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Abstract. Baiiuelos and Bogdan (Potential Anal. 21 (3) (2004) 263-288) and Bogdan et al. (Electron. J. Probab. 23 (2018) 11)
analyse the asymptotic tail distribution of the first time a stable (Lévy) process in dimension d > 2 exits a cone. We use these results to
develop the notion of a stable process conditioned to remain in a cone as well as the the notion of a stable process conditioned to absorb
continuously at the apex of a cone (without leaving the cone). As self-similar Markov processes, we examine some of their fundamental
properties through the lens of its Lamperti—Kiu decomposition. In particular we are interested to understand the underlying structure
of the Markov additive process (MAP) that drives such processes. Through the interrogation of the underlying MAP, we are able to
provide an answer by example to the open question: If the modulator of a MAP has a stationary distribution, under what conditions
does its ascending ladder MAP have a stationary distribution?

With the help of an analogue of the Riesz—Bogdan—Zak transform (cf. Bogdan and Zak (J. Theoret. Probab. 19 (1) (2006) 89-120),
Kyprianou (Electron. J. Probab. 21 (2016) 23), Alili et al. (Electron. J. Probab. 22 (2017) 20)) as well as Hunt-Nagasawa duality
theory, we show how the two forms of conditioning are dual to one another. Moreover, in the sense of Rivero (Bernoulli 11 (3) (2005)
471-509; Bernoulli 13 (4) (2007) 1053—-1070) and Fitzsimmons (Electron. Commun. Probab. 11 (2006) 230-241), we construct the
null-recurrent extension of the stable process killed on exiting a cone, showing that it again remains in the class of self-similar Markov
processes. Aside from the Riesz—Bogdan—Zak transform and Hunt—Nagasawa duality, an unusual combination of the Markov additive
renewal theory of e.g. Alsmeyer (Stochastic Process. Appl. 50 (1) (1994) 37-56) as well as the boundary Harnack principle (see e.g.
Electron. J. Probab. 23 (2018) 11) play a central role to the analysis.

In the spirit of several very recent works (see Stochastic Process. Appl. 129 (3) (2019) 954-977; Electron. J. Probab. 21 (2016) 23;
Ann. Inst. Henri Poincaré Probab. Stat. 54 (1) (2018) 343-362; Potential Anal. 53 (2020) 1347-1375; ALEA Lat. Am. J. Probab. Math.
Stat. 15 (1) (2018) 617-690; Ann. Probab. 48 (3) (2020) 1220-1265), the results presented here show that previously unknown results
of stable processes, which have long since been understood for Brownian motion, or are easily proved for Brownian motion, become
accessible by appealing to the properties of the stable process as a self-similar Markov process, combined with its special status as a
Lévy processes having semi-tractable potential analysis.

Résumé. Baiiuelos et Bogdan (Potential Anal. 21 (3) (2004) 263-288) et Bogdan et al. (Electron. J. Probab. 23 (2018) 11) ont etudié
la queue de distribution du temps pour qu’un processus stable (Lévy) de dimension d > 2 sorte d’un c6ne. Nous utilisons ces résultats
pour développer le concept de processus stable conditionné a rester dans un cdne ainsi que celui du processus stable conditionné
a étre absorbé continiement au sommet d’un cone (sans sortir de celui-ci). En tant que processus de Markov auto-similaires, nous
examinons certaines de leurs propriétés fondamentales en utilisant la décomposition de Lamperti—Kiu. En particulier, nous sommes
intéressés a comprendre la structure sous-jacente du processus de Markov additif (Markov Additive Process — MAP) qui dirige des tels
processus. En étudiant le MAP sous-jacent, nous sommes en mesure de répondre aux questions ouvertes, telles que : si le modulateur
d’un MAP a une distribution stationnaire, dans quelles conditions le processus d’échelle ascendant associé, qui est aussi un MAP, a-t-il
une distribution stationnaire ?

A P’aide d’un analogue de la transformation Riesz—-Bogdan—Zak (cf. Bogdan and Zak (J. Theoret. Probab. 19 (1) (2006) 89—120),
Kyprianou (Electron. J. Probab. 21 (2016) 23), Alili et al. (Electron. J. Probab. 22 (2017) 20)) ainsi que la théorie de la dualité de
Hunt-Nagasawa, nous montrons comment les deux formes de conditionnement sont duales 1’'une de I’autre. De plus, au sens de Rivero
(Bernoulli 11 (3) (2005) 471-509 ; Bernoulli 13 (4) (2007) 1053-1070) et Fitzsimmons (Electron. Commun. Probab. 11 (2006) 230-
241), nous construisons 1’extension nulle-récurrente du processus stable tué a la sortie d’un cone, montrant que celui-ci appartient
encore a la classe des processus de Markov auto-similaire. Outre la transformation de Riesz—Bogdan—Zak et la dualité de Hunt—
Nagasawa, une combinaison inhabituelle de la théorie du renouvellement Markovien additif, par ex. Alsmeyer (Stochastic Process.
Appl. 50 (1) (1994) 37-56), ainsi que le principe de frontiere de Harnack (voir par exemple Electron. J. Probab. 23 (2018) 11) jouent
un role central dans notre analyse.
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Dans I’esprit de plusieurs travaux trés récents (voir Stochastic Process. Appl. 129 (3) (2019) 954-977 ; Electron. J. Probab. 21
(2016) 23 ; Ann. Inst. Henri Poincaré Probab. Stat. 54 (1) (2018) 343-362 ; Potential Anal. 53 (2020) 1347-1375 ; ALEA Lat. Am.
J. Probab. Math. Stat. 15 (1) (2018) 617-690 ; Ann. Probab. 48 (3) (2020) 1220-1265), les résultats présentés ici montrent que des
résultats jusqu’a maintenant inconnus pour les processus stables, deviennent accessibles en faisant appel aux propriétés du processus
stable, en tant que processus de Markov auto-similaire, en conjugaison avec le fait qu’il s’agit des processus de Lévy avec une théorie
du potentiel accessible. Ces résultats sont peut étre bien compris depuis longtemps pour le mouvement Brownien ou bien peuvent étre
facilement prouvés pour celui-ci, notre approche permets donc de combler cette lacune dans la théorie des processus stables.

MSC2020 subject classifications: Primary 60H20; 60J99; 60J80; secondary 60G52

Keywords: Stable processes; Entrance law; Kelvin transform; Duality; Lévy processes

1. Introduction

Ford > 2,let X := (X, : t > 0), with probabilities P = (P, x € Rd), be a d-dimensional isotropic stable process of index
a € (0,2). That is to say, (X,P) is a R4-valued Lévy process having characteristic triplet (0, 0, IT), where

2°T((d + ) /2) 1
[1(B) = dy, BeBR). 1.1
B = el Jy e @ ® 4D
Equivalently, this means (X, P) is a d-dimensional Lévy process with characteristic exponent W (9) = —log Eq(e!{?-X1))

which satisfies
) =101 60ecR?.

Stable processes are also self-similar in the sense that they satisfy a scaling property. More precisely, for ¢ > 0 and
x e R\ {0},

under Py, the law of (¢ X .—«;, t > 0) is equal to Pe,. (1.2)

As such, stable processes are useful prototypes for the study of the class of Lévy processes and, more recently, for the
study of the class of self-similar Markov processes. The latter class of processes are regular strong Markov processes
which respect the scaling relation (1.2), and accordingly are identified as having self-similarity (Hurst) index 1/« .

In this article, we are interested in understanding the notion of conditioning such stable processes to remain in a
Lipschitz cone,

F=]xeR!:x#0,arg(x) € 2}, (1.3)

where €2 is open on S4=1:={x e R : |x| = 1}. Note that " is an open set which does not include its apex {0}, moreover,
2 need not be a connected domain. See [21] for the notion of Lipschitz cone and some related facts.

Our motivation comes principally from the desire to show how the rapidly evolving theory of self-similar Markov
processes presents a number of new opportunities to contextualise existing theory and methodology in a completely new
way to attack problems, which may have otherwise been seen as beyond reach. We note in this respect that the key tool,
the Lamperti—Kiu transform for self-similar Markov processes, was formalised only recently in [1,26,42]. It identifies
self-similar Markov processes as in one-to-one correspondence with Markov additive processes through a generalised
polar decomposition with additional time change, and is the principal tool which, in the last five years or so, has unlocked
a number of ways forward for classical problems such as the one we consider here; see [26,32—-34,43,45-49]. Moreover,
this new perspective opens up an entire new set of challenges both in the setting of the underlying class of Markov additive
processes (which have seldom received attention in the general setting since the foundational work of e.g. Cinlar [27-29]
and Kaspi [39]) as well as the general class of self-similar Markov processes. Many of these challenges also emerge
naturally in the setting of other stochastic processes and random structures where self-similarity plays an inherently
fundamental role; see for example [61] in the setting of multi-type fragmentation processes, [12] in the setting of growth
fragmentation processes and [8,10] in the setting of planar maps. In this respect interrogating fundamental questions in
the stable setting lays the foundations to springboard to problems of significantly greater generality. We mention in this
respect, an outstanding problem in the setting of stable Lévy processes, which relates to the extremely deep work of e.g.
[14,15,35] which showed how to condition a Brownian motion to stay in a Weyl Chamber and the important relationship
this has to random matrix theory. This also inspired similar conditionings of other processes, such as those that appear in
queueing theory; see [55].
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Our journey towards conditioning stable processes to remain in the cone I' will take us through a number of striking
relations between stable processes killed on exiting I" and stable processes conditioned either enter or to to absorb contin-
uously at the apex of I', which are captured by space-time transformations. Our analysis will necessitate examining new
families of Markov additive processes that underly the conditioned stable processes through the Lamperti—Kiu transform.
As an example we will exhibit a rare and difficult result which identifies semi-explicitly the existence of a stationary
distribution for the at radially extreme points of the conditioned process (showing how the harmonic functions that drive
our conditionings influence the strong mixing of the angular process). Moreover, our work will complement a number of
other works which have examined the notion entrance laws of self-similar Markov processes, as well as the subsequent
notion of recurrent extension. Specifically, in the setting of Brownian motion and stable processes in a Lipschitz cone,
this pertains to [7,21], and more generally for self-similar Markov processes, see [13,23,32,36,56,57]. Our approach will
consist of an unusual mixture of techniques, coming from potential analysis and Harnack inequalities, Markov additive
renewal theory, last exit decompositions a la Maisonneuve and It6 synthesis.

2. Harmonic functions in a cone

For simplicity, we denote «r be the exit time from the cone i.e.
kr =inf{s > 0: X, ¢ I'}.

Baifiuelos and Bogdan [6] and Bogdan et al. [21] analyse the tail behaviour of the stopping time . Let us spend a moment
reviewing their findings.
Suppose that we write

o0
Ur(x,dy):/ P.(X; €edy,t <kr)dt, x,yerl
0

for the potential of the stable process killed on exiting I.
Then it is known e.g. from Section 2 of [21] that Ut (x, dy) has a density, denoted by ur (x, y) and that

MGy) = lim A&

, yer,
|x]—00 ur(x, y())

exists and depends on yp € I' only through a normalising constant. Note that it is a consequence of this definition that
M(x) =0 for all x ¢ I". Moreover, M is locally bounded on R? and homogeneous of degree 8 = B([', @) € (0, @),
meaning,

M(x) = |x|PM(x/|x|) = |x|P M (arg(x)), x #0. @.1)
It is also known that, up to a multiplicative constant, M is the unique function which is harmonic in the sense that
M) =Ee[MXep)lyanry]. x €RY, 2.2)

where B is any open bounded domain and tp =inf{r > 0: X; ¢ B}.
The function M plays a prominent role in the following asymptotic result in Corollary 3.2 of Bogdan et al. [21], which
strengthens e.g. Lemma 4.2 of Bafiuelos and Bogdan [6].

