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Introduction



Percolation

Let p ∈ [0, 1].

Declare a bond of Zd,d > 1, open with probability p and
closed with probability 1− p.
Two vertices are connected if there exists an open path
joining them.
There exists a critical value of the parameter pc ∈ (0, 1) such
that, if p > pc, almost surely, there exists a unique infinite
open cluster, while, if p < pc, almost surely, all open clusters
are finite.
At p = pc it is expected that there is no infinite cluster, but
there are large clusters at all scales.
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Random Walk in a percolation cluster

Let C be a percolation cluster.

Let XC be a random walk on C.
When XC sits on a vertex, it jumps to vertex chosen uniformly
among its (connected) nearest neighbors
Brandt 1975: Diffusion of noble gasses in glasses.
de Gennes 1976: Popularized the model in the article
Percolation, a unifying concept. He coined the term The ant
in the labyrinth.

2 8



Random Walk in a percolation cluster

Let C be a percolation cluster.
Let XC be a random walk on C.

When XC sits on a vertex, it jumps to vertex chosen uniformly
among its (connected) nearest neighbors
Brandt 1975: Diffusion of noble gasses in glasses.
de Gennes 1976: Popularized the model in the article
Percolation, a unifying concept. He coined the term The ant
in the labyrinth.

2 8



Random Walk in a percolation cluster

Let C be a percolation cluster.
Let XC be a random walk on C.
When XC sits on a vertex, it jumps to vertex chosen uniformly
among its (connected) nearest neighbors

Brandt 1975: Diffusion of noble gasses in glasses.
de Gennes 1976: Popularized the model in the article
Percolation, a unifying concept. He coined the term The ant
in the labyrinth.

2 8



Random Walk in a percolation cluster

Let C be a percolation cluster.
Let XC be a random walk on C.
When XC sits on a vertex, it jumps to vertex chosen uniformly
among its (connected) nearest neighbors
Brandt 1975: Diffusion of noble gasses in glasses.

de Gennes 1976: Popularized the model in the article
Percolation, a unifying concept. He coined the term The ant
in the labyrinth.

2 8



Random Walk in a percolation cluster

Let C be a percolation cluster.
Let XC be a random walk on C.
When XC sits on a vertex, it jumps to vertex chosen uniformly
among its (connected) nearest neighbors
Brandt 1975: Diffusion of noble gasses in glasses.
de Gennes 1976: Popularized the model in the article
Percolation, a unifying concept. He coined the term The ant
in the labyrinth.

2 8



The ant in the sub and super-critical labyrinths

When p < pc, all clusters are finite and small. The behavior
of XC is not very interesting.

When p > pc, there is homogenization and XC scales to a
Brownian motion.
In the supercritical regime, there is a non-monotone
dependence of the speed in terms of the drift
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The ant in the critical labyrinth

Incipient Infinite Cluster (IIC): Critical cluster conditioned to
be infinite.

Sub-diffusivity, due to the fractal structure. Dead-ends,
bottlenecks, bending.

Dimension of the walk
Let G be an infinite graph, the dimension of the walk dw is
defined through the relation

E[(XGt )2] ∼ t
2
dw .

For XIIC we have dw > 2, subdiffusivity.
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The Alexander-Orbach conjecture

Spectral dimension of a graph
Let G be an infinite graph. The spectral dimension ds is define
through the relation

ds := −2 limn→∞

log(pG2n(0,0))
log(n)

or p2n(0,0) = n−ds/2+o(1).

Related to the density of vibrational density of states:
g(ω) ∼ ωds−1, where ω represents frequency.
In 1982, Alexander an Orbach conjectured that the spectral
dimension of the IIC is 4/3.
Kozma and Nachmias 2009, proved A-O for large dimensions.
The conjecture is expected to be false for d < 6.
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Thewalk dimension, Hausdorff dimension and the
spectral dimension

Let dh be the Hausdorff dimension of a graph. That is, a ball
or radius N has a volume of order Ndh .

After N steps, the walks has time to explore a ball of radius
N1/dw .
That ball has volume Ndh/dw .
If we assume the walk is evenly distributed on the ball,

pN(0,0) =
1

Volume of the ball ∼ N
−dh/dw .

ds = 2dh
dw

Alexander Orbach predicts dw = 2dhds = 3
2dh = 3

24 = 6.
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Percolation on a tree



Percolation on a tree

Let T be the cluster of the root for percolation on a regular
tree.

T can be regarded as a Galton-Watson process.
pc = (degree)−1.
Ppc(|T | > n) ∼ n−1/2.
Ppc(diam(T ) > n) ∼ n−1.
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Contour Process

Discrete trees can be encoded using excursions

The contour process of a Geom (1/2) r.v. is distributed as a
simple random walk.
This explains the critical exponents for percolation on a tree
discussed above.
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