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Abstract. We give a description of the classical Wiener-Hopf factorization
from the point of view of excursion theory concentrating mainly on the case of
random walks as opposed to Lévy processes. The exposition relies primarily on
the ideas of Greenwood and Pitman (1979, 1980).
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1 Introduction

A fundamental part of the theory of random walks and Lévy processes is a set
of conclusions which in modern times are loosely referred to as the Wiener—
Hopf factorization. Historically the identities around which the Wiener—Hopf
factorization is centred are the culmination of a number of works which in-
clude Spitzer (1956, 1957, 1964), Feller (1971), Borovkov (1976), Pecherskii and
Rogozin (1969), Gusak (1969), Greenwood and Pitman (1979, 1980), Fristedt
(1974) and many others; although the analytical roots of the so-called Wiener—
Hopf method go much further back than these probabilistic references; see for
example Hopf (1934) and Payley and Wiener (1934). The importance of the
Wiener—Hopf factorization for either a random walk or a Lévy process is that it
characterizes the range of the process’s running maximum as well as the times
at which new maxima are attained.

The overview we give here will first deal with the Wiener-Hopf factorization for
random walks before moving to the case of Lévy processes. The discussion will
follow very closely the ideas of Greenwood and Pitman (1979, 1980). Indeed
for the case of random walks we shall not shy away from providing proofs as
their penetrating and yet elementary nature reveals a simple path decomposi-
tion which is arguably more fundamental than the Wiener-Hopf factorization
itself. The Wiener-Hopf factorization for Lévy processes is essentially a technical
variant of the case for random walks and we only state it without proof.

2 Random walks and infinite divisibility

Let us start by reminding ourselves of some standard definitions and facts.
Suppose that {& : ¢ = 1,2,....} are a sequence of R-valued identically and



independently distributed random variables defined on the common probability
space (2, F,P) with common distribution function F. Let

So =0 and S, :ifi.

i=1

The process S = {S, : n > 0} is called a (real valued) random walk. For
convenience we shall make a number of assumptions on F'. First,

min{ F (0, 00), F(—00,0)} > 0,

meaning that the random walk may experience both positive and negative
jumps, and second, F' has no atoms.

In the prevailing analysis we shall repeatedly refer to general and specific
classes of infinitely divisible random variables. For this reason we need also to
spend some time discussing the latter.

Suppose that X is an R%valued random variable on (2, F,P), then X is
infinitely divisible if for each n = 1,2, 3, ...

XE X+ + X

where {X(; ) : i = 1,...,n} are independent and identically distributed and the
equality is in distribution. Said another way, if u is the characteristic function
of X then for each n = 1,2,3, ... we have that u = (u,)™ where p, is the the
characteristic function of some R%valued random variable.

In general, if X is any R%valued random variable which is also infinitely divisible
then for each § € R, E(e?X) = e~ Y% where

\11(9) =ida-0+ %Q(e) + /]Rd(l — e 4 4p . .731(|z‘<1))H(dx), (1)

a € R%, Q is a positive semi-definite quadratic form on R? and II is a measure
supported in R?\{0} such that

/ 1A |22 (dz) < oo.
Rd
Here, | - | is Euclidian distance and, for a,b € R%, a - b is the usual Euclidian

inner product.

A special example of an infinitely divisible distribution is the Geometric dis-
tribution. The symbol I', will always denote a geometric distribution with
parameter p € (0,1) defined on (€2, F,P). In particular,

P(T, =k)=p¢", k=0,1,2,...

where ¢ = 1—p. The geometric distribution has the the following nice properties
which are worth recalling for the forthcoming discussion. Firstly P(T', > k) =



¢* and secondly the lack of memory property: PT, > n+ml', > m) =
P(T, >n)foralln,m=0,1,2,..

A more general class of infinitely divisible distributions than the latter, which
will shortly be of use, are those which may be expressed as the distribution of
a random walk sampled at an independent and geometrically distributed time;
Sr, = Zf:pl &;. (Note, we interpret Z?=1 as the empty sum). To justify the

previous claim, a straightforward computation shows that for each n = 1,2, 3, ...

1\ n
i p " i0S n

where Ay, ), is a negative Binomial random variable with parameters 1/n and
p which is independent of S. The latter has distribution mass function

1T(k+1/n) 4/,
e e
for k=0,1,2,...

3 The Wiener-Hopf factorization for random walks

We now turn out attention to the Wiener-Hopf factorization. Fix 0 < p < 1
and define

G=inf{k=0,1,..,T,: S, = j=0r,%,a.b?ir‘p St

where I, is a geometrically distributed random variable with parameter p which
is independent of the random walk S. In words, G is the first visit of S to its
maximum over the time period {0,1,...,T',}. Now define

N =inf{n >0:S, > 0}.
In words, the first visit of S to (0,00) after time 0.

