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YOUR FAVOURITE MARKOV PROCESS

Brownian motion in Rd, B := {Bt : t ≥ 0}, has the defining property that:

I For t > s > 0, Bt − Bs
d
= Bt−s ∼ Nd(0, I(t− s))

I For t > s > 0, Bt − Bs is independent of {Bu : u ≤ s}
I B has continuous paths
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WITH BROWNIAN MOTION, YOU CAN.....

Solve a Dirichlet boundary value problem....
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WITH BROWNIAN MOTION, YOU CAN.....

Try to model the stock market........
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WITH BROWNIAN MOTION, YOU CAN.....

Try to model the stock market........and fail....
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TAKE IT TO THE NEXT LEVEL: LÉVY PROCESSES

The last 30 years has seen interest in bigger class of Lévy processes (that
contains Brownian motion). An Rd valued Lévy process, X := {Xt : t ≥ 0}
has almost the same properties as Brownian motion:

I For t > s > 0, Xt − Xs
d
= Xt−s

I For t > s > 0, Xt − Xs is independent of {Xu : u ≤ s}
I X has paths that are right-continuous with left limits
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I Roughly speaking: A Lévy process is made up of a linear Brownian
motion plus a process of (up to a countable infinity) of jumps (over any
finite time horizon), e.g. in one-dimension

Xt = at + σBt + Jt.

I The process is entirely characterised by: a, σ and Π, the latter is a
measure on R\{0}.

I The measure Π can be thought as a rate measure:

P(Jump of size x arrives at time t) = Π(dx)dt + o(dt).
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WITH LÉVY PROCESSES YOU CAN.....

Try to model the foraging/flight/feeding patterns of various animals......
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WITH LÉVY PROCESSES YOU CAN.....

Try to model the foraging/flight/feeding patterns of various animals......

.....as well as humans....
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WITH LÉVY PROCESSES YOU CAN.....

Try to model the stock market .....
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WITH LÉVY PROCESSES YOU CAN.....

Try to model the stock market ..... and fail.....
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CHARACTERISTIC VS LAPLACE EXPONENT

I To characterise a Lévy process, its enough to know its distribution at
each fixed time E[eiθXt ] = e−Ψ(θ)t, t ≥ 0, θ ∈ R

I Sometimes a Laplace exponent will do E[eλXt ] = eψ(λ)t where, if it
exists, ψ(λ) = −Ψ(−iλ) in the sense of an analytic extension.

I A good case in point is that of a subordinator: a Lévy process with
non-decreasing paths. In which case ψ is the negative of a Bernstein
function:

ψ(λ) = −

(
δλ+

∫
(0,∞)

(1− e−λx)Π(dx),

)
where δ ≥ 0, and

∫
(0,∞)

(1 ∧ x)Π(dx) <∞.

2.4 Lévy Subordinators

where X = {Xt}t�0 is a standard Brownian motion on a probability space (⌦,F , P),

see [Applebaum (2004), p. 51]. Thus, ⇤t can be interpreted as the first hitting-time

of the level � t of a Brownian motion with drift. The resulting relation to the normal

distribution justifies the naming. Moreover, [Shuster (1968)] shows how to express the

distribution function of ⇤t in terms of the standard normal distribution function �: for

all t > 0, x � 0 it holds that

P(⇤t  x) = �
⇣
⌘
p

x � � tp
x

⌘
+ e2� t ⌘ �

⇣
� ⌘

p
x � � tp

x

⌘
, �(x) =

Z x

�1

1p
2⇡

e�
s2

2 ds.

Like the Gamma subordinator, an Inverse Gaussian subordinator exhibits infinite ac-

tivity, since ⌫
�
(0, ✏)

�
= 1 for each ✏ > 0. Figure 2.7 illustrates typical paths of such a

process. The sampling is done similar as in the case of a Gamma subordinator.

0 2 4 6 8 10

0
5

10
15

20
25

Time t

ΛΛ
(t)

 (I
nv

er
se

 G
au

ss
ia

n)

0 2 4 6 8 10

0
5

10
15

20

Time t

ΛΛ
(t)

 (I
nv

er
se

 G
au

ss
ia

n)

Figure 2.7 Simulated paths of an Inverse Gaussian subordinator. The parameters are
(⌘,�) = (2, 4.725) (left) and (⌘,�) = (1, 2) (right). Both paths are simu-
lated up to time T = 10 using n = 1000 grid points.

