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Atomic-measure valued Markov process: Z = {Z, : t > 0} with
probabilities denoted by P, where pu(-) = 3" | 8z, (-) with z; € E.

Path construction: Under P, from each x; € E initiate: iid copies of a
nice? conservative® E-valued Markov process whose semi-group is denoted
by P = {P: : t > 0}, each of which have a branching generator given by

s)—q(anpn—s).

Markov property: Z;, is equal in law to an independent copy of Z,
under Pz,.

Branching property: For atomic measures p; and pg2, (Z,Pu, 4+u,) has the
same law as Z(M + Z3) where Z has law P,,, for i = 1,2.

Notation: (f, Z:) = [, f(2)Z:(dx) ="Mt f(2i(t)) when

Ze() = 31 8y ():

Total mass: The process {(1, Z;) : t > 0} is a continuous time
Galton-Watson process.

2At the moment, the word ‘nice’ means any E-valued Markov process for which the
mathematics in this talk can be carried out! However this is a very large class of processes
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(P, ; E)-Superprocess
m Measure valued Markov process: X = {X, : t > 0} with probabilities P,
where p is now a finite measure on E.

m Path construction: X can be recovered as the result of rescaling and
re-weighting an (P, F'; E)-branching diffusion. (Not discussed here!).

m Notation: (f, X:) = [, f(y)X:(dy).
m Markov property: For all f € CF(E),
E(e_<f’X”+S>|{XS ts < t}) _ ]Eu(e_<f"Xs>)

n=Xy

m Branching property: (X,P,, 1.,) has the same law as XD 4 X@ where
() has the law P, for i = 1,2.
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Evolution equations
m Semigroup: For positive, bounded measurable f,

EH(G*U,XO) — e~ Jur@tu(de) | pore omus(@t) _ Es (6*<faXt>)7

up(z,t) = Pe[fl(2) - /0 ds - Ps[p(us (-, t = 9))(2)-

and
D(N) = —a + A2 +/ (e — 1 4 Az)TI(da),

(0,00)
such that [, _ (z A 2?)T(dz) < 0.

m Total mass: || X;|| := {(1, X;) : t > 0} is a continuous state branching
process (CSBP) with branching mechanism .
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Long-term behaviour of CSBP (total mass process)

m Supercritical (assumed): —'(0+) > 0 ensures that || X|| reaches +o0
before 0 with positive probability which is equivalent to survival of X with
positive probability.

m Finite expected growth (assumed): General theory for superprocesses
generally excludes the case that —¢’'(0+) < oo for || X¢||.

m No explosion (assumed): As a process, we also want || X;|| to be
conservative

| o ar = oo,
o+
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Supercritical superprocess conditioned to die

m When —¢'(04) > 0 we are interested in conditioning on the event that
limtToo ||Xt|| =0.

m It turns out that Pys, (limsteo || X¢|| =0) = e ¥ forally >0and z € E
where ¥(A.) = 0.

m Straightforward computation:

x

E: ,(e_<f’X‘>) = Ry, (€—<f,Xt>| l%m HXH-SH _ 0)

)

ﬁmﬂ:ﬂm@—éd&ﬂwwmﬁ—$Mﬂ

and

() = B(A + 7).
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Evans-O’Connell backbone decomposition

m Supercritical quadratic branching mechanism: ¢()\) = —a) 4 b)?
(—=¢'(0+) = a > 0).

m Evans-O’Connell (1994): Showed the following semi-group decomposition
for finite and compactly supported p,

t
Eﬂ(e_w’X”) = e—<uf(~,t),u)EP<%#) |:exp {_/ 26<u;(~,t — 5)7Zs>d5}:|
0

where Z under Pp(ay is a branching Markov process with dyadic
branching and initial configuration which is generated by an independent
Poisson random field in E with intensity 2.

m Backbone decomposition: For finite and compactly supported p, (X,P,,)
has the same law as the following superposition (everything independent)
® Run a copy of (X, P,)
m Create a Poisson field of points in F using intensity u
B From each of these points run a branching Markov process with dyadic
branching.
m In each ds "immigrate" independent copies of (X,P¥*), having initial mass
2ds at the spatial positions of particles in Z.
m Alternative: "immigrate at rate 23" independent copies of (X,P*) along
the path of Z.
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@ T
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Pathwise backbone construction for supercritical
(P, 1, E)-superprocess
m Key ingredient 1: Dynkin-Kuzentsov measure. Let M be the space of

finite measures on E. Think of Ps, as a measure on M0 Branching
property implies "infinite divisibility"

P;, = P’iéz *~--*P15w.
Dynkin and Kuznetsov (2004) describe the "Lévy measure" of P5_ and call

it N3 and can be thought of an “excursion measure" on path space of the
superprocess. We have

e ur@h — E;, (ei<f’Xt>) = exp {— /(1 — €7<f’Xt>)dN;}
m Key ingredient 2: A measure on {2,3,...} x (0,00) in the form
N (dz) = pn(dz)/pr with pp = pn(0,00) and
1 n

pn(dz) = 00 {B(A*)Q(;o(dx)l{nzz} + ()\*)"%efvzﬂ(dm)} .
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Pathwise backbone construction (Theorem):

For finite and compactly supported p, (X,P,) is equal in law to the following
superposition

Run an independent copy of (X,P},)

Independently, run a copy of a (P, F; E) branching Markov process, Z
with branching generator F'(s) = 1(A«(1 — s))/A« and with initial
configuration independently determined by P(A.u), a Poisson random
field with intensity A.«u. What happens when this number is zero?

