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Abstract

Taking account of recent developments in the representation of d-dimensional isotropic stable Lévy
rocesses as self-similar Markov processes, we consider a number of new ways to condition its path.
uppose that S is a region of the unit sphere Sd−1

= {x ∈ Rd
: |x | = 1}. We construct the aforesaid

table Lévy process conditioned to approach S continuously from either inside or outside of the sphere.
dditionally, we show that these processes are in duality with the stable process conditioned to remain

nside the sphere and absorb continuously at the origin and to remain outside of the sphere, respectively.
ur results extend the recent contributions of Döring and Weissman (2020), where similar conditioning

s considered, albeit in one dimension as well as providing analogues of the same classical results for
rownian motion, cf. Doob (1957). As in Döring and Weissman (2020), we appeal to recent fluctuation

dentities related to the deep factorisation of stable processes, cf. Kyprianou (2016), Kyprianou et al.
2020) and Kyprianou et al. (2017).
c 2021 Elsevier B.V. All rights reserved.

SC: 60J80; 60E10
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1. Introduction

Let X = (X t , t ≥ 0) be a d-dimensional stable Lévy process with probabilities (Px , x ∈ Rd ).
his means that X has càdlàg paths with stationary and independent increments as well as
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respecting a property of self-similarity: There is an α > 0 such that, for c > 0, and
x ∈ Rd , under Px , the law of (cXc−α t , t ≥ 0) is equal to Pcx . It turns out that stable Lévy
rocesses necessarily have the scaling index α ∈ (0, 2]. The case α = 2 pertains to a standard
-dimensional Brownian motion, thus has a continuous path. The processes we construct are
rguably less interesting in the diffusive setting and thus we restrict ourselves to the isotropic
ure jump setting of α ∈ (0, 2) in dimension d ≥ 2.

To be more precise, this means, for all orthogonal transformations U : Rd
↦→ Rd and

x ∈ Rd ,

the law of (U X t , t ≥ 0) under Px is equal to (X t , t ≥ 0) under PU x .

or convenience, we will henceforth refer to X just as a stable process.
The stable Lévy process has the jump measure Π that satisfies

Π (B) =
2αΓ ((d + α)/2)
πd/2|Γ (−α/2)|

∫
B

1
|y|α+d dy, B ⊆ B(Rd ).

he constant in the definition of Π (B) can be arbitrary, however, our choice corresponds to
he one that allows us to identify the characteristic exponent Lévy process as

Ψ (θ ) = −
1
t

logE(eiθ ·X t ) = |θ |α, θ ∈ Rd ,

where we write P in preference to P0; more precisely, the coefficient of |θ |α is one.
In this article, we characterise the law of a stable process conditioned to hit continuously

a part of the surface, say Borel S ⊆ Sd−1
= {x ∈ Rd

: |x | = 1}, either from the inside
or from the outside of the unit sphere. We develop an expression for the law of the limiting
point of contact on S. Moreover, we show that, when time reversed from the strike point on S,
the resulting process can also be seen as a conditioned stable process. The extreme cases that
S = Sd−1 (the whole unit sphere) and S = {ϑ} ∈ Sd−1 (a single point on the unit sphere) are
included in our analysis, however, we will otherwise insist that the Lebesgue surface measure
of S is strictly positive.

Our results relate to the recent work of [12], who considered a real valued Lévy process
conditioned to continuously approach the boundary of the interval [−1, 1] from the outside. In
order to avoid repetition, we always remain in two or more dimensions. As in [12], we rely
heavily on recent fluctuation identities that are connected to the deep factorisation of the stable
process; cf. [16,20,21]. The results here are also related the classical results of Doob [11], who
deals with similar conclusions for Brownian motion and as well as echoing the general theory
of conditioned stochastic processes in the potential-analytic sense (via a Doob h-transform),
see e.g. Chapter 14 of [10].

2. Attraction towards S

For convenience, we will work with the definition Bd = {x ∈ Rd
: |x | < 1}. Let D(Rd )

denote the space of càdlàg paths ω : [0,∞) → Rd
∪ ∂ with lifetime k(ω) = inf{s > 0 :

ω(s) = ∂}, where ∂ is a cemetery point. The space D(Rd ) will be equipped with the Skorokhod
topology, with its Borel σ -algebra F and natural filtration (Ft , t ≥ 0). The reader will note
that we will also use a similar notion for D(R× Sd−1) later on in this text in the obvious way.
We will always work with X = (X t , t ≥ 0) to mean the coordinate process defined on the
space D(Rd ). Hence, the notation of the introduction indicates that P = (Px , x ∈ Rd ) is such
that (X,P) is our stable process.
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Consider a subset S ⊆ Sd−1 such that it has strictly positive Lebesgue surface measure or
it is a point. We want to construct the law of X conditioned to approach S continuously from
within B̄c

d := Rd
\ B̄d . From a potential-theoretic perspective, this law can be obtained as a

Doob h-transform of the killed stable process in Bc
d , provided that h is a positive harmonic

function in Bc
d which is equal to zero in Bd and which goes to zero at infinity and at Sd−1

\S;
f. [10, Chapter 14]. In this paper, we want to give a probabilistic construction, which identifies
more physical meaning to the conditioning in terms of the paths of the stable process; see

.g. the classical work of [3,9]. Similarly, we want the law of X conditioned to approach S
ontinuously from within Bd . More precisely, via an appropriate limiting procedure, we want
o build a new family of probabilities P∨ = (P∨x , x ∈ B̄c

d ) such that

P∨x (Xs ∈ B̄c
d , s < k and Xk− ∈ S) = 1, x ∈ B̄c

d ,

ith a similar statement holding when the conditioning is undertaken from within Bd .
As we are considering two or higher dimensions, the process (X,P) is transient in the sense

that limt→∞ |X t | = ∞ almost surely. Defining

G(t) := sup{s ≤ t : |Xs | = inf
u≤s
|Xu |}, t ≥ 0,

e thus have by monotonicity and the transience of (X,P) that G(∞) := limt→∞ G(t) exists
nd, moreover, XG(∞) describes the point of closest reach to the origin in the range of X .

We can similarly define G(t) = sup{s ≤ t : |Xs | = supu≤s |Xu |}, t ≥ 0, so that G(τ⊖1 −) is
he point of furthest reach from the origin prior to exiting Bd , where

τ⊖1 = inf{t > 0 : |X t | > 1}.

Let us turn to what we mean by conditioning to attract to the set S from either the interior
r the exterior of the sphere. If S is not a point, we define Aε = {rθ : r ∈ (1, 1 + ε), θ ∈ S}
nd Bε = {rθ : r ∈ (1 − ε, 1), θ ∈ S}, for 0 < ε < 1 and define the corresponding events
∨
ε := {XG(∞) ∈ Aε}, and C∧ε := {XG(τ⊖1 −) ∈ Bε}. Let

τ⊕1 = inf{t > 0 : |X t | < 1}.

We are interested in the asymptotic conditioning

P∨x (A, t < k) = lim
ε→0

Px (A, t < τ⊕1 |C
∨

ε ), (1)

hen x ∈ B̄c
d and

P∧x (A, t < k) = lim
ε→0

Px (A, t < τ⊖1 |C
∧

ε ), (2)

hen x ∈ Bd , for all A ∈ Ft .
When S = {ϑ} ∈ Sd−1, we need to adapt slightly the sets Aε and Bε so that Aε = {rφ : r ∈

(1, 1+ ε), φ ∈ Sd−1, |φ − ϑ | < ε} and Bε = {rφ : r ∈ (1− ε, 1), φ ∈ Sd−1, |φ − ϑ | < ε}.
We will go a little further in due course and give a fuller description of these two conditioned

processes by including the cases that X is issued from the unit sphere itself but not within S,
i.e. Sd−1

\ S. For now, we have our first main result, given immediately below, for which we
define the function

HS(x) =

⎧⎨⎩ ||x |
2
− 1|

α/2
∫

S
|θ − x |−dσ1(dθ ) if σ1(S) > 0,

2 α/2 −d
(3)
||x | − 1| |ϑ − x | if S = {ϑ},
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for |x | ̸= 1, where σ1(dθ ) is the Lebesgue surface measure on Sd−1 normalised to have unit
mass. It is worthy of note that, when S = Sd−1, the integral in (3) can be computed precisely.
Indeed, up to an unimportant (for our purposes) multiplicative constant, C > 0, which may
hange from line to line, we note that, for |x | > 1,∫

Sd−1
|x − θ |−dσ1(dθ ) = C

∫ π

0

(sin φ)d−2

(|x |2 − 2|x | cos φ + 1)d/2
dφ

= C |x |−d
2 F1(d/2, 1; d/2, |x |−2)

= C |x |−d
(

1−
1
|x |2

)−1

,

here we have used the hypergeometric identity in (A.1) of the Appendix. We can perform a
imilar calculation when |x | < 1 and, obtain, up to a multiplicative constant, C > 0, that∫

Sd−1
|x − θ |−dσ1(dθ ) = C

(
1− |x |2

)−1
. (4)

ll together, noting that we may ignore multiplicative constants, we have

HSd−1 (x) =

{
|x |α−d (1− |x |−2) α

2−1
if |x | > 1

(1− |x |2)
α
2−1 if |x | < 1.

