IntroductionAttraction towards $\Omega \subseteq \mathbb{S}^{d-1}$ 0000000000	Repulsion from Ω	Duality	Summary	References
	000	0000	O	00

Attraction to and repulsion from a subset of the unit sphere for isotropic stable Levy processes

joint work with A.E.Kyprianou and S. Palau

November 29, 2019

Introduction	Attraction towards $\varOmega \subseteq \mathbb{S}^{d-1}$ 0000000	Repulsion from Ω	Duality	Summary	References		
000		000	0000	O	00		
Overview							

Attraction towards $\Omega \subseteq \mathbb{S}^{d-1}$

Repulsion from \varOmega

Duality

Summary

References

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Stable process

A process $X = (X_t, t \ge 0)$ with probabilities $\mathbb{P}_x, x \in \mathbb{R}^d$ is a *d*-dimensional *stable Lévy process* with stability index α , if it is a

- (i) Lévy process: cádlág paths with stationary and independent increments and
- (ii) Self-similar Markov process: \exists a self-similarity index α s.t. for $\forall c > 0$ and $\forall x \in \mathbb{R}^d \setminus \{0\}$,

under \mathbb{P}_x , the law of $(cX_{c^{-\alpha}t}, t \ge 0)$ is equal to \mathbb{P}_{cx}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Furthermore, let X_t be isotropic, that is

• for all orthogonal $U \colon \mathbb{R}^d \to \mathbb{R}^d$ and $x \in \mathbb{R}^d$, the law of $(UX_t, t \ge 0)$ under \mathbb{P}_x is equal to $(X_t, t \ge 0)$ under \mathbb{P}_{Ux}

Remarks

- Lévy-Khintchine + Scaling $\Rightarrow \alpha \in (0, 2]$
- When $\alpha = 2$, BM with continuous path
- For α ∈ (0, 2), pure jump process with Lévy triplet (0, 0, Π) where jump measure is given as

$$\Pi(B) = \frac{2^{\alpha} \Gamma((d+\alpha)/2)}{\pi^{d/2} |\Gamma(-\alpha/2)|} \int_{B} \frac{1}{|y|^{\alpha+d}} dy, \quad B \subset \mathcal{B}(\mathbb{R}^{d})$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Attraction towards $\Omega \subseteq \mathbb{S}^{d-1}$ 0000000 Repulsion from Ω 000 Duality 0000 Summary

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References 00

Aim of the work

Want to characterize

- X_t conditioned to hit $\Omega \subseteq \mathbb{S}^{d-1} := \{x \in \mathbb{R}^d : |x| = 1\}$ continuously either from outside or from inside of \mathbb{S}^{d-1}
- its time reversal from the hitting point on \varOmega

Remark:

- The case d = 1 has characterized by Döring, L. and Weissman, P. (2018)
- hence, we will only consider $d \ge 2$

Attraction towards $\Omega \subseteq \mathbb{S}^{d-1}$ $\bullet \circ \circ \circ \circ \circ \circ$

Repulsion from £

Duality 0000 ummary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

References 00

Attraction towards \varOmega

Let $\Omega \subseteq \mathbb{S}_d$ be a measurable subset with $\sigma_1(\Omega) > 0$ or $\Omega = \{\vartheta\}$

• Attraction towards \varOmega

 $(X,\mathbb{P}_{\scriptscriptstyle X}^{\scriptscriptstyle \lor})$ - conditioned to hit arOmega continuously from outside

 (X,\mathbb{P}^\wedge_x) - conditioned to hit arOmega continuously from inside

roduction	Attraction towards $\varOmega \subseteq \mathbb{S}^{d-1}$	Repulsion from \varOmega	Duality	Summary	References
0	000000	000	0000	0	00

Conditioning to hit \varOmega continuously from outside

Let $\mathbb{B}_d := \{x \in \mathbb{R}^d \colon |x| < 1\}$ and $\overline{\mathbb{B}}_d^c := \mathbb{R}^d \setminus \overline{\mathbb{B}}_d$

- Define $\underline{G}(t) := \sup\{s \le t \colon |X_s| = \inf_{u \le s} |X_u|\}, \quad t \ge 0$
- When $d\geq 2, (X,\mathbb{P})$ is transient, e.g. $\lim_{t
 ightarrow\infty}|X_t|=\infty$ a.s.
- Due to monotonicity and transience, $\exists \underline{G}(\infty) := \lim_{t \to \infty} \underline{G}(t)$
- $X_{G(\infty)}$ the point of closest reach to the origin
 - characterized in [Kyprianou, Rivero, Satitkhanitkul '18]