Proposition 2.1 (Bogdan et al. [21]). We have

Py(kr >1)

lim sup Moi—Fla =

”Hoxel",ltfl/"‘ﬂga

’

where C > 0 is a constant.

Before moving to the next section we also mention the earlier works of DeBlaissie [30] and Méndez-Hernandez [53],
who considered moment properties of the exit time from the cone.
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3. Results for stable processes conditioned to stay in a cone

The above summary of the results in [6,21] will allow us to introduce the notion of stable process conditioned to stay
in I". Before doing that we make a slight digression to introduce some notation.

Let ID be the space of cadlag paths defined on [0, o), with values in R U A, where A is a cemetery state. Each path
w € D is such that w; = A, for any ¢t > inf{s > 0: w; = A} =: {(w). As usual we extend any function f : R? > R to
R? U A by taking f(A) = 0. The space D) is endowed with the Skohorod topology and its Borel o-field. Here after we
will denote by X the canonical process of the coordinates, and by (F;, ¢ > 0) the right-continuous filtration generated
by X. We will also denote by P'" the law of the stable process (X, P) killed when it leaves the cone I'. Note, in particular,
that (X, PP is also a self-similar Markov process.

Theorem 3.1.
(i) Foranyt>0,andx el,
PI(A):= lim Py (A |kr >t +5), A€F;,
5§—>00
defines a family of conservative probabilities on the space of cadlag paths which respect the Doob h-transform

aPy| M(X,)
N P T

t>0,and x €T. 3.1

In particular, the right-hand side of (3.1) is a martingale.
(ii) Let P?:= (P{,x € I'). The process (X, P), is a self-similar Markov process.

Next, we want to extend the definition of the process (X, P“), to include the apex of the cone I" as a point of issue in
a similar spirit to the inclusion of the origin as a point of issue for positive and real-valued self-similar Markov processes
(cf. Bertoin and Yor [13], Bertoin and Caballero [9], Caballero and Chaumont [24], Bertoin and Savov [11], Chaumont et
al. [25], Dereich et al. [32]). Said another way, we want to show the consistent inclusion of the state O to the state space
[ in the definition of (X, P<) as both a self-similar and a Feller process.

Before stating our theorem in this respect, we must first provide a candidate law for 5, which is consistent with the
family IP<. To this end, we need to recall the following theorem which is a copy of Theorem 3.3 in Bogdan et al. [21] (see
also [7,30] for earlier work pertaining to distributional identities concerning the entrance law from the apex of Brownian
motion in a cone). In order to state it, we need to introduce the notation ptr (x,y), x,y eI, t >0, which will denote the
transition density of (X, P'). Note the reason why this density exists is because of the existence of a transition density
for X, say p:(x,y),x,y € Rd, t > 0 and the relation

pr(x,y) = pi(x,y) —Eifxr <t; prosey Xep, )], x,y €D, 1>0.
Theorem 3.2 (Bogdan et al. [21]). The following limit exits,

pr(x,y)

T TL ,yel, >0, 32
ax—0 Py (kr >l‘)tﬂ/a Y ~ (3-2)

n(y) :=
and (ny(y)dy, t > 0), serves as an entrance law to (X, P, in the sense that

n,ﬂ(y):/n[(x)p&x,y)dx, yel,s,t>0,
r

The latter is a finite strictly positive jointly continuous function with the properties

Py(kr > 1)

_ —(d+B)/a —1/a ~
n =1 nilt and n I~ s

yvel,t>0, 3.3)
and
/nz(y)dy =t7Pl* >0, (3.4)
r

where f X g means the ratio of the functions f and g are bounded from above and below by two positive constants,
uniformly in their domains.
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The existence of the entrance law (1, (y) dy, t > 0), is sufficient to build a candidate for a probability measure, say P,
on D carried by the paths of X that start continuously from 0 and remain in I" forever. To that end, note from (3.2) and
Proposition 2.1, that for any # > 0 we have the following weak convergence,

im MIP’)C(XI €dy,t <kr)= lim Ly)pr(x,y)dy
ax—0 M(x) Iax—0 P(t <kp)tblat?
=CM(y)n(y)dy, yel, (3.5)

where C is the constant in Proposition 2.1, and it is independent of 7. With a pre-emptive choice of notation, let us denote
by P5(X; € dy) the measure that is obtained as a limit in the above relation, that is

Py(X; €dy) :==CM@y)n;(y)dy, yeTl,t>0.

Recalling from (3.1) that M forms a martingale for the process killed at its first exit from I', we have that necessarily
JrP§5(X; € dy) = 1. Furthermore, denote by [P the probability measure on ID whose finite dimensional distributions are
given by,

IE”B'(X,,. €A, i=1,...,n):= C/ M(y)n,l(y)P;(Xl,._,l €A, i=2,...,n)dy,
Ay

forneN,0<# <---t, < oo and Borel subsets of I', A1, ..., A,. The weak convergence in (3.5) extends in a straight-

. . . f.d. . . . .
forward way to the finite dimensional convergence P} —O> IP§. Our main result in this respect establishes that the
I'sx—

convergence holds in the stronger sense of Skorohod’s topology.

Theorem 3.3. The limit IP’S = limrsx— 0 P} is well defined on the Skorokhod space, so that, (X, (P{,x € I' U {0})) is
both Feller and self-similar which enters continuously at the origin, after which it never returns and subsequently remains
inT.

The proof of Theorem 3.3 leads us to a stronger understanding how stable processes enter into the wedge I' from its
apex, specifically showing that there is functional continuity on the Skorokhod space, complementing the existing works
of [21] in the stable setting and [7,30] in the Brownian setting, which deal with specific functionals of the respective
processes killed on exiting a cone.

Recalling Williams’ classical decomposition of Brownian excursions from the origin, which shows that their entrance
law can be constructed from the Brownian motion conditioned to stay positive (also identifiable as a Bessel-3 process),
one may wonder, in light of Theorem 3.3, if it there is a self-similar process that behaves like (X, PT), but once it exits I"
it is not absorbed but is reissued at 0 in a sensible way. In the specialised literature, a process bearing those characteristics
would be called a self-similar recurrent extension of the stable process killed on exiting the cone I', (X, ]P’F), i.e.allU{0}-
valued process that behaves like (X, PT) up to the first hitting time of dT", for which 0 is a recurrent and regular state,
and that has the scaling property (1.2). If such a process exists, say (;(,,t > 0), the fact that 0 is regular for it, implies
that there exists a local time at 0, say L, and an excursion measure from 0, say NI'. We will see in Section 13 that either
NI (Xo4 #0) =0 or N (Xo, = 0) = 0. In the former case, we say that the recurrent extension leaves 0 continuously, and
in the latter that it leaves 0 by a jump. General results from excursion theory (see e.g. [17,37]), ensure that both objects
together (L, Nr) characterize ? Furthermore, the measure N is a self-similar excursion measure compatible with the
transition semi-group of (X, ]P’r), that is, it is a measure on (ID, ) such that

(i) itis carried by the set of I"-valued paths that are sent to the cemetery state O at their death with lifetime ¢,
{xeD|¢>0,xsel,s<¢,and x, =0, forallt > ¢},

i.e. where, tautologically, ¢ = inf{t > 0: y; = 0};
(i) the Markov property under N, is satisfied, that is, for every bounded F-measurable variable Y and A € F;, ¢ > 0,

N'(Yob, AN{t <¢}) =N"(Ey [Y], AN {t <¢});

(iii) the quantity N (1 —e~%) is finite;
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(iv) there exists a y € (0, 1) such that for any ¢, ¢ > 0,

¢ ¢
NI (/ e " f(Xy) ds) = cI=raNr </ e_"cusf(ch)ds) (3.6)
0 0

The condition (iv) above is equivalent to require that

(iv") there exists y € (0, 1) such that, for any ¢ > 0 and f : " — R™ measurable,
NU(f(X9),s <) =N (f(c™ Xeey), s <), fors>0.

The fact that N necessarily satisfies the above conditions is a consequence of a straightforward extension of the argu-
ments in Section 2.2 in [56].

Conversely, Itd’s synthesis theorem ensures that, given an excursion measure satisfying the conditions (i)—(iv) above,
and a local time at zero, there is a self-similar recurrent extension of (X, IP’F). Using this fact, and that the entrance law
(n;(y)dy,t > 0) is intimately related to an excursion measure, we establish in the next result the existence of unique
self-similar recurrent extension of (X, P") that leaves O (the apex of the cone) continuously. Furthermore, we will give a
complete description of recurrent extensions that leave zero by a jump.

Theorem 3.4. Let N' be a self-similar excursion measure compatible with (X,P'). We have that there exists a y €
0, B/a), a constant a > 0, and a measure 7' on Q such that ax’™ =0, fQ 7l (dOYM (0) < oo, and NF can be represented
by, for any t > 0, and any A € F;

N'(A,t <) =aEg ! 14 +/OO dr /nr(dG)E oA, t <kr] (3.7)
' Ol M(X,) o riter Jo A ' '

If a > 0, the process (X, PT) has unique recurrent extension that leaves O continuously, and y = B/a.
Conversely, for each y € (0, B/a), and ¥ a non-trivial measure satisfying the above conditions, there is a unique
recurrent extension that leaves zero by a jump and such that

N" (1 X0+ € dr, arg(Xo4) € df) = 7o), r=>0,0eq.

r1+ay

Finally, any self-similar recurrent extension with excursion measure N' has an invariant measure

¢
7 F(dx) =Nl </ 1(x,edx) dl‘)
0

_dp ©  gr - KT
—alat P Gu)ar + [T [ At @] [T e o],

which is unique up to a multiplicative constant, and this measure is sigma-finite but not finite.

As a final remark, we note that, whilst we have provided a recurrent extension from the apex of the cone, one might
also consider the possibility of a recurrent extension from the entire boundary of the cone. We know of no specific work
in which there is a recurrent extension from a set rather than a point. That said, one may consider the work on censored
stable processes as meeting this notion in some sense; see e.g. [20,45].

4. Auxiliary results for associated MAPs

By an R x S9—1_valued Markov additive process (MAP), we mean here that (¢, ®) = ((§;, ©;), t > 0) is a regular Strong
Markov Process on R x S9! (possibly with a cemetery state), with probabilities P := (P, g, x € R, 6 € S9-1y, such that,
for any ¢ > 0, the conditional law of the process ((§s4: —&;, Os4¢) : s > 0), given {(§,, ®,), u <t}, is that of (§, ®) under
Py, with 6 = ©,. For a MAP pair (§, ®), we call & the ordinate and ® the modulator.

A very useful fact in the theory of self-similar Markov process is the so called Lamperti—Kiu transform, which is one
of the main results in [1], extending the seminal work of Lamperti in [51], and establishes that there is a bijection between
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self-similar Markov processes (ssMp) in R4, and R x S?~!-valued MAPs. Indeed, for any ssMp in RY, say Z, there exists
aunique R x S¢~!-valued MAP (£, ®) such that Z can be represented as

Z - exp{ép()1Opr), t < Inos @1
A’ t Z 1001
where I; := fé erdr, >0 (so that I, is the almost sure monotone limit = lim;_, oo, I;) and
N
go(t):inf{s>0:/ e%u du>t}, t>0. 4.2)
0

Reciprocally, given a R x S?~!-valued MAP (£, ®) the process defined in (4.1) is an R¢-valued ssMp. This is known as
the Lamperti—Kiu representation of the ssMp Z. When the lifetime of Z is infinite a.s. we say that law is conservative,
which is equivalent to require that /o, = co almost surely.

