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§1. Self-similar Markov processes
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SELF-SIMILAR M ARKOV PROCESSES (SSMP)

Definition
A regular strong Markov process (Z; : t > 0) on RY, with probabilities Py, x € RY, isa
rssMp if there exists an index a € (0, 00) such that for all ¢ > 0 and x € RY,

(¢Zy—a : t > 0) under Py is equal in law to (Z; : t > 0) under P,.
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SOME OF YOUR BEST FRIENDS ARE SSMP

> Write NV;(0, %) for the Normal distribution with mean 0 € RY and covariance
(matrix) 3. The moment generating function of X; ~ A (0, Xt) satisfies, for
0eRrd,
E[eg'Xf] _ etoTzo/z _ e(c—zt)(ce)Tz(co)/z _ E[e"'cxrzx].
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SOME OF YOUR BEST FRIENDS ARE SSMP

> Write NV;(0, %) for the Normal distribution with mean 0 € RY and covariance
(matrix) 3. The moment generating function of X; ~ N (0, 3t) satisfies, for
6 € RY,
E[eo-x,] _ etGTEG/Z _ e(c_zt)(CG)TE(CQ)/Z _ E[e9'Cszf],

» Thinking about the stationary and independent increments of Brownian motion,
this can be used to show that R?-Brownian motion: is a ssMp with o = 2.
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SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that (X; : t > 0) is an R-Brownian motion:
> Write X, := infs<; Xs. Then (X}, X,), t > 0 is a Markov process.
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SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that (X; : t > 0) is an R-Brownian motion:
> Write X, := infs<; Xs. Then (X}, X,), t > 0 is a Markov process.
» Forc>0and a =2,

(C&—at) _ (cinfsgc_ath) _ (inqutCXC_au) £>0
X —ayp X —ayp cXo—ayp ’ -

and the latter is equal in law to (X, X), because of the scaling property of X.
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SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that (X; : t > 0) is an R-Brownian motion:
> Write X, := infs<; Xs. Then (X}, X,), t > 0 is a Markov process.
» Forc>0and a =2,
(c&_at) _ (cinfsgc_ath> _ (inqutCXC—au) £>0
X —ayp X —ayp cXo—ayp ’ -
and the latter is equal in law to (X, X), because of the scaling property of X.

> Markov process Z; := X; — (—x A X,), t > 0 is also a ssMp on [0, co) issued from
x > 0 with index 2.
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SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that (X; : t > 0) is an R-Brownian motion:
> Write X, := infs<; Xs. Then (X}, X,), t > 0 is a Markov process.
» Forc>0and a =2,
(c&_at) _ (c infsgc_at X5> _ (infugt CXC—au) £>0
X —ayp X —ayp cXo—ayp ’ -
and the latter is equal in law to (X, X), because of the scaling property of X.

> Markov process Z; := X; — (—x A X,), t > 0 is also a ssMp on [0, co) issued from
x > 0 with index 2.

> 7= Xfl(&>0)/ t > 0is also a ssMp, again on [0, o).
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SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that (X; : t > 0) is an R?-Brownian motion:
> Consider Z; := |X;|, t > 0. Because of rotational invariance, it is a Markov process.

> Again the self-similarity (index 2) of Brownian motion, transfers to the case of |X].
Note again, this is a ssMp on [0, c0).
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SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that (X; : t > 0) is an R?-Brownian motion:
> Consider Z; := |X;|, t > 0. Because of rotational invariance, it is a Markov process.

> Again the self-similarity (index 2) of Brownian motion, transfers to the case of |X].
Note again, this is a ssMp on [0, c0).