Attraction towards $\Omega \subseteq \mathbb{S}^{d-1}$ 000000

Repulsion from Ω 000 Duality 0000 Summary

References

Definition of conditioning

Conditioning event to hit \varOmega continuously from outside:

•
$$C_{\varepsilon}^{\vee} := \{X_{\underline{G}(\infty)} \in A_{\varepsilon}\}, \text{ for } \forall \varepsilon > 0$$

• $\tau_1^{\oplus} = \inf\{t > 0 : |X_t| < 1\}$

For $x \in \overline{\mathbb{B}}_d^c$, define asymptotic conditioning as

$$\mathbb{P}^{ee}_x(A,t< au_1^\oplus):=\lim_{arepsilon
ightarrow 0}\mathbb{P}_x(A,t< au_1^\oplus|C^{ee}_arepsilon)$$

for all $A \in \mathcal{F}_t := \sigma(X_s, s \leq t)$

oduction	Attraction towards $\Omega \subseteq \mathbb{S}^{d-1}$	Repulsion from \varOmega	Duality	Summary	Reference
)	000000	000	0000	0	00

Conditioning to hit \varOmega continuously from inside

Similarly, define

- $\overline{G}(t) := \sup\{s \le t : |X_s| = \sup_{u \le s} |X_u|\}, \quad t \ge 0$
- $au_1^\ominus:=\inf\{t>0\colon |X_t|>1\}$ then
- $X_{\overline{G}(\tau_1^{\ominus}-)}$ the point of furthest reach from the origin before exiting $\overline{\mathbb{B}}_d$
 - characterized in [Kyprianou, Rivero, Satitkhanitkul '18]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Attraction towards $\Omega \subseteq \mathbb{S}^{d-1}$ 0000000

Repulsion from Ω

Duality 0000 Summary

References

Definition of Conditioning

Conditioning event to hit \varOmega continuously from inside:

• for
$$\forall \varepsilon > 0$$
, define $C_{\varepsilon}^{\wedge} := \{X_{\overline{G}(\tau_1^{\ominus})} \in B_{\varepsilon}\}$

When $x \in \mathbb{B}_d$, define asymptotic conditioning as

$$\mathbb{P}^\wedge_x(A,t < k) := \lim_{arepsilon o 0} \mathbb{P}_x(A,t < au_1^\ominus | C^\wedge_arepsilon)$$

for all $A \in \mathcal{F}_t$.

Introduction	Attraction towards $\varOmega \subseteq \mathbb{S}^{d-1}$	Repulsion from \varOmega	Duality	Summary	References
000	0000000	000	0000	0	00

Results: Distribution of (X, \mathbb{P}^{\vee}) and (X, \mathbb{P}^{\wedge}) Denote

$$H_{\Omega}(x) = \begin{cases} \int_{\Omega} |\theta - x|^{-d} ||x|^2 - 1|^{\alpha/2 - 1} \sigma_1(d\theta), & \sigma_1(\Omega) > 0\\ |\vartheta - x|^{-d} ||x|^2 - 1|^{\alpha/2 - 1}, & \Omega = \{\vartheta\} \end{cases}$$

Theorem (Distribution of the conditioned process)

Let $\Omega \subseteq \mathbb{S}_d$ be an open set with $\sigma_1(\Omega) > 0$ or $\Omega = \{\vartheta\}$ for a fixed point $\vartheta \in \mathbb{S}_d$, then for all point of issue $x \in \mathbb{R}^d \setminus \mathbb{S}^{d-1}$, we have (i) if |x| > 1,

$$\frac{d\mathbb{P}_{x}^{\vee}}{d\mathbb{P}_{x}}\Big|_{\mathcal{F}_{t}} = \mathbf{1}_{\{t < \tau_{1}^{\oplus}\}} \frac{H_{\Omega}(X_{t})}{H_{\Omega}(x)}$$

(ii) if |x| < 1,

$$\frac{d\mathbb{P}^{\wedge}_{x}}{d\mathbb{P}_{x}}\Big|_{\mathcal{F}_{t}} = \mathbf{1}_{\{t < \tau_{1}^{\ominus}\}} \frac{H_{\Omega}(X_{t})}{H_{\Omega}(x)}$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

ntroduction	Attraction towards $\Omega \subseteq \mathbb{S}^{d-1}$	Repulsion from \varOmega	Duality	Summary	References
000	000000	000	0000	0	00

Results: Distribution of the hitting location

- Let $\Omega' \subset \Omega$ and
 - $A'_{\varepsilon} :=$ the restriction of A_{ε} on Ω'
 - B'_ε := the restriction of B_ε on Ω'

