

THE ANT IN THE LABYRINTH

MANUEL CABEZAS. UNIVERSIDAD CATÓLICA DE CHILE

BUC-CHILE PROBABILITY MEETING

28 11 2019

CRITICAL EXPONENTS OF CBRW

- What is α ?

CRITICAL EXPONENTS OF CBRW

- What is α ?

- ▶ Diameter of $T_n \sim \sqrt{n}$.

CRITICAL EXPONENTS OF CBRW

■ What is α ?

- ▶ Diameter of $\mathcal{T}_n \sim \sqrt{n}$.
- ▶ Diffusivity of the embedding: Diameter of $\omega_n \sim \sqrt{\text{Diameter of } \mathcal{T}_n}$.

CRITICAL EXPONENTS OF CBRW

■ What is α ?

- ▶ Diameter of $\mathcal{T}_n \sim \sqrt{n}$.
- ▶ Diffusivity of the embedding: Diameter of $\omega_n \sim \sqrt{\text{Diameter of } \mathcal{T}_n}$.
- ▶ $\alpha = 1/4$.

CRITICAL EXPONENTS OF CBRW

■ What is α ?

- ▶ Diameter of $\mathcal{T}_n \sim \sqrt{n}$.
- ▶ Diffusivity of the embedding: Diameter of $\omega_n \sim \sqrt{\text{Diameter of } \mathcal{T}_n}$.
- ▶ $\alpha = 1/4$.

■ What is β ?

CRITICAL EXPONENTS OF CBRW

■ What is α ?

- ▶ Diameter of $\mathcal{T}_n \sim \sqrt{n}$.
- ▶ Diffusivity of the embedding: Diameter of $\omega_n \sim \sqrt{\text{Diameter of } \mathcal{T}_n}$.
- ▶ $\alpha = 1/4$.

■ What is β ?

- ▶ Commute time formula.

CRITICAL EXPONENTS OF CBRW

■ What is α ?

- ▶ Diameter of $\mathcal{T}_n \sim \sqrt{n}$.
- ▶ Diffusivity of the embedding: Diameter of $\omega_n \sim \sqrt{\text{Diameter of } \mathcal{T}_n}$.
- ▶ $\alpha = 1/4$.

■ What is β ?

- ▶ Commute time formula.

$$\mathbb{E}[\tau_{x \leftrightarrow y}] = 2|E(G)|R_{\text{eff}}(x, y).$$

CRITICAL EXPONENTS OF CBRW

■ What is α ?

- ▶ Diameter of $\mathcal{T}_n \sim \sqrt{n}$.
- ▶ Diffusivity of the embedding: Diameter of $\omega_n \sim \sqrt{\text{Diameter of } \mathcal{T}_n}$.
- ▶ $\alpha = 1/4$.

■ What is β ?

- ▶ Commute time formula.

$$\mathbb{E}[\tau_{x \leftrightarrow y}] = 2|E(G)|R_{\text{eff}}(x, y).$$

- ▶ $|E(\omega_n)| \sim n$

CRITICAL EXPONENTS OF CBRW

■ What is α ?

- ▶ Diameter of $\mathcal{T}_n \sim \sqrt{n}$.
- ▶ Diffusivity of the embedding: Diameter of $\omega_n \sim \sqrt{\text{Diameter of } \mathcal{T}_n}$.
- ▶ $\alpha = 1/4$.

■ What is β ?

- ▶ Commute time formula.

$$\mathbb{E}[\tau_{x \leftrightarrow y}] = 2|E(G)|R_{\text{eff}}(x, y).$$

- ▶ $|E(\omega_n)| \sim n$
- ▶ $R_{\text{eff}}(x, y) \sim \sqrt{n}$

CRITICAL EXPONENTS OF CBRW

■ What is α ?

- ▶ Diameter of $\mathcal{T}_n \sim \sqrt{n}$.
- ▶ Diffusivity of the embedding: Diameter of $\omega_n \sim \sqrt{\text{Diameter of } \mathcal{T}_n}$.
- ▶ $\alpha = 1/4$.

