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Deep factorisation and amplitudal reflection of the
stable process!

Andreas E. Kyprianou, University of Bath, UK.

1Partly based on joint work with Victor Rivero and Bati Sengiil
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Stable processes

Definition
A Lévy process X is called (strictly) a-stable if it satisfies the scaling
property

(Xe-a) ol £ Xlp,s €>0.

Necessarily a € (0,2]. [ =2 — BM, exclude this.]
The quantity p = Po(X; > 0) € [0, 1] will frequently appear as will
p=1—p.

PX

@ The characteristic exponent V() := —t~!log E(e'?*t) satisfies
W(0) = 0] (em G o) + e TG g),  hER

@ Assume jumps in both directions i.e. ap,ap € (0,1)
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The Wiener—Hopf factorisation

@ For a given characteristic exponent of a Lévy process, V,
there exist unique Bernstein functions, k and & such that, up
to a multiplicative constant,

V() = A(i0)k(~i0), O €R.

@ As Bernstein functions, k and A can be seen as the Laplace
exponents of (killed) subordinators.

@ The probabilistic significance of these subordinators, is that
their range corresponds precisely to the range of the running
maximum of X and of —X respectively.
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The Wiener—Hopf factorisation

o Explicit Wiener-Hopf factorisations are extremely rare!

@ For the stable processes we are interested in we have
k(A) =A% and R(\) =AY, A>0

where 0 < ap,ap < 1.

@ Hypergeometric Lévy processes are another recently
discovered family of Lévy processes for which the factorisation
are known explicitly: For appropriate parameters (3,7, 3,%)

F1—B+~—iz)T(B+4+i2)
rl-p—-iz) Tr(B+iz)

V(z) =
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Deep factorisation of the stable process

@ Another factorisation also exists, which is more ‘deeply’
embedded in the stable process.

@ Based around the representation of the stable process as a
real-valued self-similar Markov process (rssMp):

An R-valued regular strong Markov process (X; : t > 0) with
probabilities Py, x € R, is a rssMp if, there is a stability index
a > 0 such that, for all ¢ > 0 and x € R,

(cXic—a 1 t > 0) under Py is P.



Stable processes Self-similar Markov processes and MAPs MAP WHF Inverse MAP WHF
0000 ©000000000 000 00000000000

Markov additive processes (MAPs)

o E={-1,1}
@ (J(t))e>0 is a continuous-time, irreducible Markov chain on E

@ process (£,J) in R x E is called a Markov additive process
(MAP) with probabilities Py j, x € R,i € E, if, for any i € E,
s,t > 0: Given {J(t) = i},

o (&(t+s)—¢&(1), J(t+5)) L {(€(u), J(u)) v < t},

o (§(t+5) = &(t), J(t +5)) £ (€(5), J(5)) with
(£(0), J(0)) = (0, 7).
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Pathwise description of a MAP

The pair (&, J) is a Markov additive process if and only if, for each
i,j €E,
o there exist a sequence of iid Lévy processes (£7)n>0
@ and a sequence of iid random variables (U,?)nzo, independent
of the chain J,
e such that if Top =0 and (T,)n>1 are the jump times of J,

the process £ has the representation
&(t) = ]1(n>0)(§(Tn_) + U_r](Tnf)yJ(Tn)) + 5_7(7—")(1' —Tn),

for t € [Ty, Thy1), n > 0.
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rssMps, MAPs, Lamperti-Kiu (Chaumont, Panti, Rivero)

@ Take the statespace of the MAP to be E = {1, —1}.

o Let
Xy = |x|fTO) J(r())  0<t< To,
where
7(t) = inf {s >0: / exp(a(u))du > t\x\_o‘}
0
and

T0:|x|_a/ et du,
0

@ Then X; is a real-valued self-similar Markov process in the
sense that the law of (cX,.—« : t > 0) under Py is P.

@ The converse (within a special class of rssMps) is also true.
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Characteristics of a MAP

Denote the transition rate matrix of the chain J by
Q = (gi)ijeE.
For each i € E, the Laplace exponent of the Lévy process &;
will be written v; (when it exists).
For each pair of i,j € E, define the Laplace transform
Gj(z) = E(e?Y) of the jump distribution U; (when it
exists).
Write G(z) for the 2 x 2 matrix whose (7, )th element is
Gjj(2).
Let

F(z) = diag(ta(2), v1(2)) + Q 0 G(2).
(when it exists), where o indicates elementwise
multiplication.
The matrix exponent of the MAP (&, J) is given by

Ei(e*®; (1) = j) = (7)),

iy

i,j€eE,

(when it exists).