(5)

As the next result will make clear, HS is a positive harmonic function for both (X t , t < τ⊖1 )
nd (X t , t < τ⊕1 ). From the potential-theoretic perspective, it can be described as an integral
f the Martin kernel over S. Then, by the Martin boundary theory, the h-conditioned process
ill approach S with probability one, see [10, Chapter 14] as well as the classical results of
oob for Brownian motion, cf. Theorem 7.1 [11].

heorem 1 (Stable Process Conditioned to Attract to S Continuously from One Side). Let
⊆ Sd−1 be an closed set with σ1(S) > 0 or S = {ϑ} for a fixed point ϑ ∈ Sd−1. Then for

ll points of issue x ∈ Rd
\ Sd−1 we have

dP∨x
dPx

⏐⏐⏐⏐
Ft

= 1(t<τ⊕1 )
HS(X t )
HS(x)

, if x ∈ B̄c
d (6)

nd otherwise
dP∧x
dPx

⏐⏐⏐⏐
Ft

= 1(t<τ⊖1 )
HS(X t )
HS(x)

, if x ∈ Bd . (7)

n particular, (P∨x , x ∈ B̄c
d ) and (P∧x , x ∈ B̄c

d ) are Markovian families.

emark 1. The choice of limiting conditioning procedure that we have used reflects a similar
pproach taken in [12] in one dimension. It is worth noting at this point that the choice of C∨ε
nd C∧ε are by no means the only possibilities as far as performing a limiting conditioning that
esults in (6) and (7). For example, once the reader is familiar with the proof of Theorem 1, it
ill quickly become clear that, when S is not a singleton, by defining e.g. C∨ε = {Xτ⊕1

∈ Bε},
r indeed C∨ε = {Xτ⊕1 −

∈ Aε}, the limit (1) will still produce the change of measure (6). Once
he reader is familiar with the proof of Theorem 1, it is a worthwhile exercise to verify the two
roposed alternative definitions of C∨ε for the limiting process by appealing to the fluctuation
dentities in e.g. [20]. Other definitions of C∨ε giving a consistent limit may indeed also be

ossible.
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Whilst the above theorem deals with the construction of the conditioned process up to but
ot including its terminal position, we characterise the latter in the next result, which resonates
ith Theorem 14.8 of [10].

roposition 1 (Distribution of the Hitting Location). Suppose that S ⊆ Sd−1 be a closed set
ith σ1(S) > 0. Let S′ be a closed subset of S. Then for any x ∈ Rd

\ B̄d , we have

P∨x (Xk− ∈ S′) =

∫
S′ |θ − x |−dσ1(dθ )∫
S |θ − x |−dσ1(dθ )

, (8)

ith an identical result holding for Xk− under P∧x , with x ∈ Bd .

. Lamperti–Kiu representation and radial excursions

The basic definition of the stable process conditioned to attract continuously to S from one
ide is not quite complete. Strictly speaking, we could think about defining the process to
nclude the points of issue in Sd−1

\S. It turns out that this is possible. However, we first need
o remind the reader of the recently described radial excursion theory, see [20,19]. The starting
oint for the aforementioned is the Lamperti–Kiu transform which identifies the stable process
s a self-similar Markov process.

To describe it, we need to introduce the notion of a Markov Additive Process, henceforth
ritten MAP for short. Let Sd−1

= {x ∈ Rd
: |x | = 1}. We say that (Ξ ,Υ ) = ((Ξt ,Υt ), t ≥ 0)

s a MAP if it is Feller process on Rn
× Sd−1, with probabilities Px,θ , x ∈ Rn , θ ∈ Sd−1,

uch that, for any t ≥ 0, the conditional law of the process ((Ξs+t − Ξt ,Υs+t ) : s ≥ 0), given
(Ξu,Υu), u ≤ t), is that of (Ξ ,Υ ) under P0,θ , with θ = Υt . For a MAP pair ((Ξt ,Υt ), t ≥ 0),
e call Ξ the ordinate and Υ the modulator.
According to one of the main results in [1], there exists a MAP on R× Sd−1, which we

ill henceforth write as (ξ,Θ), with probabilities P = (Px,θ , x ∈ R, θ ∈ Sd−1) such that the
-dimensional stable process can be written

X t = exp{ξϕ(t)}Θϕ(t) t ≥ 0, (9)

here

ϕ(t) = inf
{

s > 0 :
∫ s

0
eαξu du > t

}
. (10)

Whilst Θ alone is a Feller process, it is not necessarily true that ξ alone is. However, it is a
onsequence of isotropy that this is the case here. Moreover, ξ alone is a Lévy process whose
haracteristic exponent is known (but not important in the current context); see for example [8].

hat is important for our purposes is to note for now that it has paths of unbounded variation,
nd therefore is regular for the upper and lower half line (in the sense of Definition 6.4 of [15]).

It is not difficult to show that the pair ((ξt − ξ
t
,Θt ), t ≥ 0), forms a strong Markov process,

here ξ
t
:= infs≤t ξs , t ≥ 0 is the running minimum of ξ . On account of the fact that ξ , alone,

s a Lévy process, (ξt − ξ
t
, t ≥ 0) is also a strong Markov process. Suppose we denote by

ℓ = (ℓt , t ≥ 0) the local time at zero of ξ − ξ , then we can introduce the following processes

H−t = −ξ
ℓ−1

t
and Θ−t = Θ

ℓ−1
t

, t ≥ 0,

and define (H−
ℓ−1

t
,Θ−

ℓ−1
t

) = (∂, †), a cemetery state, if ℓ−1
t = ∞. Then, the pair (ℓ−1, H−),

ithout reference to the associated modulation Θ−, are Markovian and play the role of the
276
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descending ladder time and height subordinators of ξ . Moreover, the strong Markov property
ells us that (ℓ−1

t , H−t ,Θ−t ), t ≥ 0, defines a Markov Additive Process on R2
×Sd−1, whose first

two elements are ordinates that are non-decreasing. In this sense, ℓ also serves as an adequate
choice for the local time of the Markov process (ξ − ξ,Θ) on the set {0} × Sd−1. (See [20]).

Suppose we define gt = sup{s < t : ξs = ξ
s
}, and recall that the regularity of ξ for (−∞, 0)

and (0,∞) ensures that it is well defined, as is g∞ = limt→∞ gt . Set

dt = inf{s > t : ξs = ξ
s
}.

For all t > 0 such that dt > gt the process

(ϵgt (s),Θ ϵ
gt

(s)) := (ξgt+s − ξgt ,Θgt+s), s ≤ ζgt := dt − gt ,

odes the excursion of (ξ−ξ,Θ) from the set (0,Sd−1) which straddles time t . Such excursions
ive in the space U(R×Sd−1), the space of càdlàg paths in R×Sd−1, written in canonical form

(ϵ,Θ ϵ) = ((ϵ(t),Θ ϵ(t)) : t ≤ ζ ) with lifetime ζ = inf{s > 0 : ϵ(s) < 0},

uch that (ϵ(0),Θ ϵ(0)) ∈ {0} × Sd−1, (ϵ(s),Θ ϵ(s)) ∈ (0,∞) × Sd−1, for 0 < s < ζ , and
(ζ ) ∈ (−∞, 0].