■ What is β ?

- ▶ Commute time formula.

$$\mathbb{E}[\tau_{x \leftrightarrow y}] = 2|E(G)|R_{\text{eff}}(x, y).$$

- ▶ $|E(\omega_n)| \sim n$
- ▶ $R_{\text{eff}}(x, y) \sim \sqrt{n}$
- ▶ $\beta = 3/2$

THE INTEGRATED SUPER-BROWNIAN EXCURSION

- Let \mathfrak{T} be the Continuum Random tree.

THE INTEGRATED SUPER-BROWNIAN EXCURSION

- Let \mathfrak{T} be the Continuum Random tree.
- Let $\Phi_{\mathfrak{T}} : \mathfrak{T} \rightarrow \mathbb{R}^d$ be a Gaussian field satisfying

THE INTEGRATED SUPER-BROWNIAN EXCURSION

- Let \mathfrak{T} be the Continuum Random tree.
- Let $\Phi_{\mathfrak{T}} : \mathfrak{T} \rightarrow \mathbb{R}^d$ be a Gaussian field satisfying
 - ▶ $\mathbb{E}[\Phi_{\mathfrak{T}}(x)] = 0$.

THE INTEGRATED SUPER-BROWNIAN EXCURSION

- Let \mathfrak{T} be the Continuum Random tree.
- Let $\Phi_{\mathfrak{T}} : \mathfrak{T} \rightarrow \mathbb{R}^d$ be a Gaussian field satisfying
 - ▶ $\mathbb{E}[\Phi_{\mathfrak{T}}(x)] = 0$.
 - ▶ $\mathbb{E}[\Phi_{\mathfrak{T}}(x)\Phi_{\mathfrak{T}}(y)] = d_{\mathfrak{T}}(\text{root, branching point of } x, y)$.

THE INTEGRATED SUPER-BROWNIAN EXCURSION

- Let \mathfrak{T} be the Continuum Random tree.
- Let $\Phi_{\mathfrak{T}} : \mathfrak{T} \rightarrow \mathbb{R}^d$ be a Gaussian field satisfying
 - ▶ $\mathbb{E}[\Phi_{\mathfrak{T}}(x)] = 0$.
 - ▶ $\mathbb{E}[\Phi_{\mathfrak{T}}(x)\Phi_{\mathfrak{T}}(y)] = d_{\mathfrak{T}}(\text{root, branching point of } x, y)$.
- $\Phi_{\mathfrak{T}}(\mathfrak{T})$ is the Integrated Super Brownian excursion.

THE INTEGRATED SUPER-BROWNIAN EXCURSION

- Let \mathfrak{T} be the Continuum Random tree.
- Let $\Phi_{\mathfrak{T}} : \mathfrak{T} \rightarrow \mathbb{R}^d$ be a Gaussian field satisfying
 - ▶ $\mathbb{E}[\Phi_{\mathfrak{T}}(x)] = 0$.
 - ▶ $\mathbb{E}[\Phi_{\mathfrak{T}}(x)\Phi_{\mathfrak{T}}(y)] = d_{\mathfrak{T}}(\text{root, branching point of } x, y)$.
- $\Phi_{\mathfrak{T}}(\mathfrak{T})$ is the Integrated Super Brownian excursion.
- The ISE is the CRT embedded in \mathbb{R}^d using Brownian motions.

