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Critical exponents of CBRW

What is α?

I Diameter of Tn ∼
√
n.

I Diffusivity of the embeding: Diameter of
ωn ∼

√
Diameter of Tn.

I α = 1/4.
What is β?

I Commute time formula.

E[τx↔y] = 2|E(G)|Reff(x, y).

I |E(ωn)| ∼ n
I Reff(x, y) ∼

√
n

I β = 3/2
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The Integrated Super-Brownian excursion

Let T be the Continuum Random tree.

Let ΦT : T→ Rd be a Gaussian field satisfying
I E[ΦT(x)] = 0.
I E[ΦT(x)ΦT(y)] = dT(root,branching point of x, y).

ΦT(T) is the Integrated Super Brownian excursion.
The ISE is the CRT embedded in Rd using Brownian motions.
If d ≥ 8, ΦT is injective and the ISE is a tree.
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The Brownian motion in the ISE

The CRT endows the ISE with canonical metric and a
measure.

BISE is the Brownian motion on the ISE with those metric and
measure.
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Abstract Theorem



Skeleton of a graph

Let (Gn)n∈N be a sequence of random sub-graphs of Zd.

We will need an analogue of spanning sub-trees for Gn.
Let (Uni )i∈N be an i.i.d. sequence of uniformly chosen vertices
of Gn.
Let T (K)

n be the (spatial) tree spanned by Un1 , . . .UnK .

0
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General, abstract conditions

Three abstract conditions on abstract random graphs which
imply the convergence of the ant to (BISEt )t≥0.
Let (Gn)n∈N a sequence of random graphs

1. Geometric condition: n−1/4Gn converges (as a subset of Rd)
to the ISE.

2. Resistance condition: The resistance is asymptotically
proportional to the graph-distance.There exists a
deterministic constant ρ > 0 such that

P
[∣∣∣∣Reff(0,Un)

dGn(o,Un)
− ρ
∣∣∣∣ > ε

]
→ 0

for all ε > 0, where Un is a uniformly chosen vertex.
3. Volume condition: The edge volume of Gn is uniformly
distributed in T (K)

n
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General Theorem

Theorem. Ben Arous, C., Fribergh
If the conditions are satisfied, then

(n−1/4XGnn3/2t)t≥0 → (BISEt )t≥0.
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Geometric condition

Convergence of T (K)
n to the K-th spanning subtree of the ISE

as graph-spatial trees

Leaf tightness (intrinsic and extrinsic).
I n−1/2maxx∈Gn dGn(x, T (K)

n )→ 0 in probability.
I n−1/4maxx∈Gn dZd(x, T (K)

n )→ 0 in probability.

7 10



Geometric condition

Convergence of T (K)
n to the K-th spanning subtree of the ISE

as graph-spatial trees
Leaf tightness (intrinsic and extrinsic).

I n−1/2maxx∈Gn dGn(x, T (K)
n )→ 0 in probability.

I n−1/4maxx∈Gn dZd(x, T (K)
n )→ 0 in probability.

7 10



Geometric condition

Convergence of T (K)
n to the K-th spanning subtree of the ISE

as graph-spatial trees
Leaf tightness (intrinsic and extrinsic).

I n−1/2maxx∈Gn dGn(x, T (K)
n )→ 0 in probability.

I n−1/4maxx∈Gn dZd(x, T (K)
n )→ 0 in probability.

7 10



Geometric condition

Convergence of T (K)
n to the K-th spanning subtree of the ISE

as graph-spatial trees
Leaf tightness (intrinsic and extrinsic).

I n−1/2maxx∈Gn dGn(x, T (K)
n )→ 0 in probability.

I n−1/4maxx∈Gn dZd(x, T (K)
n )→ 0 in probability.

7 10



CBRW’s satisfy the conditions

Geometric condition: Janson & Marckert.

Volume condition: Le Gall & Lin: If d > 4, then there exists a
constant c < 1 such that

|Φn(Tn)|
n

→ c

in probability.
Resistance condition

I Linearity along the backbone of the Incipient Infinite CBRW’s
through an ergodic theorem using the shift along the
backbone.

I Transfer results.
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Sketch of proof of the abstract theorem

T: The ISE

Let T(K) be the K-th skeleton of the ISE.
Let BT(K) be the Brownian motion in T(K)

For K large, we have that BT(K) is close to BISE

By the Resistance condition we have that
(n−1/4XT

(K)
n
nt )t≥0 → (BT(K)

)t≥0.

By the Volume condition, XGn is related to XT
(K)
n by a

time-change which is asymptotically linear (after proper
rescaling and K large).
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Thanks!
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