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Exploration of Rd by the isotropic α-stable process

Andreas Kyprianou
Based on joint work with V. Rivero and W. Satitkanitkul

A more thorough set of lecture notes can be found here:
https://arxiv.org/abs/1707.04343

Other related material found here
https://arxiv.org/abs/1511.06356
https://arxiv.org/abs/1511.06356
https://arxiv.org/abs/1706.09924
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MAIN OBJECTIVES OF MINI-COURSE

To review the theory Rd-valued stable processes in light of a number of recent
developments

I Theory of self-similar Markov processes
I Radial fluctuation theory
I Space-time transformations (Riesz–Bogdan–Żak transform)
I Connections with classical potential analysis
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§1. Quick review of Lévy processes
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(KILLED) LÉVY PROCESS
Fundamentally we are going to spend a lot of time talking about Lévy processes in one
and higher dimensions. But it is worth us briefly reminding ourselves about a few
facts:

I (ξt, t ≥ 0) is a (killed) Lévy process if it has stationary and independents with
RCLL paths (and is sent to a cemetery state after and independent and
exponentially distributed time).

I Process is entirely characterised by its one-dimensional transitions, which are
coded by the Lévy–Khinchine formula:

E[eiθ·ξt ] = e−Ψ(θ)t, θ ∈ Rd,

where,

Ψ(θ) = q + ia · θ +
1
2
θ · Aθ +

∫
Rd

(1− eiθ·x + i(θ · x)1(|x|<1))Π(dx),

where a ∈ R, A is a d× d Gaussian covariance matrix and Π is a measure
satisfying

∫
Rd (1 ∧ |x|2)Π(dx) <∞. Think of Π as the intensity of jumps in the

sense of
P(X has jump at time t of size dx) = Π(dx)dt + o(dt).

I In one dimension the path of a Lévy process can be monotone, in which case it is
called a subordinator and we work with the Laplace exponent

E[e−λξt ] = e−Φ(λ)t, t ≥ 0

where
Φ(λ) = q + δλ+

∫
(0,∞)

(1− e−λx)Υ(dx), λ ≥ 0.
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LÉVY PROCESS: ONE DIMENSION
Two examples in one dimension:

I Stable subordinator (ξt, t ≥ 0) is a subordinator which satisfies the additional
scaling property: For c > 0

under P, the law of (cξc−αt, t ≥ 0) is equal to P,

where α ∈ (0, 1). We have

Φ(λ) = λα, λ ≥ 0, and Π(dx) =
α

Γ(1− α)

1
x1+α

dx, x > 0.

I Hypgergeometric Lévy process: For β ≤ 1, γ ∈ (0, 1), β̂ ≥ 0, γ̂ ∈ (0, 1)

Ψ(θ) =
Γ(1− β + γ − iθ)

Γ(1− β − iθ)
Γ(β̂ + γ̂ + iθ)

Γ(β̂ + iθ)
θ ∈ R.

The Lévy measure has a density with respect to Lebesgue measure which is given
by

π(x) =


−

Γ(η)

Γ(η − γ̂)Γ(−γ)
e−(1−β+γ)x

2F1
(
1 + γ, η; η − γ̂; e−x) , if x > 0,

−
Γ(η)

Γ(η − γ)Γ(−γ̂)
e(β̂+γ̂)x

2F1 (1 + γ̂, η; η − γ; ex) , if x < 0,

where η := 1− β + γ + β̂ + γ̂.
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LÉVY PROCESS: ONE DIMENSION

I If ξ has a characteristic exponent Ψ then necessarily

Ψ(θ) = κ(−iθ)κ̂(iθ), θ ∈ R.

where κ and κ̂ are Bernstein functions, e.g.

κ(λ) = q + δλ+

∫
(0,∞)

(1− e−λx)Υ(dx), λ ≥ 0.

I The factorisation has a physical interpretation:
I range of the κ-subordinator agrees with the range of sups≤t ξs, t ≥ 0
I range κ̂-subordinator agrees with the range of− infs≤t ξs, t ≥ 0.

I Note if δ > 0, then P(ξ
τ+x

= x) > 0, where τ+
x = inf{t > 0 : ξt = x}, x > 0.

I We have already seen the hypergeometric example

Ψ(θ) =
Γ(1− β + γ − iθ)

Γ(1− β − iθ)
×

Γ(β̂ + γ̂ + iθ)

Γ(β̂ + iθ)
θ ∈ R.
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HITTING POINTS

I We say that ξ can hit a point x ∈ R if

P(ξt = x for at least one t > 0) > 0.

I Creeping is one way to hit a point, but not the only way

Theorem (Kesten (1969)/Bretagnolle (1971))
Suppose that ξ is not a compound Poisson process. Then ξ can hit points if and only if∫

R
Re
(

1
1 + Ψ(z)

)
dz <∞.

If the Kesten-Bretagnolle integral test is satisfied, then

P(τ{x} <∞) =
u(x)

u(0)
,

where τ{x} = inf{t > 0 : ξt = x}, providing we can compute the inversion

u(x) =

∫
c+iR

e−zx

Ψ(−iz)
dz

for some c ∈ R.
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§2. Stable processes seen as Lévy processes
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ISOTROPIC α-STABLE PROCESS IN DIMENSION d ≥ 2

For d ≥ 2, let X := (Xt : t ≥ 0) be a d-dimensional isotropic stable process.

I X has stationary and independent increments (it is a Lévy process)
I Characteristic exponent Ψ(θ) = − logE0(eiθ·X1 ) satisfies

Ψ(θ) = |θ|α, θ ∈ R.

I Necessarily, α ∈ (0, 2], we exclude 2 as it pertains to the setting of a Brownian
motion.

I Associated Lévy measure satisfies, for B ∈ B(Rd),

Π(B) =
2αΓ((d + α)/2)

πd/2|Γ(−α/2)|

∫
B

1
|y|α+d dy

=
2α−1Γ((d + α)/2)Γ(d/2)

πd
∣∣Γ(−α/2)

∣∣
∫
Sd

rd−1σ1(dθ)
∫ ∞

0
1B(rθ)

1
rα+d dr,

where σ1(dθ) is the surface measure on Sd normalised to have unit mass.
I X is Markovian with probabilities denoted by Px, x ∈ Rd
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ISOTROPIC α-STABLE PROCESS IN DIMENSION d ≥ 2

I Stable processes are also self-similar. For c > 0 and x ∈ Rd \ {0},

under Px, the law of (cXc−αt, t ≥ 0) is equal to Pcx.

I Isotropy means, for all rotations U : Rd 7→ Rd and x ∈ Rd,

under Px, the law of (UXt, t ≥ 0) is equal to PUx.

I If (St, t ≥ 0) is a stable subordinator with index α/2 (a Lévy process with Laplace
exponent −t−1 logE[e−λSt ] = λα) and (Bt, t ≥ 0) for a standard d-dimensional
Brownian motion, then it is known that Xt :=

√
2BSt , t ≥ 0, is a stable process

with index α.
E[eiθXt ] = E

[
e−θ

2St
]

= e−|θ|
αt, θ ∈ R.
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SAMPLE PATH, α = 1.9
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SAMPLE PATH, α = 1.7
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SAMPLE PATH, α = 1.5
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SAMPLE PATH, α = 1.2
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SAMPLE PATH, α = 0.9
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SOME CLASSICAL PROPERTIES: TRANSIENCE

We are interested in the potential measure

U(x,dy) =

∫ ∞
0

Px(Xt ∈ dy)dt =

(∫ ∞
0

pt(y− x)dt
)

dy, x, y ∈ R.

Note: stationary and independent increments means that it suffices to consider
U(0,dy).