THE INTEGRATED SUPER-BROWNIAN EXCURSION

- Let \mathfrak{T} be the Continuum Random tree.
- Let $\Phi_{\mathfrak{T}} : \mathfrak{T} \rightarrow \mathbb{R}^d$ be a Gaussian field satisfying
 - ▶ $\mathbb{E}[\Phi_{\mathfrak{T}}(x)] = 0$.
 - ▶ $\mathbb{E}[\Phi_{\mathfrak{T}}(x)\Phi_{\mathfrak{T}}(y)] = d_{\mathfrak{T}}(\text{root, branching point of } x, y)$.
- $\Phi_{\mathfrak{T}}(\mathfrak{T})$ is the Integrated Super Brownian excursion.
- The ISE is the CRT embedded in \mathbb{R}^d using Brownian motions.
- If $d \geq 8$, $\Phi_{\mathfrak{T}}$ is injective and the ISE is a tree.

THE BROWNIAN MOTION IN THE ISE

- The CRT endows the ISE with canonical metric and a measure.

THE BROWNIAN MOTION IN THE ISE

- The CRT endows the ISE with canonical metric and a measure.
- B^{ISE} is the Brownian motion on the ISE with those metric and measure.

SKELETON OF A GRAPH

- Let $(G_n)_{n \in \mathbb{N}}$ be a sequence of random sub-graphs of \mathbb{Z}^d .

SKELETON OF A GRAPH

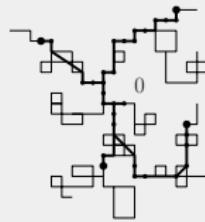
- Let $(G_n)_{n \in \mathbb{N}}$ be a sequence of random sub-graphs of \mathbb{Z}^d .
- We will need an analogue of spanning sub-trees for G_n .

SKELETON OF A GRAPH

- Let $(G_n)_{n \in \mathbb{N}}$ be a sequence of random sub-graphs of \mathbb{Z}^d .
- We will need an analogue of spanning sub-trees for G_n .
- Let $(U_i^n)_{i \in \mathbb{N}}$ be an i.i.d. sequence of uniformly chosen vertices of G_n .

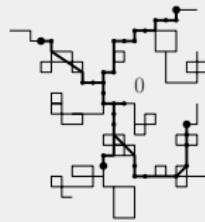
SKELETON OF A GRAPH

- Let $(G_n)_{n \in \mathbb{N}}$ be a sequence of random sub-graphs of \mathbb{Z}^d .
- We will need an analogue of spanning sub-trees for G_n .
- Let $(U_i^n)_{i \in \mathbb{N}}$ be an i.i.d. sequence of uniformly chosen vertices of G_n .
- Let $\mathcal{T}_n^{(K)}$ be the (spatial) tree spanned by U_1^n, \dots, U_K^n .



SKELETON OF A GRAPH

- Let $(G_n)_{n \in \mathbb{N}}$ be a sequence of random sub-graphs of \mathbb{Z}^d .
- We will need an analogue of spanning sub-trees for G_n .
- Let $(U_i^n)_{i \in \mathbb{N}}$ be an i.i.d. sequence of uniformly chosen vertices of G_n .
- Let $\mathcal{T}_n^{(K)}$ be the (spatial) tree spanned by U_1^n, \dots, U_K^n .



GENERAL, ABSTRACT CONDITIONS

Three abstract conditions on abstract random graphs which imply the convergence of the ant to $(B_t^{ISE})_{t \geq 0}$.

Let $(G_n)_{n \in \mathbb{N}}$ a sequence of random graphs

GENERAL, ABSTRACT CONDITIONS

Three abstract conditions on abstract random graphs which imply the convergence of the ant to $(B_t^{ISE})_{t \geq 0}$.

Let $(G_n)_{n \in \mathbb{N}}$ a sequence of random graphs

1. Geometric condition: $n^{-1/4}G_n$ converges (as a subset of \mathbb{R}^d) to the ISE.

GENERAL, ABSTRACT CONDITIONS

Three abstract conditions on abstract random graphs which imply the convergence of the ant to $(B_t^{ISE})_{t \geq 0}$.

Let $(G_n)_{n \in \mathbb{N}}$ a sequence of random graphs

1. Geometric condition: $n^{-1/4}G_n$ converges (as a subset of \mathbb{R}^d) to the ISE.
2. Resistance condition: The resistance is asymptotically proportional to the graph-distance.