> Note that |X;|, t > 01is a Bessel-d process. It turns out that all Bessel processes, and
all squared Bessel processes are self-similar on [0, 00). Once can check this by e.g.
considering scaling properties of their transition semi-groups.
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SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that (X; : t > 0) is an R*-Brownian motion:

> Note whend = 3, |X;|, t > 01is also equal in law to a Brownian motion
conditioned to stay positive

> i.eif we define, for a 1-d Brownian motion (B; : t > 0),
4 . By
P, (A) = sl~1>rgo Px(A|Et+s > 0) = E,x ;1(5t>0)1(A)

where A € o{B; : u < t}, then

(|X¢], t > 0) with | Xp| = x is equal in law to (B,Pl).
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SOME OF THE BEST FRIENDS OF YOUR BEST FRIENDS ARE SSMP

> All of the previous examples have in common that their paths are continuous. Is
this a necessary condition?
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SOME OF THE BEST FRIENDS OF YOUR BEST FRIENDS ARE SSMP

> All of the previous examples have in common that their paths are continuous. Is
this a necessary condition?

> We want to find more exotic examples as most of the previous examples have
been extensively studied through existing theories (of Brownian motion and
continuous semi-martingales).
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SOME OF THE BEST FRIENDS OF YOUR BEST FRIENDS ARE SSMP

> All of the previous examples have in common that their paths are continuous. Is
this a necessary condition?

> We want to find more exotic examples as most of the previous examples have
been extensively studied through existing theories (of Brownian motion and
continuous semi-martingales).

> All of the previous examples are functional transforms of Brownian motion and
have made use of the scaling and Markov properties and (in some cases) isotropic
distributional invariance.
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SOME OF THE BEST FRIENDS OF YOUR BEST FRIENDS ARE SSMP

> All of the previous examples have in common that their paths are continuous. Is
this a necessary condition?

> We want to find more exotic examples as most of the previous examples have
been extensively studied through existing theories (of Brownian motion and
continuous semi-martingales).

> All of the previous examples are functional transforms of Brownian motion and
have made use of the scaling and Markov properties and (in some cases) isotropic
distributional invariance.

> If we replace Brownain motion by an a-stable process, a Lévy process that has
scale invariance, then all of the functional transforms still produce new examples
of self-similar Markov processes.
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(KILLED) LEVY PROCESS

> (&, t>0)is a (killed) Lévy process if it has stationary and independents with
RCLL paths (and is sent to a cemetery state after and independent and
exponentially distributed time).
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(KILLED) LEVY PROCESS

> (&, t>0)is a (killed) Lévy process if it has stationary and independents with
RCLL paths (and is sent to a cemetery state after and independent and
exponentially distributed time).

> Process is entirely characterised by its one-dimensional transitions, which are
coded by the Lévy-Khinchine formula

E[el?¢] = e~ YO 6 e RY,
where,

VO) = q+ia-0+ 50 A0+ [ (1— e 4001 <)),
R

where a € R, A is ad x d Gaussian covariance matrix and II is a measure
satisfying [5q(1 A |x|?)II(dx) < co. Think of II as the intensity of jumps in the
sense of

P(X has jump at time ¢ of size dx) = IT(dx)dt 4 o(dt).
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«a-STABLE PROCESS

Definition
A Lévy process X is called (strictly) a-stable if it is also a self-similar Markov process.

10/ 77



§l. s2. §3. §4. §5. 56. §7. s8.
000000080000 [e]e]e] 000000000000 00 00000000000 0000000 000000000000 000 000000
. .

«a-STABLE PROCESS

Definition
A Lévy process X is called (strictly) a-stable if it is also a self-similar Markov process.

> Necessarily « € (0,2]. [« =2 — BM, exclude this.]
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«a-STABLE PROCESS

Definition
A Lévy process X is called (strictly) a-stable if it is also a self-similar Markov process.

> Necessarily « € (0,2]. [« =2 — BM, exclude this.]
> The characteristic exponent ¥ (6) := —t~!log E(el?X) satisfies

T(0) = [0]" (€M1 (pug) + e TGP y),  HER.

where p = Po(X; > 0) will frequently appearas will p =1 — p
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a-STABLE PROCESS

Definition
A Lévy process X is called (strictly) a-stable if it is also a self-similar Markov process.

> Necessarily « € (0,2]. [« =2 — BM, exclude this.]