2.4.1.4 Stable Subordinator

A Lévy subordinator ⇤ is called an ↵-stable subordinator with parameter ↵ 2 (0, 1), if

it has zero drift µ = 0 and its Lévy measure ⌫ is absolutely continuous with respect to

51
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THE WHF: WHAT ALEXEY SHOULD HAVE TOLD YOU

I Let us extend the definition of a Lévy process and include the possibility
of killing, so

Xt =

{
Lévy process X̃t t < eq

Cemetery state ∂ t ≥ eq

where eq is independent and exponentially distributed with parameter
q ≥ 0. We also take as a convention e0 =∞.

I In that case, if Ψ̃ is the exponent of X̃ then

Ψ = q + Ψ̃

I For a given characteristic exponent of a Lévy process, Ψ, there exist
unique Bernstein functions, κ and κ̂ such that, up to a multiplicative
constant,

Ψ(θ) = κ(−iθ)κ̂(iθ), θ ∈ R.
I As Bernstein functions, κ and κ̂ can be seen as the Laplace exponents of

(killed) subordinators.
I The probabilistic significance of these subordinators, is that their range

corresponds precisely to the range of the running maximum of X and of
−X respectively.
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THE WHF: WHAT ALEXEY MAY NOT HAVE TOLD YOU

I Until around 5-10 years ago (basically not before Alexey started to think
about it), It was very difficult to find non-trivial (jumping in two
directions) examples of Lévy processes.

I This talk: expose a recent method that brought a number of examples
forward
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α-STABLE PROCESS AS A LÉVY PROCESS

A Lévy process X with probabilities (Px, x ∈ R) is called (strictly) α-stable if it
is also a self-similar Markov process, i.e. for all c > 0

(cXc−αt, t ≥ 0) under Px is equal in law to (Xt, t ≥ 0) under Pcx.

I Necessarily α ∈ (0, 2]. [α = 2→ BM, exclude this.]
I Lévy measure takes the form

Γ(1 + α)

π

1
|x|1+α

(
sin(παρ)1{x>0} + sin(παρ̂)1{x<0}

)
I The characteristic exponent Ψ(θ) := −t−1 logE(eiθXt ) satisfies

Ψ(θ) = |θ|α(eπiα( 1
2−ρ)1(θ>0) + e−πiα( 1

2−ρ)1(θ<0)), θ ∈ R.

where ρ = P0(Xt ≥ 0) will frequently appear as will ρ̂ = 1− ρ
I Assume jumps in both directions (0 < αρ, αρ̂ < 1), then, up to

multiplicative constants

κ(λ) = λαρ and κ̂(λ) = λαρ̂, λ ≥ 0.
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α-STABLE PROCESS AND POSITIVE SELF-SIMILAR MARKOV PROCESS

I We are interested in how to examine the stable process, not as a Lévy
process, but through the theory of positive self similar Markov processes
(pssMp)

I i.e. [0,∞)-valued (regular, strong) Markov process with probabilities
(Px, x ∈ R), for which there is an α > 0 such that, for all c > 0,

(cXc−αt, t ≥ 0) under Px is equal in law to (Xt, t ≥ 0) under Pcx.

I The characterisation of this class can help us see a bit deeper into the
class of α-stable processes, out of which we will find some new WHFs.
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NOTATION

I Use ξ := {ξt : t ≥ 0} to denote a Lévy process which is killed and sent to
the cemetery state −∞ at an independent and exponentially distributed
random time, eq, with rate in q ∈ [0,∞). The characteristic exponent of ξ
is thus written

− log E(eiθξ1 ) = Ψ(θ) = q + Lévy–Khintchine

I Define the associated integrated exponential Lévy process

It =

∫ t

0
eαξs ds, t ≥ 0. (1)

and its limit, I∞ := limt↑∞ It.
I Also interested in the inverse process of I:

ϕ(t) = inf{s > 0 : Is > t}, t ≥ 0. (2)

As usual, we work with the convention inf ∅ =∞.
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LAMPERTI TRANSFORM FOR POSITIVE SSMP: PART (I)

Fix α > 0. If Z(x), x > 0, is a positive self-similar Markov process with index
of self-similarity α, then up to absorption at the origin, it can be represented
as follows. For x > 0,

Z(x)
t 1(t<ζ(x)) = x exp{ξϕ(x−αt)}, t ≥ 0,

where ζ(x) = inf{t > 0 : Z(x)
t = 0} and either

(1) ζ(x) =∞ almost surely for all x > 0, in which case ξ is a Lévy
process satisfying lim supt↑∞ ξt =∞,

(2) ζ(x) <∞ and Z(x)
ζ(x)− = 0 almost surely for all x > 0, in which

case ξ is a Lévy process satisfying limt↑∞ ξt = −∞, or

(3) ζ(x) <∞ and Z(x)
ζ(x)− > 0 almost surely for all x > 0, in which

case ξ is a Lévy process killed at an independent and
exponentially distributed random time.