Theorem
The potential of X is absolutely continuous with respect to Lebesgue measure, in which case, its
density in collaboration with spatial homogeneity satisfies U(x,dy) = u(y− x)dy, x, y ∈ Rd,
where

u(z) = 2−απ−d/2 Γ((d− α)/2)

Γ(α/2)
|z|α−d, z ∈ Rd.

In this respect X is transient. It can be shown moreover that

lim
t→∞

|Xt| =∞

almost surely
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PROOF OF THEOREM

Now note that, for bounded and measurable f : Rd 7→ Rd,

E
[∫ ∞

0
f (Xt)dt

]
= E

[∫ ∞
0

f (
√

2BSt )dt
]

=

∫ ∞
0

ds
∫ ∞

0
dtP(St ∈ ds)

∫
R
P(Bs ∈ dx)f (

√
2x)

=
1

Γ(α/2)πd/22d

∫
R

dy
∫ ∞

0
ds e−|y|

2/4ss−1+(α−d)/2f (y)

=
1

2αΓ(α/2)πd/2

∫
R

dy |y|(α−d)
∫ ∞

0
du e−uu−1+(d−α/2)f (y)

=
Γ((d− α)/2)

2αΓ(α/2)πd/2

∫
R

dy |y|(α−d)f (y).
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SOME CLASSICAL PROPERTIES: POLARITY

I Kesten-Bretagnolle integral test, in dimension d ≥ 2,∫
R

Re
(

1
1 + Ψ(z)

)
dz =

∫
R

1
1 + |z|α

dz ∝
∫
R

1
1 + rα

rd−1drσ1(dθ) =∞.

I Px(τ{y} <∞) = 0, for x, y ∈ Rd.
I i.e. the stable process cannot hit individual points almost surely.
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§3. Stable processes seen as a self-similar Markov process
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THE RADIAL PART OF A STABLE PROCESS

Lemma
The process (|Xt|, t ≥ 0) is strong Markov and self-similar.

I Temporarily write (X(x)
t , t ≥ 0) in place of (X,Px)

I Markov property of X tells us that, for s, t ≥ 0,

X(x)
t+s = X̃

(X(x)
t )

s ,

where X̃(x) is an independent copy of X(x).
I Isotropy implies that

|X(x)
t+s| = |X̃

(y)
s |y=X(x)

t
=d |X̃(z)

s |z=(|X(x)
t |,0,0··· ,0)

I Hence Markov property holds, strong Markov property (and Feller property) can
be developed from this argument

I Self-similarity of |X| follows directly from the self-similarity of X.



20/ 73

§1. §2. §3. §4. §5. §6. §7. §8. References

THE RADIAL PART OF A STABLE PROCESS

Lemma
The process (|Xt|, t ≥ 0) is strong Markov and self-similar.

I Temporarily write (X(x)
t , t ≥ 0) in place of (X,Px)

I Markov property of X tells us that, for s, t ≥ 0,

X(x)
t+s = X̃

(X(x)
t )

s ,

where X̃(x) is an independent copy of X(x).
I Isotropy implies that

|X(x)
t+s| = |X̃

(y)
s |y=X(x)

t
=d |X̃(z)

s |z=(|X(x)
t |,0,0··· ,0)

I Hence Markov property holds, strong Markov property (and Feller property) can
be developed from this argument

I Self-similarity of |X| follows directly from the self-similarity of X.



20/ 73

§1. §2. §3. §4. §5. §6. §7. §8. References

THE RADIAL PART OF A STABLE PROCESS

Lemma
The process (|Xt|, t ≥ 0) is strong Markov and self-similar.

I Temporarily write (X(x)
t , t ≥ 0) in place of (X,Px)

I Markov property of X tells us that, for s, t ≥ 0,

X(x)
t+s = X̃

(X(x)
t )

s ,

where X̃(x) is an independent copy of X(x).
I Isotropy implies that

|X(x)
t+s| = |X̃

(y)
s |y=X(x)

t
=d |X̃(z)

s |z=(|X(x)
t |,0,0··· ,0)

I Hence Markov property holds, strong Markov property (and Feller property) can
be developed from this argument

I Self-similarity of |X| follows directly from the self-similarity of X.



20/ 73

§1. §2. §3. §4. §5. §6. §7. §8. References

THE RADIAL PART OF A STABLE PROCESS

Lemma
The process (|Xt|, t ≥ 0) is strong Markov and self-similar.

I Temporarily write (X(x)
t , t ≥ 0) in place of (X,Px)

I Markov property of X tells us that, for s, t ≥ 0,

X(x)
t+s = X̃

(X(x)
t )

s ,

where X̃(x) is an independent copy of X(x).
I Isotropy implies that

|X(x)
t+s| = |X̃

(y)
s |y=X(x)

t
=d |X̃(z)

s |z=(|X(x)
t |,0,0··· ,0)

I Hence Markov property holds, strong Markov property (and Feller property) can
be developed from this argument

I Self-similarity of |X| follows directly from the self-similarity of X.



20/ 73

§1. §2. §3. §4. §5. §6. §7. §8. References

THE RADIAL PART OF A STABLE PROCESS

Lemma
The process (|Xt|, t ≥ 0) is strong Markov and self-similar.

I Temporarily write (X(x)
t , t ≥ 0) in place of (X,Px)

I Markov property of X tells us that, for s, t ≥ 0,

X(x)
t+s = X̃

(X(x)
t )

s ,

where X̃(x) is an independent copy of X(x).
I Isotropy implies that

|X(x)
t+s| = |X̃

(y)
s |y=X(x)

t
=d |X̃(z)

s |z=(|X(x)
t |,0,0··· ,0)

I Hence Markov property holds, strong Markov property (and Feller property) can
be developed from this argument

I Self-similarity of |X| follows directly from the self-similarity of X.



21/ 73

§1. §2. §3. §4. §5. §6. §7. §8. References

POSITIVE SELF-SIMILAR MARKOV PROCESSES

The process |X| is an example of a positive self-similar Markov process.

Definition
A [0,∞)-valued regular Feller process Z = (Zt, t ≥ 0) is called a positive self-similar
Markov process if there exists a constant α > 0 such that, for any x > 0 and c > 0,

the law of (cZc−αt, t ≥ 0) under Px is Pcx,

where Px is the law of Z when issued from x. In that case, we refer to α as the index of
self-similarity.
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LAMPERTI TRANSFORM

Theorem (Lamperti 1972)
Fix α > 0.

(i) If (Z,Px), x > 0, is a positive self-similar Markov process with index of self-similarity α,
then up to absorption at the origin, it can be represented as follows:

Zt1(t<ζ) = exp{ξϕ(t)}, t ≥ 0,

where

ϕ(t) = inf{s > 0 :

∫ s

0
exp(αξu)du > s},

ξ0 = log x and either
(1) Px(ζ =∞) = 1 for all x > 0, in which case, ξ is a Lévy process satisfying

lim supt↑∞ ξt =∞,
(2) Px(ζ <∞ and Zζ− = 0) = 1 for all x > 0, in which case ξ is a Lévy process satisfying

limt↑∞ ξt = −∞, or
(3) Px(ζ <∞ and Zζ− > 0) = 1 for all x > 0, in which case ξ is a Lévy process killed at an

independent and exponentially distributed random time.

In all cases, we may identify ζ = I∞ :=
∫∞

0 eαξt dt.

(ii) Conversely, for each x > 0, suppose that ξ is a given (killed) Lévy process, issued from
log x. Define

Zt = exp{ξϕ(t)}1(t<I∞), t ≥ 0.

Then Z defines a positive self-similar Markov process up to its absorption time ζ = I∞,
which satisfies Z0 = x and which has index α.
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LAMPERTI-TRANSFORM OF |X|

Theorem (Caballero-Pardo-Perez (2011))
For the pssMp constructed using the radial part of an isotropic d-dimensional stable process,
the underlying Lévy process, ξ that appears through the Lamperti has characteristic exponent
given by

Ψ(z) = 2α
Γ( 1

2 (−iz + α))

Γ(− 1
2 iz)

Γ( 1
2 (iz + d))

Γ( 1
2 (iz + d− α))

, z ∈ R.

