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EMERGENCY SLIDE

> (&,t > 0) is a Lévy process if it has stationary and independents with RCLL paths.

> Process is entirely characterised by its one-dimensional transitions, which are
coded by the Lévy-Khinchine formula

E[el?¢] = e YO 6 e RY,

where,
1 )
\I’(G) =ia-0+ 59 - A0 + / (1 — eu‘)-x + 1(9 . x)1(|x|<1))1'[(dx),
R4

where a € R, A is ad x d Gaussian covariance matrix and II is a measure
satisfying [5q(1 A Jx|?)II(dx) < co. Think of IT as the intensity of jumps in the
sense of

P(X has jump at time ¢ of size dx) = IT(dx)dt 4 o(dt).

> Stationary and independent increments gives the Strong Markov Property and the
probabilities Py(-) = P(-|Xy = x) such that (X, Py) is equal in law to (x + X, P).
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LEVY PROCESSES CONDITIONED TO STAY NON-NEGATIVE!

> Suppose that (§,f > 0) is a one dimensional Lévy process without monotone
paths.

> Excluding the cases that { has monotone paths and assuming that £ oscillates so
that ¢ fluctuates upwards and downwards and visits (—oo, 0) with probability 1:

Pl(A) = lim Py(A]€,, >0)
P&(g >0)
= hm Ex 1(A 5 >0)7
P, >0)

4
E. [ (A.£,20) };ﬁ((&))} Ac€o(&:u<t)

> Boils down to understanding: Py(§, > 0) ~ I (y)f (t) ass — oo

> As it happens, h'(x) is the descending ladder potential and has the harmonic
property that
hT(ft)1(§t20)

is a martingale.

> Under additional assumptions, can demonstrate 3 lim, IPI =: ]Pg on the
Skorokhod space.
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LEVY PROCESSES CONDITIONED TO STAY NON-NEGATIVE?
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LEVY PROCESSES CONDITIONED TO APPROACH THE ORIGIN
CONTINUOUSLY FROM ABOVE?

> A different type of conditioning, needs the introduction of a death time ¢ at which
paths go to a cemetery state

PH(A, t < ¢) = lim lim Py(A, £, > B|&_ €[0,¢])
B—0e—0 =t =00

= lim lim E 71,& (§°° € 0eh
T pote—m0 | A5 Py(§  €[0,¢])

1

n
= E, |:1(A’§t20>%:| Ae O'(fu cu < f),

> It turns out that

It (x) = %hT(x), x> 0.

and is superharmonic, i.e. h¢(§t)1( £,20) is a supermartingale.
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WILLIAMS TYPE DECOMPOSITION* FOR (&, P1)

Glad=tp [ 430 Tom 24

L
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ISOTROPIC a-STABLE PROCESS IN DIMENSION d > 2

Ford > 2,let X := (X; : t > 0) be a d-dimensional isotropic stable process.
» X has stationary and independent increments (it is a Lévy process)
> Characteristic exponent ¥ () = — log Ey(e'?*1) satisfies

() =10, OER.

> Necessarily, a € (0,2], we exclude 2 as it pertains to the setting of a Brownian
motion.

> Associated Lévy measure satisfies, for B € B(RR),

200((d + a)/2) / 1

MB) = R0 (aj2)] Jy et Y

> X is Markovian with probabilities denoted by Py, x € R?
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SAMPLE PATH, o = 1.2
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SAMPLE PATH, o« = 0.9
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CONDITIONING TO HIT A PATCH ON A UNIT SPHERE FROM OUTSIDE
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CONDITIONING TO CONTINUOUSLY HIT S C S*-1 FROM OUTSIDE

>

Recall d > 2, the process (X, P) is transient in the sense that lim;_,  |X¢| = oo
almost surely.

Define
G(t) == supfs < t: [X,| = inf X}, 120,
u<s

Transience of (X, P) means G(co) := lim¢_ oo G(f) describes the point of closest
reach to the origin in the range of X.

