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The IIC on a tree

Kesten, 86: Rigorous definition of the Incipient Infinite
Cluster on a tree.

It has a unique infinite (self-avoiding) path starting at the
root.
Can be seen as N adorned with (finite) branches (Bk)k∈N.
The branches (Bk)k∈N are i.i.d. and distributed as critical
percolation trees.
Those Branches act like traps for the ant.
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The A-O conjecture on a tree

The ant has to give ∼ N2 steps in the backbone to reach
distance N in the backbone.

The amount of visits to each branch is ∼ N.
The largest branch has cardinality ∼ N2.
The expected time of a visit equals the cardinality of the
branch.
The time spent in the largest branch is ∼ N3.
The total time spent is of the same order of magnitude as
the time spent in the largest branch.
Xn ∼ n1/3.
dw = 3,dh = 2.
ds = 2 dhdw = 4

3 .
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Scaling limit of large critical trees

Let Tn be a critical G-W tree conditioned on |Tn| = n.

Let (Cn(i))i=1,...2n−1 be the contour process of Tn.
Let (et)t∈[0,1] be a Brownian excursion.
Aldous: If the offspring distribution has finite variance:

n−1/2Cn(b2ntc)t∈[0,1] → (et)t∈[0,1].

Let f : [0, 1]→ R be a continuous function satisfying f (x) = 0
i.f.f. x = 0, 1.
Define an equivalence relation ∼ in [0, 1] as x ∼ y i.f.f.
df (x, y) = 0, where

df = f (x) + f (y)− 2 min
z∈[x,y]

f (z).

The topological space Tf := [0, 1]/ ∼ is arc-connected and
has no subspace which is homeomorphic to the circle
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The Continuum Random tree

The pseudo-metric df , becomes a metric in Tf .

The Lebesgue measure in [0, 1] becomes a probability
measure µf in Tf .

The CRT
The triple (Te,de, µe) is the Continuum Random tree (CRT).

Line-Breaking construction: Let (li)i∈N be the (ordered)
marks of an inhomogeneous Poisson Point Process in [0,∞)
of intensity r(t) = t.
Let T(1) be a line segment of length l1
Given T(K), we inductively construct T(K+1) by attaching a
line segment of length lK+1 − lK to T(K) at a point chosen
uniformly.
The CRT is the limit, as K →∞ of T(K).

4 13
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Spanning sub-trees

Let (Ui)i∈N an i.i.d. sequence of points of the CRT chosen
according to µe.

Let T(K) be the subtree spanned by the root and U1, . . . ,UK .
The tree T(K) has the same law as the K-th step tree in the
line-breaking construction.
(Tn,n−1/2dTn ,n−1µn) converges to the CRT (Aldous) (offspring
with finite variance).
Convergence of trees: Convergence of spanned subtrees +
leaf tightness.

5 13



Spanning sub-trees

Let (Ui)i∈N an i.i.d. sequence of points of the CRT chosen
according to µe.
Let T(K) be the subtree spanned by the root and U1, . . . ,UK .

The tree T(K) has the same law as the K-th step tree in the
line-breaking construction.
(Tn,n−1/2dTn ,n−1µn) converges to the CRT (Aldous) (offspring
with finite variance).
Convergence of trees: Convergence of spanned subtrees +
leaf tightness.

5 13



Spanning sub-trees

Let (Ui)i∈N an i.i.d. sequence of points of the CRT chosen
according to µe.
Let T(K) be the subtree spanned by the root and U1, . . . ,UK .
The tree T(K) has the same law as the K-th step tree in the
line-breaking construction.

(Tn,n−1/2dTn ,n−1µn) converges to the CRT (Aldous) (offspring
with finite variance).
Convergence of trees: Convergence of spanned subtrees +
leaf tightness.

5 13



Spanning sub-trees

Let (Ui)i∈N an i.i.d. sequence of points of the CRT chosen
according to µe.
Let T(K) be the subtree spanned by the root and U1, . . . ,UK .
The tree T(K) has the same law as the K-th step tree in the
line-breaking construction.
(Tn,n−1/2dTn ,n−1µn) converges to the CRT (Aldous) (offspring
with finite variance).