Taking account of the Lamperti–Kiu transform (9), it is natural to consider how the excursion
f (ξ − ξ,Θ) from {0} × Sd−1 translates into a radial excursion theory for the process

Yt := eξtΘt , t ≥ 0.

Ignoring the time change in (9), we see that the radial minima of the process Y agree with the
adial minima of the stable process X . Indeed, each excursion of (ξ − ξ,Θ) from {0} × Sd−1

is uniquely associated to exactly one excursion of (Yt/ infs≤t |Ys |, t ≥ 0), from Sd−1, or
equivalently an excursion of Y from its running radial infimum. Moreover, we see that, for
all t > 0 such that dt > gt ,

Ygt+s = eξgt eϵgt (s)Θ ϵ
gt

(s) = |Ygt |e
ϵgt (s)Θ ϵ

gt
(s), s ≤ ζgt .

This will be useful to keep in mind for the forthcoming excursion computations.
For t > 0, let Rt = dt − t , and define the set G = {t > 0 : Rt− = 0, Rt > 0} = {gs : s ≥ 0}.

The classical theory of exit systems in [22] (see Theorems (4.1) and (6.3) therein) now implies
that there exists an additive functional (Λt , t ≥ 0) and a family of excursion measures,
(Nθ , θ ∈ Sd−1) such that:

(i) Λ is an additive functional of (ξ,Θ), has a bounded 1-potential and is carried by the set
of times {t ≥ 0 : (ξt − ξ

t
,Θt ) ∈ {0} × Sd−1

},
(ii) the map θ ↦→ Nθ is an Sd−1-indexed kernel on U(R× Sd−1) such that Nθ (1− e−ζ ) <∞;

(iii) we have the exit formula

Ex,θ

⎡⎣∑
g∈G

F((ξs,Θs) : s < g)H ((ϵg,Θ
ϵ
g ))

⎤⎦
= Ex,θ

[∫
∞

0
F((ξs,Θs) : s < t)NΘt

(H (ϵ,Θ ϵ))dΛt

]
, (11)

for x ̸= 0, where F is continuous on the space of càdlàg paths D(R × Sd−1) and H is
measurable on the space of càdlàg paths U(R× Sd−1);

(iv) under any measure Nθ the process ((ϵ(s),Θ ϵ(s)), s < ζ ) is a strong Markov process with
the same semigroup as (ξ,Θ) killed at its first hitting time of (−∞, 0]× Sd−1.
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The couple (Λ,N
·
) is called an exit system. Note that in Maisonneuve’s original formulation,

he pair Λ, N
·
:= (Nθ , θ ∈ Sd−1) is not unique, but once Λ is chosen the measures

Nθ , θ ∈ Sd−1) exist however, are only unique up to Λ-neglectable sets, i.e. sets A such that
x,θ (
∫
∞

0 1{Θs∈A}dΛs) = 0. Another example of where this theory has been used is in the
construction of excursions from a set is that of Brownian motion away from a hyperplane;
see [7].

Now referring back to ℓ, the local time of ξ − ξ at 0, since it is an additive functional with
bounded 1-potential, there is an exit system which corresponds to (ℓ,N

·
). With this choice of

we assume that the choice of N
·

is fixed despite the fact that we can induce subtle variations
in N

·
on a Λ-negligible set of θ ∈ Sd−1 e.g. by setting Nθ ≡ 0 there. The reader is referred to

Chapter VII of [4] for further discussion on this matter. Note that Nθ is not isotropic in θ . For
xample, excursions that begin at the ‘North Pole’, say 1, are, with high frequency, arbitrarily

small and hence will end near to 1. That said, depending on the event A, it is possible that
θ (A) does not depend on θ ∈ Sd−1; for example, Nθ (ζ = ∞). The reason for this is that it
ust agree with the rate at which the infinite excursion of ξ − ξ occurs, according to the local

ime ℓ. More generally, we have that, for all orthogonal transformations U : Rd
↦→ Rd and f

such that Nθ ( f (ϵ,Θ ϵ)) <∞, θ ∈ Sd−1, isotropy implies that Nθ ( f (ϵ, UΘ ϵ)) = NUθ ( f (ϵ,Θ ϵ)).
n account of the fact that ℓ is only defined up to a multiplicative constant, we can use the

ommon value of Nθ (ζ = ∞) to fix a normalisation the local time, or equivalently, of the
excursion measures (Nθ , θ ∈ Sd−1). We thus fix it to take the value of unity. The place at
which this choice of normalisation becomes relevant is when we cite certain identities from
(cf. (39) below) from [20], in which this assumption was also made. Henceforth, this is the
exit system we will work with and the system of excursion associated to it is what we call our
radial excursion theory.

Later in our proofs we will use a variant of the above excursion theory based on the MAP
(ξ − ξ,Θ), where ξ is the process ξ t = sups≤t ξs , t ≥ 0. We leave the details until that point
n the text. With our excursion theory in hand, we can now proceed to identify the completion
f Theorem 1.

heorem 2. Let S ⊆ Sd−1 be an closed set with σ1(S) > 0 or S = {ϑ} for a fixed point
∈ Sd−1. The processes (X,P∨) and (X,P∧) can be extended in a consistent way to include

oints of issue x ∈ Sd−1
\ S with pathwise continuous entry via

P∨x (X t ∈ dy, t < k) :=
Γ (d/2)

Γ (α/2+ 1)Γ ((d − α)/2)
HS(y)
h(x)

Nx (X ϵ(t) ∈ dy, t < ς) ,

(12)

or |y| > 1 and

P∧x (X t ∈ dy, t < k) :=
Γ (d/2)

Γ (α/2+ 1)Γ ((d − α)/2)
HS(y)
h(x)

Nx (X ϵ(t) ∈ dy, t < ς) ,

(13)

or |y| > 1, where,

h(x) =
∫

S
|x − θ |−dσ1(dθ )

nd, for (ϵ,Θ ϵ) selected from U(R× Sd−1) or U(R× Sd−1), respectively,

X ϵ(t) = eϵ(ϕ(t))Θ ϵ(ϕ(t)) and ς = ϕ−1(ζ ) =
∫ ζ

|X ϵ(u)|αdu. (14)

0
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Here, pathwise continuous entry means that

P∨x (lim
t→0

X t = x) = P∧x (lim
t→0

X t = x) = 1 (15)

or all x ∈ Sd−1
\ S.

Note, referring to the discussion preceding Theorem 2, the choice of local time ℓ leaves
free choice of multiplicative constant in the definition of local time, which may depend on

x ∈ Sd−1
\ S. In the proof of Theorem 2, we use a method of continuity of resolvents to pin

down the aforesaid constants. We also note that extending the notion of a Doob h-transformed
rocess to include certain ‘boundary points’ in the way we have seen in Theorem 2 can be
een in e.g. [24,9] as well as the classical work of Doob [11].

. Repulsion and duality

In this section, we want to introduce two new processes, which will turn out to be dual
o (X,P∨) and (X,P∧) in the sense of time reversal. The two processes we are interested
ive meaning to the stable process conditioned to remain in B̄c

d and Bd , respectively, in an
ppropriate sense.

An important tool that we will make use of in analysing the aforesaid time reversed
rocesses comes through the so-called Riesz–Bogdan–Żak transform, cf. [6,17], which relates
ath behaviour of the stable process outside of the unit sphere to its behaviour inside the unit
phere. In order to state it, we need to introduce the process (X,P◦), where the probabilities
◦
= (P◦x , x ̸= 0) are given by

dP◦x
dPx

⏐⏐⏐⏐
Ft

=
|X t |

α−d

|x |α−d , on t < τε := inf{t > 0 : |X t | < ε} (16)

or all ε > 0. Since α < 2 ≤ d , we note that the change of measure rewards paths that approach
he origin and punishes paths that wander far from the origin. Intuitively, it is clear that (X,P◦)

describes the stable process conditioned to continuously approach the origin. Nonetheless, this
heuristic can be made into a rigorous statement, see for example [17,20,19,21]. The reader will
also note from these references (and it is easy to prove that) that (X,P◦) is also a self-similar
Markov process with the same index of self-similarity as (X,P).