Stable processes Self-similar Markov processes and MAPs MAP WHF Inverse MAP WHF
0000 0000800000 000 00000000000

An a-stable process is a rssMp

@ An a-stable process is a rssMp. Remarkably (thanks to work
of Chaumont, Panti and Rivero) we can compute precisely its
matrix exponent explicitly

e Denote the underlying MAP (&, J), we prefer to give the
matrix exponent of (£, J) as follows:

_ Ma—2)I(1+2) MNMa—2)M(1+2)
F2) MNap—2)[(1—ap+ 2) Map)l (1 — ap)
N Mo —2)F(1+2)  Te—2(1+2) ’
Map)l(1 — ap) Map—2z)I[(1—ap+2z)

for Re(z) € (-1, ).
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Ascending ladder MAP

@ Observe the process (&, J) only at times of increase of new
maxima of . This gives a MAP, say (H"(t), J™(t))¢>0, with
the property that H is non-decreasing with the same range as
the running maximum.

@ Its exponent can be identified by —k(—z), where
Kk(\) = diag(®1(A), P_1(N)) — Ao K(N), A>0.

@ Here, for i =1, —1, ®; are Bernstein functions (exponents of
subordinators), A = (A; )i jek is the intensity matrix of J*
and K());; = E[e™*YJ], where U}, > 0 are the additional
discontinuities added to the path of £ each time the chain J*
switches from / to j, and U, :=0, i € E.
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MAP WHF

Theorem

For 6 € R, up to a multiplicative factor,
—F(i0) = AZ14(i0)T A rk(—i0),

where A, = diag(w), m is the stationary distribution of Q, &
plays the role of k, but for the dual MAP to (§,J).

The dual process, or time-reversed process is equal in law to the
MAP with exponent

F(z)=A'F(—2)"A,,
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a € (0,1]

Define the family of Bernstein functions

/{q—&—i,p—l—j()\) — /000(1 — e—/\X)(1((_qe—t>i));:-,(é)11je)_;)?_’_j e dx,

where g, p € {ap,ap} and i,j € {0,1} such that ¢ + p = a and
i+j=1.
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Deep Factorisation « € (0, 1]

Fix o € (0,1]. Up to a multiplicative constant, the ascending ladder MAP exponent,
K, Is given by

sin(rap) , sin(mrap) Kap,apt1(A)

. SO + ) a0 - Ceboerll
apttap(d) sin(rap) ap.ap+1(0F) sin(map) A
_sin(rap) Kap,ap+1(A) sin(map)

Kaptl,ap(N) ap,apt1(0F)

K
sin(map) A sin(map)

Up to a multiplicative constant, the dual ascending ladder MAP exponent, & is given

by
sin(rap) Kap,apti(A+1—a)
K Atl—a)+ ——k 5+1(0+ e
apt1ap( ) sin(map) apaptilh) Adl=@
Kap,aptitA+1— a) sin(rap)
I maptap(h 1= @)t Sl g (04)
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a € (1,2)

Define the family of Bernstein functions by

Gg-tip+i(A
) (g+)Vv(p+j)—1)
/ 0 (G e e

(a—1) }e—udu’

S 2(1—eu)a(l e )P

for gq,p € {ap,ap} and i,j € {0,1} such that g+ p = « and
i4+j=1.
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Deep Factorisation a € (1, 2)

Fix a € (1,2). Up to a multiplicative constant, the ascending ladder MAP exponent,
K, Is given by

sin(mrap)dapit,ap(X+a—1) bap,apti(d +a=1)

+Si"(7\'ap)¢;ﬁ,ap+1(0+) — sin(rap) Ao =i
— sin(map) PapapiG Fa = 1) - sin(map)Papitaph + o —1)
A4+a—1 +5'"(""‘P)¢ag,aﬁ+1(o+)

for A > 0.

Up to a multiplicative constant, the dual ascending ladder MAP exponent, K, is given
by

ap,ap A
Sin(raP)Bapet,ap(N) + Sn(rap)El , osra(04) ~sin(rap) 22e:001C)

Dap,apt1(N)

— sin(map) 3

Sin(rp)bapi1,ap(X) +sin(rap)dh s o pi1(0F)

for A > 0.
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Comments « € (0, 1]

Recall that

i M- M1 [e™F 4 (d
KO) = dag( @10 0~y (R My T

In general, we can write
) = [ (= e M € e Q) = i.€ < o),
0

where ¢ = inf{s > 0: g(s) > 0} for the canonical excursion ¢ of
the Markov process (sups<;&s — &, Ji), t > 0, from (0,1), i = £1.
The measures n;, i = +1 are the excursion measures in the Cox
process of excursions.
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Comments « € (0, 1]

Lemma

Let T, = inf{t > 0: £(t) > a}. Suppose that limsup,_, . &(t) = oo (i.e. the
ladder height process (H™, J*) does not experience killing). Then for x > 0 we
have up to a constant

a|Lm Po,i(§(Ts) —acdx,J(T:) =1)

= |:7T1n1(5(<) >x,J(¢) =1, <o0)+m_1A_11(1 — Ff1,1(X))] dx.

@ (m_1,m) is easily derived by solving wQ = 0.