In Theorem 3.13 of [44], it was shown that the MAP underlying the stable process, for whom we will henceforth
reserve the notation P = (P, g, x € R, 6 € S?~1) for its probabilities, is a pure jump process, such that £ and ® jump
simultaneously. Moreover, the instantaneous jump rate with respect to Lebesgue time df when (&;, ®;) = (x, ) is given
by

ed
C(W)W dyoi(d¢), t=0, 4.3)

where o1 (¢) is the surface measure on SY~! normalised to have unit mass and

~aT(d+0)/DTd/2)

_ ~a—1
cly=2""m IC(—a/2)|

More precisely, suppose that f is a bounded measurable function on (0, 00) x R? x S~ x §¢~! such that f(-,-,0,-,-) =
0, then, for all 6 € S¢~1,

Eo.0 (Z LGRS\ C R ®S>>

s>0

/ Vi (ds, dz, d) / / dp)d c@)e! £ 9, ) 4.4)
= 5(ds, dz, ol y———— (5,2, 5,0, 9), .

(0,00) x RxSd—1 si-1 JR leYp — 9|etd

where A&, =& — &,
Vo(dt,dz,d9) =P (& €dz, ©, ed)dr, zeR, 0 eSS 1>0,

o1(dg) is the surface measure on S?~! normalised to have unit mass and

L T(d +a)/DT(d/2)

_ ~a—1
cl)=2"= ID(—a/2)|

Similar calculations as those used in [44] show that the Lévy system (H, L) of the MAP (£, ®), associated to the stable
process (X, IP), see [28] for background, is given by the additive functional H; :=t¢, t > 0 and the kernel

vd

Ly(de,dy) := C(W)W

o1(d¢) dy. (4.5)

So, for any positive predictable process (G, t > 0), and any function f as above, one has

Eo.0 (Z G f (s, E—, A, O, @g)

s>0

=E0,9</ 56, / / L@s(d¢>,dy>f<s,ss,y,®s,¢>). (4.6)
0 -1 JR
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We are interested in the characterisation of the Lévy system of the MAP associated to (X, P7), via the Lamperti—Kiu
transform. To this end, suppose now we write P< := (P;’H, (x,0) € R x Q) for the probabilities of the MAP that underly
(X, P).

Proposition 4.1. For any positive predictable process (G;,t > 0), and any function f : (0, 00) x R? x S¢~1 x §¢-1
[0, 00), bounded and measurable, such that f(-,-,0,-,-) =0, one has

ES,Q (Z GSf(S’ SS*: Aés’ ®s77 ®3)>

s>0
=E5‘,9</0 clsGs/H/]R Z)S(daﬁ,dy)f(s,és,y,®s,¢)>, Vo € Q, 47)

where

4y M(@)

d—1
M(Q)Lg(dqb,dy), peS,yeR.

Lid¢.dy) =

That is to say that, under P, the instantaneous jump rate when (&, ®;) = (x, ) is

ey Bt M ()
Y — 1ot M)

c(a) dyoi(d¢)dt, t>0,0,¢ € Q.

A better understanding of the MAP that underlies (X, P<), allows us to deduce e.g. the following result. For a > 0,
define by
rae =inf{t >0:|X] > a}

and m(r,?—) =sup{t < ‘L'ae o | X¢| = sup, _, | Xs|} the last radial maximum before exiting the ball of radius a.

Theorem 4.2. There exists a probability measure, v* on Q, which is invariant in the sense that
Ps. (arg(Xtee) €dp) := / v*(dqb)IP’fl',(arg(Xtee) €df) =v*(dh), HeQ,
Q

such that, for all x € ', under IP},, the triple

<Xm(rae—> Xro— Xeg )

s

a a  a

converges in distribution as a — oo to a limit which is independent of r and 6 and non-degenerate. Equivalently, by
scaling, the triple

Xeps Xoo s Xpeo )

converges in distribution under Py, as I 5 x — 0, to the same limit. More precisely, for any continuous and bounded
f:T3 =0, 00),

1 o

lim E{[f(X,0. X, . X S S o) dr G ).

F33050 L n A m(rle*))] Ej*[log|XTee|]/sz/o v AP drG(r. )
where

G ) =By [ f (X Xoo o Xpee e <es ) )
The above theorem, although seemingly innocent and intuitively clear, offers us access to a very important result. In
order to understand why, we must take a small diversion into radial excursion theory, as described in Kyprianou et al.
[47].



2074 A. E. Kyprianou, V. Rivero and W. Satitkanitkul

Theorem 3.1 shows that (X, P), is a self-similar Markov process. As mentioned above, it follows that it has a
Lamperti—Kiu representation of the form (4.1), with an underlying MAP, say (£, ®), with probabilities P;e, x eR,

6 €S?~!. Foreacht >0, let&, = sup, <, &, and define
g, =sup{s <t:&=£&,) and & =inf{s>1t:& =§¢,},

which code the left and right end points of excursions of & from its maximum, respectively. Then, for all ¢ > 0, with
d; > g;, we define the excursion process

(Eg, (s), 6; (S)) = (ég,+s — ‘i:g,’ ®g,+s)v s <{g, = d; — gy;

it codes the excursion of (£ — &, ®) from the set (0, Sd_l) which straddles time ¢. Such excursions live in the space
U(R x S¢1), the space of cadlag paths with lifetime ¢ = inf{s > 0: €(s) < 0} > 0 such that (€(0), ©¢(0)) € {0} x S~ 1,
(€(s), O¢(s)) € (0,00) x S~ for0 < s < ¢, and €(¢) € (—0o0, 0].

For t > 0, let R; = d; — t, and define the set G ={t > 0: R, =0, R; > 0} = {g, : s > 0} of the left extrema of
excursions from 0 for £ — £. The classical theory of exit systems in Maisonneuve [52] now implies that there exist an
additive functional (¢,, ¢t > 0) carried by the set of times {t > 0: (§, — &, ®;) € {0} x S?=1}, with a bounded 1-potential,
and a family of excursion measures, (N3, 0 € Sd_l), such that

(i) (N7,0 € S9-1y is a kernel from S to R x S9!, such that Ny (1 — e %) < oo and Nj is carried by the set
{(€(0), ®¢(0) = (0,60)} and {¢ > 0} forall 6 € S~ 1;
(i) we have the exit formula

20| Z FE 005 <) (e 09) |

geG
_E:, [ f (804 s < )N, (H (e, @5))de,], 4.8)
0

for x # 0, where F is continuous on the space of cadlag paths D(R x S?~!) and H is measurable on the space of
cadlag paths U(R x S~ 1);

(iii) for any 0 € S9-1, under the measure N7, the process ((e(s), ©(s)), s < ¢) is Markovian with the same semigroup
as (£, ©) killed at its first hitting time of (—oo, 0] x S¢~1.

The couple (¢, (Ng, 6 € S?=1Y) is called an exit system. In Maisonneuve’s original formulation, the pair ¢ and the kernel
(N3,60 e Sd_l) is not unique, but once £ is chosen, the (N3, 6 € Sd_l) is determined but for a ¢-neglectable set, i.e. a set
A such that

Elg U L, -z.00eA d‘s] =0.
t>0

Let (Et_l ,t > 0) denote the right continuous inverse of ¢, H;r = Ee—l and @f = ®£71, t > 0. The strong Markov
t t

property tells us that (Z,_], H,+, @;r), t > 0, defines a Markov additive process, whose first two elements are ordinates
that are non-decreasing. Rotational invariance of X implies that &, alone, is also a Lévy process, then the pair (e~ H),
without reference to the associated modulator ®*, are Markovian and play the role of the ascending ladder time and
height subordinators of &. But here, we are more concerned with their dependency on @,

Taking account of the Lamperti—Kiu transform (4.1), it is natural to consider how the excursion of (¢ — £, ®) from
{0} x S?=! translates into a radial excursion theory for the process

Yt ::es’(@,, ZZO

Ignoring the time change in (4.1), we see that the radial maxima of the process Y agree with the radial maxima of the
stable process X. Indeed, an excursion of (§ — &, ®) from {0} x S=1 constitutes an excursion of (¥;/ sups<, |¥sl, 1 > 0),
from S9! or equivalently an excursion of Y from its running radial supremum. Moreover, we see that, for all # > 0 such
that d; > gy,

Yo, s =% WO (5) = |V, |ee D OF (5) =: Vg, 1€, (). 5 <ig,.
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Whilst a cluster of papers on the general theory of Markov additive processes exists in the literature from the 1970s
and 1980s, see e.g. Cinlar [27-29] and Kaspi [39], as well as in the setting that ® is a discrete process, see Asmussen
[4] and Albrecher and Asmussen [5], as well as some recent advances, see the Appendix in Dereich at al. [32], relatively
little is known about the fluctuations of MAPs in comparison to e.g. Lévy processes. Note the latter are a degenerate class
of MAPs, in the sense that a Lévy process can be seen as MAP with constant driving process.

A good example of an open problem pertaining to the fluctuation theory of MAPs is touched upon in Theorem 4.2:
Suppose that ® has a stationary distribution, under what conditions does ®T have a stationary distribution? This is a
question that has been raised in general in Section 4 of the paper [40]. Below we give a complete answer in the present
setting.

Theorem 4.3. Under P*, the modulator process ®F has a stationary distribution, that is
71 (do) := IETOP;’Q(@ €df), 0eQ,xeR,
exists as a non-degenerate distributional weak limit.

Remark 4.1. The reader will also note that, thanks to the change of measure (7.2) combined with the fact that £, Uis an
almost surely finite stopping time and Theorem II1.3.4 of [38], the ascending ladder MAP process (H™, ®*), under P<,
has the property
dpg, _ BH; MO
P00 lo (a5 05 ).521) M@®)

1, 0+, 1=0, 4.9)

where k% = inf{r > 0: @?‘ ¢ Q) As a consequence of the existence of 7%, we note that

1
B4@de) = —a97o), 0eQ
ﬂ()M(Q)ﬂ(),e,

is an invariant distribution for (G),+1(l <k@H)s L= 0) under P.

5. Auxiliary results for dual processes in the cone

In order to prove some of the results listed above, we will need to understand another type of conditioned process, namely
the stable process conditioned to continuously absorb at the origin.

Theorem 5.1. For A € F;, on the space of cadlag paths in " with a cemetery state at the apex of T',

Pi(At <)) == lim P}(A, 1 <12 | 18 < 00),
a—0

is well defined as a stochastic process which is continuously absorbed at the apex of I', where k(o) = inf{t > 0: | X;| = 0}
and rsB =inf{s > 0:|X;| < a}. Moreover, for A € F;,

H(Xo} oo

]P);(A,t < K{O}) = E}C |:1(A’[<Kr)m (51)

where
H(x) = |x|*"P~9 M (arg(x)).

Next, we write P* := (P} 4, x € R, 0 € Q) for the probability law of the MAP that underlies (X, P"). For any positive

predictable process (G, t > 0), and any function f : (0, 00) x R* x =1 x §4=1 — R, bounded and measurable, such
that f(-,-,0,-,-) =0, one has

0.0 (Z G, f(s, &, A&, O, @S))

s>0

=EB,9</O dsGs/H/R Z)s(d¢,dy)f(s,$s,y,®s,¢)>, vo e, (5.2)



2076 A. E. Kyprianou, V. Rivero and W. Satitkanitkul

where

H _
L5(de, dy) :=e %Lg(dqb, dy), ¢eS¥ ! yeR.

That is to say, that under P~ , the instantaneous jump rate when (&, ;) = (x, ) is

ety H(p)
¥ — 014t H ()

c(a) dyoi(d¢)dt, t>0,60,¢ €.

As alluded to, the process (X, P*), is intimately related to the process (X, P7). This is made clear in our final main
result which has the flavour of the Riesz—-Bogdan—Zak transform; cf. Bogdan and Zak [22]. For the sake of reflection it is
worth stating the Riesz—Bogdan—Zak transform immediately below first, recalling the definition of L-time and then our
first main result in this section.

Theorem 5.2 (Riesz—Bogdan—Zak transform). Suppose we write Kx = x/|x|?, x € R4 for the classical inversion of
space through the sphere S?='. Then, in dimension d > 2, for x # 0, (KXy@).t = 0) under Pk is equal in law to
(X, t = 0) under P, where

d]P)O X Ol_d
: = Xl >0 (5.3)

- bl t —_
dIPX o (Xs:s<t) |x|a—d

and n(t) =inf{s > 0: [ |X,|72* du > t}.