Theorem 3 (Riesz–Bogdan–Żak Transform, [6]). Suppose we write K x = x/|x |2, x ∈ Rd for
the classical inversion of space through the sphere Sd−1. Then, in dimension d ≥ 2, for x ̸= 0,
(K Xη(t), t ≥ 0) under Px is equal in law to (X,P◦K x ), where η(t) = inf{s > 0 :

∫ s
0 |Xu |

−2αdu >

}.

Let us return to our duality concerns. To this end, let us introduce the probabilities

H⊖(x) = Px (τ⊕1 = ∞) =
Γ (d/2)

Γ ((d − α)/2)Γ (α/2)

∫
|x |2−1

0
(u + 1)−d/2uα/2−1du, (17)

or |x | > 1, where the second inequality is lifted from [5], and,

H⊕(x) = |x |α−d H⊖(K x),

or |x | < 1.
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These two functions are positive harmonic for X and can be used to define the two families
f probabilities P⊖ = (P⊖x , |x | > 1) and P⊕ = (P⊕x , |x | < 1) via the Doob h-transforms,

dP⊖x
dPx

⏐⏐⏐⏐
Ft

=
H⊖(X t )
H⊖(x)

1(t<τ⊕), t ≥ 0, |x | > 1 (18)

and,

dP⊕x
dPx

⏐⏐⏐⏐
Ft

=
H⊕(X t )
H⊕(x)

1(t<τ⊖), t ≥ 0, |x | < 1. (19)

The first of these two changes of measure corresponds to the stable process conditioned to avoid
entering Bd by a simple restriction on the probability space (remembering that limt→∞ |X t | =

). Note from Theorem 3 that

H⊖(K x) = PK x (τ⊕1 = ∞) = P◦x (τ {0} < τ⊖1 ),

here τ {0} = inf{t > 0 : |X t−| = 0}. The second change of measure, (19), is a composition
f conditioning the stable process to be absorbed continuously at the origin, followed by
onditioning it not to exit Bd via a simple restriction on the probability space (noting that
imt→∞ |X t | = 0 under P◦).

The reader will also note that the Riesz–Bogdan–Żak transform also implies a similar spatial
nversion and time change must hold for the pair (X,P⊖) and (X,P⊕).

orollary 1. For |x | > 1, (K Xη(t), t ≥ 0) under P⊖x is equal in law to (X,P⊕K x ), where
η(t) = inf{s > 0 :

∫ s
0 |Xu |

−2αdu > t}. Similarly, for |x | < 1, (K Xη(t), t ≥ 0) under P⊕x is
qual in law to (X,P⊖K x ).

Proof. Suppose that F(Xs, s ≤ t) is a bounded Ft -measurable function for each t ≥ 0. Then,
or |x | > 1, appealing to Theorem 3, we have

E⊖x
[
F(K Xη(s), s ≤ t)

]
= Ex

[
F(K Xη(s), s ≤ t)

H⊖(K (K Xη(t)))
H⊖(x)

1(η(t)<τ⊕)

]
= E◦K x

[
F(Xs, s ≤ t)

H⊖(K X t )
H⊖(x)

1(t<τ⊖)

]
= EK x

[
F(Xs, s ≤ t)

|X t |
α−d

|K x |α−d

H⊖(K X t )
H⊖(K (K x))

1(t<τ⊖)

]
= E⊕K x [F(Xs, s ≤ t)] .

his shows the first half of the claim. The second part of the claim is proved using the same
echnique and the details are omitted for brevity given how straightforward they are. □

In the spirit of other cases of conditionings from an extreme boundary point (e.g. condi-
ioning a Lévy process to avoid the origin, cf. [24], or to stay positive, cf. [9]), we can extend
he definitions given in (18) and (19) by appealing to the Markov property of the excursion

easures Nx and Nx , x ∈ Sd−1.

heorem 4. The processes (X,P⊖) and (X,P⊕) can be extended in a consistent way to include
oints of issue on Sd−1. Specifically,

P⊖(X ∈ dy) = H⊖(y)N X ϵ(t) ∈ dy, t < ς , x ∈ Sd−1, |y| > 1 (20)
x t x ( )
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and similarly

P⊕x (X t ∈ dy) = H⊕(y)Nx (X ϵ(t) ∈ dy, t < ς) , x ∈ Sd−1, |y| < 1, (21)

specifically, the normalisation of the excursion measure is unity in both cases) where we have
sed the notation given in (14). As in Theorem 2, there is pathwise continuous entry.

Our objective is to pair up (X,P∨), (X,P⊖) and (X,P∧), (X,P⊕) via Nagasawa’s duality
theorem for time reversal; cf [23]. To this end we need to introduce the notion of L-times.

Suppose that Y = (Yt , t ≤ ζ ) with probabilities Px , x ∈ E , is a regular Markov process on
an open domain E ⊆ Rd (or more generally, a locally compact Hausdorff space with countable
base), with cemetery state ∆ and killing time ζ = inf{t > 0 : Yt = ∆}. Let us additionally
write Pν =

∫
E ν(da)Pa , for any probability measure ν on the state space of Y .

Suppose that G is the σ -algebra generated by Y and write G(Pν) for its completion by the null
sets of Pν . Moreover, write G =

⋂
ν G(Pν), where the intersection is taken over all probability

measures on the state space of Y , excluding the cemetery state. A finite random time k is called
an L-time (generalised last exit time) if

(i) k is measurable in G, and k ≤ ζ almost surely with respect to Pν , for all ν,
(ii) {s < k(ω)− t} = {s < k(ωt )} for all t, s ≥ 0,

here ωt is the Markov shift of ω to time t . The most important examples of L-times are
illing times and last exit times.

heorem 5. In what follows, we work with the probability distribution

ν(da) :=
σ1(da)|S
σ1(S)

, a ∈ Rd , (22)

f S is closed and σ1(S) > 0 and, otherwise, if S = {ϑ}, ϑ ∈ Sd−1, we understand

ν(da) = δ{ϑ}(da), a ∈ Rd . (23)

(i) For every L-time k of (X,P⊖), the time reversed process (X (k−t)−, t < k) under P⊖ν is
a time-homogeneous Markov process whose transition probabilities agree with those of
(X,P∨).

(ii) Similarly, for every L-time k of (X,P⊕), the time reversed process (X (k−t)−, t < k)
under P⊕ν is a time-homogeneous Markov process whose transition probabilities agree
with those of (X,P∧).

Nagasawa’s result, [23, Theorem 3.5], allows the definition of the time reversed process only
or t > 0, however we can extend it for t = 0. Indeed, in (i), k < ζ = ∞ with probability P⊖
ne, and the time-reversal can include t = 0; in (ii), we may have k = ζ < ∞ with positive
⊕-probability, but in this case Xζ− = 0 with P⊕-probability one, and therefore again t = 0
an be included in the time reversed process. That means, if the duality is true for t > 0, it
ust be true for all t ≥ 0.

. Proof of Theorem 1

We start by recalling two useful identities. In Theorem 1.1 in [20], the law of XG(∞) is given
y

Px (XG(∞) ∈ dz) = cα,d
(|x |2 − |z|2)α/2

α
|x − z|−ddz, |x | > |z| > 0, (24)
|z|
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where

cα,d = π−d/2 Γ (d/2)2

Γ ((d − α)/2)Γ (α/2)
.

Similarly, from Corollary 1.1 of [20], it was also shown that

Px (XG(τ⊖1 ) ∈ dz, Xτ⊖1
∈ dv) = Cα,d

(|z|2 − |x |2)α/2

(|v|2 − |z|2)α/2|z − v|d |z − x |d
dzdv, (25)

or |x | < |z| < 1 and |v| > 1, where

Cα,d =
Γ (d/2)2

πd |Γ (−α/2)|Γ (α/2)
.