I The fact that limt→∞ |Xt| =∞ implies that limt→∞ ξt =∞
I If we write ψ(λ) = −Ψ(−iλ) = logE[eλX1 ] for the Laplace exponent of ξ, then it

is well defined for λ ∈ (−d, α) with roots at λ = 0 and λ = α− d.
I Note that

exp((α− d)ξt), t ≥ 0,

is a martingale
I Recalling that |Xt| = exp(ξϕt ) and that ϕt is an almost surely finite stopping time

(because limt→∞ ξt =∞) we can deduce that

|Xt|α−d, t ≥ 0,

is a martingale (effectively invoking an Esscher transform to ψ).
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CONDITIONED STABLE PROCESS

I We can define the change of measure

dP◦x
dPx

∣∣∣∣
Ft

=
|Xt|α−d

|x|α−d , t ≥ 0, x 6= 0

I Suppose that f is a bounded measurable function then, for all c > 0,

E◦x [f (cXc−αs, s ≤ t)] = Ex

[
|cXc−αt|α−d

|cx|d−α
f (cXc−αs, s ≤ t)

]

= Ecx

[
|Xt|α−d

|cx|d−α
f (Xs, s ≤ t)

]
= E◦cx[f (Xs, , s ≤ t)]

I Markovian, isotropy and self-similarity properties pass through to (X,P◦x ), x 6= 0.
I Similarly (|X|,P◦x ), x 6= 0 is a positive self-similar Markov process.
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CONDITIONED STABLE PROCESS

I It turns out that (X,P◦x ), x 6= 0, corresponds to the stable process conditioned to be
continuously absorbed at the origin.

I More precisely, for A ∈ σ(Xs, s ≤ t), if we set {0} to be ‘cemetery’ state and
k = inf{t > 0 : Xt = 0}, then

P◦x (A, t < k) = lim
a↓0

Px(A, t < k|τ⊕a <∞),

where τ⊕a = inf{t > 0 : |Xt| < a}.
I In light of the associated Esscher transform on ξ, we note that the Lamperti

transform of (|X|,P◦x ), x 6= 0, corresponds to the Lévy process with characteristic
exponent

Ψ◦(z) = 2α
Γ( 1

2 (−iz + d))

Γ(− 1
2 (iz + α− d))

Γ( 1
2 (iz + α))

Γ( 1
2 iz)

, z ∈ R.

I Given the pathwise interpretation of (X,P◦x ), x 6= 0, it follows immediately that
limt→∞ ξt = −∞, P◦x almost surely, for any x 6= 0.
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Rd-SELF-SIMILAR MARKOV PROCESSES

Definition
A Rd-valued regular Feller process Z = (Zt, t ≥ 0) is called a Rd-valued self-similar
Markov process if there exists a constant α > 0 such that, for any x > 0 and c > 0,

the law of (cZc−αt, t ≥ 0) under Px is Pcx,

where Px is the law of Z when issued from x.

I Same definition as before except process now lives on Rd.
I Is there an analogue of the Lamperti representation?
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LAMPERTI–KIU TRANSFORM

In order to introduce the analogue of the Lamperti transform in d-dimensions, we need
to introduce the notion of a Markov additive process.

Definition
An R× E valued regular Feller process (ξ,Θ) = ((ξt,Θt) : t ≥ 0) with probabilities
Px,θ , x ∈ R, θ ∈ E, and cemetery state (−∞, †) is called a Markov additive process (MAP)
if Θ is a regular Feller process on E with cemetery state † such that, for every bounded
measurable function f : (R ∪ {−∞})× (E ∪ {†})→ R, t, s ≥ 0 and (x, θ) ∈ R× E, on
{t < ς},

Ex,θ[f (ξt+s − ξt,Θt+s)|σ((ξu,Θu), u ≤ t)] = E0,Θt [f (ξs,Θs)],

where ς = inf{t > 0 : Θt = †}.

I Roughly speaking, one thinks of a MAP as a ‘Markov modulated’ Lévy process
I It has ‘conditional stationary and independent increments’
I Think of the E-valued Markov process Θ as modulating the characteristics of ξ

(which would otherwise be a Lévy processes).
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LAMPERTI–KIU TRANSFORM

Theorem
Fix α > 0. The process Z is a ssMp with index α if and only if there exists a (killed) MAP,
(ξ,Θ) on R× Sd such that

Zt := eξϕ(t)Θϕ(t) , t ≤ Iς , (1)

where

ϕ(t) = inf
{

s > 0 :

∫ s

0
eαξu du > t

}
, t ≤ Iς ,

and Iς =
∫ ς

0 eαξs ds is the lifetime of Z until absorption at the origin. Here, we interpret
exp{−∞} × † := 0 and inf ∅ :=∞.

I In the representation (1), the time to absorption in the origin,

ζ = inf{t > 0 : Zt = 0},

satisfies ζ = Iς .
I Note x ∈ Rd if and only if

x = (|x|,Arg(x)),

where Arg(x) = x/|x| ∈ Sd. The Lamperti–Kiu decomposition therefore gives us a
d-dimensional skew product decomposition of self-similar Markov processes.
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LAMPERTI-STABLE MAP

I The stable process X is an Rd-valued self-similar Markov process and therefore fits
the description above

I How do we characterise its underlying MAP (ξ,Θ)?
I We already know that |X| is a positive similar Markov process and hence ξ is a

Lévy process, albeit corollated to Θ

I What properties does Θ and what properties to the pair (ξ,Θ) have?
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MAP ISOTROPY

Theorem
Suppose (ξ,Θ) is the MAP underlying the stable process. Then ((ξ,U−1Θ),Px,θ) is equal in
law to ((ξ,Θ),Px,U−1θ), for every orthogonal d-dimensional matrix U and x ∈ Rd, θ ∈ Sd.

Proof.
First note that ϕ(t) =

∫ t
0 |Xu|−αdu. It follows that

(ξt,Θt) = (log |XA(t)|, Arg(XA(t))), t ≥ 0,

where the random times A(t) = inf
{

s > 0 :
∫ s

0 |Xu|−αdu > t
}

are stopping times in
the natural filtration of X.

Now suppose that U is any orthogonal d-dimensional matrix and let X′ = U−1X. Since
X is isotropic and since |X′| = |X|, and Arg(X′) = U−1Arg(X), we see from (??) that,
for x ∈ R and θ ∈ Sd

((ξ,U−1Θ),Plog |x|,θ) = ((log |XA(t)|, U−1Arg(XA(t))),Px)

d
= ((log |XA(t)|, Arg(XA(t))),PU−1x)

= ((ξ,Θ),Plog |x|,U−1θ)

as required.
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MAP CORROLATION

I We will work with the increments ∆ξt = ξt − ξt− ∈ R, t ≥ 0,

Theorem (Bo Li, Victor Rivero, Bertoin-Werner (1996))
Suppose that f is a bounded measurable function on [0,∞)× R× R× Sd × Sd such that
f (·, ·, 0, ·, ·) = 0, then, for all θ ∈ Sd,

E0,θ

∑
s>0

f (s, ξs−,∆ξs,Θs−,Θs)


=

∫ ∞
0

∫
R

∫
Sd

∫
Sd

∫
R

Vθ(ds,dx,dϑ)σ1(dφ)dy
c(α)eyd

|eyφ− ϑ|α+d f (s, x, y, ϑ, φ),

where

Vθ(ds, dx,dϑ) = P0,θ(ξs ∈ dx,Θs ∈ dϑ)ds, x ∈ R, ϑ ∈ Sd, s ≥ 0,

is the space-time potential of (ξ,Θ) under P0,θ , σ1(φ) is the surface measure on Sd normalised
to have unit mass and

c(α) = 2α−1π−dΓ((d + α)/2)Γ(d/2)/
∣∣Γ(−α/2)

