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> |E(wn)| ~n
> Rer(X,y) ~v/n
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m Let T be the Continuum Random tree.
m Let &5 : T — R? be a Gaussian field satisfying

» E[d<(x)] = 0.

» E[®<(X)P<(y)] = d<(root, branching point of x, y).
m d(T) is the Integrated Super Brownian excursion.

m The ISE is the CRT embedded in R? using Brownian motions.

m If d > 8, < is injective and the ISE is a tree.
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B The CRT endows the ISE with canonical metric and a
measure.

m B>t is the Brownian motion on the ISE with those metric and
measure.
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Three abstract conditions on abstract random graphs which
imply the convergence of the ant to (BPE)eo.
Let (Gn)nen @ sequence of random graphs

1. Geometric condition: n—"4G, converges (as a subset of RY)
to the ISE.

2. Resistance condition: The resistance is asymptotically
proportional to the graph-distance.There exists a
deterministic constant p > o such that

Reff(oa Un)

P{%mwn

for all e > 0, where Uy is a uniformly chosen vertex.

3. Volume condition: The edge volume of G, is uniformly
distributed in 77,('()

_p'>€]%o



GENERAL THEOREM

Theorem. Ben Arous, C., Fribergh

If the conditions are satisfied, then

(n=4x% . )ez0 — (BFF)rzo-
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m Convergence of 77,('() to the K-th spanning subtree of the ISE
as graph-spatial trees
m Leaf tightness (intrinsic and extrinsic).
> n="2maxeq, de, (X, TA) — 0 in probability.
» n~"/% maxyeg, dZd(x,ﬁ,(K)) — 0 in probability.
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CBRW'’S SATISFY THE CONDITIONS

m Geometric condition: Janson & Marckert.
m Volume condition: Le Gall & Lin: If d > 4, then there exists a
constant ¢ < 1 such that

[©n(Tn)|
n

— C

in probability.
m Resistance condition
» Linearity along the backbone of the Incipient Infinite CBRW'’s
through an ergodic theorem using the shift along the
backbone.
» Transfer results.
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SKETCH OF PROOF OF THE ABSTRACT THEOREM

m T:The ISE
m Let (K be the K-th skeleton of the ISE.
m Let B¥ be the Brownian motion in T
m For K large, we have that B¥ is close to BISE
m By the Resistance condition we have that
(07X Yezo = (B5)ize.
m By the Volume condition, X6 is related to X+ by a

time-change which is asymptotically linear (after proper
rescaling and K large).

D =



Thanks!
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