First take x ∈ B̄c
d . Let τ⊕β := inf{t > 0 : |X t | < β} for any β > 1. For any A ∈ Ft , define

P∨x (A, t < τ⊕β ) = lim
ε→0

Px (A, t < τ⊕β |C
∨

ε ). (26)

he Markov property gives us

Px (A, t < τ⊕β |C
∨

ε ) = Ex

[
1
{A,t<τ⊕β }

PX t (C
∨
ε )

Px (C∨ε )

]
. (27)

n order to prove Theorem 1, it is enough to prove that, for all β > 1, (6) is true for sets of
he form A ∩ {t < τ⊕β } ∈ Ft , in which case the full statement (6) follows by the Monotone
onvergence Theorem as we take β ↓ 1. Next note from (24) that

Px (XG(∞) ∈ Aε) = cα,d

∫
z∈Aε

(|x |2 − |z|2)α/2

|z|α
|x − z|−ddz

= c′α,d

∫ 1+ε

1

∫
S

(|x |2 − r2)α/2

rα
|x − rθ |−drd−1drσ1(dθ ),

where c′α,d is an unimportant constant.
Since (|x |2 − r2)α/2

|x − rθ |−d is continuous at r = 1 with fixed |x | > 1, for any δ > 0,
there exists ε > 0 such that for all 1 < r < 1+ ε,

(1− δ)(|x |2 − 1)α/2
|x − θ |−d < (|x |2 − r2)α/2

|x − rθ |−d < (1+ δ)(|x |2 − 1)α/2
|x − θ |−d

and ∫ 1+ε

1
rd−α+1dr = cεd−α

+ o(εd−α),

where c is an unimportant constant. Hence, we have

lim
ε→0

εα−dPx (XG(∞) ∈ Aε) = c′α,d

∫
S

(|x |2 − 1)α/2
|x − θ |−dσ1(dθ ),

here c′α,d does not depend on x and may change from the previous one. Note, moreover, that
or all fixed β > 1

sup
|x |>β

∫
S(|x |2 − 1)α/2

|x − θ |−dσ1(dθ )

|x |α−d <∞. (28)

We can both make use of the limit

lim
PX t (XG(∞) ∈ Aε)

=

∫
S |θ − X t |

−d (|X t |
2
− 1)α/2σ1(dθ )∫

−d 2 α/2
, t < τ⊕β . (29)
ε→0 Px (XG(∞) ∈ Aε) S |θ − x | (|x | − 1) σ1(dθ )
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as well as (28) and the Dominated Convergence Theorem to ensure the limit may be passed
through the expectation in (27) to give (6) on {t < τ⊕β }, thus giving the desired result.

Next we look at the proof of (7). In a similar way, it is enough to work with sets of the
orm A ∩ {t < τ⊖β } ∈ Ft , with β < 1. From (25), recalling C∧ε := {XG(τ⊖1 −) ∈ Bε}, we have

Px (C∧ε ) = Px (XG(τ⊖1 −) ∈ Bε)

= Cα,d

∫
z∈Bε

∫
v∈Bc

d

(|z|2 − |x |2)α/2

(|v|2 − |z|2)α/2|z − v|d |z − x |d
dzdv

= C ′α,d

∫
z∈Bε

(|z|2 − |x |2)α/2

|z − x |d
dz
∫
∞

1

rd−1dr
(r2 − |z|2)α/2

∫
Sd−1(0,r )

1
|z − θ |d

σr (dθ ),

(30)

where σr (dθ ) is the surface measure on Sd−1(0, r ), the sphere centred at 0 of radius r ,
normalised to have unit mass and C ′α,d is henceforth a constant whose value may change from
line to line, which depends only on α and d . The Poisson formula (giving the probability that
a d-dimensional Brownian motion issued from z (with |z| < 1) will hit the sphere Sd−1(0, r ))
tells us that∫

Sd−1(0,r )

rd−2(r2
− |z|2)

|z − θ |d
σr (dθ ) = 1, |z| < 1 < r, (31)

ee for example Remark III.2.5 in [17]. Putting (31) in (30) gives us

Px (C∧ε ) = C ′α,d

∫
z∈Bε

(|z|2 − |x |2)α/2

|z − x |d
dz
∫
∞

1

rd−1

(r2 − |z|2)α/2

1
rd−2(r2 − |z|2)

dr

= C ′α,d

∫
z∈Bε

(|z|2 − |x |2)α/2

|z − x |d
1

(1− |z|2)α/2
dz

= C ′α,d

∫ 1

1−ε

∫
S

(u2
− |x |2)α/2

(1− u2)α/2|uθ − x |d
ud−1du σ1(dθ ).

ince (u2
− |x |2)α/2

|x − uθ |−d is continuous at u = 1 with fixed 0 < |x | < 1, for any δ > 0,
here exists ε > 0 such that for all 1− ε < u < 1,

(1− δ)(1− |x |2)α/2
|x − θ |−d < (u2

− |x |2)α/2
|x − uθ |−d < (1+ δ)(1− |x |2)α/2

|x − θ |−d

nd ∫ 1

1−ε

ud−1

(1− u2)α/2 du =
∫ ε

0

(1− r )d−1

rα/2(2− r )α/2 dr = cε1−α/2
+ o(ε1−α/2),

or an unimportant constant c > 0.
It is now clear that

lim
ε→0

εα/2−1Px (XG(τ⊖1 −) ∈ Bε) = C ′α,d

∫
S

(1− |x |2)α/2
|x − θ |−dσ1(dθ ).

inally, we get again

lim
ε→0

PX t (XG(τ⊖1 −) ∈ Bε)

P (X ⊖ ∈ B )
=

∫
S |θ − X t |

−d (1− |X t |
2)α/2σ1(dθ )∫

−d 2 α/2
, t < τ⊖β . (32)
x G(τ1 −) ε S |θ − x | (1− |x | ) σ1(dθ )
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and we can proceed as in (26), noting the application of dominated convergence and that for
every fixed β < 1,

sup
|x |<β

∫
S(|x |2 − 1)α/2

|x − θ |−dσ1(dθ )

|x |α−d <∞.

In a similar manner, when S = {ϑ}, we work with sets of the form A ∩ {t < τ⊕β } ∈ Ft or
A ∩ {t < τ⊖

β ′
} ∈ Ft , with β ′ < 1 < β, respectively. In this case, Aε = {rφ : r ∈ (1, 1+ ε), φ ∈

d−1, |φ − ϑ | < ε} and Bε = {rφ : r ∈ (1 − ε, 1), φ ∈ Sd−1, |φ − ϑ | < ε}, thus it is clear by
imilar analysis that

lim
ε→0

PX t (XG(∞) ∈ Aε)
Px (XG(∞) ∈ Aε)

= lim
ε→0

PX t (XG(τ⊖1 −) ∈ Bε)

Px (XG(τ⊖1 −) ∈ Bε)
=
|θ − X t |

−d
||X t |

2
− 1|

α/2

|θ − x |−d
||x |2 − 1|

α/2 . (33)

he rest of the proof is otherwise a minor adjustment of what we have seen previously, now
aking account of the continuity of (u, θ) ↦→ |u2

− |x |2|
α/2
|x − uθ |−d as well as the fact that

up|x |>β((|x |2−1)α/2
|x − θ |−d )/|x |α−d <∞ and sup|x |<β ′ ((1−|x |

2)α/2
|x − θ |−d )/|x |α−d <∞,

n order to use dominated convergence. □

.1. Proof of Proposition 1

To calculate the hitting distribution, recall that P∨ is the law of a stable process conditioned
o attract to S continuously from the outside, and A′ε = {rθ : r ∈ (1, 1+ ε), θ ∈ S′}, that is the
estriction of Aε from the set S to its subset S′ ⊂ S. Then, due to Theorem 1.3 in [20], we
ave P∨x (Xk− ∈ S′) = limε→0 Px (XG(∞) ∈ A′ε|C

∨
ε ). Then

lim
ε→0

Px (XG(∞) ∈ A′ε|C
∨

ε ) = lim
ε→0

Px (XG(∞) ∈ A′ε|XG(∞) ∈ Aε)

= lim
ε→0

Px (XG(∞) ∈ A′ε)
Px (XG(∞) ∈ Aε)

=

∫
S′ |θ − x |−dσ1(dθ )∫
S |θ − x |−dσ1(dθ )

, (34)

hich concludes the statement in Proposition 1 for the case when X is issued from outside.
imilar computations give the result when X is issued from inside Bd . □

. Proof of Theorems 2 and 4

roof of Theorem 2. Let us restrict our attention to the extension of (X,P∨) to include Sd−1
\S.