∣∣.
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MAP OF (X,P◦· )
I Recall that (|Xt|α−d, t ≥ 0), is a martingale.
I Informally, we should expect Lh = 0, where h(x) = |x|α−d and L is the

infinitesimal generator of the stable process, which has action

Lf (x) = a · ∇f (x) +

∫
Rd

[f (x + y)− f (x)− 1(|y|≤1)y · ∇f (x)]Π(dy), |x| > 0,

for appropriately smooth functions.
I Associated to (X,Px), x 6= 0 is the generator

L◦f (x) = lim
t↓0

E◦x [f (Xt)]− f (x)

t
= lim

t↓0

Ex[|Xt|α−df (Xt)]− |x|α−df (x)

|x|α−dt
,

I That is to say

L◦f (x) =
1

h(x)
L(hf )(x),

I Straightforward algebra using Lh = 0 gives us

L◦f (x) = a · ∇f (x) +

∫
Rd

[f (x + y)− f (x)− 1(|y|≤1)y · ∇f (x)]
h(x + y)

h(x)
Π(dy), |x| > 0

I Equivalently, the rate at which (X,P◦x ), x 6= 0 jumps given by

Π◦(x,B) :=
2α−1Γ((d + α)/2)Γ(d/2)

πd
∣∣Γ(−α/2)

∣∣
∫
Sd

dσ1(φ)

∫
(0,∞)

1B(rφ)
dr

rα+1

|x + rφ|α−d

|x|α−d ,

for |x| > 0 and B ∈ B(Rd).
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MAP OF (X,P◦· )

Theorem
Suppose that f is a bounded measurable function on [0,∞)× R× R× Sd × Sd such that
f (·, ·, 0, ·, ·) = 0, then, for all θ ∈ Sd,

E◦0,θ

∑
s>0

f (s, ξs−,∆ξs,Θs−,Θs)


=

∫ ∞
0

∫
R

∫
Sd

∫
Sd

∫
R

V◦θ (ds,dx,dϑ)σ1(dφ)dy
c(α)eyd

|eyφ− ϑ|α+d f (s, x,−y, ϑ, φ),

where

V◦θ (ds, dx,dϑ) = P◦0,θ(ξs ∈ dx,Θs ∈ dϑ)ds, x ∈ R, ϑ ∈ Sd, s ≥ 0,

is the space-time potential of (ξ,Θ) under P◦0,θ .

Comparing the right-hand side above with that of the previous Theorem, it now
becomes immediately clear that the the jump structure of (ξ,Θ) under P◦x,θ , x ∈ R,
θ ∈ Sd, is precisely that of (−ξ,Θ) under Px,θ , x ∈ R, θ ∈ Sd.
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MAP OF (X,P·)

Theorem
Suppose that f is a bounded measurable function on [0,∞)× R× R× Sd × Sd such that
f (·, ·, 0, ·, ·) = 0, then, for all θ ∈ Sd,

E0,θ

∑
s>0

f (s, ξs−,∆ξs,Θs−,Θs)


=

∫ ∞
0

∫
R

∫
Sd

∫
Sd

∫
R

Vθ(ds,dx,dϑ)σ1(dφ)dy
c(α)eyd
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§4. Riesz–Bogdan–Żak transform
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RIESZ–BOGDAN–ŻAK TRANSFORM

I Define the transformation K : Rd 7→ Rd, by

Kx =
x
|x|2

, x ∈ Rd\{0}.

I This transformation inverts space through the unit sphere {x ∈ Rd : |x| = 1}.
I Write x ∈ Rd in skew product form x = (|x|,Arg(x)), and note that

Kx = (|x|−1,Arg(x)), x ∈ Rd\{0},

showing that the K-transform ‘radially inverts’ elements of Rd through Sd.
I In particular K(Kx) = x

Theorem (d-dimensional Riesz–Bogdan–Żak Transform, d ≥ 2)
Suppose that X is a d-dimensional isotropic stable process with d ≥ 2. Define

η(t) = inf{s > 0 :

∫ s

0
|Xu|−2αdu > t}, t ≥ 0. (2)

Then, for all x ∈ Rd\{0}, (KXη(t), t ≥ 0) under Px is equal in law to (X,P◦Kx).
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PROOF OF RIESZ–BOGDAN–ŻAK TRANSFORM
We give a proof, different to the original proof of Bogdan and Żak (2010).

I Recall that Xt = eξϕ(t)Θϕ(t), where∫ ϕ(t)

0
eαξu du = t, t ≥ 0.

I Note also that, as an inverse,∫ η(t)

0
|Xu|−2αdu = t, t ≥ 0.

I Differentiating,

dϕ(t)
dt

= e−αξϕ(t) and
dη(t)

dt
= e2αξϕ◦η(t) , η(t) < τ{0}.

and chain rule now tells us that
d(ϕ ◦ η)(t)

dt
=

dϕ(s)
ds

∣∣∣∣
s=η(t)

dη(t)
dt

= eαξϕ◦η(t) .

I Said another way, ∫ ϕ◦η(t)

0
e−αξu du = t, t ≥ 0,

or

ϕ ◦ η(t) = inf{s > 0 :

∫ s

0
e−αξu du > t}
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We give a proof, different to the original proof of Bogdan and Żak (2010).
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We give a proof, different to the original proof of Bogdan and Żak (2010).
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PROOF OF RIESZ–BOGDAN–ŻAK TRANSFORM

I Next note that
KXη(t) = e−ξϕ◦η(t)Θϕ◦η(t), t ≥ 0,

and we have just shown that

ϕ ◦ η(t) = inf{s > 0 :

∫ s

0
e−αξu du > t}.

I It follows that (KXη(t), t ≥ 0) is a self-similar Markov process with underlying
MAP (−ξ,Θ)

I We have also seen that (X,P◦x ), x 6= 0, is also a self-similar Markov process with
underlying MAP given by (−ξ,Θ).

I The statement of the theorem follows.
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§5. Hitting spheres
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PORT’S SPHERE HITTING PROBABILITY

I Recall that a stable process cannot hit points
I We are ultimately interested in the distribution of the position of X on first hitting

of the sphere Sd = {x ∈ Rd : |x| = 1}.
I Define

τ� = inf{t > 0 : |Xt| = 1}.

I We start with an easier result

Theorem (Port (1969))
If α ∈ (1, 2), then

Px(τ� <∞)

=
Γ
(
α+d

2 − 1
)

Γ
(
α
2

)
Γ
(

d
2

)
Γ(α− 1)

 2F1((d− α)/2, 1− α/2, d/2; |x|2) 1 > |x|

|x|α−d
2F1((d− α)/2, 1− α/2, d/2; 1/|x|2) 1 ≤ |x|.

Otherwise, if α ∈ (0, 1], then Px(τ� =∞) = 1 for all x ∈ Rd.
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PROOF OF PORT’S HITTING PROBABILITY

I If (ξ,Θ) is the underlying MAP then

Px(τ� <∞) = Plog |x|(τ
{0} <∞) = P0(τ{log(1/|x|)} <∞),

where τ{z} = inf{t > 0 : ξt = z}, z ∈ R. (Note, the time change in the
Lamperti–Kiu representation does not level out.)

I Using Sterling’s formula, we have, |Γ(x + iy)| =
√

2πe−
π
2 |y||y|x−

1
2 (1 + o(1)), for

x, y ∈ R, as y→∞, uniformly in any finite interval −∞ < a ≤ x ≤ b <∞.
Hence,

1
Ψ(z)

=
Γ(− 1

2 iz)

Γ( 1
2 (−iz + α))

Γ( 1
2 (iz + d− α))

Γ( 1
2 (iz + d))

∼ |z|−α

uniformly on R as |z| → ∞.
I From Kesten-Brestagnolle integral test we conclude that (1 + Ψ(z))−1 is

integrable and each sphere Sd can be reached with positive probability from any x
with |x| 6= 1 if and only if α ∈ (1, 2).