Hereafter, by an L-time we mean the following. Suppose that G is the sigma-algebra generated by X and write G(IP})
for its completion by the null sets of Py, where v is a randomised initial distribution. Moreover, write G = (1), G(PY),
where the intersection is taken over all probability measures on the state space of X. A finite random time k is called
an L-time (generalized last exit time) if {s < k(w) — ¢t} = {s < k(wy)} for all ¢, s > 0. (Normally, we must include in
the definition of an L-time that k < ¢, where ¢ is the first entry of the process to a cemetery state. However, this is not
applicable for (X, P<).) The two most important examples of L-times are killing times and last exit times.

Theorem 5.3. Consider again the transformation of space via the sphere inversion Kx = x/|x|?, x € R%.
(i) The process (K Xy ), t = 0) under P3, x € T, is equal in law to (X;,t < ko)) under P, x € I', where
A
n(t):inf{s>0:f |Xu|_2“du>t}, t>0 (5.4)
0

and kyoy = inf{t > 0: X; =0}.
(ii) Under P35, the time reversed process

X = Xx-n—, t=k,

is a homogenous strong Markov process whose transitions agree with those of (X,IP}), x € I', where k is an L-time
of (X,IPY), x e " U{0}.

Our third main theorem considers the possibility of a recurrent extension from the origin of of (X, P*), similar in spirit
to Theorem 3.4.

Theorem 5.4. Let N” be a self-similar excursion measure compatible with (X,P”). We have that there exists a y €
0,07 1d+ 28 —a) A 1), a constant a > 0, and a measure &% on Q such that an” = 0, fQ n”(dO)H () < 00, and N*
can be represented by, for any t > 0, and any A € F;

No(A1 <o) =aBs| ZXO | & @B (A1 < kr]. (5.5)
"L MX) o riter g 0

If0< B < QRa—d)/2, and a > 0, the process (X,P”) has unique recurrent extension that leaves 0 continuously. If
B> Qa —d)/2, then a =0, and there is no recurrent extension that leaves 0 continuously.
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Conversely, for each y € (0,0~ (d + 2B — a) A 1), and ©° a non-trivial measure satisfying the above conditions,
there is a unique recurrent extension that leaves zero by a jump and such that

d
N°(|X04 | € dr, arg(Xoy) €d6) = ———7°(d), r>0.0 €.

rltay

Finally, any self-similar recurrent extension of (X, P™) with excursion measure N”, has an invariant measure

¢
w7 (dx) =N~ ([ 1(x,edr) dt>
0

2(a—d—B) 2 < dr T
=alx| (a—d—p M(x) dx+£ ey / nb(dQ)E';e[/o I(X,de)dt],
Q

which is unique up to a multiplicative constant, and this measure is sigma-finite but not finite.

It is interesting to remark here that if the cone is such that 8 > (2o — d)/2, or equivalently (d + 28 — ) /o > 1, there
is no recurrent extension that leaves zero continuously. This is due to the fact that the closer 8 is to « the smaller the cone
is. Because the process is conditioned to hit zero continuously, a process starting from zero should return too quickly to
zero, forcing there to be many small excursions, whose lengths become increasingly difficult to glue end to end in any
finite interval of time. We could understand this phenomena with heuristic language by saying that ‘the conditioned stable
process is unable to escape the gravitational attraction to the origin because of the lack of space needed to do so’.

The rest of this paper is organised as follows. In the next section we give the proof of Theorem 3.1. Thereafter, we
prove the above stated results in an order which differs from their presentation. We prove Proposition 4.1 in Section 7 and
then turn to the proof of Theorem 4.2 and Corollary 4.3 in Sections 8 and 9, respectively. This gives us what we need to
construct the process conditioned to continuously absorb at the apex of I', i.e. Theorem 5.1, in Section 10. With all these
tools in hand, we can establish the duality properties of Theorem 5.3 in Section 11. Duality in hand, in Section 12, we can
return to the Skorokhod convergence of the conditioned process (X, PY), x € I', to the candidate for (X, IP5), described in
(3.5), and prove Theorem 3.3. Finally, in Sections 13 and 14, we complete the paper by looking at the recurrent extension
of the conditioned processes in Theorem 3.4 and 5.4 respectively.

6. Proof of Theorem 3.1
We break the proof into the constituent parts of the statement of the theorem.
6.1. Proof of part (i)

ForAe F,and0#x €T,

Px, (kr > s) i| ©.1)

PI(A,t<¢)= Sl_l)rglo E, |:1(Am{z</<p}) P.Ger > 14 5)

From Lemma 4.2 of [6], for t~1/%|x| < 1, we have the bound

Py (kr > 1)

m S [C_I,C],

for some C > 1. Otherwise, if t /% |x| > 1 then, Py (kr > 1) < 1 < |x|P¢~#/%. Hence, noting that M is uniformly bounded
from above, we have that, for all x € I" and s > 0, there is a constant C’ such that P, (kp > §) < C’|x|ﬁs_ﬂ/"‘. Hence, for
s sufficiently large, there is another constant C” (which depends on x) such that

Py, (kr > s) - C'|X,|Bs= Bl
Po(kr >t +s) ~ CIMx)(t +5) Bl

<C"|1x,|P.

It is well known that X; has all absolute moments of any order in (0, «); cf. Section 25 of Sato [60]. The identity (3.1) now
follows from Proposition 2.1 and the Dominated Convergence Theorem. Furthermore, by construction, for any x € I,

Pit<k)=1, Vt=>0.

It thus follows that under P9, X has an infinite lifetime.
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6.2. Proof of part (ii)

That (X, P7) is a ssMp is a consequence of (X, P) having the scaling property and the strong Markov property. Indeed,
(X,P7) is a strong Markov process, since it is obtained via an h-transform of (X, ). To verify that it has the scaling
property, let ¢ > 0 and define X; := cX .—«;, t > 0. We have that

kr:=inf{t > 0: X, ¢ I'} = %, (6.2)
and by the scaling property

Law

(X,Py) = (X,Pey), xel. (6.3)

Considering the transition probabilities of (X, P~), we note with the help of (6.3) and (1.2) that, for bounded and measur-
able f,

~ MX o
E; [f(Xt)] =By |:1(C"‘I<K1“)f(cxcat)Mi|

M (x)

N s X PM X/ 1X)
_E*[l(“"”f 0 |cx|ﬂM(cx/|cx|>}

|X,|/3M(Xt/|X,|):|
lex|BM (ex/|cx|)

=E[f(X»)], xeTl.

= IEcx [1(1<Kr)f(Xl)

This last observation together with the Markov property ensures the required self-similarity of (X, P<).

7. Proof of Proposition 4.1

We use a method taken from Theorem 1.3.14 of [44]. From the Lamperti—Kiu transformation (4.1), we have

Xa
g =log(Xaml/IXol), O =20

= , >0, (7.1
Do

where A(t) =inf{s > 0: [ |X,|™du > 1}.

To show that (4.7) holds, we first note that, on account of the fact that A(¢) in (7.1) is an almost surely finite stopping
time and the simple relation A(k*?) = k-, where k® = inf{t > 0: ®, ¢ Q}, from the martingale property in (3.1), we have
by Theorem II1.3.4 of [38] that

dpP7
dPx,0

_ B0 MO

1,_.e, >0, (7.2)
G M(e) (r<k™)

where G; =0 ((§5, Oy), s <1),1>0.
Now write

E3,9<Z Gsf<s,ss_,Ass,®s_,®s>) = lim Eo,9<MZ > Gif(s.bm Ass,@s_,@)s))

s>0 O<s<t

where M, = 1(l<kg)eﬁ§’M(®I)/M(9), t > 0 is the martingale density from the change of measure (3.1). Suppose we
write X; for the sum term in the final expectation above. The semi-martingale change of variable formula tells us that

t t
Mtzlt:/\/lo(@)zo-i-/ ES,dMS-F/ M_dE;+ [M, 2], =0,
0 0

where [M, X]; is the quadratic co-variation term. On account of the fact that (%;, > 0), has bounded variation, the latter
term takes the form [M, £], =), AM;AY,;. As a consequence

s<t

t t
M2 = Mo(0)2 ~I—/ Y dM; ~|—/ MdEg, t>0. (7.3)
0 0
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Moreover, after taking expectations, as the first in integral in (7.3) is a martingale and ¥y = O, the only surviving terms
give us

06 (Z Gy f (s, &—, A&, O, @3))

s>0

MO,
= E0,0 <Z 1(t<kr)eﬁgx %GS fs, &, A&, O, ®s)>

s>0

00 M(©y) c(a)e? B+ M (g)
_ - B
=Eo, [/0 dsGsl_yrye Mm@ O (d¢)/Rdy|ey¢>—®s|“+d M@s)f(s,&,y,@s,«ﬁ)]

o c((x)e)’(ﬂ'i‘d) M(d’)
=E< ’ » 855 Yy Vs,
0,0|:/0 dsG /Qm(dqﬁ)/Rdy'ey(b_@SlHd M(@s)f(s £,y,0 ¢):|

where in the second equality we have used the jump rate (4.6) and in the third Fubini’s theorem together with (7.2).

8. Proof of Theorem 4.2

At the root of our proof of Theorem 4.2, we will appeal to Markov additive renewal theory in the spirit of Alsmeyer
[2,3], Kesten [41] and Lalley [50]. The radial excursion theory we have outlined in Section 4 is a natural mathematical
pre-cursor to Markov additive renewal theory, however, one of the problems we have at this point in our reasoning, as
it will be seen later, is that it is not yet clear whether there is a stationary behaviour for the process (®t, P, of the
radial ascending ladder MAP. Indeed, as already discussed, we will deduce from our calculations here that a stationary
distribution does indeed exist in Corollary 4.3.

We build instead an alternative Markov additive renewal theory around a naturally chosen discrete subset set ladder
points which behave well into the hands of the scaling property of (X, P). As the proof is quite long, we break the
remainder of this section into a number of steps, marked by subsections. The proof of Theorem 4.2 will thus be our.

8.1. A discrete ladder MAP

Under P9, define the following sequence of stopping times,
T, :=inf{t > T,y : |X;| > elX7,_, 1}, n>1,

with Tp =0, and

n

X

S, = E Ar, An :logﬂ and E, =arg(Xr,), n>1
k=1 |XTn,1|

Note in particular that
— Sn =
X7, =|xle”"&,, n>1.

Then, we claim that ((S,, E,), n > 0), is a Markov additive renewal process. To verify this claim, we appeal principally
to the strong Markov and scaling property of (X, P). Indeed, for any x € I', we have that for any finite stopping time 7,
under P}, the conditional law of (X7,,s > 0) given (X, u < T) equals that of (|y|Xs/|y,s > 0) under ]P’:rg(y), with
y = X7. Hence, for any n > 0, by construction, conditionally on (X,,, u < T,,) we have that
T,+1 = inf{t >T,:|X;| > e|XTn|}
= T, +inf{s > 0:|X,47,| > e| X7, |}

Law

E' T, +inf{s > 0 | X7, [ Xy/1x,, 1« | > el X7, |}

= T, + X1, |°Th,
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where X depends on (X, u < T),) only through arg(X7,), has the same law as (X, ]P:rg(xr )), and f‘] =inf{r > 0: |)~(,| >
e}. From these facts, it follows that for any bounded and measurable f on R x €2,

E{[f(Sns1 — Sns Ens1) | (Si, Ei) i <n]

“ X7, )
=E7| f|log ;arg(Xr,, ) ‘XTI.ZZSI”I
|XT,|

=E;[f(log| X7, arg(X1y))] |y=E,,'

These calculations ensure that ((S,, E,), n > 0), is a Markov additive renewal process. Note, this computation also shows
that, under P<, the modulator & := (&, n > 0) is also a Markov process.