> The characteristic exponent ¥ (6) := —t~!log E(el?X) satisfies

T(0) = [0]" (€M1 (pug) + e TGP y),  HER.

where p = Po(X; > 0) will frequently appearas will p =1 — p

> Assume jumps in both directions (0 < ap, ap < 1), so that the Lévy density takes
the form
'l4+a) 1

- W (sin(wap)l{x>0} + sin(ﬂ'aﬁ)l{x<0})
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«a-STABLE PROCESS

W(9) = [6]* (€GP pog) +e TGP, g)),  HER.

> Note that, forc > 0, c=*¥(c0) = ¥(0),
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«a-STABLE PROCESS

\I/(G) _ |0|a(e7ria(%*ﬁ’)1(e>0) +e77riot(%*l’)1(6<0)), 0 € R.

> Note that, forc > 0, c=*¥(c0) = ¥(0),
> which is equivalent to saying that X, o, = X;,
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«a-STABLE PROCESS

W(9) = [6]* (€GP pog) +e TGP, g)),  HER.

> Note that, forc > 0, c=*¥(c0) = ¥(0),
> which is equivalent to saying that X, o, = X;,

> which by stationary and independent increments is equivalent to saying
(Xe—apt > 0) =4 (X¢,t > 0) when Xy = 0,

1/77



§l. s2. $3. 4. §5. 56. §7. §8.
000000008000 [e]e]e] 000000000000 00 00000000000 0000000 000000000000 000 000000
.

a-STABLE PROCESS

W(9) = [6]* (€GP pog) +e TGP, g)),  HER.

> Note that, forc > 0, c=*¥(c0) = ¥(0),
which is equivalent to saying that cX.—o; =7 X;,

v

> which by stationary and independent increments is equivalent to saying
(Xe—apt > 0) =4 (X¢,t > 0) when Xy = 0,

> or equivalently is equivalent to saying (CXC(X) t>0) =* (Xt(cx) ,t > 0), where we

—ap

have indicated the point of issue as an additional index.
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[ index [ jumps ]| path [ recurrence/ transience
ac (0,1) transient
p=0 — monotone decreasing lim; oo Xf = —c0
p=1 + monotone increasing limy 00 Xp = 0
p € (0,1) +, — bounded variation limy o0 |Xi| = 00
a=1 recurrent
L lim su | Xi] = oo
_1 _ Pt oo |4t )
pP=3 +, unbounded variation lim infrs e [Xe| = 0
o€ (1,2) recurrent
{0} —
ap =1 — unbounded variation . .P"(T < oo) =1,x€R,
—liminf;, o X; = limsup,_, . X; = oo
{0} _
ap=a—1 + unbounded variation . .]P"(T < oo) =1,x€R,
—liminf; o X; = limsup,_, ., X; = oo
ap € (a—1,1) +,— unbounded variation P(r{" < o0) =1,x€R,
’ ’ — lim inf;, o« X; = limsup,_, . X; = oo
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YOUR NEW FRIENDS

Suppose X = (X; : t > 0) is within the assumed class of a-stable processes in
one-dimension and let X, = inf,<; X;.

Your new friends are:
> 7Z=X
P Z=X—-(—xANX),x>0.
> Z=X1x>0
» Z = |X| providing p = 1/2
>

Z = X conditioned to stay positive
) Xp”
Py (A) = 51_1{{.10 Py(AlX; s > 0) = Ex Wl(gpo)l(A)

forA€o(Xy:u<t)
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CONDITIONED «-STABLE PROCESSES

» Forc,x > 0,t > 0 and appropriately bounded, measurable and non-negative f, we
can write,

]E)I[f({cxc—o‘s -S S t})]
( x® yoh

¢t

[f({CX(x) e t})w1<Xf’i’a,>o>]

(X(Cx))aﬁ

(@) |
BT s S B e 1<X§”">o>}

=ELIF({Xs 15 < 1)),

14/ 77



§l. s2. $3. 4. §5. 56. §7. s8.
00000000000 e [e]e]e] 000000000000 00 00000000000 0000000 000000000000 000 000000
. .