GENERAL, ABSTRACT CONDITIONS

Three abstract conditions on abstract random graphs which imply the convergence of the ant to $(B_t^{ISE})_{t \geq 0}$.

Let $(G_n)_{n \in \mathbb{N}}$ a sequence of random graphs

1. Geometric condition: $n^{-1/4}G_n$ converges (as a subset of \mathbb{R}^d) to the ISE.
2. Resistance condition: The resistance is asymptotically proportional to the graph-distance. There exists a deterministic constant $\rho > 0$ such that

$$\mathbb{P} \left[\left| \frac{R_{\text{eff}}(\mathbf{o}, U_n)}{d_{G_n}(\mathbf{o}, U_n)} - \rho \right| > \epsilon \right] \rightarrow 0$$

for all $\epsilon > 0$, where U_n is a uniformly chosen vertex.

GENERAL, ABSTRACT CONDITIONS

Three abstract conditions on abstract random graphs which imply the convergence of the ant to $(B_t^{ISE})_{t \geq 0}$.

Let $(G_n)_{n \in \mathbb{N}}$ a sequence of random graphs

1. Geometric condition: $n^{-1/4}G_n$ converges (as a subset of \mathbb{R}^d) to the ISE.
2. Resistance condition: The resistance is asymptotically proportional to the graph-distance. There exists a deterministic constant $\rho > 0$ such that

$$\mathbb{P} \left[\left| \frac{R_{\text{eff}}(\mathbf{o}, U_n)}{d_{G_n}(\mathbf{o}, U_n)} - \rho \right| > \epsilon \right] \rightarrow 0$$

for all $\epsilon > 0$, where U_n is a uniformly chosen vertex.

3. Volume condition: The edge volume of G_n is uniformly distributed in $\mathcal{T}_n^{(K)}$

GENERAL THEOREM

Theorem. Ben Arous, C., Fribergh

If the conditions are satisfied, then

$$(n^{-1/4} X_{n^{3/2}t}^{G_n})_{t \geq 0} \rightarrow (B_t^{ISE})_{t \geq 0}.$$

GEOMETRIC CONDITION

- Convergence of $T_n^{(K)}$ to the K -th spanning subtree of the ISE as *graph-spatial trees*

GEOMETRIC CONDITION

- Convergence of $T_n^{(K)}$ to the K -th spanning subtree of the ISE as *graph-spatial trees*
- Leaf tightness (intrinsic and extrinsic).

GEOMETRIC CONDITION

- Convergence of $\mathcal{T}_n^{(K)}$ to the K -th spanning subtree of the ISE as *graph-spatial trees*
- Leaf tightness (intrinsic and extrinsic).
 - ▶ $n^{-1/2} \max_{x \in G_n} d_{G_n}(x, \mathcal{T}_n^{(K)}) \rightarrow 0$ in probability.

GEOMETRIC CONDITION

- Convergence of $\mathcal{T}_n^{(K)}$ to the K -th spanning subtree of the ISE as *graph-spatial trees*
- Leaf tightness (intrinsic and extrinsic).
 - ▶ $n^{-1/2} \max_{x \in G_n} d_{G_n}(x, \mathcal{T}_n^{(K)}) \rightarrow 0$ in probability.
 - ▶ $n^{-1/4} \max_{x \in G_n} d_{\mathbb{Z}^d}(x, \mathcal{T}_n^{(K)}) \rightarrow 0$ in probability.

CBRW'S SATISFY THE CONDITIONS

- Geometric condition: Janson & Marckert.

CBRW'S SATISFY THE CONDITIONS

- Geometric condition: Janson & Marckert.
- Volume condition: Le Gall & Lin: If $d > 4$, then there exists a constant $c < 1$ such that

$$\frac{|\Phi_n(\mathcal{T}_n)|}{n} \rightarrow c$$

in probability.