41/ 73

§1. §2. §3. §4. §5. §6. §7. §8. References

PROOF OF PORT’S HITTING PROBABILITY

I If (ξ,Θ) is the underlying MAP then

Px(τ� <∞) = Plog |x|(τ
{0} <∞) = P0(τ{log(1/|x|)} <∞),

where τ{z} = inf{t > 0 : ξt = z}, z ∈ R. (Note, the time change in the
Lamperti–Kiu representation does not level out.)

I Using Sterling’s formula, we have, |Γ(x + iy)| =
√

2πe−
π
2 |y||y|x−

1
2 (1 + o(1)), for

x, y ∈ R, as y→∞, uniformly in any finite interval −∞ < a ≤ x ≤ b <∞.
Hence,

1
Ψ(z)

=
Γ(− 1

2 iz)

Γ( 1
2 (−iz + α))

Γ( 1
2 (iz + d− α))

Γ( 1
2 (iz + d))

∼ |z|−α

uniformly on R as |z| → ∞.
I From Kesten-Brestagnolle integral test we conclude that (1 + Ψ(z))−1 is

integrable and each sphere Sd can be reached with positive probability from any x
with |x| 6= 1 if and only if α ∈ (1, 2).



41/ 73

§1. §2. §3. §4. §5. §6. §7. §8. References

PROOF OF PORT’S HITTING PROBABILITY

I If (ξ,Θ) is the underlying MAP then

Px(τ� <∞) = Plog |x|(τ
{0} <∞) = P0(τ{log(1/|x|)} <∞),

where τ{z} = inf{t > 0 : ξt = z}, z ∈ R. (Note, the time change in the
Lamperti–Kiu representation does not level out.)

I Using Sterling’s formula, we have, |Γ(x + iy)| =
√

2πe−
π
2 |y||y|x−

1
2 (1 + o(1)), for

x, y ∈ R, as y→∞, uniformly in any finite interval −∞ < a ≤ x ≤ b <∞.
Hence,

1
Ψ(z)

=
Γ(− 1

2 iz)

Γ( 1
2 (−iz + α))

Γ( 1
2 (iz + d− α))

Γ( 1
2 (iz + d))

∼ |z|−α

uniformly on R as |z| → ∞.
I From Kesten-Brestagnolle integral test we conclude that (1 + Ψ(z))−1 is

integrable and each sphere Sd can be reached with positive probability from any x
with |x| 6= 1 if and only if α ∈ (1, 2).



42/ 73

§1. §2. §3. §4. §5. §6. §7. §8. References

PROOF OF PORT’S HITTING PROBABILITY
I Note that

Γ( 1
2 (−iz + α))

Γ(− 1
2 iz)

Γ( 1
2 (iz + d))

Γ( 1
2 (iz + d− α))

so that Ψ(−iz), is well defined for Re(z) ∈ (−d, α) with roots at 0 and α− d.
I We can use the identity

Px(τ� <∞) =
uξ(log(1/|x|))

uξ(0)
,

providing

uξ(x) =
1

2πi

∫
c+iR

e−zx

Ψ(−iz)
dz, x ∈ R,

for c ∈ (α− d, 0).
I Build the contour integral around simple poles at {−2n− (d− α) : n ≥ 0}.

1
2πi

∫ c+iR

c−iR

e−zx

Ψ(−iz)
dz

= −
1

2πi

∫
c+Reiθ :θ∈(π/2,3π/2)

e−zx

Ψ(−iz)
dz

+
∑

1≤n≤bRc
Res

(
e−zx

Ψ(−iz)
; z = −2n− (d− α)

)
.

R

−R

γR

c

0

−2− (d− α)

−(d− α)
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I Build the contour integral around simple poles at {−2n− (d− α) : n ≥ 0}.

1
2πi

∫ c+iR

c−iR

e−zx

Ψ(−iz)
dz

= −
1

2πi

∫
c+Reiθ :θ∈(π/2,3π/2)

e−zx

Ψ(−iz)
dz

+
∑

1≤n≤bRc
Res

(
e−zx

Ψ(−iz)
; z = −2n− (d− α)

)
.

R

−R

γR

c

0

−2− (d− α)

−(d− α)



42/ 73

§1. §2. §3. §4. §5. §6. §7. §8. References

PROOF OF PORT’S HITTING PROBABILITY
I Note that

Γ( 1
2 (−iz + α))

Γ(− 1
2 iz)

Γ( 1
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Γ( 1
2 (iz + d− α))
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PROOF OF PORT’S HITTING PROBABILITY
I Now fix x ≤ 0 and recall estimate |1/Ψ(−iz)| ≤ |z|−α. The assumption x ≤ 0 and

the fact that the arc length of {c + Reiθ : θ ∈ (π/2, 3π/2)} is πR, gives us∣∣∣∣∣
∫

c+Reiθ :θ∈(π/2,3π/2)

e−xz

Ψ(−iz)
dz

∣∣∣∣∣ ≤ CR−(α−1) → 0

as R→∞ for some constant C > 0.
I Moreover,

uξ(x) =
∑
n≥1

Res
(

e−zx

Ψ(−iz)
; z = −2n− (d− α)

)

=
∞∑
0

(−1)n+1 Γ(n + (d− α)/2)

Γ(−n + α/2)Γ(n + d/2)

e2nx

n!

= ex(d−α) Γ((d− α)/2)

Γ(α/2)Γ(d/2)
2F1((d− α)/2, 1− α/2, d/2; e2x),

Which also gives a value for uξ(0).
I Hence, for 1 ≤ |x|,

Px(τ� <∞) =
uξ(log(1/|x|))

uξ(0)

=
Γ
(
α+d

2 − 1
)

Γ
(
α
2

)
Γ
(

d
2

)
Γ(α− 1)

|x|α−d
2F1((d− α)/2, 1− α/2, d/2; |x|−2).
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PROOF OF PORT’S HITTING PROBABILITY

I To deal with the case |x| < 1, we can appeal to the Riesz–Bogdan–Żak transform
to help us.

I To this end we note that, for |x| < 1, |Kx| > 1

PKx(τ� <∞) = P◦x (τ� <∞) = Ex

[
|Xτ� |α−d

|x|α−d 1(τ�<∞)

]
=

1
|x|α−d Px(τ� <∞)

I Hence plugging in the expression for |x| < 1,

Px(τ� <∞) =
Γ
(
α+d

2 − 1
)

Γ
(
α
2

)
Γ
(

d
2

)
Γ(α− 1)

2F1((d− α)/2, 1− α/2, d/2; |x|2),

thus completing the proof.
I To deal with the case x = 0, take limits in the established identity as |x| → 0.
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RIESZ REPRESENTATION OF PORT’S HITTING PROBABILITY

Theorem
Suppose α ∈ (1, 2). For all x ∈ Rd,

Px(τ� <∞) =
Γ
(
α+d

2 − 1
)

Γ
(
α
2

)
Γ
(

d
2

)
Γ(α− 1)

∫
Sd

|z− x|α−dσ1(dz).

