THE ANT IN THE LABYRINTH

MANUEL CABEZAS. UNIVERSIDAD CATÓLICA DE CHILE

BUC-CHILE PROBABILITY MEETING

28 11 2019

INTRODUCTION

- Let $p \in [0, 1]$.
- Declare a bond of Z^d, d > 1, open with probability p and closed with probability 1 − p.

- Let $p \in [0, 1]$.
- Declare a bond of Z^d, d > 1, open with probability p and closed with probability 1 − p.
- Two vertices are *connected* if there exists an open path joining them.

- Let $p \in [0, 1]$.
- Declare a bond of Z^d, d > 1, open with probability p and closed with probability 1 − p.
- Two vertices are *connected* if there exists an open path joining them.
- **There exists a critical value of the parameter** $p_c \in (0, 1)$

- Declare a bond of Z^d, d > 1, open with probability p and closed with probability 1 − p.
- Two vertices are *connected* if there exists an open path joining them.
- There exists a critical value of the parameter $p_c \in (0, 1)$ such that, if $p > p_c$, almost surely, there exists a unique infinite open cluster,

- Declare a bond of Z^d, d > 1, open with probability p and closed with probability 1 − p.
- Two vertices are *connected* if there exists an open path joining them.
- There exists a critical value of the parameter $p_c \in (0, 1)$ such that, if $p > p_c$, almost surely, there exists a unique infinite open cluster, while, if $p < p_c$, almost surely, all open clusters are finite.

- Declare a bond of Z^d, d > 1, open with probability p and closed with probability 1 p.
- Two vertices are *connected* if there exists an open path joining them.
- There exists a critical value of the parameter $p_c \in (0, 1)$ such that, if $p > p_c$, almost surely, there exists a unique infinite open cluster, while, if $p < p_c$, almost surely, all open clusters are finite.
- At $p = p_c$ it is expected that there is no infinite cluster

- Declare a bond of Z^d, d > 1, open with probability p and closed with probability 1 p.
- Two vertices are *connected* if there exists an open path joining them.
- There exists a critical value of the parameter $p_c \in (0, 1)$ such that, if $p > p_c$, almost surely, there exists a unique infinite open cluster, while, if $p < p_c$, almost surely, all open clusters are finite.
- At $p = p_c$ it is expected that there is no infinite cluster, but there are large clusters at all scales.

RANDOM WALK IN A PERCOLATION CLUSTER

\blacksquare Let $\mathcal C$ be a percolation cluster.

RANDOM WALK IN A PERCOLATION CLUSTER

- \blacksquare Let ${\mathcal C}$ be a percolation cluster.
- Let $X^{\mathcal{C}}$ be a random walk on \mathcal{C} .

RANDOM WALK IN A PERCOLATION CLUSTER

- \blacksquare Let ${\mathcal C}$ be a percolation cluster.
- Let $X^{\mathcal{C}}$ be a random walk on \mathcal{C} .
- When X^C sits on a vertex, it jumps to vertex chosen uniformly among its (connected) nearest neighbors

- \blacksquare Let ${\mathcal C}$ be a percolation cluster.
- Let $X^{\mathcal{C}}$ be a random walk on \mathcal{C} .
- When X^C sits on a vertex, it jumps to vertex chosen uniformly among its (connected) nearest neighbors
- Brandt 1975: Diffusion of noble gasses in glasses.

- \blacksquare Let ${\mathcal C}$ be a percolation cluster.
- Let $X^{\mathcal{C}}$ be a random walk on \mathcal{C} .
- When X^C sits on a vertex, it jumps to vertex chosen uniformly among its (connected) nearest neighbors
- Brandt 1975: Diffusion of noble gasses in glasses.
- de Gennes 1976: Popularized the model in the article Percolation, a unifying concept. He coined the term The ant in the labyrinth.

THE ANT IN THE SUB AND SUPER-CRITICAL LABYRINTHS

■ When *p* < *p*_c, all clusters are finite and small. The behavior of *X*^C is not very interesting.

- When *p* < *p*_c, all clusters are finite and small. The behavior of *X*^C is not very interesting.
- When *p* > *p*_c, there is homogenization and *X*^C scales to a Brownian motion.

- When *p* < *p*_c, all clusters are finite and small. The behavior of *X*^C is not very interesting.
- When *p* > *p*_c, there is homogenization and *X*^C scales to a Brownian motion.
- In the supercritical regime, there is a non-monotone dependence of the speed in terms of the drift

- When *p* < *p*_c, all clusters are finite and small. The behavior of *X*^C is not very interesting.
- When *p* > *p*_c, there is homogenization and *X*^C scales to a Brownian motion.
- In the supercritical regime, there is a non-monotone dependence of the speed in terms of the drift

Incipient Infinite Cluster (IIC): Critical cluster conditioned to be infinite.

