THE ANT IN THE LABYRINTH. DAY 2.

MANUEL CABEZAS. UNIVERSIDAD CATÓLICA DE CHILE

BUC-CHILE PROBABILITY MEETING

29 11 2019

Kesten, 86: Rigorous definition of the Incipient Infinite Cluster on a tree.

- Kesten, 86: Rigorous definition of the Incipient Infinite Cluster on a tree.
- It has a unique infinite (self-avoiding) path starting at the root.

- Kesten, 86: Rigorous definition of the Incipient Infinite Cluster on a tree.
- It has a unique infinite (self-avoiding) path starting at the root.
- Can be seen as \mathbb{N} adorned with (finite) branches $(\mathcal{B}_k)_{k \in \mathbb{N}}$.

- Kesten, 86: Rigorous definition of the Incipient Infinite Cluster on a tree.
- It has a unique infinite (self-avoiding) path starting at the root.
- Can be seen as \mathbb{N} adorned with (finite) branches $(\mathcal{B}_k)_{k \in \mathbb{N}}$.
- The branches $(\mathcal{B}_k)_{k \in \mathbb{N}}$ are i.i.d.

- Kesten, 86: Rigorous definition of the Incipient Infinite Cluster on a tree.
- It has a unique infinite (self-avoiding) path starting at the root.
- Can be seen as \mathbb{N} adorned with (finite) branches $(\mathcal{B}_k)_{k \in \mathbb{N}}$.
- The branches $(\mathcal{B}_k)_{k \in \mathbb{N}}$ are i.i.d. and distributed as critical percolation trees.

- Kesten, 86: Rigorous definition of the Incipient Infinite Cluster on a tree.
- It has a unique infinite (self-avoiding) path starting at the root.
- Can be seen as \mathbb{N} adorned with (finite) branches $(\mathcal{B}_k)_{k \in \mathbb{N}}$.
- The branches $(\mathcal{B}_k)_{k \in \mathbb{N}}$ are i.i.d. and distributed as critical percolation trees.
- Those Branches act like traps for the ant.

■ The ant has to give $\sim N^2$ steps in the backbone to reach distance N in the backbone.

- The ant has to give ~ N² steps in the backbone to reach distance N in the backbone.
- The amount of visits to each branch is $\sim N$.

- The ant has to give $\sim N^2$ steps in the backbone to reach distance N in the backbone.
- The amount of visits to each branch is $\sim N$.
- The largest branch has cardinality $\sim N^2$.

- The ant has to give $\sim N^2$ steps in the backbone to reach distance N in the backbone.
- The amount of visits to each branch is $\sim N$.
- The largest branch has cardinality $\sim N^2$.
- The expected time of a visit equals the cardinality of the branch.

- The ant has to give $\sim N^2$ steps in the backbone to reach distance N in the backbone.
- The amount of visits to each branch is $\sim N$.
- The largest branch has cardinality $\sim N^2$.
- The expected time of a visit equals the cardinality of the branch.
- The time spent in the largest branch is $\sim N^3$.

- The ant has to give $\sim N^2$ steps in the backbone to reach distance N in the backbone.
- The amount of visits to each branch is $\sim N$.
- The largest branch has cardinality $\sim N^2$.
- The expected time of a visit equals the cardinality of the branch.
- The time spent in the largest branch is $\sim N^3$.
- The total time spent is of the same order of magnitude as the time spent in the largest branch.

- The ant has to give $\sim N^2$ steps in the backbone to reach distance N in the backbone.
- The amount of visits to each branch is $\sim N$.
- The largest branch has cardinality $\sim N^2$.
- The expected time of a visit equals the cardinality of the branch.
- The time spent in the largest branch is $\sim N^3$.
- The total time spent is of the same order of magnitude as the time spent in the largest branch.
- $\blacksquare X_n \sim n^{1/3}.$