8.2. Application of Markov additive renewal theory
Let us introduce the MAP renewal function associated to (S, E), for €2,

o0
Vo (dr, d¢) :=ZIP’§(Sn €dr,E,€dg), reR,¢pe. (8.1)
n=0

We will next show that the joint law in Theorem 4.2 can be expressed in term of a renewal like equation involving Vj.

Lemma 8.1. For measurable f : - [0, 0c0), we have, for x € ' N By,

—log x|
Ef[ f(Xe. Xoo_, Xm(rle_))] = /0 /Q Varg(r) (dr, dp) G (— log x| — r, §), (8.2)
where, for p € Q and y > 0,

G(y,9):= E:—y(p[f(xrle’ Xl—]@,: Xm(tlef))l(fleffe )]' (8.3)

el
Proof. Noting that |X7,| = |x|e>" and arg(X7,) = E,. Appealing to the strong Markov property we get

E;[f(xrle’ X‘L’le—’ Xm(rle—))l(rle<oo)]

5 Y i O Ko K]

“n>0

= B3| DN,y By [ f (X oo, X, Xm(r?—)“(r?sn)]y:xm}
~n>0

o
=7 D e < By [f (Ko Koo Xpeo )10 opy) e :} :

Ln=0

where in the first equality the indicator implies 7;, < m(rl9 —). We can thus write

E;[f(xrle’ Xrle—’ Xm(rle—))]

B

which agrees with the statement of the lemma. ]

—log |x|
= /0 /Q Varg(x)(dr, d(f))Eﬁclerq)[f(Xrle, Xrle_, Xm(rle_))l(rle<re

- merJrI)

We now have all the elements to explain the strategy we will follow to prove Theorem 4.2. In light of the conclusion
of Lemma 8.1, we will apply the Markov Additive Renewal Theorem, see for example Theorem 2.1 of Alsmeyer [2]. We
state the result below for completion in a form that is more appropriate for our purposes.

Theorem 8.1 (Alsmeyer [2]). Suppose we have the following conditions:
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(I) The process E is an aperiodic Harris recurrent Markov chain, in the sense that there exists a probability measure,
p(+) on B(2) (Borel sets in ) such that, for some A > 0,

5(E1 € E)>MAp(E), forall2, E € B(RQ). (8.4)
(IT) Under P<, (E,,n > 0), has a stationary distribution, that is

v*(df) := lim P8¢(En €df), 0eQ,pe2,
n—oo ?

exists as a non-degenerate distributional weak limit.
(IIT) With v* as above

E.[S)]:= / v*(dO)EZ[S1] < oo. (8.5)
Q

(IV) Forany continuous f : T3 — [0, 00), such that f is uniformly bounded, the mapping r — G (r, ¢) is a.e. continuous,
for any ¢ fixed, and

/ f Oov*(dq&)z sup  G(r, $) < 0, (8.6)
Q2 J0

>0 nh<r<(n+1)h

for some h > 0.

Then for v*-a.e. Q,
l o0
. < _ *
c}f}) Ego[ f(Xpo. X, Xm(rle_))] = rZ*[Sl] /Q /0 v*(de) drG(r, ¢), (8.7

where G is as defined in (8.3).

Before showing the conditions (I)—(IV) above hold, let us show that, a slightly enhanced version of Theorem 8.1 holds.
More precisely we will show first the following corollary.

Corollary 8.2. Under the assumption that (8.7) and (I)-(Il) are satisfied, we can remove the requirement that the limit is
taken along the sequence of points a@, for a — 0 and v*-a.e. 6 in (8.7) and replace it by taking limits along T > x — 0.

We note that this corollary, once proved, also ends the proof of Theorem 4.2. In order to prove Corollary 8.2, we must
first recall the following lemma and deduce a relevant corollary which deals with the Boundary Harnack Principle. This
will also be useful later on.

In the current setting, the Boundary Harnack Principle can be formulated as follows (see e.g. Bogdan et al. (BHP) in
[21] and Bogdan [19]).

Lemma 8.2. Write B. := {x € R? : |x| < ¢} for the ball of radius ¢ > 0. Suppose that u, v : T — [0, 00) are functions
satisfying u(x) = v(x) = 0 whenever x € ' N\ By, and are regular harmonic on I" N By, meaning that, for each x € ' N By,

Ex[u(XfleMr)]zu(x) and Ex[v(XrleAKF)]zv(x).

Suppose, moreover, that u(xo) = v(xo) for some xo € I' N By 2. Then, there exists a constant C1 = C{(I', o) (which does
not depend on the choice of u or v) such that,

Clv(x) <u(x) < Cru(x), xelNBip. (8.8)
It is worth noting immediately that M is a regular harmonic function on I' N B according to the above definition.

Indeed, from (3.1), the Optional Sampling Theorem and dominated convergence, using e.g. Theorem A in Blumenthal et
al. [18] which ensures IEX[|Xr]e |ﬁ] < 00, we know that

M) = lim E.[IX,, olPM(@rg(X,, o)1 nee o))
=E, [M(Xrle)l(rle<xr)]

=E, [M(Xrlemcr)]‘
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As M can only be defined up to a multiplicative constant, without loss of generality, we henceforth assume there is a
xo € I' N By 2, such that M (xg) = 1.

Corollary 8.3. Let xo be as above. For each f >0 on R? such that
0<Ey [f(Xr,e)l(rle<Kr)] < 00,
there is a constant C1 = C(I', &) (Which does not depend on the choice of f) such that, for all x € I' N\ By 2,

E,[f(X 6)1(T <]
Cy M(x) SELI7X, 9)1 . <,<r)] <CiM(x).

Proof. The result follows from Lemma 8.2, in particular from the inequalities (8.8), as soon as we can verify that

g(x) := EX[f(Xrle)l(rle<Kr)] ’ ‘e Rd’
B [f (Xe2)1 (18 )]

is regular harmonic on I' N Bj.

To this end, note that the function g clearly vanishes on I'C N By and is equal to a constant multiple of f on I' N By
by construction and (recalling that M has been normalized so that M (xg) = 1) we have g(xo) = M (x¢) = 1 for some
xo € I' N By 2. Finally, note g(X,) =0 and

f(Xrle)l(rle<Kr)
(tP<kr) = XO[f(the)l(tle<Kr)]

g(X, e)l

almost surely and hence, for x € I' N By,

f(X e)l(r <KI‘)]
xo[f(X 9)1(7 <Kr)]

g(x) x[g(Xrle)l(rle<Kr)] [g(Xrl /\Kr)]

as required. (]

Let us now return to the promised proof of Corollary 8.2 which states that we can take the limits to the apex of I" in
(8.7) in a more natural way.

Proof of Corollary 8.2. For Borel sets D C (0, c0) and E € 2, we have, with the help of scaling,

P3(S1 —1€ D, E| € E) =Pj(log X0l €D, arg(X.e) € E)

1
= M@0 EQ/e[M(the)l(log\Xrle|eD,arg(Xrle)eE,rle<Kr)]~ (8.9)
Note that, for x e ' N By, D € B(0, 0), E € B(Q2),
gx; D, E):=E, [M(Xrle)l(log X e |€D,arg(XTe)eE,rle<Kr)]
1 1

is a regular harmonic function in I N By (according to the definition in Lemma 8.2), which can be seen by applying the
Strong Markov Property. Normalising M so that M (6y/e) = 1, for some 6y € €2, also tells us that

p(D, E) =Eg/e [M(Xrle)l(log X e |eD,arg(Xre)eE,rle<Kr)] =8(%/e; D, E) (8.10)
1 1

is a probability distribution on (0, co) x 2. For convenience, we shall shortly write p(E) in place of 5((0, c0), E) on €.
Corollary 8.3 now tells us that, for all x € I' N By 2,

gx;D,E)

o M()_m Ci1M(x), (8.11)
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where the constant C; € (0, 0o) is universal and does not depend on the construction of g, nor xg. Said another way, we
have, for 6 € Q (which corresponds to x =6/e in (8.11)),

'8(D,E)<Pj(S1 —1€D,E €E)<p(D,E)C). (8.12)

Let us now assume that A is a null set of v*. From (II), we know that P,«(E; € A) = v*(A) = 0. On the one hand,
from (8.12) and (8.9), we note that 0 =P« (E1 € A) > Cfl p(A), and hence that p(A) = 0. On the other hand, we know
from (8.12) again together with the latter fact, that, Po(E; € A) < C1p(A) =0, for all 6 € Q2. We have thus shown that

the very first step of the process E positions it randomly so that it is in the concentration set of the support of v*.
From (8.2) and (8.1), writing I for the right-hand side of (8.7), we have, for x € I' such that

B[S (Xre. Xo_. X,y p0_)] — 1|

Eirecn [Z 1(s, <—log|x) G (—log x| — Sy, En)] - I’
n>0

< G(—log|x|, arg(x)) + [Eqyi)| D 1(s,<—tog i) G(—log x| = Sy, 8n) | = 1

-n>1 -

< G(—log|x|, arg(x)) + Pe() (81 > —log|x|)7

+]E§Ig(x)[1(sl<—log|x|> e Zl<sns—log|x|>G(—10gIXI—Sn,En) —1]- (8.13)

“n>0 -

Taking care to note that

1 1(71 _rc\)r\) - I(IX 9 |>1) lfe|-x| < 1
P 1 ifelx| > 1,

we have for e|x| < 1 that
G(—log|x|, arg(x)) = ]E;‘[f(the, Xeo_, Xm(rlei))l(rlefreem)]
<IflcP3(X,e > 1)
= 11f looPirg(ry (X oo > 1/1x1)
= 1| fllooParg(r) (S1 > —log |x]).

Hence, back in (8.13) we obtain

|]E;'[f(XTe, Xre—’ Xm(rle—))] - Ii

< (Iflloo + I)Py(ey (St > — log x1)

[Z 1(5 <— loglxl)G(— 10g|x| Sy, En):| — IH (8.14)

n>0

+ Ilaarg(x) |:1(Sl <-—log |X|)

Appealing to (8.12) we can develop the right-hand side of (8.14) to get
|E;[f(Xrle’ thef’ Xm(rlef))] - I}
<Ci(I flloo + 1)p((—log x|, 00))
o
+Ci /0 /Qﬁ(dr’ dP) 1< 10g ) [Efyjerg [ f (Xre. Xoo_. X0 )] = 1]
Using that p is a proper distribution, dominated convergence, the fact that Py (E; € -) < v*(-) and (8.7) gives us that

: < 1 * *k
Fel,lxrgoEx [f(Xfle’ Xfle—’ X’"(Tle—))] B m/sz/o VAN dra@ e

without restriction on arg(x) in relation to v*, as I' 3 x — 0. U
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8.3. Verification of conditions (I) and (II)

We have already verified in (8.12) that
Ps(E1 € E) > Cy ' p(E), (8.15)

which implies that (8.4) holds, i.e. condition (I) is holds.
The following lemma follows directly from (8.15) and is a rewording of e.g. Theorems VII.3.2 and VIL.3.6 of As-
mussen [4], and it addresses precisely condition (II).

Lemma 8.3. Under P, (E,, n > 0), has a stationary distribution, that is
v*(df) := lim P} ,(E, €df), 0€Q,¢c,
n—00 0.9
exists as a non-degenerate distributional weak limit. Hence, the condition (Il) is satisfied.

Remark 8.1. Note that

M@)

Mo =Y (d¢),

/ v (dOPy(E, € do, T, < k1)
Q

which makes v! (d¢) = v*(dp)/M(¢), ¢ € L, an invariant measure for the killed semigroup Py(E, € d¢, T;, < kr),
n>0.

