
Some problems with genealogies

Simon C. Harris
University of Auckland

New Zealand

Based on joint work with:
Samuel Johnston (Dublin) & Matt Roberts (Bath)

Bath-Beijing-Paris Branching Structures workshop
14 May 2018

   CIMAT, Mexico

August 24th 2018

assesses



A question of genealogy

Our fundamental question

What does the ancestral family tree look like for a sample of individuals chosen from
some population?

The question needs more precise formulation:

a suitable model for the population’s evolution (eg. fixed or randomly varying
population size?)

a sampling mechanism (eg. choose uniformly at random from entire population?)
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A population model

O↵spring distribution. L is a random variable taking values in Z+ := {0, 1, 2, . . . }.

pk := P(L = k), m := E(L) =
1X

i=0

ipi < 1.
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Continuous time Galton-Watson process

Nt represents the number of individuals in a
population that are alive at time t � 0.

any individual alive branches at rate
r > 0, independently of others;

when it branches, the parent dies and
is replaced by a random number of
o↵spring given by an independent
realisation of o↵spring distribution L;

once born, o↵spring evolve
independently as above, and so on.
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Some more basic properties of GW processes

Super-critical case (m > 1): Kesten-Stigum theorem. Suppose 1 < m < 1

If E(L log L) < 1, martingale Zt := e�r(m�1)tNt ! Z1 a.s. & in L1 with E(Z1) = 1.
Further, {Z1 > 0} = {Nt � 1, 8t � 0} a.s., ) P(survival) = P(Z1 > 0) > 0.
When the population survives it grows exponentially: Nt ⇠ Z1er(m�1)t a.s.

Critical case (m = 1): Conditioning on surviving a long time.

P(Nt > 0) ⇠ c
t ! 0

Critical Yaglom theorem. Let �2 := E(L2)� 1. For each x > 0

P
 
Nt

t
> x

�����Nt > 0

!
! exp

✓
� 2
r�2

x

◆
as t ! 1. Huge population ⇡ t⇥RV

Sub-critical case (m < 1): Conditioning on surviving a long time.

P(Nt > 0) ⇠ cE(Nt) = ce�r(1�m)t ! 0

Sub-critical Yaglom theorem. For ✓ > 0, for some RV Z taking values in Z+

E(e�✓Nt |Nt > 0) ! E(e�✓Z ) as t ! 1. Finite population
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Uniform sampling from a Galton-Watson process

Our question

Consider a continuous time Galton-Watson process along with its genealogical tree.

Fix a large time T > 0 (we will sometimes let T ! 1)

Condition on the event that at least k individuals are alive at time T .

Choose k individuals uniformly at random (without replacement) from those
alive at time T .

What does the ancestral tree drawn out by this sample of k individuals look like?
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Existing literature. Critical case (k = 2): see Durrett (1978) and Athreya (2012).
Near critical (k = 2), see O’Connell (1995). Also see related works by Aldous &
Popovic (2005), Lambert & Stadler (2013), Lambert (2003, 2010 & recent...)
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A small taste: birth-death process (k = 2)

Birth-death process: individuals branch into two at rate � > 0 and die at rate ↵ > 0

O↵spring distribution P(L = 0) = ↵
↵+� , P(L = 2) = �

↵+�

Branching rate r := ↵+ � Mean m := E(L) = 2�
(↵+�)

Conditional on {NT � 2}, let ST be the time of most recent common ancestor of a
pair of individuals UT ,VT 2 NT chosen uniformly at random (without replacement).

Supercritical birth-death (� > ↵) - related near start!

The law of ST conditional on NT � 2 converges to a
non-trivial distribution as T ! 1, with tail satisfying
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T!1
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Sub-critical birth-death (� < ↵) - related near end!

The law of T � ST conditional on NT � 2 converges to
a non-trivial distribution as T ! 1, with tail satisfying

lim
T!1

P(T � ST � s |NT � 2) ⇠
⇣
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A bigger taste: general critical GW process (k = 2)

General critical Galton-Watson process.

Assume o↵spring distribution L satisfies m = E(L) = 1 and E(L2) < 1.

On the event {NT � 2}, let ST be the time of most recent common ancestor of a
pair of individuals UT ,VT 2 NT chosen uniformly at random (without replacement).

Critical GW case (m = 1) - related anywhere!

The law of ST/T conditional on NT � 2 converges as
T ! 1 to a non-trivial distribution on [0, 1] satisfying

lim
T!1
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Harris-Johnston-Roberts (2017+) also give genealogy of k individuals explicitly for:

super-critical birth-death processes at fixed times T

general critical and near-critical GW processes as T ! 1.