- The ant has to give $\sim N^2$ steps in the backbone to reach distance N in the backbone.
- The amount of visits to each branch is $\sim N$.
- The largest branch has cardinality $\sim N^2$.
- The expected time of a visit equals the cardinality of the branch.
- The time spent in the largest branch is $\sim N^3$.
- The total time spent is of the same order of magnitude as the time spent in the largest branch.
- $\blacksquare X_n \sim n^{1/3}.$

$$\bullet d_w = 3$$

- The ant has to give $\sim N^2$ steps in the backbone to reach distance N in the backbone.
- The amount of visits to each branch is $\sim N$.
- The largest branch has cardinality $\sim N^2$.
- The expected time of a visit equals the cardinality of the branch.
- The time spent in the largest branch is $\sim N^3$.
- The total time spent is of the same order of magnitude as the time spent in the largest branch.
- $\blacksquare X_n \sim n^{1/3}.$

■
$$d_w = 3, d_h = 2.$$

- The ant has to give $\sim N^2$ steps in the backbone to reach distance N in the backbone.
- The amount of visits to each branch is $\sim N$.
- The largest branch has cardinality $\sim N^2$.
- The expected time of a visit equals the cardinality of the branch.
- The time spent in the largest branch is $\sim N^3$.
- The total time spent is of the same order of magnitude as the time spent in the largest branch.

$$\blacksquare X_n \sim n^{1/3}.$$

■
$$d_w = 3, d_h = 2.$$

■ $d_s = 2\frac{d_h}{d_w}$

- The ant has to give $\sim N^2$ steps in the backbone to reach distance N in the backbone.
- The amount of visits to each branch is $\sim N$.
- The largest branch has cardinality $\sim N^2$.
- The expected time of a visit equals the cardinality of the branch.
- The time spent in the largest branch is $\sim N^3$.
- The total time spent is of the same order of magnitude as the time spent in the largest branch.

$$\blacksquare X_n \sim n^{1/3}.$$

■
$$d_w = 3, d_h = 2.$$

■ $d_s = 2\frac{d_h}{d_w} = \frac{4}{3}.$

• Let \mathcal{T}_n be a critical G-W tree conditioned on $|\mathcal{T}_n| = n$.

■ Let \mathcal{T}_n be a critical G-W tree conditioned on $|\mathcal{T}_n| = n$. ■ Let $(C_n(i))_{i=1,...2n-1}$ be the contour process of \mathcal{T}_n .

- Let \mathcal{T}_n be a critical G-W tree conditioned on $|\mathcal{T}_n| = n$.
- Let $(C_n(i))_{i=1,...2n-1}$ be the contour process of \mathcal{T}_n .
- Let $(\boldsymbol{e}_t)_{t \in [0,1]}$ be a Brownian excursion.

- Let \mathcal{T}_n be a critical G-W tree conditioned on $|\mathcal{T}_n| = n$.
- Let $(C_n(i))_{i=1,...2n-1}$ be the contour process of \mathcal{T}_n .
- Let $(\boldsymbol{e}_t)_{t \in [0,1]}$ be a Brownian excursion.
- Aldous: If the offspring distribution has finite variance:

 $n^{-1/2}C_n(\lfloor 2nt \rfloor)_{t \in [0,1]} \rightarrow (\boldsymbol{e}_t)_{t \in [0,1]}.$

- Let \mathcal{T}_n be a critical G-W tree conditioned on $|\mathcal{T}_n| = n$.
- Let $(C_n(i))_{i=1,...2n-1}$ be the contour process of \mathcal{T}_n .
- Let $(\boldsymbol{e}_t)_{t \in [0,1]}$ be a Brownian excursion.
- Aldous: If the offspring distribution has finite variance:

$$n^{-1/2}C_n(\lfloor 2nt \rfloor)_{t\in[0,1]} \rightarrow (\boldsymbol{e}_t)_{t\in[0,1]}$$

■ Let $f : [0, 1] \rightarrow \mathbb{R}$ be a continuous function satisfying f(x) = 0 i.f.f. x = 0, 1.

