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The purpose of this talk

To give you an impression about how many

interesting problems arise for

spatial branching processes

in

random (Poissonian) media

— by discussing a number of different models

in mathematics and in math biology (popula-

tion models).



Motivation.

• Survival asymptotics for a single Brownian

particle among Poissonian obstacles

– Back in 1975: Wiener-sausage asymp-

totics of Donsker and Varadhan

– later Sznitman and others

• ‘Catalytic branching’

– for superprocesses: Dawson, Fleischmann,

etc.

– for discrete particle systems: Gärtner-

den Hollander, Kesten-Sidoravicius, etc.



Two related papers:

• [E, Stoch. Process. Appl. 2000]

Model of a branching process in a random

environment introduced. Hard obstacles

and instantaneous killing of the branching

process once any particle hits the trap con-

figuration K

• [E, den Hollander, Markov Process. Re-

lated Fields, 2003]

Survival asymptotics for branching Brown-

ian motion in a Poissonian trap field

Both models are annealed.



Model of second paper:

BBM on Rd with branching rate β in a Pois-

sonian field of spherical traps

Intensity: dν/dx ∼ `/|x|d−1, |x| → ∞.

The process starts with a single particle at the

origin.

Main results:

The annealed probability that none of the par-

ticles hits a trap until time t :

exp[−I(`, β, d)t + o(t)], t →∞
I(`, β, d) is computed in terms of a variational

problem.

Rate constant exhibits a crossover at a critical

value `cr = `cr(β, d).



Optimal survival strategy is obtained. Condi-
tional on survival until time t:

For ` < `cr, a ball of radius
√

2β t around the
origin is emptied, the system stays inside this
ball and branches at rate β. For ` > `cr, on the
other hand, the system

• d = 1: suppresses the branching until time
t, empties a ball of radius o(t) around the
origin and stays inside this ball;

• d ≥ 2: suppresses the branching until time
η∗t;

empties a ball of radius
√

2β (1−η∗)t around
a point at distance c∗t from the origin;

during the remaining time (1−η∗)t branches
at rate β.

Here, 0 < η∗ < 1 and c∗ > 0 are the minimizers
of the variational problem for I(`, β, d).



New model: Mild obstacles.

Mechanism is even ‘milder’ than ‘soft killing’:

Only inhibits temporarily the reproduction of

the individual particle but does not eliminate

particle.

Model.

Let ω be a Poisson point process (PPP) on Rd

with intensity ν > 0 ∼ P.

a > 0 and β2 > β1 > 0 fixed.

K = Kω :=
⋃

xi∈supp(ω)

B̄(xi, a) .



K: Mild obstacle configuration attached to ω.

Kc: ‘Swiss cheese’

Given ω, we define Pω as the law of the (strictly

dyadic) BBM on Rd, d ≥ 1 with spatially de-

pendent branching rate

β := β11K + β21Kc.

The process Z under Pω is called a BBM with

mild Poissonian obstacles.

Total mass process: |Z|.



Questions:

1. Growth of the global/local population size?

How much will the absence of branching

in K slow the global reproduction down?

Change the exponent β2?

2. What are the large deviations?

[E.g. P (atypically small population)=?]

3. How about the spatial spread? How will

the
√

2β2 speed reduce?

Questions can be asked in 2 diff. ways: an-

nealed and quenched sense.



Related models in biology

(i) Migration with unfertile areas (Popula-

tion dynamics):

Population moves in space and reproduces

by binary splitting, but randomly located

reproduction-suppressing areas modify the

growth.

(ii) Fecundity selection (Genetics):

Reproduction and mutation. Certain ran-

domly distributed genetic types have low

fitness: even though they can be obtained

by mutation, they themselves do not re-

produce easily, unless mutation transforms

them to different genetic types.

[‘Space’ = space of genetic types rather

than physical space.]



Questions: (local and global) growth rate of

the population? Once one knows the global

population size, the model can be normalized

by the global population size, giving a popula-

tion of unit mass; then the question becomes

the shape of the population.

• Population dynamics setting: Is there a

preferred spatial location for the process to

populate?

• Genetic setting: Existence of a certain

kind of genetic type that is preferred in

the long run that lowers the risk of low

of fecundity caused by mutating into less

fit genetics types?



Genealogical structure— exciting problem!

E.g. it seems quite possible that for large times
the ‘bulk’ of the population consists of descen-
dants of a single particle that

• decided to travel far enough (resp. to mu-
tate many times)

• reached a less hostile environment (resp. in
high fitness genetic type area), where she
and her descendants can reproduce freely.

Related phenomenon in marine systems:
hypoxic patches form in estuaries because of
stratification of the water.

VThe patches affect different organisms in dif-
ferent ways but are detrimental to some of
them. They appear and disappear in an ef-
fectively stochastic way.



‘Source-sink theory’: some patches of habi-

tat are good for a species (and growth rate is

positive) whereas other patches are poor (and

growth rate smaller, or is zero or negative). In-

dividuals can move between patches randomly

or according to more detailed biological rules

for behavior.