Convergence of trees: Convergence of spanned subtrees +
leaf tightness.

5 13



Spanning sub-trees

Let (Ui)i∈N an i.i.d. sequence of points of the CRT chosen
according to µe.
Let T(K) be the subtree spanned by the root and U1, . . . ,UK .
The tree T(K) has the same law as the K-th step tree in the
line-breaking construction.
(Tn,n−1/2dTn ,n−1µn) converges to the CRT (Aldous) (offspring
with finite variance).
Convergence of trees: Convergence of spanned subtrees +
leaf tightness.

5 13



Brownian motion on trees

Let (T,dT, µT) be a tree with metric and measure.

The Brownian motion on (T,dT, µT) is
1. Strong Markov
2. Symmetric with respect to dT
3. Invariant under µT.

Uniqueness: Aldous
Existence: Krebs (CRT), Kigami, Croydon (General).
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Scaling limit for the Ant in a tree

Theorem
Croydon 08

(n−1/2XTnbn3/2tc)t≥0 → (BCRTt )t≥0.
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Percolation



Critical exponents for percolation

No infinite cluster at criticality d = 2 (Kesten) d ≥ 11 (Hara &
Slade, Fitzner & van der Hofstadt).

Let Co be the cluster of the origin.
Mean field exponents (d > 6).
1. P[|Co| ≥ n] ∼ n−1/2 Hara & Slade.
2. P[diamZd(Co) ≥ n] ∼ n−2 Kozma & Nachmias (one-arm
exponent).

Exponents d = 2 (triangular lattice):
1. P[|Co| ≥ n] ∼ n−5/91.
2. P[diamZd(Co) ≥ n] ∼ n−5/48.

8 13



Critical exponents for percolation

No infinite cluster at criticality d = 2 (Kesten) d ≥ 11 (Hara &
Slade, Fitzner & van der Hofstadt).
Let Co be the cluster of the origin.

Mean field exponents (d > 6).
1. P[|Co| ≥ n] ∼ n−1/2 Hara & Slade.
2. P[diamZd(Co) ≥ n] ∼ n−2 Kozma & Nachmias (one-arm
exponent).

Exponents d = 2 (triangular lattice):
1. P[|Co| ≥ n] ∼ n−5/91.
2. P[diamZd(Co) ≥ n] ∼ n−5/48.

8 13



Critical exponents for percolation

No infinite cluster at criticality d = 2 (Kesten) d ≥ 11 (Hara &
Slade, Fitzner & van der Hofstadt).
Let Co be the cluster of the origin.
Mean field exponents (d > 6).

1. P[|Co| ≥ n] ∼ n−1/2 Hara & Slade.
2. P[diamZd(Co) ≥ n] ∼ n−2 Kozma & Nachmias (one-arm
exponent).

Exponents d = 2 (triangular lattice):
1. P[|Co| ≥ n] ∼ n−5/91.
2. P[diamZd(Co) ≥ n] ∼ n−5/48.

8 13



Critical exponents for percolation

No infinite cluster at criticality d = 2 (Kesten) d ≥ 11 (Hara &
Slade, Fitzner & van der Hofstadt).
Let Co be the cluster of the origin.
Mean field exponents (d > 6).
1. P[|Co| ≥ n] ∼ n−1/2 Hara & Slade.

2. P[diamZd(Co) ≥ n] ∼ n−2 Kozma & Nachmias (one-arm
exponent).

Exponents d = 2 (triangular lattice):
1. P[|Co| ≥ n] ∼ n−5/91.
2. P[diamZd(Co) ≥ n] ∼ n−5/48.

8 13



Critical exponents for percolation

No infinite cluster at criticality d = 2 (Kesten) d ≥ 11 (Hara &
Slade, Fitzner & van der Hofstadt).
Let Co be the cluster of the origin.
Mean field exponents (d > 6).
1. P[|Co| ≥ n] ∼ n−1/2 Hara & Slade.
2. P[diamZd(Co) ≥ n] ∼ n−2 Kozma & Nachmias (one-arm
exponent).