Theorem 1 (Wiener-Hopf factorization for random walks) Assume all
of the notation and conventions above.

(i) (G, Sg) is independent of (T'y — G, Sr, — Sa) and both pairs are infinitely
divisible

(ii) For0<s<1landfeR

) © ) 1
E(sGewSG) = exp {—/ Z(l — s”e’ew)q”F*”(dx)} )
(0,00) 21 n

(iii) For0<s<1land§ eR

. > o1
E(sVe?v) =1 —exp{—/ Zs"e’g‘CF*”(dx)} .
(0

100) =1 n



Note that the third part of the Wiener-Hopf factorization characterizes what
is known as the ladder height process of the random walk S. The latter is the
bivariate random walk (T, H) := {(T, H,) : n = 0,1,2,...} where (Ty, Hp) =
(0,0) and otherwise for n = 1,2,3, ...,

mln{k =1,2,...: ST,,L,1+IC > anl} if T,,_1 < o0
T, = .
00 if T,,_1 =

and S ;
B T, 1 Tn < 0
Hy = { 00 if T,, = oo.

That is to say, the process (T, H), until becoming infinite in value, represents
the times and positions of the running maxima of S; the so-called ladder times
and ladder heights. It is not difficult to see that T, is a stopping time for each
n = 0,1,2,.. and hence thanks to the i.i.d. increments of S, the increments
of (T, H) are independent and identically distributed with the same law as the
pair (N, Sy).

Proof of Theorem 1. (i) The path of the random walk may be broken into v €
{0,1,2,....} finite (or completed) excursions from the maximum followed by an
additional excursion which straddles the random time I',,. Here we understand
the use of the word straddle to mean that if ¢ is the index of the left end
point of the straddling excursion then ¢ < I',. By the Strong Markov Property
for random walks and lack of memory, the completed excursions must have the
same law; namely that of a random walk sampled on the time points {1,2,..., N}
conditioned on the event that { N < I',} and hence v is geometrically distributed
with parameter 1 — P(N <T,). Mathematically we write
(G, Sq) =Y (NW, H)

i=1

where the pairs {(N® H®) : 4 = 1,2,...} are independent having the same
distribution as (NN, Sn) conditioned on {N < T',}. Note also that G is the
sum of the lengths of the latter conditioned excursions and S¢g is the sum of
the respective increment of the terminal value over the initial value of each
excursion. In other words, (G, S¢) is the component-wise sum of v independent
copies of (N,Sy) (with (G,Sg) = (0,0) if v = 0). Infinite divisibility follows
as a consequence of the fact that (G, Sg) is a geometric sum of i.i.d. random
variables. The independence of (G, Sg) and ('), — G, St, — S¢) is immediate
from the decomposition described above.

Feller’s classic Duality Lemma (cf. Feller (1971)) for random walks says
that for any n = 0,1,2... (which may later be randomized with an indepen-
dent Geometric distribution), the independence and common distribution of
increments implies that {S,_xr — S, : & = 0,1,...,n} has the same law as
{—St : £k =0,1,...,n}. In the current context, the Duality Lemma also im-
plies that the pair (I', — G, Sr, — S¢) is equal in distribution to (D, Sp) where

D :=sup{k=0,1,..,Iy,: Sy = min_ S;}.
g 1 r,

sdyeeey



(ii) Note that, as a geometric sum of i.i.d. random variables, the pair
(Tp, Sr,) is infinitely divisible For s € (0,1) and ¢ € R, let ¢ = 1 — p and
note that on the one hand,

E(steiOSrp) — E(E(sewsl)r,,)
> plgsE(?)"

k>0

I
1 — gsE(e?51)’

On the other hand, with the help of Fubini’s Theorem,
exp {_ / Z(l _ Snewx)qnnF*n(dx)}
R n=1
=expy — i(l - S"E(ews’”’))q"l
n

=1

= , 1
— _ 1—s"E i0S1\n\ ,n —
exp{ > (1= B g n}
= exp {log(l —q) —log(1 — qu(ewSl))}
- pr

1 — qsE(e??51)

where in the last equality we have appealed to the Mercator-Newton series
expansion of the logarithm. Comparing the conclusions of the last two series of
equalities, the required expression for E(sT»e9T») follows. The Lévy measure
mentioned in (1) is thus identifiable as

M1(dy, dr) = 3 5003 (dy) F*" (dr) "
n=1
for (y,z) € R2.