- Let \mathcal{T}_n be a critical G-W tree conditioned on $|\mathcal{T}_n| = n$.
- Let $(C_n(i))_{i=1,...2n-1}$ be the contour process of \mathcal{T}_n .
- Let $(\boldsymbol{e}_t)_{t \in [0,1]}$ be a Brownian excursion.
- Aldous: If the offspring distribution has finite variance:

$$n^{-1/2}C_n(\lfloor 2nt \rfloor)_{t \in [0,1]} \rightarrow (\boldsymbol{e}_t)_{t \in [0,1]}$$

- Let $f : [0, 1] \rightarrow \mathbb{R}$ be a continuous function satisfying f(x) = 0i.f.f. x = 0, 1.
- Define an equivalence relation \sim in [0, 1] as $x \sim y$ i.f.f. $d_f(x, y) = 0$, where

$$d_f = f(x) + f(y) - 2 \min_{z \in [x,y]} f(z).$$

- Let \mathcal{T}_n be a critical G-W tree conditioned on $|\mathcal{T}_n| = n$.
- Let $(C_n(i))_{i=1,...2n-1}$ be the contour process of \mathcal{T}_n .
- Let $(\boldsymbol{e}_t)_{t \in [0,1]}$ be a Brownian excursion.
- Aldous: If the offspring distribution has finite variance:

$$n^{-1/2}C_n(\lfloor 2nt \rfloor)_{t\in[0,1]} \rightarrow (\boldsymbol{e}_t)_{t\in[0,1]}$$

- Let $f : [0, 1] \rightarrow \mathbb{R}$ be a continuous function satisfying f(x) = 0i.f.f. x = 0, 1.
- Define an equivalence relation \sim in [0, 1] as $x \sim y$ i.f.f. $d_f(x, y) = 0$, where

$$d_f = f(x) + f(y) - 2 \min_{z \in [x,y]} f(z).$$

The topological space $\mathfrak{T}_f := [0, 1] / \sim$ is arc-connected and has no subspace which is homeomorphic to the circle

■ The pseudo-metric d_f , becomes a metric in \mathfrak{T}_f .

- **The pseudo-metric** d_f , becomes a metric in \mathfrak{T}_f .
- The Lebesgue measure in [0, 1] becomes a probability measure μ_f in \mathfrak{T}_f .

- **The pseudo-metric** d_f , becomes a metric in \mathfrak{T}_f .
- The Lebesgue measure in [0, 1] becomes a probability measure μ_f in \mathfrak{T}_f .

The CRT

- **The pseudo-metric** d_f , becomes a metric in \mathfrak{T}_f .
- The Lebesgue measure in [0, 1] becomes a probability measure μ_f in \mathfrak{T}_f .

The CRT

The triple $(\mathfrak{T}_{e}, d_{e}, \mu_{e})$ is the Continuum Random tree (CRT).

■ Line-Breaking construction: Let $(l_i)_{i \in \mathbb{N}}$ be the (ordered) marks of an inhomogeneous Poisson Point Process in $[0, \infty)$ of intensity r(t) = t.

- **The pseudo-metric** d_f , becomes a metric in \mathfrak{T}_f .
- The Lebesgue measure in [0, 1] becomes a probability measure μ_f in \mathfrak{T}_f .

The CRT

- Line-Breaking construction: Let $(l_i)_{i \in \mathbb{N}}$ be the (ordered) marks of an inhomogeneous Poisson Point Process in $[0, \infty)$ of intensity r(t) = t.
- Let $\mathfrak{T}^{(1)}$ be a line segment of length l_1

- The pseudo-metric d_f , becomes a metric in \mathfrak{T}_f .
- The Lebesgue measure in [0, 1] becomes a probability measure μ_f in \mathfrak{T}_f .

The CRT

- Line-Breaking construction: Let $(l_i)_{i \in \mathbb{N}}$ be the (ordered) marks of an inhomogeneous Poisson Point Process in $[0, \infty)$ of intensity r(t) = t.
- Let $\mathfrak{T}^{(1)}$ be a line segment of length l_1
- Given $\mathfrak{T}^{(K)}$, we inductively construct $\mathfrak{T}^{(K+1)}$ by attaching a line segment of length $l_{K+1} l_K$ to $\mathfrak{T}^{(K)}$ at a point chosen uniformly.

