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m Kesten, 86: Rigorous definition of the Incipient Infinite
Cluster on a tree.

m It has a unique infinite (self-avoiding) path starting at the
root.

m Can be seen as N adorned with (finite) branches (B)gen-

m The branches (Bg)rey are i.i.d. and distributed as critical
percolation trees.

m Those Branches act like traps for the ant.
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THE A-O CONJECTURE ON A TREE

m The ant has to give ~ N? steps in the backbone to reach
distance N in the backbone.

B The amount of visits to each branch is ~ N.

The largest branch has cardinality ~ N2,

The expected time of a visit equals the cardinality of the
branch.

The time spent in the largest branch is ~ N3.

m The total time spent is of the same order of magnitude as
the time spent in the largest branch.

.XnNn1/3.
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m Let 7, be a critical G-W tree conditioned on |7,| = n.

m Let (Cn(i))iz1. on—+ be the contour process of 7j.

m Let (et)ic[o) be a Brownian excursion.

m Aldous: If the offspring distribution has finite variance:

n‘1/2Cn( 12Nt )tejo, — (@t)tefo,1-

m Letf :[0,1 — R be a continuous function satisfying f(x) = o
i.ff. x=o0,1.
m Define an equivalence relation ~ in [0,1] as x ~ y i.f.f.
d¢(x,y) = 0, where
di = F(x) +£(y) — 2 min f(2).

ze[x,y]

m The topological space %5 := [0,1]/ ~ is arc-connected and
has no subspace which is homeomorphic to the circle




THE CONTINUUM RANDOM TREE

m The pseudo-metric df, becomes a metric in ;.




THE CONTINUUM RANDOM TREE

m The pseudo-metric df, becomes a metric in ;.

m The Lebesgue measure in [0, 1] becomes a probability
measure ys in Ty




THE CONTINUUM RANDOM TREE

m The pseudo-metric df, becomes a metric in ;.

m The Lebesgue measure in [0, 1] becomes a probability
measure ys in Ty

L[| The CRT

The triple (Te, de, tte) is the Continuum Random tree (CRT).




THE CONTINUUM RANDOM TREE

m The pseudo-metric df, becomes a metric in ;.

m The Lebesgue measure in [0, 1] becomes a probability
measure ys in Ty

L[| The CRT

The triple (Te, de, tte) is the Continuum Random tree (CRT).

m Line-Breaking construction: Let ([;)icy be the (ordered)
marks of an inhomogeneous Poisson Point Process in [0, o)
of intensity r(t) = t.




THE CONTINUUM RANDOM TREE

m The pseudo-metric df, becomes a metric in ;.

m The Lebesgue measure in [0, 1] becomes a probability
measure ys in Ty

L[| The CRT

The triple (Te, de, tte) is the Continuum Random tree (CRT).

m Line-Breaking construction: Let ([;)icy be the (ordered)
marks of an inhomogeneous Poisson Point Process in [0, o)
of intensity r(t) = t.

m Let T be a line segment of length [,




THE CONTINUUM RANDOM TREE

m The pseudo-metric df, becomes a metric in ;.

m The Lebesgue measure in [0, 1] becomes a probability
measure ys in Ty

L[| The CRT

The triple (Te, de, tte) is the Continuum Random tree (CRT).

m Line-Breaking construction: Let ([;)icy be the (ordered)
marks of an inhomogeneous Poisson Point Process in [0, o)
of intensity r(t) = t.

m Let T be a line segment of length [,

m Given T(K), we inductively construct T(K+7) by attaching a
line segment of length [, — lx to () at a point chosen
uniformly.
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m The pseudo-metric df, becomes a metric in ;.

m The Lebesgue measure in [0, 1] becomes a probability
measure ys in Ty

L[| The CRT

The triple (Te, de, tte) is the Continuum Random tree (CRT).

m Line-Breaking construction: Let ([;)icy be the (ordered)
marks of an inhomogeneous Poisson Point Process in [0, o)
of intensity r(t) = t.

m Let T be a line segment of length [,

m Given T(K), we inductively construct T(K+7) by attaching a
line segment of length [, — lx to () at a point chosen
uniformly.

m The CRT is the limit, as K — oo of ().
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SPANNING SUB-TREES

m Let (Uj)icy an i.i.d. sequence of points of the CRT chosen
according to sie.

m Let T(K) be the subtree spanned by the root and U, ..., Ug.

m The tree T has the same law as the K-th step tree in the
line-breaking construction.

m (7n,n~"2dr,n""u,) converges to the CRT (Aldous) (offspring
with finite variance).

m Convergence of trees: Convergence of spanned subtrees +
leaf tightness.



BROWNIAN MOTION ON TREES

m Let (T, ds, pug) be a tree with metric and measure.