Note that, under the assumptions (I) and (II), the limiting distribution (8.7) is proper, which can be seen by taking
f =1, in which case

/ /OO v*(de) drG(r, ¢) =/ /OO v*(d¢p) drIP’:_,¢(rle < teeH)
QJO QJ0

1 00
- / / v*(dep) dr + / / v*(d¢)drIP’§fr¢(fle=T§fr)
QJo QJ1

o0
zlﬁ//lﬂwmw;w%wﬁ|>®
aJ1 e

o0
=1+// v*(dg) drPj(logle™ X 0| > 0)
QJ1

o
=1 +/ / v*(dg) drIP’;(Sl >r)
QJ1

=1+E[S1—1]

=E7«[S1] (8.16)
and hence the limit on the right-hand side of (8.7) is equal to unity (for f =1).
8.4. Verification of conditions (III) and (IV)
We do this with two individual lemmas.

Lemma 8.4. Condition (IIl) holds, i.e. E.[S1] < oo.

Proof. We can appeal to the law of first exit from a sphere given in Theorem A of Blumenthal et al. [18] to deduce
that, up to constant C, which is irrelevant for our computations, and may take different values in each line of the below
computation, we have the following inequalities

sup ZEX [M(Xfle)(l +log| X e |)1(T19<Kr)]
|x|<1/

< sup IEX[M(XTIQ)(1+10g|XT19|)]
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1 +log|y|

2 —a/2
= sup [ ay(= P (o - 1) ao) s R
ly|>1 ly — x|

|x]<1/2

* - 1+1
=C sup /deM(e)/ dr (2 — 1) pd10p LT
lx|<1/2JQ 1 Iro — x|

2
_ 141

=C sup /d@M(Q)/ dr(rz—l) a/zrd_1+ﬂ7+ Og’:j

Ix|<1/2/Q 1 [r6 — x|

& _ 1+1
+C sup /d@M(@)/ dr(r? —1) a/zrd_l+ﬂ7+ og;
Ixl<1/2JQ 2 lr6 — x|

=: B1 + B3. (8.17)
Using that [r6 — x| > r — |x| > 1/2 we can bound the first term as follows:

2
B, 522‘1—1+/-"(1+1og2)C/ deM(e)/ dr(r2 = 1) < oo.
Q 1

To verify that the second term in (8.17) is finite also, we use that [r6 — x| > 3r /4, by the triangle inequality, and that
necessarily 8 < «, to obtain that

4 d+% o0
B, < (§> cf deM(e)/ drr? =11 +logr) < co.
Q 2

We can now apply the Boundary Harnack Principle in Corollary 8.3 and the scaling property to deduce that
/ v*(dO)EJ[S1] =/ U*(d@)]E;[log |X e |]
Q Q

= /gz U*(d@)Eg/e[log|Xrle| + 1]

‘b Eojelle oy M (X 0)(og| X o] + D]
/Q“ (@ M@©/e)

<[ v*(d9)C; sup Ex[l(rle«r)M(Xrle)(l—}—logIXTleI)]
Q Ix|<1/2

< 00,

where finiteness follows from (8.17). U
Lemma 8.5. The conditions in (IV) holds.

Proof. Let f : > — [0, 00) be a continuous and bounded function. On account of continuity of M and standard Sko-
rokhod continuity properties of the stable process with killing at first passage times, together with the dominated conver-
gence theorem, imply that for any ¢ € I" fixed, the function

i GO @) =By [f(Xee Xoo_ Xyee Mepes ] ¥>0.
is continuous and bounded. Since f is assumed to be bounded it is enough to check that (8.6) holds with f = 1. But

this follows from a straightforward modification of the computation in (8.16), using that for any 6 € I" fixed, the function
r= IP’; (S1 > r) is non-increasing, together with the conclusion of Lemma 8.4. O

9. Proof of Theorem 4.3

Let us define a new family of stopping times with respect to the filtration generated by ((H,", 6,7), 1 > 0). Set xo = 0 and

Xn+1 =inf{s > Xp: Hs+ — H;; > 1}, n>0.
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We should also note that these stopping times have the property that the sequence of pairs ((S,, E,),n > 0), agrees
precisely with ((H,,, @;rn ), n > 0). Moreover, it is easy to show that ((x,, E,), n > 0), is a Markov additive process, and
we known (E,,, n > 0) is Harris recurrent, in the sense of (I) above.

Let,

Uj(ds, dg) := Y "Pj(xa €ds, B, €dp), 520.Q.

n>0

Appealing to the Markov property, we have, for 2 and bounded measurable f on €2,

S,G[f(®t+)] :Eae [Z l(xn<t<xn+1)f(®z+)}

n>0
3| S 020 oL £ (O ey s |
n>0

t
:/ f Uy (ds, dp)F(t — s, ),
0 JQ

with F (s, ¢) = Ej ¢[1(S§ wf (®j)] which is bounded and continuous in both its arguments. Note, moreover, that

o0 o0
/ / V¥ (d) ds F (5. §) = f f V¥ (d$) dSEZ 4 [1<n) £ (©F)]
0 Q 0 Q
o0
=/0 /Qv*(d¢)dsEa(b[l(H;fd)f(@j)]ds
= [ [ v @nugo.v.a) 6,
QJIQ
where U (; (dx, df), x > 0, Q, is the ascending ladder MAP potential
(o0}
Ug(dx,do) =f0 P§ 5 (H" e dx, ©F €df)ds.

As such, whenever f is bounded, we have that fooo fQ v*(dp)ds F (s, ) < 0.
We also note that

EZ Dl = / U APES 1]
Q
o
=f U*(dd))/ P§¢(X1 > t)dt
Q 0 '
o
=/ U*(d¢)/ P§¢(Ht+ <1)dt
Q 0 '
=/ v*(dp)U; (10, 1), ) < 0.
Q
Arguing as in the proof of Lemma 8.5, it follows that whenever f is continuous and bounded, the mapping (s, ¢)
F (s, ¢), satisfies the conditions in Theorem 2.1 in [2].

As such, and on account of the fact that (E,,, n > 0) has been proved to have a stationary distribution, v*, we can again
invoke the Markov additive renewal theorem [2] and conclude that, for v*-almost every €2,

1
i 3, [(97)] = p— /Q /Q VB (0. 1), dO) £ ).

t—00 B E(<)] v

We can upgrade the previous statement to allow for all Q2 by appealing to reasoning similar in fashion to the proof of
Corollary 8.2. For the sake of brevity, we thus leave this as an exercise for the reader.
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In conclusion, (®;", > 0) has a non-degenerate stationary distribution, which is given by

Jo Ja v (d)Ug ([0, 1), db)
Jo v @p)UF(0.1),2)

7%t (do) =
as required.

10. Proof of Theorem 5.1
We first need a technical lemma. Recall that P :=inf{r > 0: | X;| < a}, a > 0.

Lemma 10.1. We have the following convergence,
]P><| (&) l [e¢]
lim (7" < 00) / / vt (dg) drEZ, , [1X, 02 4] < 0o
Isakx—0 (jx|/a)?—26—d Eg.llog|X o1 Ja Jo ol

Proof. We first use properties from the Riesz—Bogdan—Zak transform in Theorem 5.2 and the scaling properties (1.2)
and (6.2) (employed similarly for rle/a) to deduce that

M(X
IE”“( <oo) |: (r"@);r@<xr]

LM
M(KX )
=Exy| =057
“[M(arg(xmxw a = }
. |X,]e/a|“—ﬂ—dM<arg<tha)>'f .
— L RE T Mgy T

X;o/al* P~ M (arg(X o)
(T <K
K[ "D M(arg(x) ! r}
|x|o—2h~d _28—d
= e Baxa[IX o177

Using Theorem 4.2 with f(x) = |x|"‘_2ﬁ_d1(|x‘21), we thus have that
P{(t® < o0)
lim ——%——
I'sakKx—0 (|x|/a)*~ 2p—d

—28—d
= lim B [1Xee 1]

00
- - * < a—2B—d
_Ej*[longreI]/Q/(; V() drEY, ,[1X o l(rlegreel_r)] <0 (10.1)

where we have used that « — 28 — d < 0, |X716| > 1 and Theorem 4.2 with f(x) = |x|“‘2ﬁ_d1(‘x|21), for x € T'. The
result now follows. U

Returning now to the proof of Theorem 5.1, the usual application of the strong Markov property means we need to
evaluate, for x € I,

P;{,(Tc? < oo)] (102)

P°(A,t <kp)=1limE?|1 — |
1 (o) = lim x[ (A<t pa(e® < o0)

where A € F;. In order to do so, we first note from Lemma 10.1 that,

Py, (td <kr) |X, %2

m = .
a—0 Pi(zd <kp)  |x|o72Pd
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Moreover, from (10.1), we also see that, for each ¢ > 0, there exists a constant A > 0 such that, when [aKx| =
(a/lx]) <A,

o0y < 20 <0 _ e
(I—-¢) I_W_( +¢&)Cr.

With C; as in the previous lemma. On the other hand, if (a/|x|) > A, then
P;(tf < oo) <1< (a/|x|)2ﬂ+d_aAa_2ﬁ_d.
From this we conclude that there is an appropriate choice of constant C such that for a < 1,

P, (P < 00)

St <)X, 10.3
Po(e® <o0) = | Xt | (10.3)

‘We want to show that

M (arg(X:))

4 a—2p—d7 _
E{[1X| ]—Ex[ M)

|Xf|°‘”1(,<m}

c g
< WEXUXA“ Bt ] < 00. (10.4)

To this end, we note that, since« — 8 —d < 0, E,[| X; |“"3_d1(|xr|21,,<,¢)] < 1. The problem thus lies in showing that
Ex[|X,|“_ﬂ_d1(|Xl|<1,,<Kr)] < 00. To this end, let us recall from Bogdan et al. [21] that (X,F,t > 0), the stable process
killed on exiting I', has a semigroup density, say ptr (x,¥), x,y € I'. Moreover, in equation (10) and (53) of the aforesaid
reference, they showed that

t
plr(x,t) %IP’}:(KF > I)Pg(/(r > t)(tl/“ A |y|a+d>’ x,yerl,

where pl (x,y) is the transition density of (X, P) and f (x, ) & g(x, ) means that, uniformly in the domains of f and
g, there exists a constant ¢ > 0 such that c~! < f/g < c. It thus follows that

Ex[|Xt|a7ﬂ7d1(|X,|<l,t<Kr)]

t _f_
Pg(l{r>t)<tl/a/\|le_i_d>|y|a p ddy

< CP (k1 > t)/
|

yI=1
1

< VPl (kr > z)/ r* P ldr < 00,
0

using o > 8, where the constant C has a different value in each line of the calculation above, but otherwise is unimportant.
The bound (10.3) and the finite moment (10.4) can now be used in conjunction with the Dominated Convergence
Theorem (for the inner limit) followed by the Monotone Convergence Theorem (for the outer limit) in (10.2) to deduce

H(X;)

=K, |:1(A,t<;q~)m:|, t>0, (10.5)

X124
P;(A,I<K{0})=E:|:1A i|

|x|a—2ﬁ—d

with H (x) = |x|°‘_’3_dM(arg(x)) as required.
We must also show that this process is continuously absorbed at 0. Noting that H (x) = |x|*~?M (K x), applying the
Riesz—Bogdan—Zak transform (cf. Theorem 5.2), for continuous and bounded f : R? x RY — [0,00) and 0 < a < |x]|,

B[S K-y Xop)] = Ex [f(xmm?—)’ Xeo ) <o) 31 (Kx)

M(X,]e/ )
=Egx [f(KXW(T]G/a)’ erle/a)l(tle/a <Kr)m:|
=B [ (K X, 1y K X)),

Tl/a

M(KX,;.;)]



Recurrent extension for ssMp in a wedge 2089

where, for a > 0, m(z®—) = sup{t < P : |X,| = inf,<, |Xs|} and m(zP—) = sup{t < =¥ : |X;| = infs, | X,|}. From
Theorem 4.2 it follows that the limit on the right-hand side above is equal to f (0, 0). This shows (X, P}), x € I is almost
surely absorbed continuously at 0.