- **The pseudo-metric** d_f , becomes a metric in \mathfrak{T}_f .
- The Lebesgue measure in [0, 1] becomes a probability measure μ_f in \mathfrak{T}_f .

The CRT

- Line-Breaking construction: Let $(l_i)_{i \in \mathbb{N}}$ be the (ordered) marks of an inhomogeneous Poisson Point Process in $[0, \infty)$ of intensity r(t) = t.
- Let $\mathfrak{T}^{(1)}$ be a line segment of length l_1
- Given $\mathfrak{T}^{(K)}$, we inductively construct $\mathfrak{T}^{(K+1)}$ by attaching a line segment of length $l_{K+1} l_K$ to $\mathfrak{T}^{(K)}$ at a point chosen uniformly.
- The CRT is the limit, as $K \to \infty$ of $\mathfrak{T}^{(K)}$.

■ Let $(U_i)_{i \in \mathbb{N}}$ an i.i.d. sequence of points of the CRT chosen according to μ_{e} .

- Let $(U_i)_{i \in \mathbb{N}}$ an i.i.d. sequence of points of the CRT chosen according to μ_{e} .
- Let $\mathfrak{T}^{(K)}$ be the subtree spanned by the root and U_1, \ldots, U_K .

- Let $(U_i)_{i \in \mathbb{N}}$ an i.i.d. sequence of points of the CRT chosen according to μ_{e} .
- Let $\mathfrak{T}^{(K)}$ be the subtree spanned by the root and U_1, \ldots, U_K .
- The tree $\mathfrak{T}^{(K)}$ has the same law as the *K*-th step tree in the line-breaking construction.

- Let $(U_i)_{i \in \mathbb{N}}$ an i.i.d. sequence of points of the CRT chosen according to μ_{e} .
- Let $\mathfrak{T}^{(K)}$ be the subtree spanned by the root and U_1, \ldots, U_K .
- The tree $\mathfrak{T}^{(K)}$ has the same law as the *K*-th step tree in the line-breaking construction.
- $(\mathcal{T}_n, n^{-1/2} d_{\mathcal{T}_n}, n^{-1} \mu_n)$ converges to the CRT (Aldous) (offspring with finite variance).
- Let $(U_i)_{i \in \mathbb{N}}$ an i.i.d. sequence of points of the CRT chosen according to μ_{e} .
- Let $\mathfrak{T}^{(K)}$ be the subtree spanned by the root and U_1, \ldots, U_K .
- The tree $\mathfrak{T}^{(K)}$ has the same law as the *K*-th step tree in the line-breaking construction.
- $(\mathcal{T}_n, n^{-1/2} d_{\mathcal{T}_n}, n^{-1} \mu_n)$ converges to the CRT (Aldous) (offspring with finite variance).
- Convergence of trees: Convergence of spanned subtrees + leaf tightness.

■ Let $(\mathfrak{T}, d_{\mathfrak{T}}, \mu_{\mathfrak{T}})$ be a tree with metric and measure.

- Let $(\mathfrak{T}, d_{\mathfrak{T}}, \mu_{\mathfrak{T}})$ be a tree with metric and measure.
- The Brownian motion on $(\mathfrak{T}, d_{\mathfrak{T}}, \mu_{\mathfrak{T}})$ is

- Let $(\mathfrak{T}, d_{\mathfrak{T}}, \mu_{\mathfrak{T}})$ be a tree with metric and measure.
- The Brownian motion on $(\mathfrak{T}, d_{\mathfrak{T}}, \mu_{\mathfrak{T}})$ is
 - 1. Strong Markov

- Let $(\mathfrak{T}, d_{\mathfrak{T}}, \mu_{\mathfrak{T}})$ be a tree with metric and measure.
- The Brownian motion on $(\mathfrak{T}, d_{\mathfrak{T}}, \mu_{\mathfrak{T}})$ is
 - 1. Strong Markov
 - 2. Symmetric with respect to $d_{\mathfrak{T}}$