Exponents d = 2 (triangular lattice):
1. P[|Co| ≥ n] ∼ n−5/91.
2. P[diamZd(Co) ≥ n] ∼ n−5/48.

8 13



Critical exponents for percolation

No infinite cluster at criticality d = 2 (Kesten) d ≥ 11 (Hara &
Slade, Fitzner & van der Hofstadt).
Let Co be the cluster of the origin.
Mean field exponents (d > 6).
1. P[|Co| ≥ n] ∼ n−1/2 Hara & Slade.
2. P[diamZd(Co) ≥ n] ∼ n−2 Kozma & Nachmias (one-arm
exponent).

Exponents d = 2 (triangular lattice):

1. P[|Co| ≥ n] ∼ n−5/91.
2. P[diamZd(Co) ≥ n] ∼ n−5/48.

8 13



Critical exponents for percolation

No infinite cluster at criticality d = 2 (Kesten) d ≥ 11 (Hara &
Slade, Fitzner & van der Hofstadt).
Let Co be the cluster of the origin.
Mean field exponents (d > 6).
1. P[|Co| ≥ n] ∼ n−1/2 Hara & Slade.
2. P[diamZd(Co) ≥ n] ∼ n−2 Kozma & Nachmias (one-arm
exponent).

Exponents d = 2 (triangular lattice):
1. P[|Co| ≥ n] ∼ n−5/91.

2. P[diamZd(Co) ≥ n] ∼ n−5/48.

8 13



Critical exponents for percolation

No infinite cluster at criticality d = 2 (Kesten) d ≥ 11 (Hara &
Slade, Fitzner & van der Hofstadt).
Let Co be the cluster of the origin.
Mean field exponents (d > 6).
1. P[|Co| ≥ n] ∼ n−1/2 Hara & Slade.
2. P[diamZd(Co) ≥ n] ∼ n−2 Kozma & Nachmias (one-arm
exponent).

Exponents d = 2 (triangular lattice):
1. P[|Co| ≥ n] ∼ n−5/91.
2. P[diamZd(Co) ≥ n] ∼ n−5/48.

8 13



The IIC for percolation

Planar IIC (d = 2)

1. Kesten 86, rigorous definition of the IIC.
2. Kesten 86, sub-diffusivity for the walk on the IIC.

Mean field IIC (d > 6).
I van der Hofstadt, Jarai, rigorous definition of the IIC.
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The Alexander-Orbach conjecture in high dimensions

Two conditions which imply the A-O conjecture (Barlow,
Jarai, Kumagai & Slade).

1. BG(o,R) ∼ R2.
2. Reff(o, ∂BG(o,R)) ∼ R.

Kozma and Nachmias verified those conditions for the IIC.
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A simple Labyrinth



Universality class of mean field percolation

Many models display the same macroscopic structure as
percolation above the upper critical dimension.

Percolation d > 6
Contact process d > 4.
Voter model d > 2.
Lattice trees d > 8.
Oriented percolation d > 4.
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The simplest model

Critical Branching Random Walks.

Let Tn be a critical Branching Process conditioned on
|Tn| = n.
E(Tn): edges of Tn.
(Le)e∈E(Tn) be i.i.d. vectors chosen uniformly on
{v ∈ Zd : ‖v‖ = 1}.
Define the embedding Φn : Tn :→ Zd:

Φn(v) :=
∑

e∈[root,v]
Le

.
Consider the random graph ωn ⊆ Zd obtained as the image
of Tn.
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Scaling limit for the Ant in Critical Branching
Random Walks

Xωn : Random walk on ωn.

Theorem. Ben Arous, C., Fribergh
Let d ≥ 14,

(n−αXωnnβt)t≥0 → (BISEt )t≥0

What is BISE?
What is α?, β?.
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