We need to prove that the proposed definition of P∨θ , for any θ ∈ Sd−1
\ S, is well defined

as a finite entity, conforms to the correct normalisation to represent a probability measure and
is consistent with the definition of (X,P∨) given in Theorem 1 on B̄c

d , as well as offering
continuous entry from the boundary Sd−1

\ S.
We start with finiteness. To this end, we must show that, for θ ∈ Sd−1

\S

Nθ (HS(X ϵ(t)); t < ς) <∞, t > 0. (35)

oting from (5) that HS(x) ≤ HSd−1 (x) = |x |α−d (1−|x |−2)
α
2−1, which tends to 0 as |x | → ∞,

t suffices to prove that, for any R > 1,

N (|X ϵ(t)| ≥ R, t < ς)+ N (H (X ϵ(t)); |X ϵ(t)| < R, t < ς) <∞, t > 0. (36)
θ θ S
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Abusing notation and using τ⊖R = inf{t > 0 : |X ϵ
t | > R} in the canonical sense,

Nθ (|X ϵ(t)| ≥ R, t < ς) ≤ Nθ (t < ς ∧ τ⊖R ) ≤ n(t < κlog R ∧ ζ ) <∞ (37)

where κlog R = inf{t > 0 : ϵ(t) > log R} and n is the excursion measure of ξ−ξ . (The fact that
he second expression in (37) is finite is a well known fact from the theory of Lévy processes;
therwise there would be an infinite rate of having arbitrary large excursions, which occurs
ith probability zero.)
Our objective now will be to show that

IS(θ ) :=
∫
∞

0
Nθ (HS(X ϵ(t)); |X ϵ(t)| < R, t < ς)dt <∞, (38)

which ensures that (35) is finite for Lebesgue almost all t > 0 and hence, thanks to stochastic
continuity of the excursion measure, for all t > 0.

To prove (38) consider |y| ≥ 1 and θ ∈ Sd−1
\S, we can appeal to Proposition 5.2 of [20],

which identifies, for x ∈ Rd
\{0}, and continuous g : Rd

↦→ R whose support is compactly
embedded in the exterior of the ball of radius |x |,

Narg(x)

(∫ ζ

0
g(|x |eϵ(u)Θ ϵ(u))du

)
=

Γ ((d − α)/2)
2απd/2Γ (α/2)

∫
|x |<|z|

g(z)
(|z|2 − |x |2)α/2

|z|α|x − z|d
dz. (39)

This gives us

ρ∨(θ, dy) :=
∫
∞

0
P∨θ (X t ∈ dy, t < k)dt

=
Γ (d/2)

Γ ((d − α)/2)Γ (α/2+ 1)
HS(y)
h(θ )

∫
∞

0
Nθ (X ϵ(t) ∈ dy, t < ς) dt

=
Γ (d/2)

Γ ((d − α)/2)Γ (α/2+ 1)
HS(y)
h(θ )

|y|α
∫
∞

0
Nθ

(
eϵ(u)Θ ϵ(u) ∈ dy, u < ζ

)
du

=
Γ (d/2)

2απd/2Γ (α/2)Γ (α/2+ 1)
||y|2 − 1|

α/2

|θ − y|d
HS(y)
h(θ )

dy

=
Γ (d/2)

2απd/2Γ (α/2)Γ (α/2+ 1)
H{θ}(y)HS(y)

h(θ )
dy

here we recall h(θ ) =
∫

S |θ − ϑ |−dσ1(dϑ), the representation of X ϵ is given in (14) and the
act that eαϵ(ϕ(t))dϕ(t) = |X ϵ

t |
αdϕ(t) = dt on t < ς .

It now follows that, up to a multiplicative constant C (which, in the following calculations,
ill play the role of different constants that may change from line to line)

IS(θ ) =
∫

1<|y|<R
ρ∨(θ, dy)

=
C

h(θ )

∫
1<|y|<R

H{θ}(y)HS(y)dy

=
C

h(θ )

∫
1<|y|<R

∫
φ∈S

||y|2 − 1|
α

|θ − y|d |φ − y|d
dyσ1(dφ). (40)
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Since Sd−1
\S is open, it is easy to see that we can choose ε small enough such that, for

∈ Sd−1
\S,

{y ∈ Rd
: |y| > 1} = {y ∈ Rd

: |y| > 1 and |y − θ | > ε}

∪ {y ∈ Rd
: |y| > 1 and |y − φ| > ε, for all φ ∈ S},

(41)

uch that

{y ∈ Rd
: |y| > 1 and |y − θ | ≤ ε}

∩ {y ∈ Rd
: |y| > 1 and |y − φ| ≤ ε, for some φ ∈ S} = ∅.

Making use of (4), (5) and (A.1), and that, for r > 1, 2 F1(d/2, 1; d/2, r−2) = (1 − r−2)−1,
allowing C to again play the role of a strictly positive constant that may change from line to
line, we have, for θ ̸∈ S,

IS(θ ) =
C

h(θ )

∫
1<|y|<R

∫
φ∈S

||y|2 − 1|α

|θ − y|d |φ − y|d
dyσ1(dφ)

≤
C

h(θ )

∫
1<|y|<R,|θ−y|≥ε

∫
φ∈S

||y|2 − 1|α

|θ − y|d |φ − y|d
dyσ1(dφ)

+
C

h(θ )

∫
1<|y|<R,|φ−y|≥ε

∫
φ∈S

||y|2 − 1|α

|θ − y|d |φ − y|d
dyσ1(dφ)

≤ ε−d C
h(θ )

(∫
1<|y|<R

∫
φ∈S

||y|2 − 1|α

|φ − y|d
dyσ1(dφ)+

∫
1<|y|<R

∫
φ∈S

||y|2 − 1|α

|θ − y|d
dyσ1(dφ)

)
≤ ε−d C

h(θ )

(∫
1<|y|<R

∫
φ∈Sd−1

||y|2 − 1|α

|φ − y|d
dyσ1(dφ)+ σ1(S)

∫
1<|y|<R

||y|2 − 1|α

|θ − y|d
dy
)

= ε−d C
h(θ )

(∫
1<|y|<R

||y|2 − 1|
α
|y|α−d (1− |y|−2)

α
2−1dy

+

∫ R

1

∫ π

0

rd−1(r2
− 1)α(sin ϑ)d−2

(r2 − 2r cos(ϑ)+ 1)d/2 drdϑ
)

= ε−d C
h(θ )

(∫ R

1
(r2
− 1)

3α
2 −1rdr +

∫ R

1
(r2
− 1)α−1rdr

)
= ε−d C

h(θ )

(∫ R2

1
(u − 1)

3α
2 −1du +

∫ R2

1
(u − 1)α−1du

)
<∞.

Now let us turn to the issue of consistency. Recall that (Λ,N
·
) is an exit system for the

rocess (ξ,Θ). In particular, under any measure Nθ the process ((ϵ(s),Θ ϵ(s)), s < ζ ) is a
trong Markov process with the same semigroup as (ξ,Θ) killed at its first hitting time of
−∞, 0]× Sd−1, see [22, Theorem 6.3]. As a consequence, for θ ∈ Sd−1

\ S,

E∨θ [g(X t+s)] =
C

h(θ )
Nθ (HS(X ϵ

t+s)g(X ϵ
t+s)1(s+t<ς ))

=
C

h(θ )
Nθ

(
HS(X ϵ

t )1(t<ς )EXϵ
t

[
HS(Xs)
HS(X ϵ

t )
g(Xs)1(s<τ⊖1 )

])
=

C
h(θ )

Nθ

(
HS(X ϵ

t )1(t<ς )E∨Xϵ
t
[g(Xs)]

)
= E∨

[
HS(X ϵ)1(t<ς )E∨ϵ [g(Xs)]

]
, (42)
θ t X t
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where C = Γ (d/2)/Γ (α/2+ 1)Γ ((d − α)/2). Hence, using the notation P∨t [g](x) :=
∨
x [g(X t )], we have P∨t+s[g](x) = P∨t [P∨s [g]](x) for any x ∈ Rd

\ (Bd ∪ S), and the required
onsistency follows.