We know that (I, St,) may be written as the independent sum of (G, S¢)
and (T, — G, Sr, — Sg) where both are infinitely divisible Further, the for-
mer has Lévy measure supported on {1,2,...} x (0,00) and the latter has Lévy
measure supported on {1,2,...} x (—o0,0). Further, F(s%¢??5¢) extends to the
upper half of the complex plane in 6 (and is continuous to the real axis) and
E(sTr=Ge(5r,=56) extends to the lower half half of the complex plane in 6
(and is continuous to the real axis)!. Taking account of (1), this forces the
factorization of the expression for F (srf’eiGSFz’) in such a way that

B(5C€956) = exp {_ / S- s”eiem)q"iF*"(dx)} . ()
(0,00) ,,—1

1t is this part of the proof which makes the connection with the general analytic tech-
nique of the Wiener-Hopf method of factorising operators. This also explains the origin of
the terminology ‘Weiner-Hopf factorization’ for what is otherwise a path, and consequently
distributional, decomposition.



(iii) Note that the path decomposition given in part (i) shows that
E(s%e%¢) = B(s2i= N oSy, H<i>)

where the pairs {(N® H®) : i = 1,2,...} are independent having the same
distribution as (N, Sy) conditioned on {N < T',}. Hence we have

E(sGeiGSG) _ Z P(N > Fp)P(N < I‘p)kE(SZ?:l N(i)eie Sk H(z‘))

k>0

= Y P(N>T,)P(N <T,)FE(sVeN|N <T,)
k>0

= ZP(N > Fp)E(SNeiole(NSFp))k
k>0

= Y P(N >T,)E((gs)Ne"™)*
k>0

P(N >T,)

T 1 E((gs)Ve?Sy) “

Note in the fourth equality we use the fact that P(I', > n) = ¢".
The required equality to be proved follows by setting s = 0 in (2) to recover

P(N >T,) =exp {—/ Z an*"(da:)}
(0,00) ;,—1

and then plugging this back into the right hand side of (3) and rearranging. =

4 Lévy processes and infinite divisibility

We give a brief reminder of the definition of a Lévy process. The (one-dimensional)
stochastic process X = {X; : ¢ > 0} is called a Lévy process on some probability
space (Q, F,P) if

(i) X has paths that are P-almost surely right continuous with left limits.
(ii) given 0 < s <t < 00, Xy — X is independent of {X,, : u < s}

(iii) given 0 < s <t < 00, Xy — X is equal in distribution to X;_s and
(iv) P(Xo=0)=1.

It is easy to deduce that if X is a Lévy process, then for each ¢ > 0 the random
variable X; is infinitely divisible. Indeed one may also show via a straightforward
computation that

E(e0Xt) = e YOt forallf e R, t >0 (4)



where, in its most general form, ¥ takes the form given in (1). Conversely, it
can also be shown that given a Lévy-Khintchine exponent (1) of an infinitely
divisible random variable, there exists a Lévy process which satisfies (4). In
the special case that the Lévy-Khintchine exponent ¥ belongs to that of a
positive valued infinitely divisible distribution, it follows that the increments of
the associated Lévy process must be positive and hence its paths are necessarily
monotone increasing. In full generality, a Lévy process may be naively thought
of as the independent sum of a linear Brownian motion plus an independent
process with discontinuities in its path which in turn may be seen as the limit
(in an appropriate sense) of the partial sums of a sequence compound poisson
processes with drift. The book of Bertoin (1996) gives a comprehensive account
of the above details.

The definition of a Lévy processes suggests that it may be thought of as a
continuous-time analogue of a random walk. Let us introduce the exponential
random variable with parameter p, denoted e,, which henceforth is assumed
to be independent of all other random quantities under discussion and defined
on the same probability space. Like the geometric distribution, the exponential
distribution also has a lack of memory property in the sense that for all 0 <
s,t < co we have P(e, >t + sle, > t) = P(e, > s) = e P°. Moreover, e,, and
more generally X, is infinitely divisible. Indeed, straightforward computations
show that for each n =1,2,3, ...

where v,/ is a gamma distribution with parameters 1/n and p which is inde-
pendent of X. The latter has distribution

3=

) = E(eiex’yl/n,p )n

1/n
p — n_—px
P(i/np € dx) = (/)" M nempe

for z > 0.

5 Wiener-Hopf factorization for Lévy processes

The Wiener-Hopf factorization for a one dimensional Lévy processes is a slightly
more technical affair than for random walks but, in principle, appeals to essen-
tially the same ideas that have been exhibited in the above exposition of the
Wiener-Hopf factorization for random walks. We therefore only give in this
section a statement of the Wiener-Hopf factorization. The reader interested
in the full technical details is directed primarily to the article of Greenwood
and Pitman (1979) for a natural and insightful probabilistic presentation (to
the authors opinion). Alternative accounts based on the aforementioned article
can be found in the books of Bertoin (1996) and Kyprianou (2006) and deriva-
tion of the Wiener-Hopf factorization for Lévy processes from the Wiener-Hopf
factorization for random walks can be found in Sato (1999).



