Introduction: Your favourite Markov processes Self-similar Markov processes Lamperti transform pssMp
000000000000 0000000000 0000 000000000000

Deep factorisation of the stable process:
Part |I: Lagrange lecture, Torino University
Part II: Seminar, Collegio Carlo Alberto.

Andreas E. Kyprianou, University of Bath, UK.
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Your favourite Markov process

Brownian motion in RY, B := {B: : t > 0}, has the defining
property that:
o Fort>s>0, By — By £ By_s ~ Ny(0,I(t — 5))
@ Fort > s> 0, B — Bs is independent of {B, : u < s}
@ B has continuous paths




Solve a Dirichlet boundary value problem....
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With Brownian motion, you can.....

Try to model the stock market........
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With Brownian motion, you can.....

Try to model the stock market........ and fail....
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Take it to the next level: Lévy processes

The last 20 years has seen interest in bigger class of Lévy processes
(that contains Brownian motion). An RY valued Lévy process,
X :={X; : t > 0} has almost the same properties as Brownian
motion:

o Fort>s>0 X — Xs £ X;_s

e Fort > s> 0, Xy — Xs is independent of {X, : u < s}

@ X has paths that are right-continuous with left limits
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@ Roughly speaking: A Lévy process is made up of a linear
Brownian motion plus a process of (up to a countable infinity)
of jumps (over any finite time horizon), e.g. in one-dimension

Xt:at—i-aBt—i-Jt.

@ The process is entirely characterised by: a, o and [1, the latter
is a measure on R\{0}.

@ The measure I can be thought as a rate measure:

P(Jump of size x arrives at time t) = 1(dx)dt + o(dt).
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With Lévy processes you can try.....

Try to model the foraging/flight/feeding patterns of various
animals......
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With Lévy processes you can.....

Try to model the foraging/flight /feeding patterns of various
animals......
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With Lévy processes you can
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Try to model the stock market

Self-similar Markov processes
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With Lévy processes you can
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The Wiener—Hopf factorisation

For a one-dimensional Lévy process:

@ To characterise the law of a Lévy process, all we need to know
is E[e!?X] for all t >0

@ Stationary and independent increments imply that
E[el?%] = e~V Ot 0 € R,
where

\U(Q) — iae+;g292—|—/R(1—ei€X+i6x1(|X|<1))I'I(dx), 0 c R.

e If X is a process with monotone paths (called a subordinator),
then it is more usual to consider the Laplace exponent

E[e™ ] = e #(VE, A > 0.

@ In that case, we call k a Bernstein function.
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The Wiener—Hopf factorisation

e For a given characteristic exponent of a Lévy process, V,
there exist unique Bernstein functions, x and & such that, up
to a multiplicative constant,

W(0) = A(i0)r(—i0), 0 €R.

@ The probabilistic significance of the subordinators
corresponding to x and R, is that their range corresponds
precisely to the range of the running maximum of X and of
—X respectively.



Introduction: Your favourite Markov processes Self-similar Markov processes Lamperti transform pssMp
000000000000 ©000000000 0000 000000000000

Self-similar Markov processes (ssMp)

Definition

A regular strong Markov process (Z; : t > 0) on RY, with
probabilities Py, x € RY isa ssMp if there exists an index
a € (0,00) such that:

for all ¢ > 0 and x € R
(cZie—o : t > 0) under Py
is equal in law to

(Z¢ : t > 0) under Pcy.
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Some of your best friends are ssMp

@ The moment generating function of a one-dimensional
Brownian motion B, satisfies, for R,

E[eeBt] _ et92/2 _ e(c—2t)(c9)2/2 _ E[ee(cscﬂt)].
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Some of your best friends are ssMp

@ The moment generating function of a one-dimensional
Brownian motion B, satisfies, for R,

E[eeBt] _ et92/2 _ e(c—2t)(c9)2/2 _ E[ee(cscﬂt)].

@ Brownian motion is obviously Markovian, this can be used to
show that R-Brownian motion: is a ssMp with o = 2.
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Some of your best friends are ssMp

Suppose that (X; : t > 0) is an R-Brownian motion:

o Write X, :=infs<; Xs. Then (X;, X,;), t > 0 is a Markov
process.
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Some of your best friends are ssMp

Suppose that (X; : t > 0) is an R-Brownian motion:

o Write X, :=infs<; Xs. Then (X;, X,;), t > 0 is a Markov
process.