To demonstrate the consistent choice of normalisation in our definition of P∨, we will
econsider a different derivation of the resolvent ρ∨. To this end, suppose that x ∈ B̄c and
e can similarly consider the resolvent of (X,P∨x ). This calculation can be developed using

he nature of the Doob h-transform (6) and Theorem III.3.4 in [17] and takes the form

ρ∨(x, dy) =
HS(y)
HS(x)

ρ⊕(x, dy), |x |, |y| > 1, (43)

here

ρ⊕(x, dy) =
Γ (d/2)

2απd/2Γ (α/2)2 |x − y|α−d
∫ ζ⊕(x,y)

0
(u + 1)−d/2uα/2−1du dy (44)

nd ζ⊕(x, y) = (|x |2 − 1)(|y|2 − 1)/|x − y|2. To show continuity as x → θ ∈ Sd−1
\S, and

ence that the choice of normalisation in (12) is correct, we note that, as r → 1,

HS(y)
HS(x)

ρ⊕(rθ, dy) ∼
Γ (d/2)|rθ − y|α−d HS(y)

2απd/2Γ (α/2)2h(θ )

×
2r (|y|2 − 1)|rθ − y|−2ζ (rθ, y)α/2−1(1+ ζ (rθ, y))−d/2

2r (α/2)(r2 − 1)α/2−1 dy

∼
Γ (d/2)(|y|2 − 1)α/2

|θ − y|−d HS(y)
2απd/2Γ (α/2)Γ (α/2+ 1)h(θ )

dy

=
Γ (d/2)

2απd/2Γ (α/2)Γ (α/2+ 1)
H{θ}(y)HS(y)

h(θ )
dy (45)

Now, we need to show that P∨θ (X0+ = θ ) = 1 for any θ ∈ Sd−1
\ S. Since limt↓0 ϕ(t) = 0,

t suffices to show that

P∨θ (X0 ̸= θ ) = Nθ

({
limt↓0 ϵ(t) = 0, limt↓0 Θ

ϵ(t) = θ
}c)
= 0. (46)

et us first observe ϵ is an excursion of ξ from its running minimum and ξ is a hypergeometric
évy process with unbounded variation, hence 0 is regular for (0,∞), that is

P0,θ (τ+0 = 0) = 1, θ ∈ Sd−1,

here τ+0 = inf{t > 0 : ξt > 0}. Classical excursion theory for Lévy processes implies that the
xcursions of ξ from its infimum begin continuously. Thanks to isotropy, this is equivalent to
aying

Nθ

(
{limt↓0 ϵ(t) = 0}c

)
= 0. (47)

ince the jump measure of X in radial form is

Π (dr, dθ ) =
1

r1+α
σ1(dθ )dr, r > 0, θ ∈ Sd−1,

s a consequence, the process (ξ,Θ) has the property that both the modulator and the ordinate
ust jump simultaneously (the precise jump rate was explored in [17]). If it were the case

hat Nθ

({
limt↓0 Θ

ϵ(t) = θ
}c)

> 0 (and hence for all θ ∈ Sd−1 by rotational symmetry),
his would be tantamount to a discontinuity in Θ but not in ξ , which is a contradiction since
(ϵ(s),Θ ϵ(s)), s < ζ ) under N has the same semigroup as the isotropic process (ξ,Θ) killed
θ
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at its first hitting time of (−∞, 0]× Sd−1. The requirement (46) now follows. This completes
he proof of Theorem 2 as far as P∨ is concerned.

The proof of Theorem 2 for (X,P∧) is essentially the same as soon as we have an analogous
identity for (39), but for Nθ . Unfortunately this does not seem to be available in the literature,
and so we spend a little time developing it here. However the remaining details of the proof
of Theorem 2 we leave to the reader.

The main idea behind the derivation of an analogue to (39) for Nθ lies with the use of the
iesz–Bogdan–Żak transform in Theorem 3. Let us consider a variant of the radial excursion
rocess which is based on the MAP (ξ−ξ,Θ), that is associated to X but now under the change

of measure (16). The reader will recall that the probabilities P◦ = (P◦x , x ̸= 0) correspond to
conditioning the process X to be continuously absorbed at the origin. It turns out that if (ξ,Θ),
with probabilities P◦ = (P◦x,θ , x ∈ R, θ ∈ Sd−1), is the MAP whose Lamperti transform gives
(X,P◦), then (−ξ,Θ), is the MAP whose Lamperti transform gives (X,P); see Theorem 1.3.6
and Corollary 1.3.17 of [17].

In the spirit of (11) we can write down the exit system for the radial excursion process
of (ξ − ξ,Θ) from {0} × Sd−1 under P◦. Suppose that ℓ◦, and (N◦θ , θ ∈ Sd−1) denote the
associated local time and system of excursion measures. As with excursion theory from the
radial minimum of X , isotropy allows us to conclude that we may choose ℓ◦ to be the local
time at 0 of ξ − ξ , and that ξ (without its modulator Θ) is necessarily a Lévy process under

. Since limt→∞ ξt = −∞ under P◦, we can also appeal to isotropy again to normalise ℓ◦ in
uch a way that N◦(ζ = ∞) = 1.

With this set up we can follow the reasoning in [20] and deduce that, for positive, bounded
nd measurable g on Rd ,

N◦arg(x)

(∫ ζ

0
g(eϵ(s)Θ ϵ(s))eαϵ(s)ds

)
= lim
|x |↑1

E◦x
(∫ τ⊖1

0 g(Xs)ds
)

P◦x (τ⊖1 = ∞)
, (48)

here we recall that τ⊖1 = inf{t > 0 : |X t | > 1}. Note that the choice of normalisation
f ℓ◦ is implicit in the aforementioned limiting equality. Appealing to numerous calculations
nvolving the Riesz–Bogdan–Żak transformation e.g. in [17] or indeed [18], we can rewrite the
imit

lim
|x |↑1

E◦x
(∫ τ⊖1

0 g(Xs)ds
)

P◦x (τ⊖1 = ∞)
= lim
|x |↑1

EK x

(∫ τ⊕1
0 g(K Xs)|Xs |

−2αds
)

PK x (τ⊕1 = ∞),

here K x = x/|x |2. Appealing to the identities provided in (17) and (44), the limiting ratio is
omputable directly giving us in (48)

N◦arg(x)

(∫ ζ

0
g(eϵ(s)Θ ϵ(s))eαϵ(s)ds

)
=

∫
|z|>1

g(K z)|z|−2α (|z|2 − 1)α/2

| arg(x)− z|d
dz.

An easy change of variables y = K z, noting the classical analytical facts that dz = |y|−2ddy
and |θ − K y| = |θ − y|/|y|, for θ ∈ Sd−1,

N◦θ
(∫ ζ

g(eϵ(s)Θ ϵ(s))eαϵ(s)ds
)
=

∫
g(y)|y|α−d (1− |y|2)α/2

d dz. (49)

0 |y|<1 |θ − y|

288



A.E. Kyprianou, S. Palau and T. Saizmaa Stochastic Processes and their Applications 137 (2021) 272–293

a

W

N
e

T
a

o

P
o
o
m

f
ν

As noted in [17], the change of measure (16) when understood as a change of measure
ffecting (ξ,Θ), is equivalent to the martingale change of measure,

dP◦x,θ

dPx,θ

⏐⏐⏐⏐
σ ((ξs ,Θs ),s≤t)

= e(α−d)(ξt−x). (50)

e can use this to compare the left-hand side of (49) with an analogous object albeit for Nθ ,
the excursion measure of (ξ − ξ,Θ) from {0} × Sd−1 under P, by studying the effect of (50)
on the exit formula (11). It is straightforward to show that, for θ ∈ Sd−1 and positive, bounded
and measurable g,

N◦θ
(∫ ζ

0
g(eϵ(s)Θ ϵ(s))ds

)
= Nθ

(∫ ζ

0
g(eϵ(s)Θ ϵ(s))e(α−d)ϵ(s)ds

)
.

ote that the normalisation of local time for (ξ,Θ) under P is, in effect, chosen by the above
quality. It follows that

Nθ

(∫ ζ

0
g(eϵ(s)Θ ϵ(s))ds

)
=

∫
|y|<1

g(y)
(1− |y|2)α/2

|y|α|θ − y|d
dy. (51)

he reader will note that, aside from the domain of integration on the right-hand side, this
grees with (39).