BROWNIAN MOTION ON TREES

m Let (T, ds, pug) be a tree with metric and measure.
m The Brownian motion on (%, d<, ug) is




BROWNIAN MOTION ON TREES

m Let (T, ds, pug) be a tree with metric and measure.
m The Brownian motion on (%, ds, pug) IS
1. Strong Markov




BROWNIAN MOTION ON TREES

m Let (T, ds, pug) be a tree with metric and measure.
m The Brownian motion on (%, ds, pug) IS

1. Strong Markov
2. Symmetric with respect to d<




BROWNIAN MOTION ON TREES

m Let (T, ds, pug) be a tree with metric and measure.
m The Brownian motion on (%, ds, pug) IS

1. Strong Markov
2. Symmetric with respect to d<
3. Invariant under pus.




BROWNIAN MOTION ON TREES

m Let (T, ds, pug) be a tree with metric and measure.
m The Brownian motion on (%, ds, pug) IS

1. Strong Markov
2. Symmetric with respect to d<
3. Invariant under pus.

m Uniqueness: Aldous




BROWNIAN MOTION ON TREES

m Let (T, ds, pug) be a tree with metric and measure.
m The Brownian motion on (%, ds, pug) IS

1. Strong Markov
2. Symmetric with respect to d<
3. Invariant under pus.

m Uniqueness: Aldous
m Existence: Krebs (CRT), Kigami, Croydon (General).
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Croydon 08

(n_1/2xﬁ3/2” )t20 — (BERT)tZO'
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CRITICAL EXPONENTS FOR PERCOLATION

m No infinite cluster at criticality d = 2 (Kesten) d > 11 (Hara &
Slade, Fitzner & van der Hofstadt).

m Let Co be the cluster of the origin.
m Mean field exponents (d > 6).
1. P[|Co| > n] ~ n~"/2 Hara & Slade.
2. P[diam4(Co) > n] ~ n—2 Kozma & Nachmias (one-arm
exponent).
m Exponents d = 2 (triangular lattice):
1. P[|Co| > n] ~ n=5/9",
2. P[diamgq(Co) > n] ~ n=5/48,

D)
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m Planar lIC (d = 2)

1. Kesten 86, rigorous definition of the IIC.
2. Kesten 86, sub-diffusivity for the walk on the IIC.

m Mean field IIC (d > 6).
» van der Hofstadt, Jarai, rigorous definition of the IIC.
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THE ALEXANDER-ORBACH CONJECTURE IN HIGH DIMENSION

m Two conditions which imply the A-O conjecture (Barlow,
Jarai, Kumagai & Slade).
1. Bg(0,R) ~ R
2, Reff(O, aBg(O, R)) ~ R.

m Kozma and Nachmias verified those conditions for the IIC.
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UNIVERSALITY CLASS OF MEAN FIELD PERCOLATION

Many models display the same macroscopic structure as
percolation above the upper critical dimension.

m Percolationd > 6
m Contact process d > 4.
m Voter model d > 2.

m Lattice trees d > 8.
m Oriented percolation d > 4.




THE SIMPLEST MODEL

m Critical Branching Random Walks.




THE SIMPLEST MODEL

m Critical Branching Random Walks.

m Let 7, be a critical Branching Process conditioned on
|Tn| = n.




THE SIMPLEST MODEL

m Critical Branching Random Walks.

m Let 7, be a critical Branching Process conditioned on
|Tn| = n.
m E(7,): edges of 7y.




THE SIMPLEST MODEL

m Critical Branching Random Walks.

m Let 7, be a critical Branching Process conditioned on
|Tn| = n.

m E(7,): edges of 7y.

B (Le)eck() be i.i.d. vectors chosen uniformly on
{vezd:|v| =1}




THE SIMPLEST MODEL

m Critical Branching Random Walks.

m Let 7, be a critical Branching Process conditioned on
|Tn| = n.

m E(7,): edges of 7y.

B (Le)eck() be i.i.d. vectors chosen uniformly on
{vezd:|v| =1}

m Define the embedding @, : 7, :— Z¢:




THE SIMPLEST MODEL

m Critical Branching Random Walks.

m Let 7, be a critical Branching Process conditioned on
|Tn| = n.

m E(7,): edges of 7y.

B (Le)eck() be i.i.d. vectors chosen uniformly on
{vezd:|v| =1}

m Define the embedding @, : 7, :— Z¢:

(V)= > Le

ec[root,v]




THE SIMPLEST MODEL

m Critical Branching Random Walks.

m Let 7, be a critical Branching Process conditioned on
|Tn| = n.

m E(7,): edges of 7y.

B (Le)eck() be i.i.d. vectors chosen uniformly on
{vezd:|v| =1}

m Define the embedding @, : 7, :— Z¢:

(V)= > Le

ec[root,v]

m Consider the random graph w, C Z9 obtained as the image
of Tp.
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RANDOM WALKS

X“n: Random walk on wp.

Theorem. Ben Arous, C., Fribergh

Let d > 14,
(N™X40 Vo0 — (B )tz0

m What is B"E?
m What is a?, 52.
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