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Introduction

[ lole}

‘We consider a filtered probability space

Q®, FO (FP)20,P®)

Definition 1.1 (CSBP)

A branching process is a [0, c0]-valued strong Markov process Y = (Y, t >
0) (where O and oo are absorbent states), which has cadlag paths and their
probabilities (]P’;b), x > 0) satisfying the branching property: for all 0 > 0 and
z,y 20,

E®)

O e =EP e EP [e7], t>0.

EP e ) = e ™®)  where u satisfies %(9) = —(ue(0)), wuo() =0,

1 is the branching mechanism and satisfies the Lévy-Khintchine formula.
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Let p be a measure concentrated on (0, 00) and we assume that
/ (z A z®)p(dz) < oo,
(0,00)
which guarantees non-explosivity (Fu and Li, 2010).
The function v satisfies
P(A) = (0+H)A +42X\2 +/ (e — 14 Az)u(dz), >0,

(0,00)

where v > 0 and we have

EP Y] = ze VOV 2 >0,

supercritical if '(0+) <0

Y is critical if +'(0+) =0
subcritical if «¢'(0+) >0
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The process Y can also be defined as the unique non-negative strong
solution (Dawson and Li, 2012) of

t t t
Y; :Y()—q/)’(o+)/ sts—i—/ \/272YSdB§”)+/ /
0 0 0 J(

Yo—
/ ZN(b)(ds7 dz,du),
0,00) 40O
where

o B® = (Bt(b),t > 0) is a standard Brownian motion.

o N®(ds,dz,du) in R3 with intensity dspu(dz)duw.

o N® ig the compensated measure of N®.

B® is independent of N®.




luction

» B is a standard Brownian motion.

> N (ds,dz) in Ry x R with intensity dsm(dy).

> 7 concentrated on R \ {0} such that [;(1 A z®)7(dz) < co and
a€eR,0>0.

t
Sy =at+oB® + / / (e* —1)N'9(ds, dz)
0 J(-1,1)

t
+/ / (e* —1)N'9(ds, dz)
0o J(-1,1)¢

‘We consider independent processes for demography and
environment.

We work on (2, F, (Ft)¢>0,P) where

Q=00 xo® F=FORF®, F = F @ F® for t > 0,
P:= P @ PO,
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A CSBP in a Lévy random environment Z = (Zy,t > 0) with probabilities
(P.,z > 0) is defined as the unique non-negative strong solution of

"t "t
Zi= Zo —/ w/(O—i—)sts—&—/ V/2v2Z,dBY
0 0

t Zs_ ot
+ // / zN(b)(ds,dz,du)Jr/ Zo_dSs.
0 J(0,00) YO Jo

Observations:

» Pathwise uniqueness and strong existence were proved
independently by Palau and Pardo (2018) and He et al. (2018).

> f<0’oo)(x A z?)p(dz) < oo guarantees non-explosivity (Bansaye et al.,
2019).
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We define the process K, a modification of the jump structure of S, with
probabilities (P{”, z € R)

t . t
K,=at+oB + / / 2N (ds,dz) + / / 2N (ds,dz),
0 (-1,1) 0 (—1,1)¢

where @ := a — ' (0+) — % - f(_l p(e” =1 —2z)m(dz).

Theorem 1.1 (Bansaye et al., 2019)

For P almost every w® € Q) (exp {—Kt(w("‘), )} Z(w'®, ), t > ()) is
a (Q®, F®, (]—"t(m)tzo,]P’(b))—martmgale and for any t > 0 and z > 0,

E.[Z:|S] = ze®*, P — a.s.

supercritical if K driftsto oo

Z is critical if K oscillates
subcritical if K drifts to — oo
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Theorem 2.1 (Palau and Pardo, 2018, Li and Xu, 2018)

For every z, \,t > 0, we have a.s.,
E(.,0) [exp {—)\ZtefKt} |K] = exp {—zv:(0, A\, K)},

where for every t,\ > 0, the function (ve(s,\, K),s < t) is the a.s. unique
solution of the backward differential equation

9 (5,0 K) = g, A KT, wilt A K) =,
and Bo(X) = $(3) — M (0+).

The survival probability if: 1o(\) = cA?t!, g€ (0,1], ¢> 0.

P, (Z; > 0) =E© [1 — exp {—z (5011,(6}())‘1/5}] :

where 7, (8K) : fo “Aludy, 0<t<oo.




Theorem 2.2 (Palau et al., 2016, Li and Xu, 2018)

Let (Zy,t > 0) be a stable CSBP in Lévy environment with Zo = z > 0. We
denote ®r(\) = log E(®) [eME1].
@ Supercritical. If ®% (0+) > 0, then lim;—, o P.(Z; > 0) > 0.
© Critical. If ®(0+) = 0, then im0 VP, (Z: > 0) = c3(2).
@ Subcritical. Assume that ®(0+) < 0, then
o Strongly. If ®, (1) <0, then there exists c1 > 0 such that

tl—1>n;o et WP (7, > 0) = c12.

o Intermediate. If ®} (1) = 0, then there exist ca > 0 such that

tgn;o tl/stt(I”((l)Pz(Zt > 0) = caz.

o Weakly. If ®,-(1) > 0 and 7 satisfies & (1) = 0, then there exists ca
such that

tlirgo Z/Z%/Ze—td),\»(f)Pz(Zt > 0) — C4(Z).