Ac ={r0:re (1,14¢),0 € S}andB. ={r0:r € (1—¢,1),0 € S}, for0<e <1
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CONDITIONING TO CONTINUOUSLY HIT S C S*-1 FROM OUTSIDE

> We are interested in the asymptotic conditioning

Pﬁ(A,t<¢)=;%PX(A,t<T§9|c§), Aco(y:u<t),

where 77 = inf{t > 0: [X;| < 1} and C := {Xg(o0) € Ac}

> Works equally well if we replace C5 := {Xg (o) € Ac} by C5 = {X, @ €B:} or
= 1
indeed C2 = {X & € A:}
1
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POINT OF CLOSEST REACH®

Recent work: For |x| > |z| > 0,

I (d/2)? (I = [/

Py(Xg(00) € dz) = 42 |x —z|~4dz,

I'((d—-a)/2)T (a/2) ||
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CONDITIONING TO CONTINUOUSLY HIT S C S*-1 FROM OUTSIDE

> Remember C3 := {Xg(o0) € Ac}, switch to generalised polar coordinates and
estimate

lim £@ Py (C3) = ¢ g /(|x|2 — )2 x — 0], (d 6),
e—0 “Js

where c,, 4 does not depend on x or S and o7 is the unit surface measure on sa-1,
> Use

Aco(&:u<t),

Py, (CS
Pe(A,t < 79ICE) = By [1 x( 6)} ,

{At<7§} P (CS)
pass the limit through the expectation on the RHS (carefully with DCT!) to get

dps
APy

_ Ms(Xt)
£ <) Ms(x)

ifx € PB;
with
Js 10— x| 74 [x)2 — 1]*/201(d0)  if o1(S) >0
Ms(x) =

|9 — x|~ [x? — 1>/ ifS = {9},
which is a superharmonic function.
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WILLIAMS TYPE DECOMPOSITION
> Suppose ¢ is the lifetime of (X, PS). Let S’ be an open subset of S. Then for any
x € RY\ By, we have
Js/ 16 — x| ?o1(d6)

PS(Xe_eS§)y=2_ — "~
e J516 = x[~7o (d0)
» Hence, for 6 € S,

P§ (Xe— = 0)
PY(AX; = 0) =S [1. - ——

P§(Xe— = 0)
-F [ Ms(X;) Moy (Xi) Ms(x)
x (A t<r®) Ms(x) Mg(Xy) M{g}(x)

[ Mgy (Xi)
(A t<‘r1 ) M{g}(x)

=K,

_BA),  Aco(eiu<y

o 10— x|~o (d6)
5 _ {0} — X "o
P = [ R ) IR

"pick a target uniformly in S with the terminal strike distribution and condition to
hitit."
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CONDITIONING TO CONTINUOUSLY HIT S C S%-1 FROM EITHER SIDE

ey & X
. . "'l‘“-'»":"-t o = E/KS C

“rdie

> Now define
PS(A, t < () = liIrbIP’x (A|7'5E < 0),
E—>

where
75, =inf{t >0:X; € Sc} and S := A: UB..
> Note: need to insist on « € (0, 1] because Py (75 < o0) = 1if a € (1,2).
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CONDITIONING TO CONTINUOUSLY HIT S C S%-1 FROM EITHER SIDE

Theorem
Suppose that o € (0,1] and the closed set S C S is such that o1(S) > 0. For o € (0,1],
the process (X, P%) is well defined such that

dPp$
d Py

_ Hs(X)
7 Hs() t>0,x¢S, (€]

where
Hg(x) = / x—6|*"95(d6), x¢Ss.
s
Note, if S = {#} then it was previously understood® that
Hs(x) =[x —6|*"%,  x¢s.
So it is still the case for a genera S that

[ — 6]* 0, (d )
Tl — 0]y (d0)

WW:AMWM

"pick a target uniformly in S with the terminal strike distribution and condition to hit
it."
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CONDITIONING TO CONTINUOUSLY HIT S C S%-1 FROM EITHER SIDE

Theorem
Let S C S%=1 be a closed subset such that oy (S) > 0.

(i) Suppose ov € (0,1). Forx ¢ S,

i 0B, < o0 — 21=2a L@ T & =D/ T2~ 0)2)

=0 wd/2T(1 — ) re2-a) Hs(x).

(i) When oo = 1, we have that, for x ¢ S,
L(d-1)/2)

x@ /7 Hs ()

lim [loge| Px(75, < 00) =
e—=0
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HEURISTIC FOR PROOF OF THEOREM 2
> The potential of the isotropic stable process satisfies £ [ Jo" Lxeap d t] = |y|*—9.

> Let e be a finite measure supported on S., which is absolutely continuous with
respect to Lebesgue measure ¢; with density m. and define its potential by

Upe (x) == /A e — 1o e (dy) = /S =yl ()la(dy)  x € RY,

> Asmec(y) =0forally ¢ A. As such, the Strong Markov Property tells us that

—E, [UME(XTE)I{TSE <oo}] . xéS..
()

o
U,u.g(x) = Ey |:1{7'SE<°°} / mg(Xt) dt
TSe

Note, the above equality is also true when x € S as, in that case, 75_ = 0.

