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We consider a filtered probability space
(Ω(b),F (b), (F (b)

t )t≥0,P(b))

Definition 1.1 (CSBP)

A branching process is a [0,∞]-valued strong Markov process Y = (Yt, t ≥
0) (where 0 and ∞ are absorbent states), which has càdlàg paths and their

probabilities (P(b)
x , x ≥ 0) satisfying the branching property: for all θ ≥ 0 and

x, y ≥ 0,
E(b)
x+y[e−θYt ] = E(b)

x [e−θYt ]E(b)
y [e−θYt ], t ≥ 0.

E(b)
x [e−θYt ] = e−xut(θ), where u satisfies

∂ut
∂t

(θ) = −ψ(ut(θ)), u0(θ) = θ,

ψ is the branching mechanism and satisfies the Lévy-Khintchine formula.



Introduction Background Problem Tools Preliminary Results References

Let µ be a measure concentrated on (0,∞) and we assume that∫
(0,∞)

(x ∧ x2)µ(dx) <∞,

which guarantees non-explosivity (Fu and Li, 2010).

The function ψ satisfies

ψ(λ) := ψ′(0+)λ+ γ2λ2 +

∫
(0,∞)

(e−λx − 1 + λx)µ(dx), λ ≥ 0,

where γ ≥ 0 and we have

E(b)
x [Yt] = xe−ψ

′(0+)t, x, t ≥ 0.

Y is


supercritical if ψ′(0+) < 0

critical if ψ′(0+) = 0
subcritical if ψ′(0+) > 0
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The process Y can also be defined as the unique non-negative strong
solution (Dawson and Li, 2012) of

Yt = Y0−ψ′(0+)

∫ t

0

Ysds+

∫ t

0

√
2γ2YsdB

(b)
s +

∫ t

0

∫
(0,∞)

∫ Ys−

0

zÑ (b)(ds, dz, du),

where

B(b) = (B
(b)
t , t ≥ 0) is a standard Brownian motion.

N (b)(ds, dz, du) in R3
+ with intensity dsµ(dz)du.

Ñ (b) is the compensated measure of N (b).

B(b) is independent of N (b).
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CSBP in Lévy environment

Environmental term: (Ω(e),F (e), (F (e)
t )t≥0,P(e))

I B(e) is a standard Brownian motion.

I N (e)(ds, dz) in R+ × R with intensity dsπ(dy).

I π concentrated on R \ {0} such that
∫
R(1 ∧ x2)π(dx) <∞ and

α ∈ R, σ ≥ 0.

St = αt+ σB
(e)
t +

∫ t

0

∫
(−1,1)

(ez − 1)Ñ (e)(ds,dz)

+

∫ t

0

∫
(−1,1)c

(ez − 1)N (e)(ds, dz)

We consider independent processes for demography and
environment.

We work on (Ω,F , (Ft)t≥0,P) where

Ω := Ω(e) × Ω(b),F := F (e) ⊗F (b), Ft := F (e)
t ⊗F

(b)
t for t ≥ 0,

P := P(e) ⊗ P(b).
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A CSBP in a Lévy random environment Z = (Zt, t ≥ 0) with probabilities
(Pz, z ≥ 0) is defined as the unique non-negative strong solution of

Zt = Z0 −
∫ t

0

ψ′(0+)Zsds+

∫ t

0

√
2γ2ZsdB

(b)
s

+

∫ t

0

∫
(0,∞)

∫ Zs−

0

zÑ (b)(ds, dz, du) +

∫ t

0

Zs−dSs.

Observations:

I Pathwise uniqueness and strong existence were proved
independently by Palau and Pardo (2018) and He et al. (2018).

I
∫

(0,∞)
(x ∧ x2)µ(dx) <∞ guarantees non-explosivity (Bansaye et al.,

2019).
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We define the process K, a modification of the jump structure of S, with
probabilities (P(e)

x , x ∈ R)

Kt = αt+ σB
(e)
t +

∫ t

0

∫
(−1,1)

zÑ (e)(ds, dz) +

∫ t

0

∫
(−1,1)c

zN (e)(ds, dz),

where α := α− ψ′(0+)− σ2

2
−
∫

(−1,1)
(ez − 1− z)π(dz).

Theorem 1.1 (Bansaye et al., 2019)

For P(e) almost every w(e) ∈ Ω(e),
(

exp
{
−Kt(w

(e), ·)
}
Zt(w

(e), ·), t ≥ 0
)

is

a (Ω(b),F (b), (F (b)
t )t≥0,P(b))-martingale and for any t ≥ 0 and z ≥ 0,

Ez[Zt|S] = zeKt , P− a.s.