Before proceeding to the statement of the Wiener-Hopf factorization, we
need first to introduce the ladder process associated with any Lévy process X.
Here we encounter more subtleties than for the random walk. Consider the
range of the times and positions at which the process X attains new maxima.
That is to say the random set {(¢, X;) : X; = X;} where X; = sup,, X is the
running maximum. It turns out that this range is equal in law to the range of
a killed bivariate subordinator (7, H) = {(¢, Hy) : t < ¢} where the killing time
¢ is an independent and exponentially distributed random variable with some
rate A > 0. In the case that limijo, X; = 0o there should be no killing in the
process (7, H) and hence A = 0 and we interpret P(¢ = oo) = 1. Note that we
may readily define the Laplace exponent of the killed process (7, H) by

E(efa'rtfﬁHt 1(t<§)) _ efn(a,ﬁ)t

for all o, 8 > 0 where necessarily x(c,3) = A + ¢(a, 3) is the rate of ¢ and
¢ is the bivariate Laplace exponent of the unkilled process {(7, Hy) : t > 0}.
Analogously to the role played by joint probability generating and characteristic
exponent of the pair (N,Sy) in Theorem 1 (iii) the quantitiy x(a,3) also is
prominent in the Wiener-Hopf factorization for Lévy processes which we state
below. In order to do so we make one final definition. For each ¢ > 0, let

@ep =sup{s <e,: Xs= X}

Theorem 2 (The Wiener—Hopf factorization for Lévy processes) Suppose
that X is any Lévy process other than a compound Poisson process. As usual,
denote by e, an independent and exponentially distributed random variable.

(i) The pairs o -
(Ge,, Xe,) and (e, — Ge,, Xe, — Xe,)

are independent and infinitely divisible.

(ii) For a,8>0
Q. _BX, 0)
E (e—aCep—5Xe, ) — K (P, '
(e ) k(p+a, )

(iii) The Laplace exponent k(c, 3) may be identified in terms of the law of X
in the following way,

k(a, B) = kexp </0°° /(0 : (G e t=hT) %]P’(Xt IS dx)dt)

where o, B > 0 and k is a dimensionless strictly positive constant.

6 The first passage problem and mathematical
finance

There are many applications of the Wiener-Hopf factorization in applied prob-
ability and mathematical finance is no exception in this respect. One of the



most prolific links is the relationship between the information contained in the
Wiener-Hopf factorization and the distributions of the first passage times

rr=inf{t >0: X, >z} and 7, :=inf{t > 0: X; <z}

together with the overshoots X _+ —z and # — X -, where 2 € R. In turn this
is helpful for the pricing of certaln types exotic optlons

For example in a simple market model for which there is one risky asset
modelled by an exponential Lévy process and one riskless asset with a fixed
rate of return, say r > 0, the value of a perpetual American put, or indeed
a perpetual down-and-in put, boils down to the computation of the following
quantity

- X _

v (@) =B (7 (K — ¢ )Xo = x) (5)
where y € R and 27 = max{0, z} and the expectation is taken with respect to
an appropriate risk neutral measure which keeps X in the class of Lévy processes
(for example the measure which occurs as a result of the Escher transform). To

see the connection with the Wiener-Hopf factorization consider the following
lemma and its corollary.

Lemma 3 For alla >0, 3> 0 and x > 0 we have

E(efXealx -,
st

Proof. First, assume that «, 5, z > 0 and note that

X1
E(e A 1(Xea>:r))
= E( B ea]_( +<ea))
= E (1(7;<ea)€7ﬁXT;r]E (eiB(Xe" )

fT;)).

Now, conditionally on F + and on the event 77 < e, the random variables

Xe, — X_ + and Xo., have the same distribution thanks to the lack of memory
property of e, and the strong Markov property. Hence, we have the factorization

E (e_ﬁ?ea 1(Ye >1)) — E (e*a‘r ﬁX +) E (e—ﬁyea> .

The case that 3 or x are equal to zero can be achieved by taking limits on both
sides of the above equality. [

By replacing X by — X in the previous lemma, we get the following analogous
result for first passage into the negative half line.



Corollary 4 For all a, 38> 0 and x > 0 we have

—ar” 48X E (eﬁge" L-x,, >I))
Efe <o) | T E (e7Xea) ’ (M

In that case, we may develop the expression in (5) by using Corollary 4 and get
that
E ((KB[eXer] = ™ ¥er) 1 x ooy)

E(eXer)

Ultimately, further development of the expression on the right hand side above
requires knowledge of the distribution of X, . This is information which, in
principle, can be extracted from the Wiener-Hopf factorization.

vy(x) =
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