@ Forc>0and oo = 2,

cXc-at _ cinfoccay Xs _ infu<e cXc—ay ’ >0,
cXe—ay cXe—ay cXe—ay
and the latter is equal in law to (X, X), because of the scaling
property of X.
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Some of your best friends are ssMp

Suppose that (X; : t > 0) is an R-Brownian motion:
o Write X, :=infs<; Xs. Then (X;, X,;), t > 0 is a Markov
process.
@ Forc>0and a =2,

cXc-at _ cinfoccay Xs _ infu<e cXc—ay ’ >0,
cXe—ay cXe—ay cXe—ay
and the latter is equal in law to (X, X), because of the scaling
property of X.

e = Markov process Z; := Xy — (—x A X,;), t > 0 is also a
ssMp on [0, c0) with index 2.
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Some of your best friends are ssMp

Suppose that (X; : t > 0) is an R-Brownian motion:
o Write X, :=infs<; Xs. Then (X;, X,;), t > 0 is a Markov
process.
@ Forc>0and a =2,

cXc-at _ cinfoccay Xs _ infu<e cXc—ay ’ >0,
cXe—ay cXe—ay cXe—ay
and the latter is equal in law to (X, X), because of the scaling
property of X.

e = Markov process Z; := Xy — (—x A X,;), t > 0 is also a
ssMp on [0, c0) with index 2.
o = Z; = X¢l(x,>0), t > 0is also a ssMp, again on [0, c0).
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Some of your best friends are ssMp

Suppose that (X; : t > 0) is an R-Brownian motion:

e Consider Z; := |X¢|, t > 0. Because of rotational invariance,
it is a Markov process. Again the self-similarity (index 2) of
Brownian motion, transfers to the case of |[X|. Note again,
this is a ssMp on [0, o0)
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Some of your best friends are ssMp

Suppose that (X; : t > 0) is an R-Brownian motion:

e Consider Z; := |X¢|, t > 0. Because of rotational invariance,
it is a Markov process. Again the self-similarity (index 2) of
Brownian motion, transfers to the case of |[X|. Note again,
this is a ssMp on [0, o0)

o Note that |X¢|, t > 0 is a Bessel-d process. It turns out that
all Bessel processes, and all squared Bessel processes are
self-similar on [0, 00). Once can check this by e.g. considering
scaling properties of their transition semi-groups.
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Some of your best friends are ssMp

Suppose that (X; : t > 0) is an RY-Brownian motion:

@ Note when d =3, |X;|, t > 0 is also equal in law to a
Brownian motion conditioned to stay positive: i.e if we define,
for a 1-d Brownian motion (B; : t > 0),

. B
PL(A) = lim PL(A|B,,, > 0) = E, [;l(st>o)1(A)]

$§—00

where A € o{X; : u < t}, then

(|X¢|, t > 0) with | Xg| = x is equal in law to (B,P}).
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More examples?

@ All of the previous examples have in common that their paths
are continuous. Is this a necessary condition?
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More examples?

@ All of the previous examples have in common that their paths
are continuous. Is this a necessary condition?

@ We want to find more exotic examples as most of the previous
examples have been extensively studied through existing
theories (of Brownian motion and continuous
semi-martingales).
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Some of the best friends of your best friends are ssMp

@ All of the previous examples are functional transforms of
Brownian motion and have made use of the scaling and
Markov properties and (in some cases) isometric distributional
invariance.
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Some of the best friends of your best friends are ssMp

@ All of the previous examples are functional transforms of
Brownian motion and have made use of the scaling and
Markov properties and (in some cases) isometric distributional
invariance.

@ If we replace Brownain motion by an a-stable process, a Lévy

process that has scale invariance, then all of the functional
transforms
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a-stable process

Definition

A Lévy process X is called (strictly) a-stable if it is also a
self-similar Markov process.
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a-stable process

Definition

A Lévy process X is called (strictly) a-stable if it is also a
self-similar Markov process.

@ Necessarily o € (0,2]. [@ =2 — BM, exclude this.]
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a-stable process

Definition
A Lévy process X is called (strictly) a-stable if it is also a
self-similar Markov process.

@ Necessarily o € (0,2]. [@ =2 — BM, exclude this.]
@ The characteristic exponent W(6) := —t~! log E(e!?Xt)
satisfies

W(0) = 107G gog) + e TGy ), OER,

where p = Po(X: > 0) will frequently appear as will p =1 —p



Introduction: Your favourite Markov processes Self-similar Markov processes Lamperti transform pssMp
000000000000 0000000e00 0000 000000000000

a-stable process

Definition

A Lévy process X is called (strictly) a-stable if it is also a
self-similar Markov process.