In particular, for y ∈ Sd,

∫
Sd

|z− y|α−dσ1(dz) =
Γ
(

d
2

)
Γ(α− 1)

Γ
(
α+d

2 − 1
)

Γ
(
α
2

) .
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PROOF OF RIESZ REPRESENTATION OF PORT’S HITTING PROBABILITY
I We know that |Xt − z|α−d, t ≥ 0 is a martingale.
I Hence we know that

Mt :=

∫
Sd

|z− Xt∧τ� |
α−dσ1(dz), t ≥ 0,

is a martingale.
I Recall that limt→∞ |Xt| = 0 and α < d and hence

M∞ := lim
t→∞

Mt =

∫
Sd

|z− Xτ� |
α−dσ1(dz)1(τ�<∞)

d
= C1(τ�<∞).

where, despite the randomness in Xτ� , by rotational symmetry,

C =

∫
Sd

|z− 1|α−dσ1(dz),

and 1 = (1, 0, · · · , 0) ∈ Rd is the ‘North Pole’ on Sd.
I Since M is a UI martingale, taking expectations of M∞∫

Sd

|z− x|α−dσ1(dz) = Ex[M0] = Ex[M∞] = CPx(τ� <∞)

I Taking limits as |x| → 0,

C = 1/P(τ� <∞) = Γ
(

d
2

)
Γ(α− 1)/Γ

(
α+d

2 − 1
)

Γ
(
α
2

)
.
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Sphere inversions
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SPHERE INVERSIONS

I Fix a point b ∈ Rd and a value r > 0.
I The spatial transformation x∗ : Rd\{b} 7→ Rd\{b}

x∗ = b +
r2

|x− b|2
(x− b),

is called an inversion through the sphere Sd(b, r) := {x ∈ Rd : |x− b| = r}.

b
r

x1

x∗1
x2

x∗2

Figure: Inversion relative to the sphere Sd(b, r).
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INVERSION THROUGH Sd(b, r): KEY PROPERTIES

Inversion through Sd(b, r)

x∗ = b +
r2

|x− b|2
(x− b),

The following can be deduced by straightforward algebra
I Self inverse

x = b + r2 (x∗ − b)

|x∗ − b|2

I Symmetry
r2 = |x∗ − b||x− b|

I Difference

|x∗ − y∗| =
r2|x− y|
|x− b||y− b|

I Differential

dx∗ =
r2d

|x− b|2d dx
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INVERSION THROUGH Sd(b, r): KEY PROPERTIES

I The sphere Sd(c,R) maps to itself under inversion through Sd(b, r) provided the
former is orthogonal to the latter, which is equivalent to r2 + R2 = |c− b|2.

b
c

Rr

I In particular, the area contained in the blue segment is mapped to the area in the
red segment and vice versa.
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SPHERE INVERSION WITH REFLECTION

A variant of the sphere inversion transform takes the form

x� = b−
r2

|x− b|2
(x− b),

and has properties

I Self inverse

x = b−
r2

|x� − b|2
(x� − b),

I Symmetry
r2 = |x� − b||x− b|,

I Difference

|x� − y�| =
r2|x− y|
|x− b||y− b|

.

I Differential

dx� =
r2d

|x− b|2d dx
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SPHERE INVERSION WITH REFLECTION

I Fix b ∈ Rd and r > 0. The sphere Sd(c,R) maps to itself through Sd(b, r) providing
|c− b|2 + r2 = R2.

c b

rR

I However, this time, the exterior of the sphere Sd(c,R) maps to the interior of the
sphere Sd(c,R) and vice versa. For example, the region in the exterior of Sd(c,R)
contained by blue boundary maps to the portion of the interior of Sd(c,R)
contained by the red boundary.



53/ 73

§1. §2. §3. §4. §5. §6. §7. §8. References

§6. Spherical hitting distribution
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PORT’S SPHERE HITTING DISTRIBUTION

A richer version of the previous theorem:

Theorem (Port (1969))
Define the function

h�(x, y) =
Γ
(
α+d

2 − 1
)

Γ
(
α
2

)
Γ
(

d
2

)
Γ(α− 1)

||x|2 − 1|α−1

|x− y|α+d−2

for |x| 6= 1, |y| = 1. Then, if α ∈ (1, 2),

Px(Xτ� ∈ dy) = h�(x, y)σ1(dy)1(|x|6=1) + δx(dy)1(|x|=1), |y| = 1,

where σ1(dy) is the surface measure on Sd, normalised to have unit total mass.

Otherwise, if α ∈ (0, 1], Px(τ� =∞) = 1, for all |x| 6= 1.
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PROOF OF PORT’S SPHERE HITTING DISTRIBUTION

I Write µ�x (dz) = Px(Xτ� ∈ dz) on Sd where x ∈ Rd\Sd.
I Recall the expression for the resolvent of the stable process in Theorem 2 which

states that, due to transience,∫ ∞
0

Px(Xt ∈ dy)dt = C(α)|x− y|α−ddy, x, y ∈ Rd,

where C(α) is an unimportant constant in the following discussion.

I The measure µ�x is the solution to the ‘functional fixed point equation’

|x− y|α−d =

∫
Sd

|z− y|α−dµ(dz), y ∈ Sd.

I With a little work, we can show it is the unique solution in the class of probability
measures.
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PROOF OF PORT’S SPHERE HITTING DISTRIBUTION
Recall, for y∗ ∈ Sd, from the Riesz representation of the sphere hitting probability,

Γ
(

d
2

)
Γ(α− 1)

Γ
(
α+d

2 − 1
)

Γ
(
α
2

) =

∫
Sd

|z∗ − y∗|α−dσ1(dz∗).

we are going to manipulate this identity using sphere inversion to solve the fixed point
equation first assuming that |x| > 1

I Apply the sphere inversion with respect to the sphere Sd(x, (|x|2 − 1)1/2)
remembering that this transformation maps Sd to itself and using

1
|z∗ − x|d−1

σ1(dz∗) =
1

|z− x|d−1
σ1(dz)

(|x|2 − 1) = |z∗ − x||z− x| and |z∗ − y∗| =
(|x|2 − 1)|z− y|
|z− x||y− x|

I We have

Γ
(

d
2

)
Γ(α− 1)

Γ
(
α+d

2 − 1
)

Γ
(
α
2

) =

∫
Sd

|z∗ − x|d−1|z∗ − y∗|α−d σ1(dz∗)
|z∗ − x|d−1

=
(|x|2 − 1)α−1

|y− x|α−d

∫
Sd

|z− y|α−d

|z− x|α+d−2
σ1(dz).

I For the case |x| < 1, calculate similarly by replacing x∗ by x� i.e. inverting and
reflecting in the sphere Sd(x, (1− |x|2)1/2)
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PROOF OF PORT’S SPHERE HITTING DISTRIBUTION
Recall, for y∗ ∈ Sd, from the Riesz representation of the sphere hitting probability,
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§7. Spherical entrance/exit distribution
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BLUMENTHAL–GETOOR–RAY EXIT/ENTRANCE DISTRIBUTION

Theorem
Define the function

g(x, y) = π−(d/2+1) Γ(d/2) sin(πα/2)

∣∣1− |x|2∣∣α/2

|1− |y|2|α/2
|x− y|−d

for x, y ∈ Rd\Sd. Let

τ⊕ := inf{t > 0 : |Xt| < 1} and τ	a := inf{t > 0 : |Xt| > 1}.

(i) Suppose that |x| < 1, then

Px(Xτ	 ∈ dy) = g(x, y)dy, |y| ≥ 1.

(ii) Suppose that |x| > 1, then

Px(Xτ⊕ ∈ dy, τ⊕ <∞) = g(x, y)dy, |y| ≤ 1.
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PROOF OF B–G–R ENTRANCE/EXIT DISTRIBUTION (I)

I Appealing again to the potential density and the strong Markov property, it
suffices to find a solution to

|x− y|α−d =

∫
|z|≥1

|z− y|α−dµ(dz), |y| > 1,

with a straightforward argument providing uniqueness.
I The proof is complete as soon as we can verify that

|x− y|α−d = cα,d

∫
|z|≥1

|z− y|α−d |1− |x|2|α/2

|1− |z|2|α/2
|x− z|−ddz

for |y| > 1 > |x|, where

cα,d = π−(1+d/2) Γ(d/2) sin(πα/2).
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PROOF OF B–G–R ENTRANCE/EXIT DISTRIBUTION (I)

I Transform z 7→ z� (sphere inversion with reflection) through the sphere
Sd(x, (1− |x|2)1/2), noting in particular that

|z� − y�| = (1− |x|2)
|z− y|

|z− x||y− x|
and |z|2 − 1 =

|z− x|2

1− |x|2
(1− |z�|2)

and
dz� = (1− |x|2)d|z− x|−2ddz, z ∈ Rd.