In all cases, we may identify ζ(x) = xαI∞.
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LAMPERTI TRANSFORM FOR POSITIVE SSMP: PART (II)

Conversely, suppose that ξ is a given (killed) Lévy process. For each x > 0,
define

Z(x)
t = x exp{ξϕ(x−αt)}1(t<xαI∞), t ≥ 0.

Then Z(x) defines a positive self-similar Markov process, up to its absorption
time ζ(x) = xαI∞, with index α.
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LAMPERTI TRANSFORM FOR POSITIVE SSMP

(Z,Px)x>0 pssMp

Zt = exp(ξS(t)),

S a random time-change

↔ (ξ,Py)y∈R killed Lévy

ξs = log(ZT(s)),

T a random time-change

Z never hits zero
Z hits zero continuously

Z hits zero by a jump

 ↔


ξ →∞ or ξ oscillates
ξ → −∞
ξ is killed
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STABLE PROCESS KILLED ON ENTRY TO (−∞, 0)
I Suppose that X is a stable process with two-sided jumps. Such processes

always pass below the origin by a jump.
I This puts Z∗t := Xt1(Xt>0), t ≥ 0, in the class of pssMp for which the

underlying Lévy process experiences exponential killing.
I Write ξ∗ = {ξ∗t : t ≥ 0} for the underlying (killed) Lévy process.
I Its characteristic exponent is given by

Ψ∗(z) =
Γ(α− iz)

Γ(αρ̂− iz)
× Γ(1 + iz)

Γ(1− αρ̂+ iz)
, z ∈ R.

I A rare example where we can see the factorisation as

κ(λ) =
Γ(α− λ)

Γ(αρ̂− λ)

is the Laplace exponent of a so-called beta subordinator
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CENSORED STABLE PROCESSES

I Start with X, the stable process.

I Let At =
∫ t

0 1(Xt>0) dt.

I Let γ be the right-inverse of A, and put Žt := Xγ(t).
I Finally, make zero an absorbing state: Zt = Žt1(t<T0) where

T0 = inf{t > 0 : Xt = 0}.

Note T0 <∞ a.s. if and only if α ∈ (1, 2) and otherwise T0 =∞ a.s.
I This is the censored stable process.
I Suppose that X is a symmetric stable process, i.e ρ = 1/2.
I Suppose that the underlying Lévy process for the censored stable

process is denoted by
;

ξ . Then its characteristic exponent is given by

;

Ψ (z) =
Γ(αρ− iz)

Γ(−iz)

Γ(1− αρ+ iz)

Γ(1− α+ iz)
, z ∈ R.
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TAKE CARE!

I The characteristic exponent of the censored stable:

;

Ψ (z) =
Γ(αρ− iz)

Γ(−iz)
× Γ(1− αρ+ iz)

Γ(1− α+ iz)
, z ∈ R.

I if α ∈ (0, 1], then the factorisation is the one that you see either side of
the multiplication sign.

I If α ∈ (1, 2), then we have the term Γ(1− α+ iz) which (in Laplace
format) can take negative values (remember we are looking for the
product of Bernstein functions κ, κ̂).

I The factorisation for α ∈ (1, 2) turns out to be

;

Ψ (z) =
Γ(αρ− iz)

Γ(1− iz)
(α− 1− iz)× Γ(1− αρ+ iz)

Γ(2− α+ iz)
(iz), z ∈ R.
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THE RADIAL PART OF A STABLE PROCESS

I Suppose that X is a symmetric stable process, i.e ρ = 1/2.
I We know that |X| is a pssMp.
I Suppose that the underlying Lévy process for |X| is written ξ�, then it

characteristic exponent is given by

Ψ�(z) = 2α
Γ( 1

2 (−iz + α))

Γ(− 1
2 iz)

×
Γ( 1

2 (iz + 1))

Γ( 1
2 (iz + 1− α))

, z ∈ R.
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HYPERGEOMETRIC LÉVY PROCESSES (ALEXEY AND OTHERS)

For (β, γ, β̂, γ̂) in{
β ≤ 2, γ, γ̂ ∈ (0, 1) β̂ ≥ −1, and 1− β + β̂ + γ ∧ γ̂ ≥ 0

}
there exists a (killed) Lévy process, henceforth referred to as a
hypergeometric Lévy process, having the characteristic function

Ψ(z) =
Γ(1− β + γ − iz)

Γ(1− β − iz)

Γ(β̂ + γ̂ + iz)

Γ(β̂ + iz)
z ∈ R.