- Let $(\mathfrak{T}, d_{\mathfrak{T}}, \mu_{\mathfrak{T}})$ be a tree with metric and measure.
- The Brownian motion on $(\mathfrak{T}, d_{\mathfrak{T}}, \mu_{\mathfrak{T}})$ is
 - 1. Strong Markov
 - 2. Symmetric with respect to $d_{\mathfrak{T}}$
 - 3. Invariant under $\mu_{\mathfrak{T}}.$

- Let $(\mathfrak{T}, d_{\mathfrak{T}}, \mu_{\mathfrak{T}})$ be a tree with metric and measure.
- The Brownian motion on $(\mathfrak{T}, d_{\mathfrak{T}}, \mu_{\mathfrak{T}})$ is
 - 1. Strong Markov
 - 2. Symmetric with respect to $d_{\mathfrak{T}}$
 - 3. Invariant under $\mu_{\mathfrak{T}}$.
- Uniqueness: Aldous

- Let $(\mathfrak{T}, d_{\mathfrak{T}}, \mu_{\mathfrak{T}})$ be a tree with metric and measure.
- The Brownian motion on $(\mathfrak{T}, d_{\mathfrak{T}}, \mu_{\mathfrak{T}})$ is
 - 1. Strong Markov
 - 2. Symmetric with respect to $d_{\mathfrak{T}}$
 - 3. Invariant under $\mu_{\mathfrak{T}}$.
- Uniqueness: Aldous
- Existence: Krebs (CRT), Kigami, Croydon (General).

SCALING LIMIT FOR THE ANT IN A TREE

Theorem

Croydon o8

$$(n^{-1/2}X_{\lfloor n^{3/2}t\rfloor}^{\mathcal{T}_n})_{t\geq 0} \to (B_t^{CRT})_{t\geq 0}.$$

PERCOLATION

■ No infinite cluster at criticality d = 2 (Kesten) $d \ge 11$ (Hara & Slade, Fitzner & van der Hofstadt).

- No infinite cluster at criticality d = 2 (Kesten) $d \ge 11$ (Hara & Slade, Fitzner & van der Hofstadt).
- Let $C_{\mathbf{0}}$ be the cluster of the origin.

- No infinite cluster at criticality d = 2 (Kesten) $d \ge 11$ (Hara & Slade, Fitzner & van der Hofstadt).
- Let $C_{\mathbf{0}}$ be the cluster of the origin.
- Mean field exponents (d > 6).

- No infinite cluster at criticality d = 2 (Kesten) $d \ge 11$ (Hara & Slade, Fitzner & van der Hofstadt).
- Let $C_{\mathbf{0}}$ be the cluster of the origin.
- Mean field exponents (d > 6).
 - 1. $\mathbb{P}[|\mathcal{C}_{\mathbf{0}}| \geq n] \sim n^{-1/2}$ Hara & Slade.

- No infinite cluster at criticality d = 2 (Kesten) $d \ge 11$ (Hara & Slade, Fitzner & van der Hofstadt).
- Let C_{o} be the cluster of the origin.
- Mean field exponents (d > 6).
 - 1. $\mathbb{P}[|\mathcal{C}_{\mathbf{0}}| \ge n] \sim n^{-1/2}$ Hara & Slade.
 - P[diam_{Z^d}(C_o) ≥ n] ~ n⁻² Kozma & Nachmias (one-arm exponent).

- No infinite cluster at criticality d = 2 (Kesten) $d \ge 11$ (Hara & Slade, Fitzner & van der Hofstadt).
- Let C_{o} be the cluster of the origin.
- Mean field exponents (d > 6).
 - 1. $\mathbb{P}[|\mathcal{C}_{\mathbf{0}}| \geq n] \sim n^{-1/2}$ Hara & Slade.
 - 2. $\mathbb{P}[\operatorname{diam}_{\mathbb{Z}^d}(\mathcal{C}_{\boldsymbol{o}}) \ge n] \sim n^{-2}$ Kozma & Nachmias (one-arm exponent).
- Exponents d = 2 (triangular lattice):