• Want $\mathbb{P}^{\vee}_{x}(X_{k} \in \Omega')$ and $\mathbb{P}^{\wedge}_{x}(X_{k} \in \Omega')$, where k is their lifetime Define

$$\mathbb{P}_{x}^{\vee}(X_{k}\in \Omega'):=\lim_{arepsilon
ightarrow 0}\mathbb{P}_{x}(X_{\underline{G}(\infty)}\in A_{arepsilon}'|C_{arepsilon}^{\vee}), \quad \textit{for} \quad |x|>1, \ \mathbb{P}_{x}^{\wedge}(X_{k}\in \Omega'):=\lim_{arepsilon
ightarrow 0}\mathbb{P}_{x}(X_{\underline{G}(au_{1}^{\ominus})}\in B_{arepsilon}'|C_{arepsilon}^{\wedge}), \quad \textit{for} \quad |x|<1.$$

Theorem (Distribution of the hitting location)

Let $\Omega' \subset \Omega$. If $\sigma_1(\Omega') > 0$ then the conditioned process has a hitting distribution given as

$$\mathbb{P}_x^{ee}(X_k\in \Omega')=\mathbb{P}_x^{\wedge}(X_k\in \Omega')=rac{\int_{\Omega'}| heta-x|^{-d}d heta}{\int_{\Omega}| heta-x|^{-d}d heta}$$

090

Attraction towards $\Omega \subseteq \mathbb{S}^{a-1}$ 0000000 Duality 0000 Summary

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References

Repulsion from \varOmega

\bullet Repulsion from \varOmega

 $(X, \mathbb{P}^{\ominus})$ - conditioned to avoid the unit ball, issued from Ω (X, \mathbb{P}^{\oplus}) - conditioned to hit the origin continuously and stay inside the unit ball, issued from Ω

Attraction towards $\Omega \subseteq \mathbb{S}^{d-1}$ 0000000 Repulsion from Ω

Duality

Summary

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References 00

Definitions of $(X, \mathbb{P}^{\ominus})$ and (X, \mathbb{P}^{\oplus})

Denoting $Kx = x/|x|^2, x \in \mathbb{R}^d$, let us introduce

$$H^{\ominus}(x)=\mathbb{P}_{x}(au_{1}^{\oplus}=\infty), \quad \textit{for} \quad |x|>1,$$

$$H^\oplus(x) = |x|^{lpha - d} H^\oplus(\mathit{K} x), \quad \textit{for} \quad |x| < 1,$$

Define two families of probabilities

$$\mathbb{P}^{\ominus} = (\mathbb{P}^{\ominus}_x, |x| > 1)$$
 and $\mathbb{P}^{\oplus} = (\mathbb{P}^{\oplus}_x, |x| < 1)$

via the change of measures

$$\begin{split} & \frac{d\mathbb{P}_x^{\ominus}}{d\mathbb{P}_x}\Big|_{\mathcal{F}_t} = \mathbf{1}_{\{t < \tau_1^{\oplus}\}} \frac{H^{\ominus}(X_t)}{H^{\ominus}(x)} \quad |x| > 1 \\ & \frac{d\mathbb{P}_x^{\oplus}}{d\mathbb{P}_x}\Big|_{\mathcal{F}_t} = \mathbf{1}_{\{t < \tau_1^{\ominus}\}} \frac{H^{\oplus}(X_t)}{H^{\oplus}(x)} \quad |x| < 1, \end{split}$$

Characterization of $(X, \mathbb{P}^{\ominus})$ and (X, \mathbb{P}^{\oplus})

From the definition, one can observe that

- $(X, \mathbb{P}^{\ominus})$ is a stable process conditioned to avoid \mathbb{S}^{d-1}
- (X, P[⊕]) is a stable process conditioned to stay inside S^{d-1} and absorb to the origin
 - thanks to Reisz-Bogdan-Żak transform in [Kyprianou '18]

Theorem (Relationship between $(X, \mathbb{P}^{\ominus})$ and (X, \mathbb{P}^{\oplus}))

For |x| > 1, $(KX_{\eta(t)}, t \ge 0)$ under \mathbb{P}^{\ominus} is equal in law to $(X, \mathbb{P}_{Kx}^{\oplus})$, where $\eta(t) = \inf\{s > 0: \int_{0}^{s} |X_{u}|^{-2\alpha} du > t.\}$ For |x| < 1, $(KX_{\eta(t)}, t \ge 0)$ under \mathbb{P}^{\oplus} is equal in law to $(X, \mathbb{P}_{Kx}^{\ominus})$.