With (51) in hand, as alluded to above, we can now leave the reader to verify that the proof
f Theorem 2 for (X,P∧) is essentially verbatim the same as for (X,P∨). □

roof of Theorem 4. Given the proof of Theorem 2 above, we refrain from giving the proof
f Theorem 4, noting only that it is a variant of the arguments given there. The details are,
nce again, left to the reader. We additionally note that e.g. in the case of P⊖, the excursion
ay begin anywhere on Sd−1 and, when proving that e.g. Nθ (H⊖(X ϵ(t)); t < ς ) < ∞, it is

much easier to show that the analogue of (38) is finite without needing to split space up as in
(41). □

7. Proof of Theorem 5

Recall the notation for a general Markov process (Y, P) on E preceding the statement of
Theorem 5. We will additionally write P := (Pt , t ≥ 0) for the semigroup associated to (Y, P).

Theorem 3.5 of Nagasawa [23], shows that, under suitable assumptions on the Markov
process, L-times form a natural family of random times at which the pathwise time-reversal

←

Yt := Y(k−t)−, t ∈ (0, k),

is again a Markov process. Let us state Nagasawa’s principle assumptions.
(A) The potential measure UY (a, ·) associated to P , defined by the relation∫

E
f (x)UY (a, dx) =

∫
∞

0
Pt [ f ](a)dt = Ea

[∫
∞

0
f (X t ) dt

]
, a ∈ E, (52)

or bounded and measurable f on E , is σ -finite. Assume that there exists a probability measure,
, such that, if we put

µ(A) =
∫

UY (a, A) ν(da) for A ∈ B(R), (53)
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then there exists a Markov transition semigroup, say P̂ := (P̂t , t ≥ 0) such that∫
E
Pt [ f ](x)g(x) µ(dx) =

∫
E

f (x)P̂t [g](x) µ(dx), t ≥ 0, (54)

or bounded, measurable and compactly supported test-functions f, g on E .
(B) For any continuous test-function f ∈ C0(E), the space of continuous and compactly

upported functions, and a ∈ E , assume that Pt [ f ](a) is right-continuous in t for all a ∈ E
nd, for q > 0, U (q)

Ŷ
[ f ](

←

Yt ) is right-continuous in t , where, for bounded and measurable f
n E ,

U (q)
Ŷ

[ f ](a) =
∫
∞

0
e−qt P̂t [ f ](a)dt, a ∈ E,

s the q-potential associated to P̂ .
Nagasawa’s duality theorem, Theorem 3.5. of [23], now reads as follows.

heorem 6 (Nagasawa’s Duality Theorem). Suppose that assumptions (A) and (B) hold. For
he given starting probability distribution ν in (A) and any L-time k, the time-reversed process
←

Y under Pν is a time-homogeneous Markov process with transition probabilities

Pν(
←

Y t∈ A |
←

Y r , 0 < r < s) = Pν(
←

Y t∈ A |
←

Y s) = pŶ (t − s,
←

Y s, A), Pν-almost surely,

(55)

or all 0 < s < t and Borel A in R, where pŶ (u, x, A), u ≥ 0, x ∈ R, is the transition measure
ssociated to the semigroup P̂ .

roof of Theorem 5. We give the proof of (i), the proof of (ii) is almost identical albeit
equiring some straightforward adjustments. Once again, we leave the details to the reader.

hen t > 0, we use Nagasawa’s duality theorem. However, since the process is conditioned to
it continuously, its dual processes from the hitting time must leave the sphere continuously.
hat means, if the duality is true for t > 0, it must be true for all t ≥ 0.

We will make a direct application of Theorem 6, with Y taken to be the process (X,P⊖ν )
here ν satisfies (22) or (23) according to the nature of S. Accordingly, we will write U⊖

n place of UY , P⊖ in place of P etc. Moreover, the dual process, formerly Ŷ , is taken to be
X,P∨) and we will, in the obvious way, work with the notation U∨ in place of UŶ , P∨ in
lace of P̂ and so on. In essence we need only to verify the two assumptions (A) and (B). Let
s momentarily take the former of these two cases.

In order to verify (A) we will make use of (39). Noting that eαϵϕ(t) dϕ(t) = dt , we have for
∈ Sd−1

\ S and bounded measurable f : Rd
\ (Bd ∪ S)→ [0,∞),

U⊖[ f ](a) = E⊖a
[∫
∞

0
f (X t )dt

]
= Na

(∫ ς

0
H⊖(X ϵ

t ) f (X ϵ
t )dt

)
= Na

(∫ ς

0
H⊖(eϵ(u)Θ ϵ(u)) f (eϵ(u)Θ ϵ(u))eαϵu du

)
= C

∫
Rd\(Bd∪S)

H⊖(y) f (y)(|y|2 − 1)α/2
|a − y|−ddy, (56)
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where U⊖[ f ](a) =
∫
Rd\(Bd∪S) f (y)U⊖(a, dy), C > 0 is an unimportant constant and we have

sed (20) in the second equality.
Next, we need to develop an expression for the reference measure µ. This only needs to be

dentified up to a multiplicative constant. As such, in the setting that σ1(S) > 0, recalling (53),
22) and (3), we can take (ignoring multiplicative constants in each line)

µ(dy) =
∫

S
ν(da)U⊖(a, dy)

=

∫
S

σ1(da)H⊖(y)(|y|2 − 1)α/2
|a − y|−ddy

= HS(y)H⊖(y)dy, y ∈ Rd
\ (Bd ∪ S). (57)

hen S = {ϑ}, we replace the use of (22) by (23) in the above calculation and the same
nswer comes out (up to a multiplicative constant).

Next, we need to verify that (54) holds. Indeed, using Hunt’s switching identity (cf.
hapter II.1 of [2]) for the process (X t , t < τ⊕1 ), we have for x, y ∈ Rd

\ B̄d

µ(dy)P⊖t (y, dx) = P⊖t (y, dx)HS(y)H⊖(y)dy

=
H⊖(x)
H⊖(y)

PBd
t (y, dx)HS(y)H⊖(y)dy

= PBd
t (x, dy)HS(y)H⊖(x)dx

= P∨t (x, dy)µ(dx),

here PBd
t (x, dy) = Px (X t ∈ dy, t < τ⊕1 ). Note, as the measure µ is absolutely continuous

ith respect to Lebesgue measure, we do not need to deal with the case that x or y belong to
d−1
\ S.

Let us now turn to the verification of assumption (B). This assumption is immediately
atisfied on account of the fact that both P⊖ and P∨ are right-continuous semigroups by virtue
f their definition as a Doob h-transform with respect to the Feller semigroup PBd of the stable
rocess killed on entry to Bd . With both (A) and (B) in hand, we can invoke Theorem 6 and
he desired result follows. □

. Concluding remarks

The results in this paper have considered the setting of conditioning a relatively special class
f Markov process to continuously hit a subset of the unit sphere with a one-sided approach.
aking a step back, one would ideally like to drop a number of the specialisms specific to
ur approach e.g. moving to a general Markov process and conditioning it continuously hit a
uitably general domain. The current proofs rely on too many particular features of stable Lévy
rocesses for the results to directly generalise in this respect. For example, suppose that we
rop the assumption that the stable process continuously approaches S from just one side, but
nstead we allow it to continuously approach without radial confinement. This is a topic that
as been addressed in follow-on work [14], for which a mixture of features that are specific
o stable Lévy processes together with general potential-analytic considerations are used. The
lassical work of Doob [11] for the setting of Brownian motion also gives insight in how one
ay go about dealing with greater generality.
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ppendix. Hypergeometric identity

An identity for the hypergeometric function that has been used twice in the main body of
he text is taken from formula 3.665(2) in [13]. It states that, for any 0 < |a| < r and ν > 0,∫ π

0

sind−2 φ

(a2 + 2ar cos φ + r2)ν
dφ =

1
r2ν

B
(d − 1

2
,

1
2

)
2 F1

(
ν, ν −

d
2
+ 1;

d
2
;

a2

r2

)
. (A.1)
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