Further results: also see Johnston (2017+)
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Genealogy of k individuals in critical GW at large times
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Genealogy of uniform sample of k individuals:
We want to jointly characterise:

times of the k � 1 mergers of family lines,
(Sk

1 (T ), Sk
2 (T ), . . . , Sk

k�1(T ));

shape of the genealogical tree.

Critical GW scaling limit: genealogy of k individuals Harris-Johnston-Roberts (’17)

As T ! 1, the scaled merger times
⇣

Sk
1 (T )
T , . . . ,

Sk
k�1(T )

T

⌘
conditional on NT � k,

converge in distribution to (Sk
1 , . . . , S

k
k�1) where, for any 0  s1  · · ·  sk�1  1,

P(Sk
1 � s1, . . . , S

k
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si

� k
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✓ k�1Y

i=1
i 6=j

1� si
sj � si

◆
log(1� sj)

As T ! 1, the shape of the tree is asymptotically independent of the merger times
where each pair of family lines is equally likely to be the one to coalesce at the next
merger time.

IMPORTANT: as EL = 1 and EL2 < 1, only pairwise mergers observed in limit!
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Genealogy of k individuals in critical GW at large times

( k=3)Each labelledtree probability = tzy
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NB. This is same tree topology as
Kingman coalescent...

Kingman coalescent. Every pair of
family lines merges at rate 1. That
is, if there are currently i separate
family lines, the next merger occurs
at rate i(i � 1)/2 and is equally likely
to be any two of the family lines that
merge.

In fact, to get the explicit distribution function we first found the following density.

Critical GW scaling limit: density for genealogy of k individuals

As T ! 1, the scaled merger times
⇣

Sk
1 (T )
T , . . . ,

Sk
k�1(T )

T

⌘
conditional on NT � k,

converge in distribution to (Sk
1 , . . . , S

k
k�1) where, for any 0  s1  · · ·  sk�1  1,

P(Sk
1 2 ds1, . . . , S

k
k�1 2 dsk�1) =

Z 1

0

k
(1 + ✓)2

 
k�1Y

i=1

✓
(1 + ✓(1� si ))2

dsi

!
d✓

S.C.Harris (University of Auckland) Some problems with genealogies



Genealogy of k individuals in critical GW at large times

Limiting coalescent times as a mixture of IID times:

First choose a mixture random variable Mk then, conditional on Mk = ✓, the k � 1
coalescent times are IID on [0, 1] with a density depending on ✓.

( Xii . .

,Xn)
IID pdf .

4+x52

xx× x X
0 Xy Xz Xs X , ×

}

|Renormalise onto

[q1
] |

X X X X

54 s
} 52 S, 0

(Si , ... ,Sm)sealed coalescent times

for critical GW

A construction of limiting coalescent times:

In fact, (Sk
1 , . . . , S

k
k�1) can be constructed by:

Let X1,X2, . . . ,Xk be a sequence of IID RVs
on (0,1) with PDF (1 + x)�2.

Renormalise X1, . . . ,Xk by the maximum
Mk := max{X1, . . . ,Xk}
Ignoring the maximum value 1, the remaining
ordered k � 1 renormalised RVs have the
same distribution as (1� Sk

1 , . . . , 1� Sk
k�1).

Kingman coalescent often appears as limit when population is constant, but GW
population size varies randomly...
A ’slow’ Kingman, with mergers only at rate i � 1 when there are i individuals, would
have coalescent times of k individuals given by k � 1 IID exponentials.

Genealogy of uniform sample from a critical GW is like a mixture of time changed
’slow’ Kingman coalescents. Interpret Mk like biologists’ e↵ective population size...
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GW process with K spines
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A useful change of measure
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Important feature of Qtyks
=L bsauerhldwico

-
QQ.cat/7..)xPIYue5tte)xIuaaastaa5tI#eEItt

so
,

Qjt
"(ye{

late ) =I{ ui ,

.uueNe&
distinct )

focal # ways|

www.T#t1oNneDCNeki-amhofIZtInou.
( no spire identity) replacement

.

'

.mdw#e↳,at&tspines.areuniformlychosenmIacnentfromthose-atfneTfunchmalahymsofindcyfundnindalongspinest-Dfutre.goutupghftgaidftstttettnhnatnrnh@aitnettfteee.se.af

,



Coalescent time for Uniform samples in critical GW
_
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Understanding Qlki for large times
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Calculating the Qck '
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Coalescent times for uniform sample in critical GW
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