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YOUR FAVOURITE MARKOV PROCESS
Brownian motion in RY, B := {B; : t > 0}, has the defining property that:
> Fort>s>0,B — By £ By ~ Ny(0,I(t —5))
> Fort > s >0, B; — Bs is independent of {B, : u < s}

> B has continuous paths
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WITH BROWNIAN MOTION, YOU CAN.....
Solve a Dirichlet boundary value problem....
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WITH BROWNIAN MOTION, YOU CAN.....

Try to model the stock market........
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WITH BROWNIAN MOTION, YOU CAN.....

Try to model the stock market........ and fail....
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TAKE IT TO THE NEXT LEVEL: LEVY PROCESSES

The last 30 years has seen interest in bigger class of Lévy processes (that
contains Brownian motion). An R valued Lévy process, X := {X; : t > 0}
has almost the same properties as Brownian motion:

> Fort>s>0,X — X £ X

> Fort > s> 0, X; — X, is independent of {X,, : u <s}

> X has paths that are right-continuous with left limits

05 04 -03 -02 -01 00 01 02
X
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> Roughly speaking: A Lévy process is made up of a linear Brownian
motion plus a process of (up to a countable infinity) of jumps (over any
finite time horizon), e.g. in one-dimension

Xt :ﬂt+UB[+]t.

> The process is entirely characterised by: a, o and 11, the latter is a
measure on R\{0}.

» The measure II can be thought as a rate measure:

P(Jump of size x arrives at time t) = II(dx)dt + o(dt).
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WITH LEVY PROCESSES YOU CAN.....

Try to model the foraging/flight/feeding patterns of various animals......
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..... as well as humans....
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WITH LEVY PROCESSES YOU CAN.....

Try to model the stock market .....
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CHARACTERISTIC VS LAPLACE EXPONENT
> To characterise a Lévy process, its enough to know its distribution at
each fixed time E[e!’] =e ¥ t > 0,0 ¢ R

> Sometimes a Laplace exponent will do E[e*] = e where, if it
exists, ¢)(A) = —¥(—i\) in the sense of an analytic extension.

> A good case in point is that of a subordinator: a Lévy process with
non-decreasing paths. In which case v is the negative of a Bernstein

function:
Pp(\) = — <5>\+/ (1 —e ™M)II(dx), )
(0,00)

where § > 0, and f(o (1 A x)II(dx) < oo.
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THE WHF: WHAT ALEXEY SHOULD HAVE TOLD YOU

> Let us extend the definition of a Lévy process and include the possibility
of killing, so
X, = { Lévy process X t< e
Cemetery state 0t > e

where e, is independent and exponentially distributed with parameter
g > 0. We also take as a convention ey = oo.

> In that case, if ¥ is the exponent of X then
¥ =g+ v

> For a given characteristic exponent of a Lévy process, W, there exist
unique Bernstein functions, x and # such that, up to a multiplicative
constant,
V(0) = k(—i0)k(i0), 0 cR.
> As Bernstein functions, x and & can be seen as the Laplace exponents of
(killed) subordinators.
> The probabilistic significance of these subordinators, is that their range

corresponds precisely to the range of the running maximum of X and of
—X respectively. 13/ 36



THE WHEF: WHAT ALEXEY MAY NOT HAVE TOLD YOU

> Until around 5-10 years ago (basically not before Alexey started to think
about it), It was very difficult to find non-trivial (jumping in two
directions) examples of Lévy processes.
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THE WHEF: WHAT ALEXEY MAY NOT HAVE TOLD YOU

> Until around 5-10 years ago (basically not before Alexey started to think
about it), It was very difficult to find non-trivial (jumping in two
directions) examples of Lévy processes.

> This talk: expose a recent method that brought a number of examples
forward
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«-STABLE PROCESS AS A LEVY PROCESS

A Lévy process X with probabilities (Px, x € R) is called (strictly) a-stable if it
is also a self-similar Markov process, i.e. for all ¢ > 0

(cX,~ay, t > 0) under Py is equal in law to (X;, f > 0) under Pe.

> Necessarily a € (0,2]. [« =2 — BM, exclude this.]
> Lévy measure takes the form

I'l+a) 1 . . R
%W (51n(7rap)1{x>0} + sm(7rap)1{x<0})
> The characteristic exponent ¥(6) := —t ' log E(e'’*) satisfies

‘1/(9) = |9|a(ema(%_p>1(0>0) + e_ma(%_p)l(ed))), 0 € R.

where p = Po(X; > 0) will frequently appearaswill p =1 —p

> Assume jumps in both directions (0 < ap, ap < 1), then, up to
multiplicative constants

K(A) = A" and #(\) = )\""37 > 0.
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«-STABLE PROCESS AND POSITIVE SELF-SIMILAR MARKOV PROCESS

> We are interested in how to examine the stable process, not as a Lévy
process, but through the theory of positive self similar Markov processes
(pssMp)

> ie. [0, 00)-valued (regular, strong) Markov process with probabilities
(P, x € R), for which there is an o > 0 such that, for all ¢ > 0,

(X ~as t > 0) under Py is equal in law to (X¢,t > 0) under P,.