Z is


supercritical if K drifts to ∞

critical if K oscillates
subcritical if K drifts to −∞
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Theorem 2.1 (Palau and Pardo, 2018, Li and Xu, 2018)

For every z, λ, t ≥ 0, we have a.s.,

E(z,0)

[
exp

{
−λZte−Kt

}
|K
]

= exp {−zvt(0, λ,K)} ,

where for every t, λ ≥ 0, the function (vt(s, λ,K), s ≤ t) is the a.s. unique
solution of the backward differential equation

∂

∂s
vt(s, λ,K) = eKsψ0(vt(s, λ,K)e−Ks), vt(t, λ,K) = λ,

and ψ0(λ) := ψ(λ)− λψ′(0+).

The survival probability if : ψ0(λ) = cλβ+1, β ∈ (0, 1], c > 0.

Pz (Zt > 0) = E(e)
[
1− exp

{
−z (βcIt(βK))−1/β

}]
,

where It(βK) :=
∫ t

0
e−βKudu, 0 ≤ t ≤ ∞.
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Theorem 2.2 (Palau et al., 2016, Li and Xu, 2018)

Let (Zt, t ≥ 0) be a stable CSBP in Lévy environment with Z0 = z > 0. We
denote ΦK(λ) = logE(e)[eλK1 ].

1 Supercritical. If Φ′K(0+) > 0, then ĺımt→∞ Pz(Zt > 0) > 0.

2 Critical. If Φ′K(0+) = 0, then ĺımt→∞
√
tPz(Zt > 0) = c3(z).

3 Subcritical. Assume that Φ′K(0+) < 0, then
Strongly. If Φ′K(1) < 0, then there exists c1 > 0 such that

ĺım
t→∞

e−tΦK(1)Pz(Zt > 0) = c1z.

Intermediate. If Φ′K(1) = 0, then there exist c2 > 0 such that

ĺım
t→∞

t1/2e−tΦK(1)Pz(Zt > 0) = c2z.

Weakly. If Φ′K(1) > 0 and τ satisfies Φ′K(τ) = 0, then there exists c4
such that

ĺım
t→∞

t3/2e−tΦK(τ)Pz(Zt > 0) = c4(z).
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General branching mechanism (critical case)

1

t

∫ t

0

P(e)(Kt ≥ 0)dt→ ρ ∈ (0, 1), as t→∞,

(i)

∫ ∞
x ln2(x)µ(dx) <∞,

(ii) there exists θ+ > 1 such that E(e)
[
eθ

+K1

]
<∞,

(iii) there exists β ∈ (0,1] y C > 0 such that ψ0(λ) ≥ Cλ1+β for λ ≥ 0.

Theorem 2.3 (Bansaye et al. (2019))

There exists a positive function c such that for any z > 0,

Pz(Zt > 0) ∼ c(z)P(e)
1 (It > 0) ∼ b(z)tρ−1l(t), as t→∞,

where It = ı́nf0≤s≤tKs, ρ < 1, b is other positive function and l is the

slowly varying function, i.e., for λ > 0, ĺım
t→∞

l(λt)
l(t)

= 1.
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Problem

Our objective is to relax the assumption that the branching
mechanism is stable and to find extinction rates of the process Z.
We focus on the subcritical regime, i.e., when the Lévy process K

drifts to −∞.

Subcritical regime: Φ′K(0) < 0, where ΦK(λ) = logE(e)[eλK1 ]

Weakly Intermediate Strongly

Φ′K(1) > 0 Φ′K(1) = 0 Φ′K(1) < 0
∃τ ∈ (0, 1), Φ′K(τ) = 0

The Esscher transform is define on Ft as

P(τ) = eτKt−tΦK(τ) · P.
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Fluctuation Theory- Definitions

We define,

It = ı́nf
0≤s≤t

Ks, Mt = sup
0≤s≤t

Ks, t ≥ 0.

Let V (τ) and V̂ (τ) be the renewal functions under P(τ), i.e.,

V (τ)(x) :=

∫ ∞
0

P(τ)(Ht ≤ x)dt and V̂ (τ)(x) :=

∫ ∞
0

P(τ)(Ĥt ≤ x)dt,

where
Ĥt = −I

L̂−1
t
, Ht = M

L−1
t
, t ≥ 0,

are the descending and ascending ladder processes, respectively. We recall
that

L̂−1
t = ı́nf{s ≥ 0 : L̂s > t},

for L̂ the local time at 0 of K − I. Similarly, we define the local time at 0 of
M −K.
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CSBP in a Lévy environment conditioned to stay positive and negative

For Λ ∈ Ft

P(τ),↑
(z,x)(Λ) =

1

V̂ (τ)(x)
E(τ)

(z,x)[V̂
(τ)(Kt)1{It>0}1Λ], x, z > 0,

P(τ),↓
(z,x)(Λ) =

1

V (τ)(−x)
E(τ)

(z,x)[V
(τ)(K̂t)1{Mt<0}1Λ], x < 0, z > 0.