> Let us now suppose that jic can be chosen in such a away that, for all x € A,
Up(x) = 1. Then
Pr(7e <o0) = Upe(x),  x¢&Se.

> Strategy: ‘guess’ the measure, jic, by verifying
Upe(x) =14 0(1), x€S.ase — 0,

so that
(I +0(1))Py(7s, < o00) =Upe(x),  x¢&Se,

> Draw out the the leading order decay in & from Upe (x). 1972



HEURISTIC FOR PROOF OF THEOREM 2: FLAT EARTH THEORY
> Believing in a flat Earth is helpful
> In one dimension, it is known” that for a one-dimensional symmetric stable
process,

1
[ reyetamp e ta ey ey =1 xe -1
-1

> Writing X = |X] arg(X), when X begins in the neighbourhood of S, then |X| begins
in the neighbourhood of 1 and arg(X), essentially, from within S.
> Flat earth theory would imply

pe(dy) = me(y)ed(dy)l(yesg)v
with e (y) = Caa eyl — (1 =€)~ 21+ —|y) =/

where /; is d-dimensional Lebesgue measure and c,, 4. is a constant to be
determined so that

Upe(x) =1+ 0(1) X € Se
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THE ASYMPTOTIC DOES NOT DEPEND ON S

> So far we are guessing:
pe(dy) =me(y)la(dy)lyes.),
with me(y) = caac(lyl — (1— )" *(1+e - y|) =/

where /; is d-dimensional Lebesgue measure and c,, 4, - is a constant to be
determined so that
Upe(x) =1+ 0(1) x€S.

> We don't think that the restriction to S¢ is important so we are going to write

pe(dy) = p(dy) - u (dy)
with u(dy) = me(y)ls(dy) and P (dy) =1, 1g me@)la(dy)

where S9! = {x e R?: 1 —¢ < |x| < 1+¢}.
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NASTY CALCULATIONS: « € (O 1)
Forx € S‘;_l,

uptd ()
= ot [gy I =177l
SE

20y, gun@=1/2

L((d—1)/2)

A=) 21+ e~ ly) " *e4(dy)

14e 7‘171

B /‘n sinf=20d6
r
1—e (’_(1_5))0‘/2(14'5—7)0‘/2 0 (|x]2 —2|x|rcos 6 + r2)d=a)/2

24:(3L1ﬂ17rd/2

o (SR g )
T(d/2) 1—e (r7(1fe))a/2(1+sfr)a/2

kwﬂﬂ/ﬂfﬁ(%ﬁJ—%%mmmﬂﬂ*d,
rwu> W = (=) +e—ne2 T

2c,, dﬂ'd/z

Pl Al it i3
r(d/2) Jl—e

w (- 1|?|€)a/2(1\t\ ")Q/Z

d -1
2 g/ / i 2F1 o1 g4 )a q
I'(d/2) +

=) P
X

Turns out

2%, 4. m/?T(1 — )T((2 — a)/2)
L((d+a—2)/2)
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THE SAME CONCEPT WORKS WITH A PLANE

S
\Hlb" Z"EIR‘( .
Theorem

Suppose that o € (0, 1] and the closed and bounded set S C 1YY is such that 0 < £3_1(S) < oo, where we recall that
Ly is (d — 1)-dimensional Lebesgue measure.

(i) Suppose o € (0,1). Forx ¢ S,

o (- 22 PP (2 (252 )2

. a—1 _
sh_)mos Py (75, < 00) =2 1"(17 )I‘(d 1)1‘(2 PN Ks(x), 3
where
Ks@ = [lr=yl* @), xgs.
(ii) Suppose o« = 1. Forx & S,
4 r(fz?)
Ell_rflO [loge| Px(Ts, < 00) = WKS(x% “)
(iii) The process (X, ]P’s) is well defined such that
dP; Ks (X
x =M, t>0,x &S. (5)
dPy| . Ks(x) 23/29




FLAT EARTH VS ROUND EARTH THEORY

> Consider the case o € (0,1).

> Recall for conditioning a continuous approach to the patch on the sphere from
outside we had a scaling with index o — d:

ity &Py (Xg(oe) € As) = Cag [ (P = 1*/2x — 6o (d6),
- S

£—>

> Where conditioning a continuous approach to the patch from either side, we had
scaling index av — 1:

o ae _12a (@ +a—-2)/2) T((2 - ) /2)
Ehgba 1IP’x(7'sE<c>o)_21 2 01— o) T a)

Hs(x).

> In the first case, the conditioned path needs to be observant of the entire sphere. In
the second case the conditioned path needs only a localised consideration of S,
which appears flat in close proximity.
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Thank you!
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