Finally, reconsidering the proof of Proposition 4.1, the remaining statement is straightforward to prove in the same
way. This concludes the proof of Theorem 5.1.

11. Proof of Theorem 5.3

It turns out more convenient to prove Theorem 5.3 before we deal with Theorem 3.3. Indeed, it will play a crucial role in
its proof.

11.1. Proof of Theorem 5.3 (i)

We can verify the statement of this part of the theorem by first noting that the transformation (K X, ),¢ > 0) maps
(X, P9), to a new self-similar process. Then we verify it has the transitions of (X, P*).

For the first of the aforesaid, we refer back to the Lamperti—Kiu transform. As already observed in Alili et al. [1] and
Kyprianou [44], from the Lamperti—Kiu representation of (X, P<),

K Xy =510 @popy, 1 20.

Note however that
0] n(t)
/ e*Sds =t and / e 2w dyu=r, 1>0.
0 0

A straightforward differentiation of the last two integrals shows that, respectively,
M — efo‘éw(t) and m — ezagwon(f) , t > O’
dr dt -

and so the chain rule now tells us

dpon® _de@)|  dn@®) _

e%Spon() (11.1)
dr ds dr

s=n(t)

and hence, ¢ o n(¢) =inf{s > 0: f(f e % dy > t}. It is thus clear that (K X;,(;), ¢ > 0) is a self-similar Markov process
with underlying MAP equal to (—§, ©).
To verify it has the same transitions as (X, P*), we note that (n(¢), ¢ > 0), is a sequence of stopping times

Ex . [f(KXy0)]

M(Xy@))
M(Kx)

|K X 0| P M (arg(K X 1))
|x|=# M (arg(x))

ZEKx|: f(KXn(t))§77(t)<K1"i|

=E1<x[ S K Xya@)); () <Kr}

[|Xz|°“f | X1 7# M (arg(X,))
lx|*=d  |x|~P M (arg(x))

X

f(X);t <Kr}

| X194 M (arg(X,))
|x|@=d=F M (arg(x))

E;[f(X0)]

Ey

fX)t < Kl":|

where in the third equality we have applied the regular Riesz—Bogdan—Zak transform (cf. Theorem 5.2) and in the final
equality we have used Theorem 5.1.
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11.2. Proof of Theorem 5.3 (ii)

The proof of this part appeals to Theorem 3.5 of Nagasawa [54]. The aforesaid classical result gives directly the conclusion
of part (ii) as soon as a number of conditions are satisfied. Most of the conditions are trivially satisfied thanks to the fact
that (X, IP9), is a regular Markov process (see for example the use of this theorem in Bertoin and Savov [11] or Déring
and Kyprianou [33]). However the two most important conditions stand out as non-trivial and require verification here.

In the current context, the first condition requires the existence of a sigma-finite measure p such that the duality relation
is satisfied, for any f, g : I' — R measurable and bounded, one has

/Fu(dx)f(X)/depf(x,y)g(y)=/Fu(dx)g(x)/rdyp?(x,y)f(y), vt >0, (11.2)

and the second requires that
o
u(dx) = G7(0,dx) :=/ 0(X; edx)dr, xel. (11.3)
0

Our immediate job is thus to understand the analytical shape of the measure n. To this end, we prove the following
intermediary result, the conclusion of which automatically deals with (11.3).

Lemma 11.1. We have for bounded and measurable f : T — [0, 00), which is compactly supported in T, up to a multi-
plicative constant,

[Ff(X)Gq(O,dX)Z/Ff(x)M(x)H(x)dx.

Proof. Referring to some of the facts displayed in Theorem 3.2, we have with the help of Fubini’s Theorem, the scaling
properties of the transition density p'', and (3.5) that

f FO) / F(X, € dy)dr
r 0

_ / i / FOIMOn () dy
0 r

o] r
_ . P (x,y)
—/O dt/Ff(y)M(y))}gr}) P.er > D) dy

1 r 00 r
= [ [ romo tim PEED g [Car [ oome tim LoDy

—-0P,(kr > 1) x=>0P,(kr > 1)

1 r
_ . p[ (.x, )’)
— [ [ roomo tim Ly

00 t‘d/“pr(t_l/“x,t_l/“y)
+/ dt/ F()M(©) lim ! dy. (11.4)
1 r x—0 PX(KF > 1)

We wish to use Dominated Convergence theorem to pull the limit out of each of the integrals. Referring again to Theo-
rem 3.2, and recalling the compactness of the support of f, the integrand in the first term on the righthand side of (11.4)
is uniformly bounded.

For the second term on the right-hand side of (11.4), we can assume without loss of generality that the support of f
liesin I'N {x € R : |x| < 1}. Recall again from the bound in Lemma 4.2 of [6], which states that, for 7 > 1 and |x| < 1,
there exists a constant C > 0 such that

CUPlM(x) <Pty (k1 > 1) < Ct 7P/ M (x).
Using the above, and appealing in particular to equation (4.16) of Bogdan et al. [21], for ¢, |[x| > 1 and y € T,

lid/ap{(tfl/ax,tfl/ay) B tid/ap{(lfl/ax,tfl/ay)
Py(kr > 1) M (x)
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P—1/ay (kp > 1)
T+ 1=y
< —@2p) /o

<~

The right-hand side above can now be used as part of a dominated convergence argument for the second term in (11.4),
noting in particular that f is compactly supported.
In conclusion, we have

/ﬂﬁfHW&ewmt
-ﬂm/mem/dr”“”
PG > 1)

. P&y
ﬂ%ﬁmwwﬂ“mm>D

r
— lim Jr FOIM()G (x,y).
x>0 M(x)

(11.5)

The above limit has already been computed in Lemma 3.5 of Bogdan et al. [21] and agrees with the conclusion of this
lemma. =

To complete the proof of part (ii) of Theorem 5.3, we must show (11.2). To this end, let us start by recalling Hunt’s
switching identity for X as a symmetric process and «r as a hitting time of an open domain. It ensures that for any
f, g : T' — R measurable and bounded one has

ﬁMﬂmﬁwﬁmwgw=ﬁwmmﬁwﬁwwﬂm Vi > 0.

With this in hand, it is easy to check that
/ (dx)f(x)fdypt (x, )’)g(y)—/dxf(x)M(x)H(x)/ pr(x, y)g(y)MEy;

/ﬁmemHm/muywwﬁ%

=ﬁmmmmﬁwﬁwwﬂm (>0,

as required.

12. Proof of Theorem 3.3

To prove the weak convergence on the Skorokhod space of P, as x — 0, to Py, we appeal to the following proposition,
lifted from Dereich et al. [32] and written in the language of the present context.
Proposition 12.1. Recall t& =infl{t : | X;| > ¢}, ¢ > 0. Suppose that the following conditions hold:

(a) limy_olimsuppo._ o EJ[tP]1=0

(b) limrs;—¢ Pj(Xr? € ) =: ue(-) exists forall e > 0
(¢) Py-almost surely, Xo =0 and X, #0 forallt > 0

(d P“((X 040120 € ) = [1 e (AY)P5 () for every e > 0.

Then the mapping
sz P}

is continuous in the weak topology on the Skorokhod space.
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Verification of Condition (a). Define G™(x, y) via the relation
o0
/ FOMG (x, y)dy =E} [/0 f(Xt)dt],
r

and note that G¥(x,y) = M (y)Gr(x, y)/M(x), x,y € I'. Then, for f positive, bounded, measurable and compactly
supported and x € I' U {0}, then (11.5) and Lemma 11.1 tells us that

lim / FOIG (2 y)dy = / FO)G(0, y) dy.
'sz—0Jr r

Now note that
e

lim lim sup 7 [159] = lim limsup E |:/
0

e=>0 5,50 e=>0 5,50

o0
< lim limsup E [/0 1(x,1<e) dl]

e=>0 5,50

1(x,|<e) df]

< lim hmsup/ G (z, y)dy
lyl<e

=0 5750

< C lim Hy)M(y)dy

e—>0 lyl<e
&
<Clim [ o1(d9)M(©6)? / reP=lgr
e—~0Jq 0
<Clim&*#
e—0
=0,
where C € (0, 0o) is an unimportant constant which changes its value in each line and o (d9) is the surface measure on
S9—1 normalised to have unit mass.
Verification of Condition (b). This condition is covered by Theorem 4.2. Note, moreover, that 11, does not depend on €.

Verification of Condition (c). This condition is covered by Theorem 5.3.
Verification of Condition (d). We have that, for |x| < n < ¢, from the Strong Markov Property,

ES[f (e i1 2 0] = E3[Ex o [£(X :0 2 0] = E[g(X,0)] (2.1
for bounded, measurable f, where

g =Ej[ER [/ (Xi:120)]]

is bounded and measurable. From Theorem 4.2 and the Skorokhod continuity of X, P<, which follows from the Lamperti—
Kiu representation (4.1), we can take limits in (12.1) to get

E5[f (Xopy 112 0] =Eg[Ex o [f(Xi 11 2 0)]] = Ef[g(X,0)]- (12.2)

Now appealing to Theorem 5.3 (ii), thanks to cadlag paths, we know that X e = 0 almost surely under Pj. As a con-

sequence, we can appeal to the Dominated Convergence Theorem in (12.2), together with condition (a) and again, the
Skorokhod continuity of X under P, y € I', and deduce the statement in condition (d).

13. 1t6 synthesis and proof of Theorem 3.4

The basis of Theorem 3.4 is the classical method of Itd synthesis of Markov processes and an extension of the main
ideas in [56]. That is to say, the technique of piecing together excursions end to end under appropriate conditions, whilst
ensuring that the strong Markov property holds. In our case, we are also charged with ensuring that self-similarity is
preserved as well. We split the proof of Theorem 3.4 into the construction of the recurrent extension and the existence
and characterisation of a stationary distribution.
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13.1. Some general facts on self-similar recurrent extensions

As described before the statement of Theorem 3.4, according to Itd’s synthesis theory a self-similar recurrent extension
of (X, P') can be build from a self-similar excursion measure, i.e. a measure on D satisfying the conditions (i)—(iv) stated
just before Theorem 3.4.

Suppose that NI is a self-similar excursion measure compatible with the semigroup of (X, P''). Define a Poisson point
process ((s, xs), s > 0) on (0, 00) x ID with intensity dr x N''(dy) and let each excursion length be denoted by

¢ :=inf{r > 0: x,(r) =0} > 0.

Then, via the subordinator

Si= ¢, >0,

s<t
we can define a local time process at 0 by
Li=inf{r >0:¢,>t}, t>0.

Note, for each # > 0, by considering the Laplace transform of ¢;, Campbell’s formula and the assumption that N (1 —
e~%) < oo ensures that (¢;, ¢ > 0) is well defined as a subordinator with jump measure given by v(ds) = NP (¢ e ds),
s > 0.

Now, we define (;(l,t > 0) with the following pathwise construction. For # > 0, let L, = s, then ¢;— <t < ¢;— and
define

3(* . As(t —g5-), ifgs— <y,
"o, if ¢_ =¢;ors =0.

Salisbury [58,59] demonstrates how the process constructed above preserves the Markov property. In fact, one can easily
adapt the arguments provided by Blumenthal [17], who considers only [0, co) valued processes, to show that, under some
regularity hypotheses on the semigroup of the minimal process (X, P'), the process constructed above is a Feller process.
This is due to the fact that, here we are considering an extension from I to I" U {0}, for (X, P, which, by decomposing
this process into polar coordinates, is equivalent to extend the radial part from (0, co) to [0, 00).

To thus verify the Feller property, suppose that Co(I") is the space of continuous functions on I vanishing at 0 and oo,
and we write (Ptr, t > 0) for the semigroup of (X, PI'). The aforesaid regularity hypothesis needed to adapt the argument
given by Blumenthal [17] are:

(i) If f € Co(I), then PI' f € Co(T") and P} f + £ uniformly as r — 0;
(i1) For each g > 0, the mapping x +— E}; [e9%] is continuous in T';
(iii) The following limits hold;
dm )=t B0
All of these are easily verified using the Lamperti—Kiu representation of (X, P').