@ Necessarily o € (0,2]. [@ =2 — BM, exclude this.]
@ The characteristic exponent W(6) := —t~! log E(e!?Xt)
satisfies

W(0) = 107G gog) + e TGy ), OER,

where p = Po(X: > 0) will frequently appear as will p =1 —p
@ Assume jumps in both directions (0 < ap, ap < 1), so that
the Lévy density takes the form
M+ao) 1

T |xte (sin(map)1xsoy + sin(rap)l(<oy)
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Your new friends

Suppose X = (X; : t > 0) is within the assumed class of a-stable
processes in one-dimension and let X, = infs<¢ Xs. Your new

friends are:
e /=X
e Z=X—(—xNAX), x>0.
o Z=X1x>0

e Z = |X]| providing p=1/2
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Your new friends

Suppose X = (X; : t > 0) is within the assumed class of a-stable
processes in one-dimension and let X, = infs<¢ Xs. Your new
friends are:

e /=X

e Z=X—(—xNAX), x>0.

o Z=X1x>0

e Z = |X]| providing p=1/2

@ What about Z ="X conditioned to stay positive”?
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Conditioned a-stable processes

@ It can be shown that for A€ o(§, : u <t),

ap
Xi

PL(A) = Jim_ Pr(AlX s > 0) = Ex Ml(Xt>0)1(A)]

@ Scaling is preserved through the change of measure.
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Conditioned a-stable processes

@ It can be shown that for A€ o(§, : u <t),

ap
Xi

PL(A) = Jim_ Pr(AlX s > 0) = Ex Ml(Xt>0)1(A)]

@ Scaling is preserved through the change of measure.

@ Note in the excluded case that « =2 and p=1/2, i.e.
Brownian motion, x%° = x.
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Notation

@ Use £ :={& : t > 0} to denote a Lévy process which is killed
and sent to the cemetery state —co at an independent and
exponentially distributed random time, eq, with rate in
g € [0,00). The characteristic exponent of £ is thus written

— log E(e%1) = W(#) = g + Lévy—Khintchine
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Notation

@ Use £ :={& : t > 0} to denote a Lévy process which is killed
and sent to the cemetery state —co at an independent and
exponentially distributed random time, eq, with rate in
g € [0,00). The characteristic exponent of £ is thus written

— log E(e%1) = W(#) = g + Lévy—Khintchine

@ Define the associated integrated exponential Lévy process

t
Iy = / e?%ds, t>0. (1)
0

and its limit, I := limgoo /.
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Notation

@ Use £ :={& : t > 0} to denote a Lévy process which is killed
and sent to the cemetery state —co at an independent and
exponentially distributed random time, eq, with rate in
g € [0,00). The characteristic exponent of £ is thus written

— log E(e%1) = W(#) = g + Lévy—Khintchine

@ Define the associated integrated exponential Lévy process

t
Iy = / e?%ds, t>0. (1)
0

and its limit, I := limgoo /.
@ Also interested in the inverse process of /:

o(t) =inf{s >0: s > t}, t>0. (2)

As usual, we work with the convention inf ) = cc.
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Lamperti transform for POSITIVE ssMp

Theorem (Part (i))

Fixa>0. IfZ®, x>0, is a positive self-similar Markov process with index of
self-similarity «, then up to absorption at the origin, it can be represented as
follows. For x > 0,

Zt(x)l(t«(x)) = xexp{€,(x—an) }» t>0,

where ¢®) = inf{t > 0: Z" = 0} and either
(1) ¢ = oo almost surely for all x > 0, in which case £ is a Lévy
process satisfying lim sup,4., §& = o,
(2) ¢® < oo and ZC((XX)), = 0 almost surely for all x > 0, in which
case £ is a Lévy process satisfying lim oo & = —00, oOF

(3) ¢® < oo and Zc‘fj)_ > 0 almost surely for all x > 0, in which

case £ is a Lévy process killed at an independent and
exponentially distributed random time.

In all cases, we may identify (%) = x“I,.
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Lamperti transform for POSITIVE ssMp

Theorem (Part (ii))

Conversely, suppose that & is a given (killed) Lévy process. For
each x > 0, define

Zt(X) = Xexp{&p(x—&t)}l(t<xo‘loo)a t>0.

Then Z(X) defines a positive self-similar Markov process, up to its
absorption time C(X) = x%l, with index c.
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Lamperti transform for POSITIVE ssMp

(Z,Pyx)x>0 pssMp o (£,P,)yer killed Lévy

Zy = exp(gs(t)), §s = |Og(ZT(5)),

S a random time-change T a random time-change
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Lamperti transform for POSITIVE ssMp

(Z,Px)x>0 pssMp YRS (&,Py)ycr killed Lévy
Zr = exp(€s(t)), &s = log(Z1(s)),
S a random time-change T a random time-change
Z never hits zero & — oo or € oscillates
Z hits zero continuously o £ — —

Z hits zero by a jump & is killed
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Stable process killed on entry to (—o0, 0)

@ The stable process cannot ‘creep’ downwards across the
threshold 0 and so must do so with a jump.
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Stable process killed on entry to (—o0, 0)

@ The stable process cannot ‘creep’ downwards across the
threshold 0 and so must do so with a jump.