Systems with periodic local disturbances like

e.g.

• FORESTS where trees sometimes fall creating

gaps (which have various effects on differ-

ent species but may harm some)

• AREAS OF GRASS or brush which are subject

to occasional fires — burned areas can be

expected to less suitable habitats for at

least some organisms.



Back to math: Expected global growth

Theorem 1 On a set of full P-measure, and

as t →∞,

Eω|Zt| = exp

[
β2t− c(d, ν)

t

(log t)2/d
(1 + o(1))

]
,

(quenched asymptotics), and

(E⊗ Eω) |Zt| = exp
[
β2t− ĉ(d, ν)td/(d+2)(1 + o(1))

]
,

(annealed asymptotics).

Here, e.g.

ĉ(d, ν) := −ν2/(d+2)
(

d + 2

2

) (
2γd

d

)d/(d+2)
,

and γd is the lowest eigenvalue of −1
2∆ for

the d-dimensional sphere of unit volume with

Dirichlet boundary condition.

WHY?



W : d-dim Brownian motion ∼ {Px, x ∈ Rd}.

A basic fact:

Lemma 1 (Expectation is Brownian funct.)

Fix ω. Recalling β := β11K + β21Kc, we have

Eω|Zt| = E exp
[∫ t

0
β(Ws) ds

]
. (1)

Proof. Well known (‘first moment formula’):

Eω
x |Zt| = (Tt1)(x), where u(x, t) := (Tt1)(x) is

the minimal solution of the parabolic problem:

∂u

∂t
=

(
1

2
∆ + β

)
u on Rd × (0,∞),

u(·,0) = 1, (2)

u ≥ 0,

being equivalent (by Feynman-Kac) to (1). ¥



How about random environment?

Write β := β11K + β21Kc = β2 − (β2 − β1)1K,

recall that

Eω|Zt| = E exp
[∫ t

0
β(Ws)

]
ds

and rewrite it with negative exponent:

Eω|Zt| = eβ2tE exp
[
−

∫ t

0
(β2 − β1)1K(Ws) ds

]
.

The expectation on RHS = survival probabil-

ity among ‘soft obstacles’ with hight β2 − β1,

except: we do not sum up the shape functions

on the overlapping balls. That is, we have

1K(Ws) = 1⋃
xi∈supp(ω) B(xi,a)

(Ws)

instead
∑

xi∈supp(ω)

1B(xi,a)
(Ws).



Quenched asymptotics of global growth

“Average growth rate”:

rt = rt(ω) :=
log |Zt(ω)|

t
.

Replace |Zt(ω)| by expectation:

Zt := Eω|Zt(ω)|,
and define

r̂t = r̂t(ω) :=
logZt(ω)

t
.

Recall from Theorem 1, that on a set of full

P-measure,

lim
t→∞(log t)2/d(r̂t − β2) = −c(d, ν). (3)



Analogous statement holds for rt:

Theorem 2 (First Main Result ) On a set of
full P-measure,

lim
t→∞(log t)2/d(rt − β2) = −c(d, ν). (4)

in Pω-probability.

That is, loosely speaking,

rt ≈ β2 − c(d, ν)(log t)−2/d.

Second Main Result: An upper estimate on
the spatial spread. The order of the correction
term is larger than the O(log t) term in a result

of Bramson, namely it is O
(

t
(log t)2/d

)
.

We showed that, β1 plays no role and, loosely
speaking, at time t the spread of the process

≤ t
√

2β2 − c(d, ν)

√
β2

2
· t

(log t)2/d
.



Method of proof for first result: “boot-

strap”.

• First step: Let 0 < δ < β2. Then on a set

of full P-measure

lim
t→∞Pω(|Zt| ≥ eδt) = 1.

• Second step: one particle makes it into a

“clearing”

– of a specific radius

– with its center at a specific distance.

[Picture]

She and her descendants reproduce there

without constraint.



Time scales:

1. S(t): Producing many particles — they are

“not too far away”

2. T (t): ∃ particle going to clearing

3. U(t) := t−S(t)−T (t): free branching inside

clearing

S(t) and T (t) are calibrated in a careful way;

in particular, as t →∞,

S(t) = o(T (t)), T (t) = o(U(t)) and U(t) = O(t).



Problem 2 (Shape of branching tree) How

does the discrete probability measure valued

process

Z̃t(·) :=
Zt(·)
|Zt|

look like? Is it true that ∃ Unique dominant

branch?

Problem 3 (More general branching ) What

happens when dyadic branching is replaced by

a general one?

E.g. critical branching — taking expectation

now does not provide a clue:

Eω|Zt(ω)| = 1, ∀t > 0, ∀ω ∈ Ω.

Let β1 = 0. It is still true (nontrivial) that

Pω(extinction) = 1, a.e. ω ∈ Ω.

Q: What is the order of the tail P (τext > t)?



THE END

THANKS FOR

YOUR ATTENTION!