> The characterisation of this class can help us see a bit deeper into the
class of a-stable processes, out of which we will find some new WHFs.
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NOTATION

> Use ¢ := {& : t > 0} to denote a Lévy process which is killed and sent to
the cemetery state —oo at an independent and exponentially distributed
random time, e;, with rate in g € [0, c0). The characteristic exponent of £
is thus written

—log E(e"*") = () = g + Lévy—Khintchine
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NOTATION
> Use ¢ := {& : t > 0} to denote a Lévy process which is killed and sent to
the cemetery state —oo at an independent and exponentially distributed

random time, e;, with rate in g € [0, c0). The characteristic exponent of £
is thus written

—log E(e"*") = () = g + Lévy—Khintchine

> Define the associated integrated exponential Lévy process

t
It:/ e ds, t>0. 1)
0

and its limit, oo := limjpoc Ir.
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NOTATION

> Use ¢ := {& : t > 0} to denote a Lévy process which is killed and sent to
the cemetery state —oo at an independent and exponentially distributed
random time, e;, with rate in g € [0, c0). The characteristic exponent of £
is thus written

—log E(e"*") = () = g + Lévy—Khintchine

> Define the associated integrated exponential Lévy process

t
It:/ e®Sds,  t>0. (1)
0

and its limit, oo := limjpoc Ir.
> Also interested in the inverse process of I:
o) =1inf{s >0: I > t}, t>0. )

As usual, we work with the convention inf ) = co.
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LAMPERTI TRANSFORM FOR POSITIVE SSMP: PART (1)

Fixa>0.IfZM, x> 0,isa positive self-similar Markov process with index
of self-similarity o, then up to absorption at the origin, it can be represented
as follows. For x > 0,

Zt(x)l(KC(x)) = xexp{{,—anl t>0,

where ¢® = inf{t > 0: Z" = 0} and either

(1) ¢™ = oo almost surely for all x > 0, in which case ¢ is a Lévy
process satisfying lim sup,,, §& = oo,

(2) (W < ooand Zéﬂ)_ = 0 almost surely for all x > 0, in which
case ¢ is a Lévy process satisfying limsoo & = —o0, or

(3) ¢ < ocand Z{), > 0almost surely for all x > 0, in which

case ¢ is a Lévy process killed at an independent and
exponentially distributed random time.

In all cases, we may identify ¢ 0 = x] .
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LAMPERTI TRANSFORM FOR POSITIVE SSMP: PART (1)

Conversely, suppose that £ is a given (killed) Lévy process. For each x > 0,
define
7z = xexp{&€,x—an }l(t<xoln)> t>0.

Then Z® defines a positive self-similar Markov process, up to its absorption
time ¢ = xI.,, with index a.
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LAMPERTI TRANSFORM FOR POSITIVE ssMP

(Z,Py)x>0 pssMp
Z = eXP(&S(t))v

S arandom time-change

“~ (&,Py)yer killed Lévy

55 = IOg(ZT(S))a

T a random time-change
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LAMPERTI TRANSFORM FOR POSITIVE ssMp

(Z,Py)x>0 pssMp
Z; = exp(&s(r))s

S arandom time-change

“~ (&,Py)yer killed Lévy

& = log(Zr(s)),

T a random time-change

Z never hits zero PN & — oo or € oscillates
Z hits zero continuously £ — —o0
Z hits zero by a jump ¢ is killed
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STABLE PROCESS KILLED ON ENTRY TO (—00, 0)

> Suppose that X is a stable process with two-sided jumps. Such processes
always pass below the origin by a jump.

21/ 36



STABLE PROCESS KILLED ON ENTRY TO (—00, 0)

> Suppose that X is a stable process with two-sided jumps. Such processes
always pass below the origin by a jump.

> This puts Z := Xi1(x,>0), t > 0, in the class of pssMp for which the
underlying Lévy process experiences exponential killing.
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STABLE PROCESS KILLED ON ENTRY TO (—00, 0)

> Suppose that X is a stable process with two-sided jumps. Such processes
always pass below the origin by a jump.

> This puts Z := Xi1(x,>0), t > 0, in the class of pssMp for which the
underlying Lévy process experiences exponential killing.

> Write £* = {& : t > 0} for the underlying (killed) Lévy process.

> Its characteristic exponent is given by

Fla—iz) ~ D(lti)

R.
Tap—1z) " TU-aptiz) €

U*(2) =
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STABLE PROCESS KILLED ON ENTRY TO (—00, 0)

| 2

>

>

Suppose that X is a stable process with two-sided jumps. Such processes
always pass below the origin by a jump.