CONDITIONED «-STABLE PROCESSES

» Forc,x > 0,t > 0 and appropriately bounded, measurable and non-negative f, we
can write,

]El[f({cxc—o‘s -S S t})]

® yap

X0 yes
_ @ (X =y
_E[f({cx”%'sgt}) s 1<xﬁ’i’a,>o>]

(x(%))op

= (cx)op L >o>}

FUX s <ty

=ELIF({Xs 15 < 1)),

> This also makes the process (X, P!), x > 0, a self-similar Markov process on
[0, 00).
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CONDITIONED «-STABLE PROCESSES

» Forc,x > 0,t > 0 and appropriately bounded, measurable and non-negative f, we
can write,

El[f({cxc—as 5 S t})]

(x) 5
X&) yan
_ O (X—ay
- [ﬂ{cxf% 5 < t}>}msl<x§i’a,>o>]

(x(%))op

= CRR >o>}

FUX s <ty

=ELIf({Xs :s < 1))
> This also makes the process (X, P!), x > 0, a self-similar Markov process on
[0, 00).
> Unlike the case of Brownian motion, the conditioned stable process does not have

the law of the radial part of a 3-dimensional stable process (the analogue to the
Brownian case).
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§2. Lamperti Transform
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NOTATION

> Use & := {& : t > 0} to denote a Lévy process which is killed and sent to the
cemetery state —oo at an independent and exponentially distributed random
time, e;, with rate in g € [0, 00). The characteristic exponent of £ is thus written

—log E(e'%1) = W(6) = g + Lévy—-Khintchine
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NOTATION
> Use & := {& : t > 0} to denote a Lévy process which is killed and sent to the
cemetery state —oo at an independent and exponentially distributed random
time, e;, with rate in g € [0, 00). The characteristic exponent of £ is thus written
—log E(e'%1) = W(6) = g + Lévy—-Khintchine
> Define the associated integrated exponential Lévy process
t
I :/ e®Sds,  t>0. 1)
0

and its limit, loo := lim¢poo It
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NOTATION
> Use & := {& : t > 0} to denote a Lévy process which is killed and sent to the
cemetery state —oo at an independent and exponentially distributed random
time, e;, with rate in g € [0, 00). The characteristic exponent of £ is thus written
—log E(e'%1) = W(6) = g + Lévy—-Khintchine
> Define the associated integrated exponential Lévy process
t
I :/ e®Sds,  t>0. 1)
0
and its limit, loo := lim¢poo It
> Also interested in the inverse process of I:
p(t) =inf{s > 0: [ > t}, t>0. 2)

As usual, we work with the convention inf ) = co.
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LAMPERTI TRANSFORM FOR POSITIVE ssMp

Theorem (Part (i))

Fix a > 0. IfZW), x > 0, is a positive self-similar Markov process with index of self-similarity
o, then up to absorption at the origin, it can be represented as follows. For x > 0,

Zf(X)l(t<C(x)) = xexp{ggp(x—‘lt)}’ t 2 07

where () = inf{t >0 : Zt(x) = 0} and either

(1) ¢ = oo almost surely for all x > 0, in which case € is a Lévy process
satisfying lim supyy. o, § = 00,

(2) ¢® < coand Zé’;i) = Oalmost surely for all x > 0, in which case { is a
Lévy process satisfying limyy o, § = —o0, or

(vy_ > Oalmost surely for all x > 0, in which case § is a

Lévy process killed at an independent and exponentially distributed random
time.

(3) ¢® < coand Zéx)

In all cases, we may identify C(") = X% o.
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LAMPERTI TRANSFORM FOR POSITIVE ssMp

Theorem (Part (ii))
Conversely, suppose that & is a given (killed) Lévy process. For each x > 0, define

Zt(x) = xexp{ﬁw(xfat) }1(t<x°‘100)7 t> 0.

Then Z) defines a positive self-similar Markov process, up to its absorption time
((") = X% oo, with index a.
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§3. Positive self-similar Markov processes
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STABLE PROCESS KILLED ON ENTRY TO (—o0, 0)

> The stable process cannot ‘creep” downwards across the threshold 0 and so must
do so with a jump.
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STABLE PROCESS KILLED ON ENTRY TO (—o0, 0)

> The stable process cannot ‘creep” downwards across the threshold 0 and so must
do so with a jump.