CBRW'S SATISFY THE CONDITIONS

- Geometric condition: Janson & Marckert.
- Volume condition: Le Gall & Lin: If $d > 4$, then there exists a constant $c < 1$ such that

$$\frac{|\Phi_n(\mathcal{T}_n)|}{n} \rightarrow c$$

in probability.

- Resistance condition

CBRW'S SATISFY THE CONDITIONS

- Geometric condition: Janson & Marckert.
- Volume condition: Le Gall & Lin: If $d > 4$, then there exists a constant $c < 1$ such that

$$\frac{|\Phi_n(\mathcal{T}_n)|}{n} \rightarrow c$$

in probability.

- Resistance condition
 - ▶ Linearity along the backbone of the Incipient Infinite CBRW's through an ergodic theorem using the shift along the backbone.

CBRW'S SATISFY THE CONDITIONS

- Geometric condition: Janson & Marckert.
- Volume condition: Le Gall & Lin: If $d > 4$, then there exists a constant $c < 1$ such that

$$\frac{|\Phi_n(\mathcal{T}_n)|}{n} \rightarrow c$$

in probability.

- Resistance condition
 - ▶ Linearity along the backbone of the Incipient Infinite CBRW's through an ergodic theorem using the shift along the backbone.
 - ▶ Transfer results.

SKETCH OF PROOF OF THE ABSTRACT THEOREM

- \mathfrak{L} : The ISE

SKETCH OF PROOF OF THE ABSTRACT THEOREM

- \mathfrak{I} : The ISE
- Let $\mathfrak{I}^{(K)}$ be the K -th skeleton of the ISE.

SKETCH OF PROOF OF THE ABSTRACT THEOREM

- \mathfrak{T} : The ISE
- Let $\mathfrak{T}^{(K)}$ be the K -th skeleton of the ISE.
- Let $B^{\mathfrak{T}^{(K)}}$ be the Brownian motion in $\mathfrak{T}^{(K)}$

SKETCH OF PROOF OF THE ABSTRACT THEOREM

- \mathfrak{T} : The ISE
- Let $\mathfrak{T}^{(K)}$ be the K -th skeleton of the ISE.
- Let $B^{\mathfrak{T}^{(K)}}$ be the Brownian motion in $\mathfrak{T}^{(K)}$
- For K large, we have that $B^{\mathfrak{T}^{(K)}}$ is close to B^{ISE}

SKETCH OF PROOF OF THE ABSTRACT THEOREM

- \mathfrak{T} : The ISE
- Let $\mathfrak{T}^{(K)}$ be the K -th skeleton of the ISE.
- Let $B^{\mathfrak{T}^{(K)}}$ be the Brownian motion in $\mathfrak{T}^{(K)}$
- For K large, we have that $B^{\mathfrak{T}^{(K)}}$ is close to B^{ISE}
- By the Resistance condition we have that
$$(n^{-1/4}X_{nt}^{\mathcal{T}_n^{(K)}})_{t \geq 0} \rightarrow (B^{\mathfrak{T}^{(K)}})_{t \geq 0}.$$

SKETCH OF PROOF OF THE ABSTRACT THEOREM

- \mathfrak{T} : The ISE
- Let $\mathfrak{T}^{(K)}$ be the K -th skeleton of the ISE.
- Let $B^{\mathfrak{T}^{(K)}}$ be the Brownian motion in $\mathfrak{T}^{(K)}$
- For K large, we have that $B^{\mathfrak{T}^{(K)}}$ is close to B^{ISE}
- By the Resistance condition we have that
$$(n^{-1/4}X_{nt}^{\mathcal{T}_n^{(K)}})_{t \geq 0} \rightarrow (B^{\mathfrak{T}^{(K)}})_{t \geq 0}.$$
- By the Volume condition, X^{G_n} is related to $X^{\mathcal{T}_n^{(K)}}$ by a time-change which is asymptotically linear (after proper rescaling and K large).

Thanks!