- No infinite cluster at criticality d = 2 (Kesten) $d \ge 11$ (Hara & Slade, Fitzner & van der Hofstadt).
- Let C_{o} be the cluster of the origin.
- Mean field exponents (d > 6).
 - 1. $\mathbb{P}[|\mathcal{C}_{\boldsymbol{o}}| \geq n] \sim n^{-1/2}$ Hara & Slade.
 - P[diam_{Z^d}(C_o) ≥ n] ~ n⁻² Kozma & Nachmias (one-arm exponent).
- Exponents d = 2 (triangular lattice):

1.
$$\mathbb{P}[|\mathcal{C}_0| \ge n] \sim n^{-5/91}$$
.

- No infinite cluster at criticality d = 2 (Kesten) $d \ge 11$ (Hara & Slade, Fitzner & van der Hofstadt).
- Let C_{o} be the cluster of the origin.
- Mean field exponents (d > 6).
 - 1. $\mathbb{P}[|\mathcal{C}_{\boldsymbol{o}}| \geq n] \sim n^{-1/2}$ Hara & Slade.
 - P[diam_{Z^d}(C_o) ≥ n] ~ n⁻² Kozma & Nachmias (one-arm exponent).
- Exponents d = 2 (triangular lattice):

1.
$$\mathbb{P}[|\mathcal{C}_{o}| \ge n] \sim n^{-5/91}$$
.

2.
$$\mathbb{P}[\operatorname{diam}_{\mathbb{Z}^d}(\mathcal{C}_{\mathbf{0}}) \ge n] \sim n^{-5/48}$$

THE IIC FOR PERCOLATION

Planar IIC (
$$d = 2$$
)

Planar IIC (d = 2)

1. Kesten 86, rigorous definition of the IIC.

Planar IIC (d = 2)

- 1. Kesten 86, rigorous definition of the IIC.
- 2. Kesten 86, sub-diffusivity for the walk on the IIC.

Planar IIC (d = 2)

- 1. Kesten 86, rigorous definition of the IIC.
- 2. Kesten 86, sub-diffusivity for the walk on the IIC.
- Mean field IIC (d > 6).

- Planar IIC (d = 2)
 - 1. Kesten 86, rigorous definition of the IIC.
 - 2. Kesten 86, sub-diffusivity for the walk on the IIC.
- Mean field IIC (d > 6).
 - ▶ van der Hofstadt, Jarai, rigorous definition of the IIC.

Two conditions which imply the A-O conjecture (Barlow, Jarai, Kumagai & Slade).

- Two conditions which imply the A-O conjecture (Barlow, Jarai, Kumagai & Slade).
 - 1. $B_G(o, R) \sim R^2$.

- Two conditions which imply the A-O conjecture (Barlow, Jarai, Kumagai & Slade).
 - 1. $B_G(o, R) \sim R^2$.
 - 2. $R_{\text{eff}}(\boldsymbol{o}, \partial B_G(\boldsymbol{o}, R)) \sim R.$

- Two conditions which imply the A-O conjecture (Barlow, Jarai, Kumagai & Slade).
 - 1. $B_G(o, R) \sim R^2$.
 - 2. $R_{\text{eff}}(\boldsymbol{o}, \partial B_G(\boldsymbol{o}, R)) \sim R.$

■ Kozma and Nachmias verified those conditions for the IIC.

A SIMPLE LABYRINTH

• Percolation d > 6

- Percolation d > 6
- Contact process d > 4.

- Percolation d > 6
- Contact process d > 4.
- Voter model d > 2.

- Percolation d > 6
- Contact process d > 4.
- Voter model d > 2.
- Lattice trees *d* > 8.

- Percolation d > 6
- Contact process d > 4.
- Voter model d > 2.
- Lattice trees *d* > 8.
- Oriented percolation d > 4.

THE SIMPLEST MODEL

Critical Branching Random Walks.

THE SIMPLEST MODEL

- Critical Branching Random Walks.
- Let \mathcal{T}_n be a critical Branching Process conditioned on $|\mathcal{T}_n| = n$.