General branching mechanism (critical case)

t
%/P@(Ktzo)dt—me(m), as t — o0,
0

@) / zIn®(z)p(dz) < 0o
(ii) there exists 7 > 1 such that E® [eﬁKl} < oo,

(iii) there exists 8 € (0,1] y C > 0 such that o()\) > CA*™ for X > 0.

Theorem 2.3 (Bansaye et al. (2019))

There ezists a positive function c such that for any z > 0,
P.(Z: > 0) ~ c(2)P{ (I, > 0) ~ b(2)t" " 1(t), ast— oo,

where Iy = info<s<¢ K, p < 1, b is other positive function and l is the

slowly varying function, i.e., for X > 0, hm l((>\t)) —1




Problem

Our objective is to relax the assumption that the branching
mechanism is stable and to find extinction rates of the process Z.
We focus on the subcritical regime, i.e., when the Lévy process K

drifts to —oo.

Subcritical regime: @ (0) < 0, where ®x(\) = log B [e*1]
‘Weakly [ Intermediate [ Strongly
D% (1) >0 D% (1)=0 D% (1) <0

Ir € (0,1), Dk (1) =0

The Esscher transform is define on F; as

P = " Kt—t2r () P



Fluctuation Theory- Definitions

We define,

I; = inf K, M;= sup Ks, t>0.

0<s< 0<s<t

Let V(™ and V(") be the renewal functions under P™ e,

V) (z) = / PO (H, <z)dt and V(z):= / P (H, < z)dt,
0 0
where

Hy=—I;a, Hio=M_1, t>0,

are the descending and ascending ladder processes, respectively. We recall
that R R
Ly' =if{s>0:L, >t}

for L the local time at 0 of K — I. Similarly, we define the local time at 0 of
M- K.



CSBP in a Lévy environment conditioned to stay positive and negativ

For A € F
1 ~
PO T Ay = — - ED 7O (g1 14], x,2>0,
(z,z)( ) V) (x) <Z’I)[ (Ke)1ir,>031a]
(7),d _ 1 () (7) (7
]P)(z,x)(A) o mE(z,a:) V7 (Ki)lr,<op1a], < 0,2>0.
Illustration
T x| x
7 t t
I .
K under P, K under B K under P{1

(0) <0 (r)=0



Strongly Subcritical

Theorem 5.1 (Strongly Subcritical)

Assume condition [~ zlog(z)u(dz) < oo and that the Laplace ezponent of
Léuvy process K fulfills the conditions ®%(0) < 0 and (1) < 0. For z > 0,
we have

(4t > ~ 03(2,T)E,|Z¢] ~ b3(2,T)e as t— oo
P.(Z: > 0) ~ by (2, 2)B:[Ze] ~ by(z, @)™ ", :

where 0 < bs(z,z) < co.

]PZ(Zt > 0) ~ b3(z7x)]Ez[Zt] ~ b3(271,)({/,<1>;((l)7 t— 00

i v
i
\J | Bansaye et al. (2019) |
o tD(1)
0 < lim B [ 1g.(K)] < o0 Blea ] = ze7e



Weakly Subcritical

Theorem 5.2 ( y Subcritical)

Suppose that P (0) < 0 < @ (1). Let 7 € (0, 1) be the solution of @y (1) = 0.
Also assume that ReWk (\) = log B [eM1] > 0, X # 0. For z > 0, we have,
as t — oo,

Poay(Ze >0) ~ bi(z,2)PE (I > 0)

~ bl(z,x)Aem‘/}(T)(w)t73/26¢1"(7)t/ eV (2)dz,

0
where
1 o0
A= —— _exp {/ (et =1t e PO (K, = O)dt} ,
V21 @Y (T) 0

and bi(z,x) is a constant that depend on z and x.




Preliminary Results
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Weakly Subcritical

K under P, K under P\
®,.(0) < 0 ®(7) = 0

[B:(2 > 0) = Pie(Z > 0.1, > 0) + Pi(Z > 0.1, <0) |

v
Pioy(Zi > 0,1, <0) < Py (Z; > 0,1, > 0)

We study (Z, K) under ]P’EI):)

i

Pr.oy(Zi > 0,1; > 0) = P(. (2 > 0|1, > (])]P’(,(:)([, > 0)
! Hirano (2001)
- -

P (1, > 0) ~ c5e™ VO (2)t3/2e260 ¢ 5 00
c3i=A [ eV (2)dzy A>0



Intermediate Subcritical

Theorem 5.3 (Intermediate Subcritical)

Assume condition [ zIn®(z)u(dz) < co and that the Laplace ezponent of
Lévy process K fulfills the conditions ®(0) < 0 and ® (1) =0. For z > 0
and x < 0 we have, ast — oo

P.(Z: >0) ~ ba(z,z)P(M; < 0)E.[Z]

~  ba(z,7) ﬂ_q),?(UE(I)[HﬂV(l)(—x)fl/z(i(b“'m”,
\/ K

where 0 < ba(z,z) < co.
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Intermediate Subcritical

K under P, K under ]P’ﬁ-l)
2 (0) <0 (1) =0
R
x 4.\"\ x
a
[P.(Z > 0) =Pp.)(Z > 0,M; <0) + Py (2> 0,M; > 0), t oo |
(1.4 : M
We study (Z, K) under P05 Plow)(Ze > 0,M; > 0) < P(.0y(Z > 0, M; < 0)

v v

Hirano (2001)

PO(M, < z) ~ /ﬁq,'?,(l)E(l)[H1]V“)(*~’L‘)f 12 ¢ o0 E(.)[Z)] = zeve!®x()
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