This puts Zi := Xi1(x,>0), t > 0, in the class of pssMp for which the
underlying Lévy process experiences exponential killing.

Write £° = {& : t > 0} for the underlying (killed) Lévy process.

Its characteristic exponent is given by

Fla—iz) ~ D(lti)

R.
Tap—1z) " TU-aptiz) €

U*(2) =

A rare example where we can see the factorisation as

~ Tla—N)
S Y

is the Laplace exponent of a so-called beta subordinator
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CENSORED STABLE PROCESSES

vvyyy

Start with X, the stable process.

Let Ay = [} 1(x,>0 dt.

Let 7 be the right-inverse of A, and put Z; := X, .

Finally, make zero an absorbing state: Z; = Ztl(t<T0) where

To =il’lf{t>01Xt:0}.

Note Ty < oo a.s. if and only if o € (1,2) and otherwise Ty = oo a.s.
This is the censored stable process.

Suppose that X is a symmetric stable process, i.e p = 1/2.
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CENSORED STABLE PROCESSES

vvyyy

v

Start with X, the stable process.
Let A = fot 1(x,>0) dt.
Let 7 be the right-inverse of A, and put Z; := X, .

Finally, make zero an absorbing state: Z; = Ztl(t<TU) where
To = il’lf{t >0: X = 0}

Note Ty < oo a.s. if and only if o € (1,2) and otherwise Ty = oo a.s.

This is the censored stable process.

Suppose that X is a symmetric stable process, i.e p = 1/2.

Suppose that the underlying Lévy process for the censored stable

process is denoted by £. Then its characteristic exponent is given by
~ o Tlap—iz) T(1 - ap+iz)

Y@= Ta—atri) %
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TAKE CARE!

> The characteristic exponent of the censored stable:

~ o Tlap—iz) T(1—ap+iz)

Y@= *Ta et CCF

> if o € (0, 1], then the factorisation is the one that you see either side of
the multiplication sign.

> If o € (1,2), then we have the term I'(1 — « + iz) which (in Laplace
format) can take negative values (remember we are looking for the
product of Bernstein functions &, &).

> The factorisation for a € (1,2) turns out to be

~ I(ap — iz)

B I'(l—ap+iz)
Y= T TE-atiz)

T2 —ati) (iz), zeR.

(a—1—iz) x
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THE RADIAL PART OF A STABLE PROCESS

> Suppose that X is a symmetric stable process, i.e p = 1/2.
> We know that |X] is a pssMp.

> Suppose that the underlying Lévy process for | X| is written £©, then it
characteristic exponent is given by

(3 (—iz + @)) I'(3(iz+1))

\IIQ(Z) =2 F(—%iz) X I‘(%(iz—}—l—a))’

z e R.
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HYPERGEOMETRIC LEVY PROCESSES (ALEXEY AND OTHERS)
For (8,7,5,4) in
{6<2,79€01)f>~-1,and1-B+L+7A7>0 }

there exists a (killed) Lévy process, henceforth referred to as a
hypergeometric Lévy process, having the characteristic function

PA-B+y-) T(B+5+i2) o

v = M1-B—iz) DB +iz)

The Lévy measure of Y has a density with respect to Lebesgue measure is

given by
T'(n) —(1—B4)x voamt) s
— - e Fi(14+~,m5m—4;e "), if x>0,
=T o1 (14 7mn - 5ie”)
m(x) =
F(W) (B4+4)x A X .
—_—— ¢ oF1 (TL+4,m5m—v;€), if x <0,
L(n—I(=9) ( )

wheren :=1—- 8+~ + B + 4, for |z| <1,,F1(a,b;c;z) :== Zk>0 (“()C§£Z?k
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Deep Factorisation
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DEEP FACTORISATION OF THE STABLE PROCESS

> All of the previous examples were generated by path functionals of
stable processes which were non-negative + identification of them as
pssMp.

> Another factorisation also exists, which is more ‘deeply’ embedded in
the stable process.

> Based around the representation of the stable process as a real-valued
self-similar Markov process (rssMp):

An R-valued regular strong Markov process (X; : t > 0) with probabilities PP,
x € R, is a rssMp if, there is a stability index & > 0 such that, for all ¢ > 0 and
x €R,

(cXj—a : 1 > 0) under Py is Py,.
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A SPECIAL MARKOV ADDITIVE PROCESSES

> Let (J(t),t > 0) be a continuous-time, irreducible Markov chain on
{1,-1}.