12
- Critical Branching Random Walks.
- Let \mathcal{T}_n be a critical Branching Process conditioned on $|\mathcal{T}_n| = n$.
- $E(\mathcal{T}_n)$: edges of \mathcal{T}_n .

12

- Critical Branching Random Walks.
- Let \mathcal{T}_n be a critical Branching Process conditioned on $|\mathcal{T}_n| = n$.
- $E(\mathcal{T}_n)$: edges of \mathcal{T}_n .
- $(L_e)_{e \in E(\mathcal{T}_n)}$ be i.i.d. vectors chosen uniformly on $\{v \in \mathbb{Z}^d : ||v|| = 1\}.$

- Critical Branching Random Walks.
- Let \mathcal{T}_n be a critical Branching Process conditioned on $|\mathcal{T}_n| = n$.
- $E(\mathcal{T}_n)$: edges of \mathcal{T}_n .
- $(L_e)_{e \in E(\mathcal{T}_n)}$ be i.i.d. vectors chosen uniformly on $\{v \in \mathbb{Z}^d : ||v|| = 1\}.$
- Define the embedding $\Phi_n : \mathcal{T}_n : \to \mathbb{Z}^d$:

12

- Critical Branching Random Walks.
- Let \mathcal{T}_n be a critical Branching Process conditioned on $|\mathcal{T}_n| = n$.
- $E(\mathcal{T}_n)$: edges of \mathcal{T}_n .

.

- $(L_e)_{e \in E(\mathcal{T}_n)}$ be i.i.d. vectors chosen uniformly on $\{v \in \mathbb{Z}^d : ||v|| = 1\}.$
- Define the embedding $\Phi_n : \mathcal{T}_n : \to \mathbb{Z}^d$:

$$\Phi_n(v) := \sum_{e \in [\text{root}, v]} L_e$$

- Critical Branching Random Walks.
- Let \mathcal{T}_n be a critical Branching Process conditioned on $|\mathcal{T}_n| = n$.
- $E(\mathcal{T}_n)$: edges of \mathcal{T}_n .

.

- $(L_e)_{e \in E(\mathcal{T}_n)}$ be i.i.d. vectors chosen uniformly on $\{v \in \mathbb{Z}^d : ||v|| = 1\}.$
- Define the embedding $\Phi_n : \mathcal{T}_n : \to \mathbb{Z}^d$:

$$\Phi_n(v) := \sum_{e \in [\text{root}, v]} L_e$$

Consider the random graph $\omega_n \subseteq \mathbb{Z}^d$ obtained as the image of \mathcal{T}_n .

 X^{ω_n} : Random walk on ω_n .

 X^{ω_n} : Random walk on ω_n .

Theorem. Ben Arous, C., Fribergh

Let $d \ge 14$,

$$(n^{-\alpha}X^{\omega_n}_{n^{\beta}t})_{t\geq 0}
ightarrow (B^{ISE}_t)_{t\geq 0}$$

 X^{ω_n} : Random walk on ω_n .

Theorem. Ben Arous, C., Fribergh

Let $d \ge 14$,

$$(n^{-\alpha}X^{\omega_n}_{n^{\beta}t})_{t\geq 0}
ightarrow (B^{ISE}_t)_{t\geq 0}$$

■ What is *B*^{ISE}?

 X^{ω_n} : Random walk on ω_n .

Theorem. Ben Arous, C., Fribergh

Let $d \ge 14$,

$$(n^{-\alpha}X^{\omega_n}_{n^{\beta}t})_{t\geq 0}
ightarrow (B^{ISE}_t)_{t\geq 0}$$

- What is B^{ISE}?
- What is α ?

 X^{ω_n} : Random walk on ω_n .

Theorem. Ben Arous, C., Fribergh

Let $d \ge 14$,

$$(n^{-\alpha}X^{\omega_n}_{n^{\beta}t})_{t\geq 0}
ightarrow (B^{ISE}_t)_{t\geq 0}$$

- What is *B*^{ISE}?
- What is α ?, β ?.