Independently, dress* each spatial branch {&; : Toirtn < ¢ < Taeatn} Of Z,
with an M[©%) trajectory rooted at space time point (&, t) according to
an independent Poisson random field with intensity 24dt x dNg,.

Independently, dress each spatial branch {&; : Toiren < ¢ < Tgeatn} Of Z,
with an M[%%) trajectory rooted at space time point (&, t) according to
an independent Poisson random field with intensity

A\ o3
dt x fyG(O,oo) ye " YII(dy) x dPys,., -

Independently, at each branch point of Z, if there are n offspring as well

as a rooted an independent copy of (X, P;5§ ) with random initial
Tdeath

mass x with probability 7, (dz).

4Other acceptable verb: 'decorate’
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Prolific Poissonization

An important feature of the backbone decomposition. Let ((Z:, A¢),P.) be
the backbone configuration and aggregation of the dressed mass at time t > 0
so that (A, P,) = (X,P,)

Law(Z:(-)|A¢(-)) ~ Poisson Random Field(A\"A(+))

i
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Additional remarks

This backbone decomposition is in some sense the final step following many
other steps taken by others as well as concurrent work:

Englander and Pinsky (1999) consider a semi-group backbone
decomposition for superdiffusions with spatial quadratic branching
mechanism.

Fleishmann and Swart (2002) Consider semi-pathwise decomposition for
superdiffusions with spatially dependent quadratic branching mechanism.

Dusquene and Winkel (2007) Consider pathwise decomposition for CSBPs.

Bertoin, Fontbona & Martinez (2008) Consider semi-pathwise
decomposition for CSBPs

Abraham and Delmas (2009) Related decompositions for critical and
supercritical (see previous talks!!)

In principle the method we use should be able to handle

vva) = a@A+ B@NH [ (€ L A, dy)

(0,00)
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m The processes ({1, Zp, ),
(observed by Neveu) and

—~8
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Some straightforward applications

m Suppose that we take P corresponding to Brownian motion with drift ¢
and quadratic branching mechanism 1()\) = —aX + bAZ.

m Define Ap, represents Dynkin's exit measure from the space-time domain
(0,00) x (0,00) of (A,Ps,) where z > 0. Define Zp, similarly for the
backbone.

X

m The processes ({1, Zp, ),z > 0) is a cts time Galton-Watson process
(observed by Neveu) and ({1, Xp,),z > 0) is a CSBP:

m supercritical for ¢ < —v/2a
m subcritical for ¢ > v/2a = max left (right) most speed —/2a (v/2a).

m Moreover Law(Zp, (-)|Ap, (-)) ~ Poisson Random Field(A*Ap, (+)).
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m This follows from Tauberian theorems and the connection of Zp, to the
‘one-sided’ FKPP equation for monotone ¢

26"(2) = V3ag (2) + F(6(2)) = 0, 6(0) =1, §(+00) = 1.



Backbone decomposition for superprocesses and applications.

Growth of mass on the exit boundary

m Maillard (2010) (see also Addario-Berry and Broutin (2009) for BRW)
show that when ¢ = —/2a
V2azeV?®
PST(ZDJc > n) ~ W’ n — oo
m This follows from Tauberian theorems and the connection of Zp, to the
‘one-sided’ FKPP equation for monotone ¢

26"(2) = V3ag (2) + F(6(2)) = 0, 6(0) =1, §(+00) = 1.

m Through the Poissonization of Zp, by Ap, it is easy to show that the
above asymptotic transfers through the above FKPP equation, into the
FKPP equation for A

%‘19"(1:) —V2ad' (z) — ¥(®(z)) = 0, B(0) =0, B(+00) = A".

to give
V2azeV2®

PJI (ADJE > t) ~ W

, t — o0.
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m Consider the case that we kill superBM with drift ¢ > v/2a at the origin.
m R? =inf{y > 0: Z(y,00) = 0} and Ry = inf{y > 0: As(y,0) = 0}
m We already know that
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Backbone decomposition for superprocesses and applications.

Right most speed of the support for killed superBM

m Consider the case that we kill superBM with drift ¢ > v/2a at the origin.
m R? =inf{y > 0: Z(y,00) = 0} and Ry = inf{y > 0: As(y,0) = 0}
m We already know that
: R}
limsup — < v/2a
t—o0 t
on survival.
m From the backbone embedding and known results on killed branching
Brownian motion,
A z
hmlnfR—> lim i =12a

t— o0 t t—o00 t

on survival.