> This puts Z] := X1 X,>0)/ t > 0, in the class of pssMp for which the underlying
Lévy process experiences exponential killing.
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STABLE PROCESS KILLED ON ENTRY TO (—o0, 0)

> The stable process cannot ‘creep” downwards across the threshold 0 and so must
do so with a jump.

> This puts Z] := X1 X,>0)/ t > 0, in the class of pssMp for which the underlying
Lévy process experiences exponential killing.

> Write £* = {£ : t > 0} for the underlying Lévy process and denote its killing rate
by g*.
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STABLE PROCESS KILLED ON ENTRY TO (—o0, 0)

> The stable process cannot ‘creep” downwards across the threshold 0 and so must
do so with a jump.

> This puts Zi' := X1(x,~0), t > 0, in the class of pssMp for which the underlying
Lévy process experiences exponential killing.

> Write £* = {£ : t > 0} for the underlying Lévy process and denote its killing rate
by q*.
> Let’s try and decode the characteristics of £*.
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STABLE PROCESS KILLED ON ENTRY TO (—o0, 0)

> We know that the a-stable process experiences downward jumps at rate

r
fd+a) sin(waﬁ)Hde, x < 0.
X «@
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STABLE PROCESS KILLED ON ENTRY TO (—o0, 0)

> We know that the a-stable process experiences downward jumps at rate

I'l+ a)

sin(rap) dx, x < 0.

|x|1+a

> Given that we know the value of Z; , on {X, > 0}, the stable process will pass
over the origin at rate

LA+ Gn(rap) (/ T dx> = P02 G rap)(zi )
iy Z

x|+ ar

s
t—
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STABLE PROCESS KILLED ON ENTRY TO (—o0, 0)

> We know that the a-stable process experiences downward jumps at rate

I'l+ a)

sin(rap) dx, x < 0.

|x|1+a

> Given that we know the value of Z; , on {X, > 0}, the stable process will pass
over the origin at rate

@ sin(rap) </ZoO |x|11+a dx) -t sin(map)(Zi_) ™.

[e %y

s
t—

> On the other hand, the Lamperti transform says that on {t < ¢}, as a pssMp, Z is
sent to the origin at rate

* d * - * * *\ —
g ) =g7e "0 = g7 (zp) ™"
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STABLE PROCESS KILLED ON ENTRY TO (—00, 0)

> We know that the a-stable process experiences downward jumps at rate

rl+a)

sin(rap) dx, x < 0.

|x|1+a

> Given that we know the value of Z; , on {X, > 0}, the stable process will pass
over the origin at rate

LA+ Gn(rap) (/ T dx> = T02D) G map) (i)
iy Z

x|+ o

s
t—

> On the other hand, the Lamperti transform says that on {t < ¢}, as a pssMp, Z is
sent to the origin at rate

* d * * * *\ —
g ) =g7e "0 = g7 (zp) ™"
> Comparing gives us

I'(a)

7" = (a)sin(rap)/m = C(ap)D(1— ap)’
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STABLE PROCESS KILLED ON ENTRY TO (—o0, 0)

> Referring again to the Lamperti transform, we know that, under P; (so that 5 = 0
almost surely),

ZZ— =X _ :eéeq*’
TO -

where e;+ is an exponentially distributed random variable with rate g*.
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STABLE PROCESS KILLED ON ENTRY TO (—o0, 0)

> Referring again to the Lamperti transform, we know that, under P; (so that 5 = 0
almost surely),

ZZ— =X _ :eéeq*’
TO -

where e;+ is an exponentially distributed random variable with rate g*.

> This motivates the computation
i 0 . — q*
Ei[(Z; ) =Eple " )= — -t 0 eR,
¢ (U*(2) —g%) +q*

where W* is the characteristic exponent of £*.

22/77



sl. s2. $3. 4 §5. 56. §7. s8.