Now that we know that the process (;(,, t > 0) defined above is a strong Markov process, in fact a Feller process, we
should verify that such a process has the scaling property. But this is a consequence of the condition (iv) above, as can be
easily verified using the arguments in the proof of Lemma 2 in [56].

We will next describe all the excursion measures NT, compatible with (X, IPF). To that end, we recall that the entrance
law (Nf (dy), t > 0) of an excursion measure NT', is defined by

Nl (dy) :=NI'(X, edy,t <¢), t>0.

Lemma 13.1. Let NU be a self-similar excursion measure compatible with (X, P'), and y the index appearing in (iv).
Then, its entrance law admits the following representation: there is a constant a > 0, such that for all t > 0 and any
f : T+ RT continuous and bounded

r o Edf(X).t <kr)
N (7.1 <2) =% M(x)

+/| ONF(X0+edy)IEy[f(X,),t<Kr]. (13.1)
y|>
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Furthermore, there is a measure ©° on Q such that

77 (d9), (13.2)

NF(|X0+| edr,arg(Xoy) € d@) = rltay

and fgnr(dé’)M(G) < 00. Finally, necessarily y € (0, 1), and y < B/a; if y = B/a then the measure w° = 0, whilst if
y < B/a, thena=0.

Proof. In order to prove the decomposition (13.1) we start by noticing that for all s, ¢ > 0, we have
N (F(X0.1 <€) =N (lim f(Xo4).54+1 <),
which is a consequence of the dominated convergence theorem, since
N'(fXern)os +1<8) < IFINTG +1 <) < IFINT(r < ¢) < o0,
since NU' (¢ < ¢) is always finite for any 7 > 0 because
co>N'(1-e ) >N(1-e4,r<¢)>(1—e")N"(r <0).
The former, together with the Markov property under N', implies that
NT(£(X0).1 <€) =N (lim £ (Xo4).54+1 <)
= lim N"(f (X). s +1 <€)
= Sli_r)%NF (Exs [f(X,), t < Kr], s < ;)
= lim lim N"(Ex,[ £ (X)), ¢ < kr], [ X <€,5 <¢)

€e—=0s5s—0

+ lim lir%Nr(Exx [f(X0).t <kr], | Xs|>€,5 <¢)

e—>0s—

Ex, [f(X:),t <kr]
M(X5)

= lim lim N© (M(XS)

€e—=0s5s—0

, | X5 <e,s<§)
+ f N (Xoy € dy)B, [ £(X)), t <kr];
yel,|y|>0

where in the final equality we used the continuity of the mapping y — E,[f(X;),t < «r], y € I'. Corollary 3.2 and
Theorem 3.3 in [21] implies that the limit lim |y o E. [ f (X;), t < kr]/M (x) exists. This implies from the right hand side
above that

N (F(X0).1 < ¢) =a lim e/ X0t <kr]

+ N (Xos € dNE,[ (X)), t <kr],
2|0 M (x) /yer,|y|>o o+ € AVE, [/ (Xi r]

where

a = lim lim N" (M (X,), |X;| <e€,5 <¢)
—0

€e—>0s

= lim lim N
e—>0s5s—0

M) -
(m x, (er > 1), | s|<e,s<;>

. M (x) L r
=1 — ) limIlim N (|X 1 .
(leﬂopxmn)ez%xz% (Xsl<elts<t)<oo

This finishes the proof of the identity (13.1). We will next prove the identity (13.2). The latter decomposition together
with the convergence (3.5), applied to f(x) = M (x)g(arg(x))1(xe(,1)) With g any continuous and bounded function on
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I', implies that
N' (M (X)g(arg(X))1(x,1e0,1), <€)

=aC/ g(arg(y))n () dy
[yl<l
+/ N'(Xo4+ € d)E,[M (X)) g(arg(X))1(x,1e0.1)): t < kT ]-
yel,|y|>0

By the scaling property (iv’) applied to f(x) = M (x)g(arg(x))1(x|e(©,1))-
N (M (Xo1)g(arg(Xo4)), | Xo+| € (0, 1)) = c*N' (M (c ™" Xo+) g (arg(Xo+)), [ Xo+] € (0, 0))
= 7PN (M (Xo+)g (arg(Xo4)), | Xo+| € (0, 0)).

Notice that this is always finite because for |x| < 1, M (x) < KPy (kr > 1), for some K > 0. So, by the Markov property,
the latter is bounded by ¢*” “# K || g|INT (¢ > 1). Differentiating in ¢ > 0, one gets

(B —ay)rP=r=1drN" (M (Xo4)g(arg(Xo+)), 1 Xo+] € (0, 1))
=N (M (Xo+)g(arg(Xo+)), | Xo+| € dr).

Observe that since the right hand side is positive as soon as g is positive, we get as a side consequence that 8 — oy > 0.
Using again that M (x) = |x|ﬁM(arg(x)), one gets

(B —ay)r=*" =1 drN"(|Xo4 1P M (arg(Xo1))g (arg(Xo1)). | X0+ | € (0. 1))
= N"(M (arg(Xo4)) g (arg(Xo+)), [ Xo4| € dr).

Since this identity holds for any g continuous and bounded, we derive that, when 8 > «ay, the equality of measures

N (1 X0+ € dr, arg(Xo4) € df) = 7' (do),

ay+l
holds, where,

NU(1X04 18, |Xo+] € (0, 1), arg(Xo4) € d9))

T'@o) =
7 (d9) B —ay

Whilst if 8 = ay, NU'(|Xo4| > 0) =0, and thus 7" = 0. We are just left to prove that when 8 > ay, then 7' M < oo and
a = 0. Indeed, that 77" M < oo follows from the following estimates

oo>n(1—e§,X0+ ;L-O)

=/ dsn(s < ¢, Xoy #0)e™°
0

=f dse™ S/ F(de)f Po(kr > )
0

/n (de)/ My/ dse M (ro)sP/®
> [ #T(do)m©) L dr [ s bl
—Ja 0 pltay—B | ’

where we used the estimate in Proposition 2.1. As claimed we derive that fQ 7T (d9)M (0) < co. To finish, we observe
that the identity (13.1) together with the scaling property (iv’) implies that for any ¢ > 0

~vNT ' i e <Kr) g
tT'N' (¢>1)=N (C>I)Za|;}|lglo Mo at C,
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with C > 0 the constant appearing in Proposition 2.1. Since by assumption 8 > «y, we obtain by making ¢ | 0, that
a = 0. We have thus finished the proof of Lemma 13.1. ]

To finish the proof of Theorem 3.4 one should notice that, from the equation (3.5), for every f : ' — R™ continuous
with compact support, one has the convergence

E,[f(Xy), t <krl]
im =C
|x|—0 M (x)

/rf(y)nt(y) dy, t>0.

This together with the decomposition in Lemma 13.1 implies that we necessarily have the following representation for the
entrance law of any self-similiar excursion measure NT'. There is a measure 7" on €, such that fQ 7T (do)M () < oo,
and a constant a > 0 such that

o
N'(X; edy,t <§)=ant(y)dy+/0 /QJTF(dO)IErg[Xt edy,r <«rl, (13.3)

pltay

an’ =0,ifa > 0theny = B/a, and if 77 £ 0 then y < B/, and 7" M < oo0.
Furthermore, via cylinder sets, one can check that for ¢t > 0 and A € F;

1 © dr
NF(A,z<;)=aE3[M(XI)1A]+/O eranF(de)Erg[A,tqr] (13.4)

with a and 7T as above. As a side consequence, we have that the measure N’ on D, defined by the relation

NC(A,t <0) ;:E;[ 1A], for Ae Fy,t >0, (13.5)

M(X:)

is a self-similar excursion measure, whose entrance law is (n;, ¢ > 0), and such that NI (Xo+ # 0) = 0. Finally this is the
unique self-similar excursion measure bearing this property, and hence the self-similar recurrent extension associated to
it leaves zero continuously, and it is the unique self-similar recurrent extension having this property.

13.2. Invariant measure

We start by computing the invariant measure according to Chapter XIX.46 of Dellacherie and Meyer [31]. There it is
shown that the invariant measure 7 ' (dy), y € T, defined up to a multiplicative constant, is given by the excursion
occupation measure so that

¢
/rf(y) 7 (dy)=N" (fo f(x»dt),

for all bounded measurable f on I'. Note, however, the computations in Lemma 11.1 can be used to show that

- ¢ 00
NF( / f(x,>dr>= / / Fom@dzdi= [ L2690, a7 = / FHE) .
0 o Jr r M(z) r

It is then straight forward to prove the final identity in the statement of Theorem 3.4.
Finally, to see that 77 is not a finite measure, we can compute its total mass, after converting to generalised polar
coordinates (see e.g. Blumenson [16]), by

/H(x)dx:C/ al(de)M(e)/oor“*ﬁ*‘ dr = oo, (13.6)
r Q 0

where C > 0 is an unimportant constant attached to the Jacobian in the change of variables to generalised polar coordi-
nates, and o (df) is the surface measure on S9-! normalised to have unit total mass. Moreover, we also have that if 7T
is not trivial then

®  dr r
A ey QTF (dO)E,g[kr] = oo,

because by Proposition 2.1, E,g[«kr] = 0o, for any r > 0, and 2.
The failure of this measure to normalise to have unit mass means that a stationary distribution cannot exist, cf. Chap-

ter XIX.46 of Dellacherie and Meyer [31] and hence X is a null-recurrent process.
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14. Proof of Theorem 5.4

The proof of this result follows verbatim that of Theorem 3.4, albeit for some of the estimates that are used. Indeed, to
establish Theorem 3.4, we used that for (X, P ) we have

(a) forz > |x|%,
Py (kr > t) ~ M (x)t ~P/%;
(b) forany t > 0and f:T' — R continuous and bounded

Ex(f(X1), 1 <«r)

im exists.
Ix]—0 M(x)

These conditions are replaced by the following conditions on (X, P*)
(@) fort > |x|%,

P%(kr > 1) ~ H(x)t @42/
(b") forany ¢ > 0and f : T — R* continuous and bounded

EX(f(X1),t <«r)

im exists.
lx|—0 H(x)

Moreover, in proving Theorem 5.4, where one reads B in the proof of Theorem 3.4, one should use B’ := 28 +d — . From
here we have the restriction 0 < 8’ =d +28 — a < a, which restricts S to the interval ((« —d)/2) V0 < 8 < Qa —d) /2.

Let us finish by noticing that the finiteness of N*(1 — e™%) is equivalent to d < 2(a — ). To this end, we can appeal
to Lemma 4.3 of [6] to see that, there exists a constant C > 0, such that, for x € T,

cls@2b-d/e m% |x|472P=4P> (5 < kp)) < Cs@ 2D/ (14.1)

X

where ko) =inf{t > 0:|X;| = 0}. Recall from (10.5) that, forx e I', and A € F;,1 > 0,

X, |o—2h—d H(X
g<| 1, X _g, | XD
|x|o—2h=d H(x)

X

1(Aﬁ{t<Kr}):| = ]P’; (A, t < kKo))- (14.2)
Hence, using (14.2), we have
o0
N (1—e7%) =/ e N (¢ > s)ds
0
o0
=/ dse Eg[J(Xy)]
0

o
=/ dse™ lim [x|* 2P ~P (s < ko)),
0 —0

X

and, thanks to (14.1), the right hand side either converges or explodes depending on whether d < 2(a — ). So, remember
that by Campbell’s theorem, the sum of the lengths Zsft ¢ is finite a.s. for any ¢ > 0, if and only if N> (1 —e~%) < oo,
which is equivalent to d < 2(a — 8). This justifies our comment following the statement of Theorem 5.4.
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