> process (§,]) in R x E is called a Markov additive process (MAP) with
probabilities Py ;, x € R,i = £1, if, for any i = £1,s5,t > 0: Given
@ =1,

> (&t +s) —&(D),

(t+5)) LA{(€w),J(w) : u <},
> (&(t4s) —&(1),J(t+s

J
J(t+)) £ (£(5),J(5)) with (£(0),](0)) = (0,).
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A SPECIAL MARKOV ADDITIVE PROCESSES

> The pair (¢,]) can be represented as follows:
> there exist a sequence of iid Lévy processes (¢/',n > 0)
> and a sequence of iid random variables (Ug, n > 0), independent of the

chain J,
> such thatif Ty = 0 and (T, n > 1) are the jump times of ],

the process £ has the representation

§(t) = 1(u>0) (§(Tw—) + Ujir, -y y1.)) + &y (= ),

fort € [Tu, Tys1), n > 0.
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CHARACTERISTICS OF A MAP

> Denote the transition rate matrix of the chain ] by Q = (g;);,jeE-

> For each i € E, the Laplace exponent of the Lévy process &; will be
written v; (when it exists).

> For each pair of i,j € E, define the Laplace transform G;;(z) = E(e*'"i) of
the jump distribution U;; (when it exists).

> Write G(z) for the N x N matrix whose (i, j)th element is G;i(z) (i # j)
and define G;(z) = 1.
> Let
F(z) = diag(¢1(z), ..., ¥n(2)) + Qo G(2),
(when it exists), where o indicates elementwise multiplication.

> The matrix exponent of the MAP (¢,]) is given by

B ](0) =j) = ("), ij€E

(when it exists).
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LAMPERTI-KIU TRANSFORM

> Let
X = [x|eSUD(r(1))  0<t< Ty,
where .
7(f) = inf {s >0: / exp(ag(u))du > t|x|_a}
0
and

oo
To = \x|_a/ et qy.
0

> Then X; is a real-valued self-similar Markov process in the sense that the
law of (cX;.—a : £ > 0) under Py is Pe,.

> The converse is also true (more or less - some slight adjustment is
needed to the definition of the MAP).
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AN «a-STABLE PROCESS IS A RSSMP

> An a-stable process with two-sided jumps is a rssMp. Remarkably we
can compute precisely its matrix exponent explicitly

> Denote the underlying MAP (&, ]), we prefer to give the matrix exponent
of (&,]) as follows:

~ Tla—2z)P(Q+z) N(a—2)I'(1+2)
Mop—2T(1-ap+t2)  T(pT(—ap)
F(z) =
T(la—2)I'(1+z)  Tla—2z)I'(1+2)
T'(ap)I'(1 — ap) T(ap—2)T'(1—ap+2)

for Re(z) € (-1, ).
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MAP WHEF
> For # € R, up to a multiplicative factor,
—F(i0) = A, '&(i0)" A r(—i6),

where A, = diag(m), 7 is the stationary distribution of Q, & plays the
role of k, but for the dual MAP to (&, ]).

> The dual process, or time-reversed process is equal in law to the MAP
with exponent

F(z) = A;'F(—2)" AL,

> It turns out to be more natural to consider the factorisation in the form

—F(i0) " = r(—i0) AL [R10) T AL
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DEEP-WHEF STABLE « € (0,1)

Suppose that X is an a-stable process then we have that the factors k and &
are given as follows. For a,b, c € R define

1
W(a,b,c):= / u'(1—u)’ (14 u)u. 3)
0

Then, up to the multiplicative constant 27 “T'(1 — )7,

—1
k()
I—ap) UA—1,ap—1,ap) L—ap) TN =1, ap,ap—1)

T'(ap) '(ap)

Paen) y(A —1,ap,ap — 1) =22y (X — 1,05 —1,ap)

T(ap) T(ap)
and
&)
I'(l—ap) ~ in(amp)I'(1—ap) ~
tap YA —a,ap—1,ap) Senlan T YA — o, ap, ap — 1)
in(arp)l'(1—ap) ~ T'(l1—ap) ~
W\P(A—a,am ap—1) T T — a,ap — 1, ap)
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DEEP-WHEF STABLE « € (1,2)

"v_l(A)
— \P()‘_lao‘p_laaﬁ) \II()‘_]-?apaaﬁ_l)
o 2 UA—Tap,ap—1) Y(A—1,ap—1,ap)

(a—1)? UA—1l,ap—T,ap—1) ¥(A—T,ap—1,ap—1)
YA—Tap—Tl,ap—1) ¥YA—1,ap—1,ap—1)

20 +a-1)
and
AN
a-1 U\ —a,ap—1,ap) ziﬁgg:;’;@()\—a,aﬁ,ap—l)
T2 ::EZ:Z;\I’(A —a,ap,ap—1) YA —a,ap—1,ap)
 (a—1)7 U\ —a,ap—1,ap—1) SO WA —a,ap — 1,ap — 1)
20 +a—1) \ 28U\ —a,ap—1,ap— 1) A —a,ap—1,ap—1)
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Thank you!
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