@ We can work with the LHS in the above lemma e.g. via

aIer;O Po1(&(T2) —a>u, J(T,) =1)

= lim P, o(X - >e“ 7 <77).
300 ea( 7'1'*'/\7'_1 1 —1)
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Inverse Deep Factors

Would it be more natural to consider the factorisation
—F(i0) ! = k(=) 1A RG6) T AL

for computational purposes?

Inverse MAP WHF
®0000000000
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Matrix potential

This may be less of a computational burden since
o0
| e U0 = s) Ty for each i = 41,
0

where

Ui j(dx) = Po, U 1(Hr<x)dt] '
. <
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Matrix potential

Moreover, we have, for example when « € (1,2), that, for y > 0
and mo = sup{t > 0: sup,; & = &}

Uiay) = P—y,l(sglggs <0; I, = 1) = Py (X, € (0,1)),

where
Mo = sup{t < 7°: |X;| = sup | X;|}
s<t

and 70 = inf{t > 0: X; = 0}.
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Theorem (« € (0,1))

Up to the multiplicative constant 2=°T'(1 — a)~! The potential
density are given by the following.
u(x)
e (=) M1+ em)? BB (1 — e )0 (14 em) 0!
-\ a1 ejet(1 4 ejort Hosln  oryarify 4 ox)es
and
i(x)
o) (o — yor-t(er p1yee SeTIa0) or _ 1)er(er 4 1)00)
e (e — 1) 412 (e —1)2emi(ex 1)o7
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Theorem (a = 1)

(1 _ e—x)—1/2(1 4 e—x)1/2 (1 _ e—x)1/2(1 4 e—x)—1/2
u(x) = o(x) =
(1 _ efx)l/2(1 + efx)fl/Z (1 _ efx)71/2(1 + efx)l/Z
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Theorem (a € (1,2))
Up to the multiplicative constant (o —1)/2,

((1 _ ef><)apfl(1 n e7><)o<ﬁ (1 _ e7><)ap(1 + e7><)af771>
u(x) =

(1= e X)@P(1+e~X)2P~1 (1 — e~ X)@P=1(1 L ¢=X)2P

(a _ 1) (1 _ ef><)o¢p71(1 n e—X)aﬁ—l (1 _ ef><)ozp—l(1 + ef><)o<;371
T ta-1) ( > ‘

(1 — e )@= 4 e X)@P=1 (1 — e=X)@P=1(1 4 e~ X)ap~1

e CRSV L R G
i(x) =
SfaTBl (X — 1) (eX +1)2P (@ =)™ e + 1P
(1) (e — 1)@P—1(eX 4 1)@P—1 ::EZ:Z;(SX 1)@ —1(eX 4 1)ar—1

Ot —1) | snlomal o _ gyeo—t(ex 4 1)1 (€ — )Pl 4 1)oP !

ooo 00000®00000
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Theorem (« € (0,1))

Suppose that X is an a-stable process then we have that the factors k and <
are given as follows. For a, b, c € R define

W(a, b, c) = /01 (1 — u)(1 + u)du. (1)

Then, up to the multiplicative constant 2~ *T'(1 — o)™ %,

1)
%\u(,\ —1,0p—1,0p) r(r%‘;)”)wu —1,ap,p — 1)

Ml—«o A M-o ~
(I_l(aﬁ)p)\ll(A —1,ap,ap—1) (rl(aﬁ)p)\ll()\ —1,ap—1,ap)
and

A7)

Ml-—o in(amp)l(1—a a
ap)p V(A —a,ap—1,ap) WW(A a,ap,ap—1)

(1 N r(
WW()\ —a,ap,ap—1) (r(a(:;)p V(A —a,ap —1,ap)
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Theorem (« € (1,2))
I = a—1 /YA —1,ap—1,ap) VYA —1,ap,ap—1)
2 VA -1, ap,ap—1) V(A -1,ap—1,ap)
_ (a—1)? (w(/\ —lap—1ap—1) w(A—1,ae—1,aﬁ—1)>‘
2N+ a—1) VA—L,ap—1l,ap—1) VYA—-1,ap—1,ap—1)
and
’%710\): a—1 . V(A — a,ap —1,ap) %W(A—a,aﬁ,o@—l)
2 %W(A*&,Oﬁ), ap — 1) V(XA — a,ap —1,ap)
_ (a-1p VA — a,ap—1,ap — 1) %W(z\—a,aﬁ—l,ap—l)
20 +a—1) %W(Afa,apfl,aﬁfl) YA —a,ap—1,ap —1)
i




Stable processes Self-similar Markov processes and MAPs MAP WHF
0000 0000000000

Application

Inverse MAP WHF
[e]o]e} 00000000800

Corollary

Suppose that « € (0,1). Let x € (—1,1) and let R be the process
(X, Py) reflected inside of the interval (—1,1), i.e.

Xt

R, —
‘ max{sups< | Xs|,1}

t > 0.

Then R has a stationary distribution . given by

/'L(dy) _ Tsgn(y) Z i\lsgn(y),j(_ IOgy)
dy Y j==1

where sgn(y) is the sign of y.
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