the sphere inversion with respect to the sphere S;_; (x, (]x|> — 1)1/2)
remembering that this transformation maps S;_; to itself and using

1 1

g1 (dZ*) = mol (dZ)

|Z*—x|d71
2
1z —
(e —1) = |" —xlle x| and |z —y7| = P DEY
|z — x[ly — x|
> We have
d _
r 2) a-1 :/ ‘Z*_xldfl‘z* |o¢ d o1(dz*)
(o) e =
— (‘xlz_ )a 1/ |Z_y|a7d O'](dz).
ly —xjoe=d Js, | |z —x|etd=2

> For the case |x| < 1, use Riesz-Bogdan-Zak theorem again! (See exercises).
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§12. Spherical entrance/exit distribution
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BLUMENTHAL-GETOOR-RAY EXIT/ENTRANCE DISTRIBUTION

Theorem
Define the function

|1 _ |x|2|a/2

— —(d/2+1) i [ b B
gx,y) =m T'(d/2) sin(me/2

x -y~

forx,y € R\S;_;. Let

P =inf{t > 0: |X¢| < 1}and 72 = inf{t > 0: |X¢| > 1}.

(i) Suppose that |x| < 1, then
Pr(X;e €dy) =g(ry)dy, Iyl =1
(i1) Suppose that |x| > 1, then

Px(X,e €dy, 7% < oo) =g(x,y)dy, [yl < 1.
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PROOF OF B-G—R ENTRANCE /EXIT DISTRIBUTION (1)

> Appealing again to the potential density and the strong Markov property, it
suffices to find a solution to

e — ylo = / O ES

with a straightforward argument providing uniqueness.
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PROOF OF B-G—R ENTRANCE /EXIT DISTRIBUTION (1)

> Appealing again to the potential density and the strong Markov property, it
suffices to find a solution to

e — ylo = / O ES

with a straightforward argument providing uniqueness.

> The proof is complete as soon as we can verify that

. I
Nl (R e
Y R RIS T

for [y] > 1 > |x|, where

Coq = n" /D T(d/2) sin(ra/2).
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PROOF OF B-G—R ENTRANCE /EXIT DISTRIBUTION (1)

> Transform z — z° (sphere inversion with reflection) through the sphere
Sy—1(x, (1 — |x|*)1/2), noting in particular that

2=yl 2 =+
22 =y = (= ) T and 2R 1= P (- )

and
dz° = (1 — x|z — x|7#dz, zeR%
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PROOF OF B-G—R ENTRANCE /EXIT DISTRIBUTION (1)

> Transform z — z° (sphere inversion with reflection) through the sphere
Sy—1(x, (1 — |x|*)1/2), noting in particular that

|z — x|
1— |

2
L
Y EE e S | R Y I e )

|z —xly — x|

and
dz° = (1 — x|z — x|7#dz, zeR%

> For |x| <1<y,

- |x|2|a/2 _ B |Z°fy°|°‘_d
z—y|* d|7x—z A4z = |y — x| d/ — 7 dz°.
/lel‘ vl |1_|Z|2‘o¢/2| | [y — x| o<1 L= P12
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PROOF OF B-G—R ENTRANCE /EXIT DISTRIBUTION (1)

> Transform z — z° (sphere inversion with reflection) through the sphere
Sa—1(x, (1 — |x[*)'/2), noting in particular that

L
2~y = = ) e and 1= — “2(1—|z ?)

|z —xly — x|

and
dz° = (1 — x|z — x|7#dz, zeR%

> For |x| <1<y,
1 — |x|2|e/2 o Ola—d
/ ‘ |a d| |X|2| 2|X—Z|_ddZ=|y—x‘a_d/ |Z y2| zdzo'
JzI>1 11— [z2/ ko<t 1= |20/

> Now perform similar transformation z® — w (inversion with reflection), albeit
through the sphere S;_1 (y°, (1 — [y°|?)'/?).

_ |z° —y°|o—? —d 11—y 2|2 —d
ly—x|* d/ - dz® = |y—x|® / —— |w—y®|“dw.
! o<1 [1 = [z0[2]2/2 Y | >1 |1 — [w]?[/2 Y
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PROOF OF B-G—R ENTRANCE /EXIT DISTRIBUTION (1)
Thus far:

aed |l = |xPo/2 —d a—d/ 11— |y° >/ op—d
z— ——|x—z| 7%z = ly—x — |w— dw.
I e e B

> Taking the integral in red and decomposition into generalised spherical polar
coordinates

[w—y°|~4dw =

2/ /oo r-1dr
)

! / o|—d
1 = |w|2|/2 zZ— or(dz
/Ivlzl 11— [w[2|e/2 r(d/2 =2 )s, o |z = y°|"%or(dz)
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PROOF OF B-G—R ENTRANCE /EXIT DISTRIBUTION (1)
Thus far:

| B e I 1=y
/‘221 |z—y]| \l—|z|2|a/2|x z|7%dz = |y—x| wi>1 11— [w]2]a72 [w—y®|~"dw.

> Taking the integral in red and decomposition into generalised spherical polar
coordinates

w—y°| " dw =

2d/2 /oo =143y 2/ 1z —y°|7d0y(dz)
L@/2) i =r122Js, 00

> Poisson’s formula (the probability that a Brownian motion hits a sphere of radius
r > 0) states that

rd—z 2 11,012
/ war(d@ =1, |l<i<r
Sia00  |z2=y°

[
ol>1 |1 — w]?[*/2

gives us

1 o1—d /2 /°° 2r
— |w— dw = dr
Jur Tl =414 = sy |, Gy
_ T 1
- sin(am/2) (1 |y°)/?
> Plugging everything back in gives the result for |x| < 1.
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EXERCISES

1. Use the fact that the radial part of a d-dimensional (d > 2) isotropic stable process
has MAP (¢, ©), for which the first component is a Lévy process with
characteristic exponent given by

e F(3(-iz+a)) T((iz+4d)

‘II(Z) - 1- 1/ ’ z€eR.
F(—EIZ) F(E(lz—f—d—oz))
to deduce the following facts:
> Irrespective of its point of issue, we have lim;_, o |X;| = oo almost surely.
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EXERCISES

1. Use the fact that the radial part of a d-dimensional (d > 2) isotropic stable process
has MAP (¢, ©), for which the first component is a Lévy process with
characteristic exponent given by

e F(3(-iz+a)) T((iz+4d)

v@ = r(—liz) T(l(z+d—a)

s zeR.

to deduce the following facts:

> Irrespective of its point of issue, we have lim;_, o |X;| = oo almost surely.
> By considering the roots of ¥ show that

exp((@—d)&), 20,

is a martingale.
> Deduce that
x|, >0,

is a martingale.

2. Remaining in d-dimensions (d > 2), recalling that

dpe| Xy
dP |z fxfed”

t>0,x#0,

show that under P°, X is absorbed continuously at the origin in an almost surely
finite time. 55/ 58
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EXERCISES

3. Recall the following theorem

Theorem
Define the function

|1 o |x|2|a/2

—(d/241) :
X, =7 I'(d/2) sin(ra/2) ———————

x —y| ™

for x,y € RIS _q. Let

P = inf{t > 0: |X;| < 1} and 7 = inf{t > 0: |X;| > 1}.

(i) Suppose that |x| < 1, then
Pr(Xre €dy) =gloy)dy, Wyl 21
(i1) Suppose that |x| > 1, then

Py(X,e €dy, 7% < oo) =g(x,y)dy, [yl < 1.

Prove (ii) (i.e. |x| > 1) from the identity in (i) (i.e. |x| < 1). 50/ 55
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