- Incipient Infinite Cluster (IIC): Critical cluster conditioned to be infinite.
- Sub-diffusivity, due to the fractal structure. Dead-ends, bottlenecks, bending.

- Incipient Infinite Cluster (IIC): Critical cluster conditioned to be infinite.
- Sub-diffusivity, due to the fractal structure. Dead-ends, bottlenecks, bending.

Dimension of the walk

Let G be an infinite graph, the dimension of the walk d_w is defined through the relation

$$\mathbb{E}[(X_t^G)^2] \sim t^{\frac{2}{d_W}}.$$

- Incipient Infinite Cluster (IIC): Critical cluster conditioned to be infinite.
- Sub-diffusivity, due to the fractal structure. Dead-ends, bottlenecks, bending.

Dimension of the walk

Let G be an infinite graph, the dimension of the walk d_w is defined through the relation

$$\mathbb{E}[(X_t^G)^2] \sim t^{\frac{2}{d_W}}.$$

For X^{IIC} we have $d_w > 2$, subdiffusivity.

Spectral dimension of a graph

$$d_{\mathsf{s}} := -2 \lim_{n \to \infty} \frac{\log(p_{2n}^{\mathsf{G}}(\mathsf{O},\mathsf{O}))}{\log(n)}$$

Spectral dimension of a graph

Let G be an infinite graph. The spectral dimension d_s is define through the relation

$$d_{s} := -2 \lim_{n \to \infty} \frac{\log(p_{2n}^{G}(O, O))}{\log(n)}$$

or $p_{2n}(0,0) = n^{-d_s/2 + o(1)}$.

Spectral dimension of a graph

Let G be an infinite graph. The spectral dimension d_s is define through the relation

$$d_{s} := -2 \lim_{n \to \infty} \frac{\log(p_{2n}^{G}(O, O))}{\log(n)}$$

or
$$p_{2n}(0,0) = n^{-d_s/2 + o(1)}$$
.

Related to the density of vibrational density of states: $g(\omega) \sim \omega^{d_s-1}$, where ω represents frequency.

Spectral dimension of a graph

$$d_{s} := -2 \lim_{n \to \infty} \frac{\log(p_{2n}^{G}(O, O))}{\log(n)}$$

or
$$p_{2n}(0,0) = n^{-d_s/2 + o(1)}$$
.

- Related to the density of vibrational density of states: $g(\omega) \sim \omega^{d_s-1}$, where ω represents frequency.
- In 1982, Alexander an Orbach conjectured that the spectral dimension of the IIC is 4/3.

Spectral dimension of a graph

$$d_{s} := -2 \lim_{n \to \infty} \frac{\log(p_{2n}^{G}(O, O))}{\log(n)}$$

or
$$p_{2n}(0,0) = n^{-d_s/2 + o(1)}$$
.

- Related to the density of vibrational density of states: $g(\omega) \sim \omega^{d_s-1}$, where ω represents frequency.
- In 1982, Alexander an Orbach conjectured that the spectral dimension of the IIC is 4/3.
- Kozma and Nachmias 2009, proved A-O for large dimensions.

Spectral dimension of a graph

$$d_{s} := -2 \lim_{n \to \infty} \frac{\log(p_{2n}^{G}(O, O))}{\log(n)}$$

or
$$p_{2n}(0,0) = n^{-d_s/2 + o(1)}$$
.

- Related to the density of vibrational density of states: $g(\omega) \sim \omega^{d_s-1}$, where ω represents frequency.
- In 1982, Alexander an Orbach conjectured that the spectral dimension of the IIC is 4/3.
- Kozma and Nachmias 2009, proved A-O for large dimensions.
- The conjecture is expected to be false for d < 6.

• Let d_h be the Hausdorff dimension of a graph. That is, a ball or radius N has a volume of order N^{d_h} .

- Let d_h be the Hausdorff dimension of a graph. That is, a ball or radius N has a volume of order N^{d_h} .
- After N steps, the walks has time to explore a ball of radius N^{1/d_w} .

- Let d_h be the Hausdorff dimension of a graph. That is, a ball or radius N has a volume of order N^{d_h} .
- After N steps, the walks has time to explore a ball of radius N^{1/d_w} .
- That ball has volume N^{d_h/d_w} .