The Lévy measure of Y has a density with respect to Lebesgue measure is
given by

π(x) =


− Γ(η)

Γ(η − γ̂)Γ(−γ)
e−(1−β+γ)x

2F1
(
1 + γ, η; η − γ̂; e−x) , if x > 0,

− Γ(η)

Γ(η − γ)Γ(−γ̂)
e(β̂+γ̂)x

2F1
(
1 + γ̂, η; η − γ; ex) , if x < 0,

where η := 1− β + γ + β̂ + γ̂, for |z| < 1, 2F1(a, b; c; z) :=
∑

k≥0
(a)k(b)k
(c)kk! zk.
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Deep Factorisation
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DEEP FACTORISATION OF THE STABLE PROCESS

I All of the previous examples were generated by path functionals of
stable processes which were non-negative + identification of them as
pssMp.

I Another factorisation also exists, which is more ‘deeply’ embedded in
the stable process.

I Based around the representation of the stable process as a real-valued
self-similar Markov process (rssMp):

An R-valued regular strong Markov process (Xt : t ≥ 0) with probabilities Px,
x ∈ R, is a rssMp if, there is a stability index α > 0 such that, for all c > 0 and
x ∈ R,

(cXtc−α : t ≥ 0) under Px is Pcx.
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A SPECIAL MARKOV ADDITIVE PROCESSES

I Let (J(t), t ≥ 0) be a continuous-time, irreducible Markov chain on
{1,−1}.

I process (ξ, J) in R× E is called a Markov additive process (MAP) with
probabilities Px,i, x ∈ R, i = ±1, if, for any i = ±1, s, t ≥ 0: Given
{J(t) = i},

I (ξ(t + s)− ξ(t), J(t + s)) ⊥ {(ξ(u), J(u)) : u ≤ t},

I (ξ(t + s)− ξ(t), J(t + s)) d
= (ξ(s), J(s)) with (ξ(0), J(0)) = (0, i).
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A SPECIAL MARKOV ADDITIVE PROCESSES

I The pair (ξ, J) can be represented as follows:
I there exist a sequence of iid Lévy processes (ξn

i , n ≥ 0)
I and a sequence of iid random variables (Un

ij, n ≥ 0), independent of the
chain J,

I such that if T0 = 0 and (Tn, n ≥ 1) are the jump times of J,

the process ξ has the representation

ξ(t) = 1(n>0)(ξ(Tn−) + Un
J(Tn−),J(Tn)) + ξn

J(Tn)(t− Tn),

for t ∈ [Tn,Tn+1), n ≥ 0.
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CHARACTERISTICS OF A MAP

I Denote the transition rate matrix of the chain J by Q = (qij)i,j∈E.
I For each i ∈ E, the Laplace exponent of the Lévy process ξi will be

written ψi (when it exists).
I For each pair of i, j ∈ E, define the Laplace transform Gij(z) = E(ezUij ) of

the jump distribution Uij (when it exists).
I Write G(z) for the N ×N matrix whose (i, j)th element is Gij(z) (i 6= j)

and define Gii(z) = 1.
I Let

F(z) = diag(ψ1(z), . . . , ψN(z)) + Q ◦ G(z),

(when it exists), where ◦ indicates elementwise multiplication.
I The matrix exponent of the MAP (ξ, J) is given by

Ei(ezξ(t); J(t) = j) =
(
eF(z)t)

i,j, i, j ∈ E,

(when it exists).
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LAMPERTI-KIU TRANSFORM

I Let
Xt = |x|eξ(τ(t))J(τ(t)) 0 ≤ t < T0,

where

τ(t) = inf

{
s > 0 :

∫ s

0
exp(αξ(u))du > t|x|−α

}
and

T0 = |x|−α
∫ ∞

0
eαξ(u)du.

I Then Xt is a real-valued self-similar Markov process in the sense that the
law of (cXtc−α : t ≥ 0) under Px is Pcx.