 $\begin{array}{ccc} \text{troduction} & \text{Attraction towards } \varOmega \subseteq \mathbb{S}^{d-1} & \text{Repulsion from } \Omega & \textbf{Duality} & \text{Summary} & \text{Refere} \\ 000 & 0000000 & 000 & 000 & 000 \\ \end{array}$

Duality

Pairing up $(X, \mathbb{P}^{\vee}), (X, \mathbb{P}^{\ominus})$ and $(X, \mathbb{P}^{\wedge}), (X, \mathbb{P}^{\oplus})$

 via Nagasawa's duality theorem for time reversal [Nagasawa '64]

▶ ▲ 臣 ▶ 臣 ● ���

ntroduction	Attraction towards $\varOmega \subseteq \mathbb{S}^{d-1}$	Repulsion from \varOmega	Duality	Summary	References
000	0000000	000	0000	0	00

Idea behind Duality by Nagasawa

Markov processes (X, \mathbb{P}) and $(\hat{X}, \hat{\mathbb{P}})$ are dual in the sense that "time reversed" process of (X, \mathbb{P}) "is" $(\hat{X}, \hat{\mathbb{P}})$

if

 \exists a special measure η (with some properties) s.t.

$$p_t(x, dy)\eta(dx) = \hat{p}_t(y, dx)\eta(dy)$$

To construct "time reversed" process of (X, \mathbb{P}) , need to

- guess $(\hat{X}, \hat{\mathbb{P}})$ and η
- then verify

Attraction towards $\Omega \subseteq \mathbb{S}^{d-1}$ 0000000 Repulsion from Ω 000 Duality 00●0 Summary

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References 00

Duality result

We guessed and verified that

- Time reversed process of $(X, \mathbb{P}^{\ominus})$ "is" (X, \mathbb{P}^{\vee}) with $\eta(dx) = H_{\Omega}(x)H^{\ominus}(x)dx$
- Time reversed process of (X, \mathbb{P}^{\oplus}) "is" (X, \mathbb{P}^{\wedge}) with $\eta(dx) = H_{\Omega}(x)H^{\oplus}(x)dx$

A bit more (but not full) precisely

Theorem

- For every *L*-time k of (X, P[⊖]), the process (X_{(k-t)-}, t < k) under P[⊖]_ν has Markov increments which agrees with those of (X, P[∨]),
- For every *L*-time k of (X, P[⊕]) the process (X_{(k-t)-}, t < k) under P[⊕]_ν has Markov increments which agrees with those of (X, P[∧])

where

$$u(da) := \left\{ egin{array}{c} rac{\sigma_1(da)}{\sigma_1(arOmega)}, & \sigma_1(arOmega) > 0 \ \delta_{\{artheta\}}(da), & arOmega = \{artheta\} \end{array}
ight.$$

Remark: Examples of \mathcal{L} -time includes killing time and last exit time.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

troduction	Attraction towards $\varOmega \subseteq \mathbb{S}^{d-1}$	Repulsion from Ω	Duality	Summary	References
00	000000	000	0000	•	00

Summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

RBZ stands for Reisz-Bogdan- \dot{Z} ak transform

Inside
$$B_d$$

 $(X, \mathbb{P}^{\wedge}) \xrightarrow{Nagasawa} (X, \mathbb{P}^{\oplus})$
 $\uparrow \mathbb{R}^{B^2}$
 $Qutside B_d$
 $(X, \mathbb{P}^{\vee}) \xrightarrow{Nagasawa} (X, \mathbb{P}^{\oplus})$
 $Attraction towards Ω
 $Repulsion towards \Omega$$

ntroduction	Attraction towards $\varOmega \subseteq \mathbb{S}^{d-1}$ 0000000	Repulsion from Ω 000	Duality 0000	Summary O	References ●0

References

- Döring, L. and Weissman, P. (2018) Stable processes conditioned to hit an interval continuously from outside. *arXiv:1809.06734*
- Kyprianou, A.E., Palau S., and Saizmaa, T. (2019) Attraction to and repulsion from a subset of the unit sphere for isotropic stable Lévy processes, arXiv:1911.05867v1
- Kyprianou, A.E. (2018) Stable Lévy processes, self-similarity and the unit ball, *ALEA*, *Lat. Am. J. Probab. Math. Stat.* **15**, 617–690.
- Kyprianou, A.E., Rivero V., and Satitkanitkul, W. (2018) Deep factorization of the stable process III: Radial excursion theory and the point of closest reach, arXiv:1706.09924v3
 - Nagasawa, M. (1964) Time reversions of Markov processes, *Nagoya*. *Math. J.* **24**, 177–204.

Introduction	Attraction towards $arOmega \subseteq \mathbb{S}^{d-1}$	Repulsion from \varOmega	Duality	Summary	References
000	000000	000	0000	0	0.

THANK YOU!

