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m Letp € [0,1].

m Declare a bond of Z9, d > 1, open with probability p and
closed with probability 1 — p.

m Two vertices are connected if there exists an open path
joining them.

m There exists a critical value of the parameter p. € (0, 1) such
that, if p > pc, almost surely, there exists a unique infinite
open cluster, while, if p < p¢, almost surely, all open clusters
are finite.

m At p = p. it is expected that there is no infinite cluster, but
there are large clusters at all scales.
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m Let C be a percolation cluster.

m Let X¢ be a random walk on C.

m When XC sits on a vertex, it jumps to vertex chosen uniformly
among its (connected) nearest neighbors

m Brandt 1975: Diffusion of noble gasses in glasses.

m de Gennes 1976: Popularized the model in the article
Percolation, a unifying concept. He coined the term The ant
in the labyrinth.
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m Incipient Infinite Cluster (IIC): Critical cluster conditioned to
be infinite.

m Sub-diffusivity, due to the fractal structure. Dead-ends,
bottlenecks, bending.

Dimension of the walk

Let G be an infinite graph, the dimension of the walk d,, is
defined through the relation

E[(XP)?] ~ to
For X' we have d,, > 2, subdiffusivity.
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Spectral dimension of a graph

Let G be an infinite graph. The spectral dimension ds is define
through the relation

or pan(0,0) = n—ds/2+0(1),

m Related to the density of vibrational density of states:
g(w) ~ w7, where w represents frequency.
m In 1982, Alexander an Orbach conjectured that the spectral
dimension of the lIC is 4/3.
m Kozma and Nachmias 2009, proved A-O for large dimensions.
m The conjecture is expected to be false for d < 6.
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m Let d,, be the Hausdorff dimension of a graph. That is, a ball
or radius N has a volume of order N9,

m After N steps, the walks has time to explore a ball of radius
N/ dw,

m That ball has volume N9/dw,

m If we assume the walk is evenly distributed on the ball,

_ L o N—dn/dw
Volume of the ball ’

pn(0,0)

m Alexander Orbach predicts d,, = 2‘;—’; =3d,=34=6.
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PERCOLATION ON A TREE

m Let 7 be the cluster of the root for percolation on a regular
tree.

m 7 can be regarded as a Galton-Watson process.
m p. = (degree)™".

m P, (7] >n)~n""2

m P, (diam(7) > n) ~n~".
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m Discrete trees can be encoded using excursions

YA

m The contour process of a Geom (1/2) r.v. is distributed as a
simple random walk.

m This explains the critical exponents for percolation on a tree
discussed above.
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