I The converse is also true (more or less - some slight adjustment is
needed to the definition of the MAP).
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AN α-STABLE PROCESS IS A RSSMP

I An α-stable process with two-sided jumps is a rssMp. Remarkably we
can compute precisely its matrix exponent explicitly

I Denote the underlying MAP (ξ, J), we prefer to give the matrix exponent
of (ξ, J) as follows:

F(z) =


− Γ(α− z)Γ(1 + z)

Γ(αρ̂− z)Γ(1− αρ̂+ z)

Γ(α− z)Γ(1 + z)

Γ(αρ̂)Γ(1− αρ̂)

Γ(α− z)Γ(1 + z)

Γ(αρ)Γ(1− αρ)
− Γ(α− z)Γ(1 + z)

Γ(αρ− z)Γ(1− αρ+ z)

 ,
for Re(z) ∈ (−1, α).
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MAP WHF

I For θ ∈ R, up to a multiplicative factor,

−F(iθ) = ∆−1
π κ̂(iθ)T∆πκ(−iθ),

where ∆π = diag(π), π is the stationary distribution of Q, κ̂ plays the
role of κ, but for the dual MAP to (ξ, J).

I The dual process, or time-reversed process is equal in law to the MAP
with exponent

F̂(z) = ∆−1
π F(−z)T∆π,

I It turns out to be more natural to consider the factorisation in the form

−F(iθ)−1 = κ(−iθ)−1∆−1
π [κ̂(iθ)−1]T∆π
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DEEP-WHF STABLE α ∈ (0, 1)

Suppose that X is an α-stable process then we have that the factors κ and κ̂
are given as follows. For a, b, c ∈ R define

Ψ(a, b, c) :=

∫ 1

0
ua(1− u)b(1 + u)cu. . (3)

Then, up to the multiplicative constant 2−αΓ(1− α)−1,

κ−1(λ)

=


Γ(1−αρ̂)

Γ(αρ)
Ψ(λ− 1, αρ− 1, αρ̂) Γ(1−αρ̂)

Γ(αρ)
Ψ(λ− 1, αρ, αρ̂− 1)

Γ(1−αρ)
Γ(αρ̂)

Ψ(λ− 1, αρ̂, αρ− 1) Γ(1−αρ)
Γ(αρ̂)

Ψ(λ− 1, αρ̂− 1, αρ)


and

κ̂−1(λ)

=


Γ(1−αρ)

Γ(αρ̂)
Ψ(λ− α, αρ̂− 1, αρ) sin(απρ̂)Γ(1−αρ)

sin(απρ)Γ(αρ̂)
Ψ(λ− α, αρ̂, αρ− 1)

sin(απρ)Γ(1−αρ̂)
sin(απρ̂)Γ(αρ)

Ψ(λ− α, αρ, αρ̂− 1) Γ(1−αρ̂)
Γ(αρ)

Ψ(λ− α, αρ− 1, αρ̂)

 .
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DEEP-WHF STABLE α ∈ (1, 2)

κ−1(λ)

=
α− 1

2

(
Ψ(λ− 1, αρ− 1, αρ̂) Ψ(λ− 1, αρ, αρ̂− 1)
Ψ(λ− 1, αρ̂, αρ− 1) Ψ(λ− 1, αρ̂− 1, αρ)

)
− (α− 1)2

2(λ+ α− 1)

(
Ψ(λ− 1, αρ− 1, αρ̂− 1) Ψ(λ− 1, αρ− 1, αρ̂− 1)
Ψ(λ− 1, αρ̂− 1, αρ− 1) Ψ(λ− 1, αρ̂− 1, αρ− 1)

)
and

κ̂−1(λ)

=
α− 1

2

(
Ψ(λ− α, αρ̂− 1, αρ) sin(απρ̂)

sin(απρ)
Ψ(λ− α, αρ̂, αρ− 1)

sin(απρ)
sin(απρ̂)

Ψ(λ− α, αρ, αρ̂− 1) Ψ(λ− α, αρ− 1, αρ̂)

)

− (α− 1)2

2(λ+ α− 1)

(
Ψ(λ− α, αρ̂− 1, αρ− 1) sin(απρ̂)

sin(απρ)
Ψ(λ− α, αρ̂− 1, αρ− 1)

sin(απρ)
sin(απρ̂)

Ψ(λ− α, αρ− 1, αρ̂− 1) Ψ(λ− α, αρ− 1, αρ̂− 1)

)
.
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Thank you!