000000000000 000 0000000000000 00000000000 0000000 000000000000 000 000000
I

STABLE PROCESS KILLED ON ENTRY TO (—00, 0)

Remembering the “overshoot-undershoot” distributional law at first passage (well
known in the literature for Lévy processes c.f. the quintuple law - Chapter 7 of my
book) and deduce that, for allv € [0,1],

]P)] (X7'7 _ S dU)
0
=Py(1-X_+_€do)
1

sin(apm) T'(a+1) (/oo /oo 1oer (1 —y)*r= (v —y)or—1 dud}/) do
0 0 y=1n0)
1

m  T(ap)I'(ap) (v + u)tte

sin(apm '« N

where P is the law of —X issued from 0.
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STABLE PROCESS KILLED ON ENTRY TO (—o00,0)

Remembering the “overshoot-undershoot” distributional law at first passage (well
known in the literature for Lévy processes c.f. the quintuple law - Chapter 7 of my
book) and deduce that, for allv € [0,1],

]P)] (X7'7 _ S dU)
0

=Py(1 - X € do)

_ sin(apm) T'(a+1) (/oo /oo 1oer (1 —y)*r= (v —y)or—1 dud}/) do
0 0 y=1n0)
1

w T(ap)(ap) (ot wyie
_ sin(apm) T'(a)
m T(ap)T(ap)

( /O 1y<oyo 1=y * (o - y)“”‘ldy) do,
where P is the law of —X issued from 0.
Note: more generally:
P(—X -~ edu, X - €do)
TD TO —

sin(apm) T(a+1) ( /°° 1—y)2h=1(y — y)ar—1 )
= 1
©  D(ap)D(ap) \Jo S0 @t u)ite dy | dodu
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STABLE PROCESS KILLED ON ENTRY TO (—00,0)

We are led to the conclusion that
g
v (6)

sin(apm) T(a+1) /1 51 /°° i0—ap—1 ( 3/)04)71
= 1—y)*P 1 O I dod
7 T(ap)T(ap) Jo -y o =07 v o

sin(apr) Tlat1) [ e T(ap—i0)T(ap)
= S g Jy 0
_ T(ap—i0)P(ap)T(1 — ap +i0)T(ap)T(a)

T(ap)T(ap)L(1 — ap)T(ap)T(1 +i0) (a — i0)’

where in the first equality Fubini’s Theorem has been used, in the second equality a
straightforward substitution w = y/v has been used for the inner integral on the
preceding line together with the classical beta integral and, finally, in the third equality,
the Beta integral has been used for a second time. Inserting the respective values for
the constants g* and K, we come to rest at the following result:
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STABLE PROCESS KILLED ON ENTRY TO (—o0, 0)

Theorem

For the pssMp constructed by killing a stable process on first entry to (—oo, 0), the underlying
killed Lévy process, £*, that appears through the Lamperti transform has characteristic
exponent given by

W (2) = I —iz) I'(1+iz)

= , eR.
Top—iz) T(1—aptiz)
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STABLE PROCESSES CONDITIONED TO STAY POSITIVE

> Use the Lamperti representation of the a-stable process X to write, for
Aco(Xy:u<t),

ap

X .
P}(A) = Ex |:x;,31(Xf>0)1(A):| = Eo [ 1 cep) 1) |+

where 7 = @(x~“t) is a stopping time in the natural filtration of £*.
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STABLE PROCESSES CONDITIONED TO STAY POSITIVE

> Use the Lamperti representation of the a-stable process X to write, for
Aco(Xy:u<t),

ap

X .
P}(A) = Ex [xf.l,al<xf>o>1<A>] = Eo [ 1 cep) 1) |+

where 7 = @(x~“t) is a stopping time in the natural filtration of £*.

> Noting that U*(—iap) = 0, the change of measure constitutes an Esscher
transform at the level of £*.
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STABLE PROCESSES CONDITIONED TO STAY POSITIVE

> Use the Lamperti representation of the a-stable process X to write, for
Aco(Xy:u<t),

X o
Pl(A) = Ex [3@31@»0)1@)] =E [e“”'z’l(meq*)lm)] ;

where 7 = @(x~“t) is a stopping time in the natural filtration of £*.