I For |x| < 1 < |y|,∫
|z|≥1

|z− y|α−d |1− |x|2|α/2

|1− |z|2|α/2
|x− z|−ddz = |y− x|α−d

∫
|z�|≤1

|z� − y�|α−d

|1− |z�|2|α/2
dz�.

I Now perform similar transformation z� 7→ w (inversion with reflection), albeit
through the sphere Sd(y�, (1− |y�|2)1/2).

|y−x|α−d
∫
|z�|≤1

|z� − y�|α−d

|1− |z�|2|α/2
dz� = |y−x|α−d

∫
|w|≥1

|1− |y�|2|α/2

|1− |w|2|α/2
|w−y�|−ddw.
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PROOF OF B–G–R ENTRANCE/EXIT DISTRIBUTION (I)
Thus far:∫
|z|≥1

|z−y|α−d |1− |x|2|α/2

|1− |z|2|α/2
|x−z|−ddz = |y−x|α−d

∫
|w|≥1

|1− |y�|2|α/2

|1− |w|2|α/2
|w− y�|−ddw.

I Taking the integral in red and decomposition into generalised spherical polar
coordinates∫
|v|≥1

1
|1− |w|2|α/2

|w−y�|−ddw =
2πd/2

Γ(d/2)

∫ ∞
1

rd−1dr
|1− r2|α/2

∫
Sd(0,r)

|z− y�|−dσr(dz)

I Poisson’s formula (the probability that a Brownian motion hits a sphere of radius
r > 0) states that∫

Sd(0,r)

rd−2(r2 − |y�|2)

|z− y�|d
σr(dz) = 1, |y�| < 1 < r.

gives us∫
|v|≥1

1
|1− |w|2|α/2

|w− y�|−ddw =
πd/2

Γ(d/2)

∫ ∞
1

2r
(r2 − 1)α/2(r2 − |y�|2)

dr

=
π

sin(απ/2)

1
(1− |y�|2)α/2

I Plugging everything back in gives the result for |x| < 1.
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PROOF OF B–G–R ENTRANCE/EXIT DISTRIBUTION (II)

The interesting part of the proof is the derivation of the the identity in (ii) (i.e. |x| > 1)
from the identity in (i) (i.e. |x| < 1).

I Start by noting from the Riesz–Bogdan–Żak transform that, for |x| > 1,

Px(Xτ⊕ ∈ D) = P◦Kx(KXτ	 ∈ D),

where Kx = x/|x|2, |Kx− Kz| = |x− z|/|x||z| and KD = {Kx : x ∈ D}.
I Noting that d(Kz) = |z|−2ddz, we have

Px(Xτ⊕ ∈ D)

=

∫
KD

|y|α−d

|Kx|α−d g(Kx, y)dy

= cα,d

∫
KD
|z|d−α|Kx|d−α

|1− |Kx|2|α/2

|1− |y|2|α/2
|Kx− y|−ddy

= cα,d

∫
D
|z|2d |1− |x|2|α/2

|1− |z|2|α/2
|x− z|−dd(Kz)

= cα,d

∫
D

|1− |x|2|α/2

|1− |z|2|α/2
|x− z|−ddz



62/ 73

§1. §2. §3. §4. §5. §6. §7. §8. References

PROOF OF B–G–R ENTRANCE/EXIT DISTRIBUTION (II)

The interesting part of the proof is the derivation of the the identity in (ii) (i.e. |x| > 1)
from the identity in (i) (i.e. |x| < 1).

I Start by noting from the Riesz–Bogdan–Żak transform that, for |x| > 1,

Px(Xτ⊕ ∈ D) = P◦Kx(KXτ	 ∈ D),

where Kx = x/|x|2, |Kx− Kz| = |x− z|/|x||z| and KD = {Kx : x ∈ D}.
I Noting that d(Kz) = |z|−2ddz, we have

Px(Xτ⊕ ∈ D)

=

∫
KD

|y|α−d

|Kx|α−d g(Kx, y)dy

= cα,d

∫
KD
|z|d−α|Kx|d−α

|1− |Kx|2|α/2

|1− |y|2|α/2
|Kx− y|−ddy

= cα,d

∫
D
|z|2d |1− |x|2|α/2

|1− |z|2|α/2
|x− z|−dd(Kz)

= cα,d

∫
D

|1− |x|2|α/2

|1− |z|2|α/2
|x− z|−ddz



63/ 73

§1. §2. §3. §4. §5. §6. §7. §8. References

§8. Radial excursion theory
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EXCURSIONS FROM THE RADIAL MINIMUM
Recall that we can represent an isotropic Lévy process through the Lamperti transform

Xt := eξϕ(t)Θϕ(t) t ≥ 0,

where

ϕ(t) = inf
{

s > 0 :

∫ s

0
eαξu du > t

}
and (ξ,Θ) with probabilities Px,θ , x 6= 0, θ ∈ Sd, is a MAP. Recall also that, although
corollated to Θ, ξ alone is a Lévy process.

I Let ` = (`t, t ≥ 0), the local time at 0 of the reflected Lévy process ξt − ξt
, t ≥ 0,

where ξ
t

:= infs≤t ξs, t ≥ 0.
I The process ` serves as an adequate choice for the local time of the Markov

process (ξ − ξ,Θ) on the set {0} × Sd.
I Define

gt = sup{s < t : ξs = ξ
s
} and dt = inf{s > t : ξs = ξ

s
}.

I For all t > 0 such that dt > gt the process

(εgt (s),Θεgt
(s)) := (ξgt+s − ξgt ,Θgt+s), s ≤ ζgt := dt − gt,

codes the excursions of (ξ − ξ,Θ) from the set (0, Sd) or equivalently, excursions
of (Xt/ infs≤t |Xs|, t ≥ 0), from Sd, or equivalently an excursion of X from its
running radial infimum.

I Moreover, we see that, for all t > 0 such that dt > gt,

Xgt+s = eξgt eεgt (s)Θεgt
(s) = |Xgt |e

εgt (s)Θεgt
(s), s ≤ ζgt .
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EXCURSIONS FROM THE RADIAL MINIMUM

I The classical theory of exit systems in Maisonneuve (1975) now implies that there
exists a family of excursion measures, Nθ , θ ∈ Sd, such that:

I the map θ 7→ Nθ is a kernel from Sd to R× Sd, such that Nθ(1− e−ζ) <∞ and Nθ
is carried by the set {(ε(0),Θε(0) = (0, θ)} and {ζ > 0};

I we have the exit formula

Ex,θ

∑
g∈G

F((ξs,Θs) : s < g)H((εg,Θ
ε
g))


= Ex,θ

[∫ ∞
0

F((ξs,Θs) : s < t)NΘt (H(ε,Θε))d`t

]
,

for x 6= 0, where F and H are continuous on the space of càdlàg paths on R× Sd)
and G = {gs : s ≥ 0}

I under any measure Nθ the process (ε,Θε) is Markovian with the same transition
semigroup as (ξ,Θ) stopped at its first hitting time of (−∞, 0]× Sd.

I The couple (`,N·) is called an exit system. The pair ` and the kernels Nθ , θ ∈ Sd,
are not unique, but once ` is chosen the measures Nθ are determined but for a
`-neglectable set.