- Let d_h be the Hausdorff dimension of a graph. That is, a ball or radius N has a volume of order N^{d_h} .
- After N steps, the walks has time to explore a ball of radius N^{1/d_w} .
- That ball has volume N^{d_h/d_w} .
- If we assume the walk is evenly distributed on the ball,

$$p_N(0,0) = rac{1}{ ext{Volume of the ball}} \sim N^{-d_h/d_w}$$

- Let d_h be the Hausdorff dimension of a graph. That is, a ball or radius N has a volume of order N^{d_h} .
- After N steps, the walks has time to explore a ball of radius N^{1/d_w} .
- That ball has volume N^{d_h/d_w} .
- If we assume the walk is evenly distributed on the ball,

$$p_N(0,0) = rac{1}{ ext{Volume of the ball}} \sim N^{-d_h/d_w}$$

$$d_{s} = 2 \frac{d_{h}}{d_{w}}$$

- Let d_h be the Hausdorff dimension of a graph. That is, a ball or radius N has a volume of order N^{d_h} .
- After N steps, the walks has time to explore a ball of radius N^{1/d_w} .
- That ball has volume N^{d_h/d_w} .
- If we assume the walk is evenly distributed on the ball,

$$p_N({\rm o},{\rm o}) = rac{1}{{
m Volume of the ball}} \sim N^{-d_h/d_w}$$

$$d_{s} = 2 \frac{d_{h}}{d_{w}}$$

• Alexander Orbach predicts $d_w = 2\frac{d_h}{d_s}$

- Let d_h be the Hausdorff dimension of a graph. That is, a ball or radius N has a volume of order N^{d_h} .
- After N steps, the walks has time to explore a ball of radius N^{1/d_w} .
- That ball has volume N^{d_h/d_w} .
- If we assume the walk is evenly distributed on the ball,

$$p_N({
m o},{
m o})=rac{1}{{
m Volume of the ball}}\sim N^{-d_h/d_w}$$

$$d_{s} = 2 \frac{d_{h}}{d_{w}}$$

• Alexander Orbach predicts $d_W = 2\frac{d_h}{d_s} = \frac{3}{2}d_h$

THE WALK DIMENSION, HAUSDORFF DIMENSION AND THE SPECTRAL DIMENSION

- Let d_h be the Hausdorff dimension of a graph. That is, a ball or radius N has a volume of order N^{d_h} .
- After N steps, the walks has time to explore a ball of radius N^{1/d_w} .
- That ball has volume N^{d_h/d_w} .
- If we assume the walk is evenly distributed on the ball,

$$p_N(0,0) = rac{1}{ ext{Volume of the ball}} \sim N^{-d_h/d_w}$$

$$d_{s} = 2 \frac{d_{h}}{d_{w}}$$

• Alexander Orbach predicts $d_w = 2\frac{d_h}{d_s} = \frac{3}{2}d_h = \frac{3}{2}4$

THE WALK DIMENSION, HAUSDORFF DIMENSION AND THE SPECTRAL DIMENSION

- Let d_h be the Hausdorff dimension of a graph. That is, a ball or radius N has a volume of order N^{d_h} .
- After N steps, the walks has time to explore a ball of radius N^{1/d_w} .
- That ball has volume N^{d_h/d_w} .
- If we assume the walk is evenly distributed on the ball,

$$p_N(0,0) = rac{1}{ ext{Volume of the ball}} \sim N^{-d_h/d_w}$$

$$d_{\rm s} = 2 \frac{d_h}{d_w}$$

• Alexander Orbach predicts $d_w = 2\frac{d_h}{d_s} = \frac{3}{2}d_h = \frac{3}{2}4 = 6$.

PERCOLATION ON A TREE

■ Let *T* be the cluster of the root for percolation on a regular tree.

- Let *T* be the cluster of the root for percolation on a regular tree.
- \blacksquare T can be regarded as a Galton-Watson process.

- Let *T* be the cluster of the root for percolation on a regular tree.
- $\blacksquare \ \mathcal{T}$ can be regarded as a Galton-Watson process.
- $\blacksquare p_c = (\text{degree})^{-1}.$

- Let *T* be the cluster of the root for percolation on a regular tree.
- $\blacksquare \ \mathcal{T}$ can be regarded as a Galton-Watson process.
- $p_c = (\text{degree})^{-1}$.
- $\blacksquare \mathbb{P}_{p_c}(|\mathcal{T}| > n) \sim n^{-1/2}.$

- Let *T* be the cluster of the root for percolation on a regular tree.
- $\blacksquare \ \mathcal{T}$ can be regarded as a Galton-Watson process.
- $\square p_c = (\text{degree})^{-1}.$
- $\blacksquare \mathbb{P}_{p_c}(|\mathcal{T}| > n) \sim n^{-1/2}.$
- $\blacksquare \mathbb{P}_{p_c}(\operatorname{diam}(\mathcal{T}) > n) \sim n^{-1}.$

Discrete trees can be encoded using excursions

Discrete trees can be encoded using excursions

۸

Discrete trees can be encoded using excursions

The contour process of a Geom (1/2) r.v. is distributed as a simple random walk.

- Discrete trees can be encoded using excursions
- The contour process of a Geom (1/2) r.v. is distributed as a simple random walk.
- This explains the critical exponents for percolation on a tree discussed above.