Illustration

K under Px K under P(τ)
x

x x

t t

It
K under P(τ),↑

x

x

t

Φ′
K(0) < 0 Φ′

K(τ) = 0
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Strongly Subcritical

Theorem 5.1 (Strongly Subcritical)

Assume condition
∫∞

x log(x)µ(dx) <∞ and that the Laplace exponent of
Lévy process K fulfills the conditions Φ′K(0) < 0 and Φ′K(1) < 0. For z > 0,
we have

Pz(Zt > 0) ∼ b3(z, x)Ez[Zt] ∼ b3(z, x)eΦK(1)t, as t→∞,

where 0 < b3(z, x) <∞.

Pz(Zt > 0) ∼ b3(z, x)Ez[Zt] ∼ b3(z, x)e
tΦK(1), t→∞

Bansaye et al. (2019)

E(z,x)[Zt] = zexetΦK(1)

0 < lim
t→∞

E(1)
(z,x)[e

−Ktgz(K)] <∞

where gz(K) = Pz(Zt > 0|K)
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Weakly Subcritical

Theorem 5.2 (Weakly Subcritical)

Suppose that Φ′K(0) < 0 < Φ′K(1). Let τ ∈ (0, 1) be the solution of Φ′K(τ) = 0.
Also assume that ReΨK(λ) = logE(e)[eiλK1 ] > 0, λ 6= 0. For z > 0, we have,
as t→∞,

P(z,x)(Zt > 0) ∼ b1(z, x)P(e)
x (It > 0)

∼ b1(z, x)AeτxV̂ (τ)(x)t−3/2eΦK(τ)t

∫ ∞
0

e−τzV (τ)(z)dz,

where

A :=
1√

2πΦ′′K(τ)
exp

{∫ ∞
0

(e−t − 1)t−1e−tΦK(τ)P(e)(Kt = 0)dt

}
,

and b1(z, x) is a constant that depend on z and x.
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Weakly Subcritical

Pz(Zt > 0) = P(z,x)(Zt > 0, It > 0) + P(z,x)(Zt > 0, It ≤ 0)

P(z,x)(Zt > 0, It > 0) = P(z,x)(Zt > 0|It > 0)P(e)
x (It > 0)

P(z,x)(Zt > 0, It < 0) ≤ εP(z,x)(Zt > 0, It > 0)

Hirano (2001)

P(e)
x (It > 0) ∼ c3e

τxV̂ (τ)(x)t−3/2eΦK(τ)t, t→∞
c3 := A

∫∞
0 e−τzV (τ)(z)dz y A > 0

K under Px K under P(τ)
x

x x

t t

It

We study (Z,K) under P(τ),↑
(z,x)

Φ′K(0) < 0 Φ′K(τ) = 0
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Intermediate Subcritical

Theorem 5.3 (Intermediate Subcritical)

Assume condition
∫∞

x ln2(x)µ(dx) <∞ and that the Laplace exponent of
Lévy process K fulfills the conditions Φ′K(0) < 0 and Φ′K(1) = 0. For z > 0
and x < 0 we have, as t→∞

Pz(Zt > 0) ∼ b2(z, x)P(1)
x (Mt < 0)Ez[Zt]

∼ b2(z, x)

√
2

πΦ′′K(1)
E(1)[H1]V (1)(−x)t−1/2eΦK(1)t,

where 0 < b2(z, x) <∞.
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Intermediate Subcritical

Pz(Zt > 0) = P(z,x)(Zt > 0,Mt ≤ 0) + P(z,x)(Zt > 0,Mt > 0), t→∞

E(z,x)[Zt] = zexetΦK(1)P(1)(Mt ≤ x) ∼
√

2
πΦ′′

K(1)E
(1)[H1]V

(1)(−x)t−1/2, t→∞

Hirano (2001)

K under Px K under P(1)
x

x x

t t

Mt

P(z,x)(Zt > 0,Mt > 0) ≤ εP(z,x)(Zt > 0,Mt < 0)

Bansaye et al. (2019)

We study (Z,K) under P(1),↓
(z,x)

Φ′K(0) < 0 Φ′K(1) = 0
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