@ This puts Z; := Xfl(£r>0)' t > 0, in the class of pssMp for
which the underlying Lévy process experiences exponential
killing.
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Stable process killed on entry to (—o0, 0)

@ The stable process cannot ‘creep’ downwards across the
threshold 0 and so must do so with a jump.

@ This puts Z; := Xfl(£r>0)' t > 0, in the class of pssMp for
which the underlying Lévy process experiences exponential
killing.

o Write £* = {&; : t > 0} for the underlying (killed) Lévy
process.
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Self-similar Markov processes Lamperti transform

pssMp
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Theorem

For the pssMp constructed by killing a stable process on first entry
to (—o0,0), the underlying Lévy process, £*, that appears through

the Lamperti transform has characteristic exponent given by
W (z) I'(aA— |z) r(1 —i—Aiz)‘ 7
MNap—iz) (1 — ap+iz)

z € R.
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Stable processes conditioned to stay positive

@ Use the Lamperti representation of the a-stable process X to write, for
Aco(X,:u<t),

ap
X

xop

PL(A) = E,

1<Xt>o>1<A>} =E [eaﬁgil(«eq*)lw] ’

where 7 = (x~“t) is a stopping time in the natural filtration of £*.
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Stable processes conditioned to stay positive

@ Use the Lamperti representation of the a-stable process X to write, for
Aco(X,:u<t),

ap
X

xop

Pl(A) = E, 1<xt>o>1<A>} = E [ 1 ce1in)]

where 7 = (x~“t) is a stopping time in the natural filtration of £*.
@ Noting that W*(—iap) = 0, the change of measure constitutes an Esscher
transform at the level of £*.
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Stable processes conditioned to stay positive

@ Use the Lamperti representation of the a-stable process X to write, for
Aco(X,:u<t),

ap
X

xop

PL(A) = E,

1(Xt>0)1(A>] =E [eaﬁ&il(meq*)lm)} )

where 7 = (x~“t) is a stopping time in the natural filtration of £*.

@ Noting that W*(—iap) = 0, the change of measure constitutes an Esscher
transform at the level of £*.

The underlying Lévy process, &7, that appears through the Lamperti transform
applied to (X, IP’I) x > 0,has characteristic exponent given by

(ap—iz) T(1+ ap+iz)

r
) = F(—iz) r(+iz) °

z eR.

@ In particular U'(z) = U*(z —iap), z € R so that WT(0) =0 (i.e. no
killing!)

@ One can also check by hand that W"(0+) = E[¢]] > 0 so that
iMoo & = 0.
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Did you spot the other root?

@ In essence, the case of the stable process conditioned to stay positive
boils down to an Esscher transform in the underlying
(Lamperti-transformed) Lévy process.

@ It was important that we identified a root of W*(z) = 0 in order to avoid
involving a ‘time component’ of the Esscher transform.
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Did you spot the other root?

@ In essence, the case of the stable process conditioned to stay positive
boils down to an Esscher transform in the underlying
(Lamperti-transformed) Lévy process.

@ It was important that we identified a root of W*(z) = 0 in order to avoid
involving a ‘time component’ of the Esscher transform.

@ However, there is another root of the equation

Ma—iz) T(QA+iz)

Map—iz)T(1—ap+iz)

v (z) =

namely z = —i(1 — ap).



Introduction: Your favourite Markov processes Self-similar Markov processes Lamperti transform pssMp
000000000000 0000000000 0000 000800000000

Did you spot the other root?

@ In essence, the case of the stable process conditioned to stay positive
boils down to an Esscher transform in the underlying
(Lamperti-transformed) Lévy process.

@ It was important that we identified a root of W*(z) = 0 in order to avoid
involving a ‘time component’ of the Esscher transform.

@ However, there is another root of the equation

Ma—iz) T(QA+iz)

Map—iz)T(1—ap+iz)

v (z) =

namely z = —i(1 — ap).
@ And this means that
e(l—aﬁ)€*7 t>0,
is a unit-mean Martingale, which can also be used to construct an
Esscher transform:
" . R Ml1+ap—iz) M(iz+ ap
V(@) = Wz - (1 - ap) = i) = U D T L)
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Did you spot the other root?