65/ 73

§1. §2. §3. §4. §5. §6. §7. §8. References

EXCURSIONS FROM THE RADIAL MINIMUM

I The classical theory of exit systems in Maisonneuve (1975) now implies that there
exists a family of excursion measures, Nθ , θ ∈ Sd, such that:

I the map θ 7→ Nθ is a kernel from Sd to R× Sd, such that Nθ(1− e−ζ) <∞ and Nθ
is carried by the set {(ε(0),Θε(0) = (0, θ)} and {ζ > 0};

I we have the exit formula

Ex,θ

∑
g∈G

F((ξs,Θs) : s < g)H((εg,Θ
ε
g))


= Ex,θ

[∫ ∞
0

F((ξs,Θs) : s < t)NΘt (H(ε,Θε))d`t

]
,

for x 6= 0, where F and H are continuous on the space of càdlàg paths on R× Sd)
and G = {gs : s ≥ 0}

I under any measure Nθ the process (ε,Θε) is Markovian with the same transition
semigroup as (ξ,Θ) stopped at its first hitting time of (−∞, 0]× Sd.

I The couple (`,N·) is called an exit system. The pair ` and the kernels Nθ , θ ∈ Sd,
are not unique, but once ` is chosen the measures Nθ are determined but for a
`-neglectable set.



66/ 73

§1. §2. §3. §4. §5. §6. §7. §8. References

RADIAL LADDER MAP
I For bounded measurable f on Rd and G(∞) := sup{s ≥ 0 : |Xs| = infu≤s |Xu|},

Ex[f (XG(∞))] = Elog |x|,arg(x)

∑
t∈G

f (eξt Θt)1(ζt =∞)


= Elog |x|,arg(x)

[∫ ∞
0

f (eξt Θt)NΘt (ζ =∞)d`t

]
= Elog |x|,arg(x)

[∫ `∞

0
f (e−H−t Θ−t )N

Θ−t
(ζ =∞)dt

]
where (H−t ,Θ

−
t ) = (−ξ

`−1
t
,Θ

`−1
t

), t < `∞.

I Define the potential

U−x (dz) :=

∫ ∞
0

Plog |x|,arg(x)(e−H−t Θ−t ∈ dz, t < `∞)dt, |z| ≤ |x|.

I As X is transient, (H−,Θ−) experiences killing at Θ−-dependent rate
Nθ(ζ =∞), θ ∈ Sd. Isotropy implies Nθ(ζ =∞) independent of θ. Scaling of
local time ` chosen so that Nθ(ζ =∞) = 1.

I In conclusion, we reach the identity

Ex[f (XG(∞))] =

∫
|z|<|x|

f (z)U−x (dz)
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POINT OF CLOSEST REACH

Theorem (Point of Closest Reach to the origin)
The law of the point of closest reach to the origin is given by

Px(XG(∞) ∈ dy) = π−d/2 Γ (d/2)2

Γ ((d− α)/2) Γ (α/2)

(|x|2 − |y|2)α/2

|x− y|d|y|α
dy, 0 < |y| < |x|.
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POINT OF CLOSEST REACH: SKETCH PROOF

I First define, for x 6= 0, |x| > r, δ > 0 and continuous, positive and bounded f on
Rd,

∆δ
r f (x) :=

1
δ
Ex [f (arg(XG∞ )), |XG∞ | ∈ [r− δ, r]] .

I Then, with the help of Blumenthal–Getoor–Ray first entry distribution,

∆δ
r f (x)

=
1
δ

∫
|y|∈[r−δ,r]

Px(X
τ⊕r
∈ dy; τ⊕r <∞)Ey [f (arg(XG∞ )); |XG∞ | ∈ (r− δ, |y|]]

=
1
δ

Cα,d

∫
|y|∈[r−δ,r]

dy
∣∣∣∣ r2 − |x|2

r2 − |y|2

∣∣∣∣α/2

|y− x|−dEy [f (arg(XG∞ )); |XG∞ | ∈ (r− δ, |y|]]

=
1
δ

Cα,d|r2 − |x|2|α/2
∫
|y|∈(r−δ,r]

dy
|y− x|−d

|r2 − |y|2|α/2

∫
r−δ≤|z|≤|y|

U−y (dz)f (arg(z)),

Lemma
Suppose that f is a bounded continuous function on Rd. Then

lim
δ→0

sup
|y|∈(r−δ,r]

∣∣∣∣∣
∫

r−δ≤|z|≤|y| U
−
y (dz)f (z)∫

r−δ≤|z|≤|y| U
−
y (dz)

− f (y)

∣∣∣∣∣ = 0.
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POINT OF CLOSEST REACH: SKETCH PROOF
I Hence

∆δ
r f (x)

δ↓0∼
1
δ

Cα,d|r2 − |x|2|α/2
∫
|y|∈(r−δ,r]

dy
|y− x|−d

|r2 − |y|2|α/2
f (arg(y))

∫
r−δ≤|z|≤|y|

U−y (dz)

and for |y| ∈ (r− δ, r],∫
r−δ≤|z|≤|y|

U−y (dz) = Py(τ⊕r−δ =∞) = P(ξ∞ ≥ log((r− δ)/y))

I The right hand side above can be determined explicitly thanks to the known
Wiener–Hopf factorisation of ξ

I Note also

∆δ
r f (x)

δ↓0∼ Cα,d|r2−|x|2|α/2 1
δ

∫ r

r−δ
ρd−1dρ

P(ξ∞ ≥ log((r− δ)/y))

|r2 − ρ2|α/2

∫
ρSd

σρ(dθ)|ρθ−x|−df (θ)

Lemma
Let Dα,d = Γ(d/2)/Γ((d− α)/2)Γ(α/2). Then

lim
δ→0

sup
|y|∈[r−δ,r]

∣∣∣∣(ρ2 − (r− δ)2)−α/2rαP(ξ∞ ≥ log((r− δ)/y))−
2Dα,d
α

∣∣∣∣ = 0
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MORE EXCURSION THEORY-BASED RESULTS

Theorem (Triple law at first entrance/exit of a ball)
Fix r > 0 and define, for x, z, y, v ∈ Rd\{0},

χx(z, y, v) := π−3d/2 Γ((d + α)/2)

|Γ(−α/2)|
Γ(d/2)2

Γ(α/2)2

||z|2 − |x|2|α/2||y|2 − |z|2|α/2

|z|α|z− x|d|z− y|d|v− y|α+d .

(i) Write
G(τ⊕r ) = sup{s < τ⊕r : |Xs| = inf

u≤s
|Xu|}

for the instant of closest reach of the origin before first entry into rSd. For |x| > |z| > r,
|y| > |z| and |v| < r,

Px(X
G(τ⊕r )

∈ dz, X
τ⊕r −

∈ dy, X
τ⊕r
∈ dv; τ⊕r <∞) = χx(z, y, v) dz dy dv.

(ii) Define G(t) = sup{s < t : |Xs| = supu≤s |Xu|}, t ≥ 0, and write

G(τ	r ) = sup{s < τ	r : |Xs| = sup
u≤s
|Xu|}.

for the instant of furtherest reach from the origin immediately before first exit from rSd.
For |x| < |z| < r, |y| < |z| and |v| > r,

Px(XG(τ	r )
∈ dz, X

τ	r −
∈ dy, X

τ	r
∈ dv) = χx(z, y, v) dz dy dv.
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MORE EXCURSION THEORY-BASED RESULTS

Theorem
Write Mt = sups≤t |Xt|, t ≥ 0. For all bounded measurable f : Bd 7→ R and x ∈ R\{0}

lim
t→∞

Ex[f (Xt/Mt)] = π−d/2 Γ((d + α)/2)

Γ(α/2)

∫
Sd

σ1(dφ)

∫
|w|<1

f (w)
|1− |w|2|α/2

|φ− w|d
dw,

where σ1(dy) is the surface measure on Sd, normalised to have unit mass.
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