@ In essence, the case of the stable process conditioned to stay positive
boils down to an Esscher transform in the underlying
(Lamperti-transformed) Lévy process.

@ It was important that we identified a root of W*(z) = 0 in order to avoid
involving a ‘time component’ of the Esscher transform.

@ However, there is another root of the equation

Ma—iz) T(QA+iz)

Map—iz)T(1—ap+iz)

v (z) =

namely z = —i(1 — ap).
@ And this means that
e(l—aﬁ)€*7 t>0,
is a unit-mean Martingale, which can also be used to construct an
Esscher transform:
" . R Ml1+ap—iz) M(iz+ ap
WHz) = U (z — i(1 — ap)) = VH(z) = ( a 7”iz) ) ) p).

@ The choice of notation is pre-emptive since we can also check that
WH(0) = 0 and WV (0) < 0 so that if €% is a Lévy process with
characteristic exponent WY, then lim;_ oo 5# = —o0.



Introduction: Your favourite Markov processes Self-similar Markov processes Lamperti transform pssMp
000000000000 0000000000 0000 000080000000

Reverse engineering

@ What now happens if we define for A € o(X, : u < t),

L (1-ap)er Xf(liaﬁ)
PY(A) = E e T1(T<eq*)1(A)} =B | Sman Lo lmy |

where 7 = p(x~*t) is a stopping time in the natural filtration
of &*.
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Reverse engineering

@ What now happens if we define for A € o(X, : u < t),

L (1-ap)er Xf(liaﬁ)
PY(A) = E e T1(T<eq*)1(A)} =B | Sman Lo lmy |

where 7 = p(x~*t) is a stopping time in the natural filtration
of &*.

@ In the same way we checked that (X,]P’I), x >0, is a pssMp,
we can also check that (X,]P’f(), x > 0is a pssMp.
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Reverse engineering

@ What now happens if we define for A € o(X, : u < t),

x(1-ap) ]

PLA) = E [P0 o)1) = Bx |~ fom Tocsolia

where 7 = p(x~*t) is a stopping time in the natural filtration
of &*.

@ In the same way we checked that (X,]P’I), x >0, is a pssMp,
we can also check that (X,]P’f(), x > 0is a pssMp.

@ In an appropriate sense, it turns out that (X,IP}(), x > 0 is the
law of a stable process conditioned to continuously approach
the origin from above.
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¢, €' and ¢

@ The three examples of pssMp offer quite striking underlying
Lévy processes.

@ In particular, each of them have characteristic exponent
written as the ratio of two pairs of gamma functions.

@ Is this exceptional?
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Censored stable processes

Start with X, the stable process.
Let A; = fot l(Xt>0) dt.
Let 4 be the right-inverse of A, and put Z; := X\(t):

Finally, make zero an absorbing state: Z; = ZIL(KTO) where
To =inf{t > 0: X; =0}.

Note Ty < oo a.s. if and only if a € (1,2) and otherwise
To =00 a.s.

This is the censored stable process.
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Censored stable processes

Theorem

Suppose that the underlying Lévy process for the censored stable
process is denoted by £. Then its characteristic exponent is given
by

(2) = MNap—iz)T(1 —ap+iz)
 T(-iz) TAl—a+iz)’

<

z e R
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The radial part of a stable process

@ Suppose that X is a symmetric stable process, i.e p = 1/2.
e We know that |X| is a pssMp.

Suppose that the underlying Lévy process for |X| is written £©,
then it characteristic exponent is given by

I‘(%(—iz—ka)) I‘(%(iz+1))
M(-3iz) T@Giz+1-w)’

VO(z) =2 zeR.
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Hypergeometric Lévy processes

Definition (and Theorem)

For (8,7, 5,%) in

{ 8<2,7,5€(0,1)8>~1,and1—-B+B+7A%5>0 }

there exists a (killed) Lévy process, henceforth refered to as a hypergeometric
Lévy process, having the characteristic function

r1—B8+4y—iz)[(B+4 +iz)
rl-pg—iz) r(B+iz)

The Lévy measure of Y has a density with respect to Lebesgue measure is

zeR.

V(z) =

given by
r(’q) —(1—B+~)x AL —X .
- e oFi (L4, m;m—A;e , if x>0,
F(n—9)r(=) ( )
m(x) =
(n) (B+4)x . x ,
—— ¢ 2Fi (L +A4,mm —;€"), if x <0,
F(n = (=%)

where n:=1— B+~ + B+4, for |z| < 1, 2Fi(a, b; ¢; 2) := > k>0 (()C)ib)k zk.




Grazie!

Q>
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