> Noting that ¥*(—iap) = 0, the change of measure constitutes an Esscher
transform at the level of £*.

Theorem
The underlying Lévy process, &1, that appears through the Lamperti transform applied to

(X, P1), x > 0,has characteristic exponent given by

_ D(ap—iz) (1 + ap +iz)
V) = T(—iz) T(+i2)

s zeR.

> In particular UT(z) = U*(z — iap), z € R so that ¥T(0) = 0 (i.e. no killing!)
> One can also check by hand that U1(0+) = Eg [§1T] > 0so that lim;— o0 {tT = oo.
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DID YOU SPOT THE OTHER ROOT?
> In essence, the case of the stable process conditioned to stay positive boils down to
an Esscher transform in the underlying (Lamperti-transformed) Lévy process.

> It was important that we identified a root of ¥*(z) = 0 in order to avoid involving
a ‘time component’ of the Esscher transform.
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DID YOU SPOT THE OTHER ROOT?

> In essence, the case of the stable process conditioned to stay positive boils down to
an Esscher transform in the underlying (Lamperti-transformed) Lévy process.

> It was important that we identified a root of ¥*(z) = 0 in order to avoid involving
a ‘time component’ of the Esscher transform.

> However, there is another root of the equation
MNa—iz) T'(1+iz)

VO = S Ta—apr) O

namely z = —i(1 — ap).
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DID YOU SPOT THE OTHER ROOT?
> In essence, the case of the stable process conditioned to stay positive boils down to
an Esscher transform in the underlying (Lamperti-transformed) Lévy process.

> It was important that we identified a root of ¥*(z) = 0 in order to avoid involving
a ‘time component’ of the Esscher transform.

> However, there is another root of the equation
MNa—iz) T'(1+iz)

VO = S Ta—apr) O

namely z = —i(1 — ap).
> And this means that
e(l—aﬁ)&*7 t>0,

is a unit-mean Martingale, which can also be used to construct an Esscher
transform:

(14 ap —iz) I'(iz + ap)

W) = W (e (1 - ) = W) = S s
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DID YOU SPOT THE OTHER ROOT?

> In essence, the case of the stable process conditioned to stay positive boils down to
an Esscher transform in the underlying (Lamperti-transformed) Lévy process.

> It was important that we identified a root of ¥*(z) = 0 in order to avoid involving
a ‘time component’ of the Esscher transform.

> However, there is another root of the equation
MNa—iz) T'(1+iz)

VO = S Ta—apr) O

namely z = —i(1 — ap).
> And this means that
e(l—aﬁ)@’ t>0,

is a unit-mean Martingale, which can also be used to construct an Esscher
transform:

'l 4 ap —iz) I'(iz + ap)

W) = W (e (1 - ) = W) = S s

> The choice of notation is pre-emptive since we can also check that ¥+(0) = 0 and
T+ (0) < 050 that if £ is a Lévy process with characteristic exponent W+, then

: L
lim¢ 00 § = —00.
27/ 77
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REVERSE ENGINEERING

> What now happens if we define for A € (X, : u < 't),

X(lf‘llf’)

. _ 1—ap)e: _ t
PHA) = Eg [P, o 10| = Ex x(l—aﬁ)1<X¢>0>1<A>} )

where 7 = p(x~%t) is a stopping time in the natural filtration of £*.
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REVERSE ENGINEERING

> What now happens if we define for A € (X, : u < 't),

X(lf‘l/f’)

PHA) = Eg [P, o 10| = Ex MHX»O)HA)} )

where 7 = p(x~%t) is a stopping time in the natural filtration of £*.

> In the same way we checked that (X, IP’I), x > 0, is a pssMp, we can also check
that (X, IP’,%), x > 01is a pssMp.
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REVERSE ENGINEERING

> What now happens if we define for A € (X, : u < 't),

X(lf‘l/f’)

PHA) = Eg [P, o 10| = Ex MHX»O)RA)} )

where 7 = p(x~%t) is a stopping time in the natural filtration of £*.

> In the same way we checked that (X, IP’,T), x > 0, is a pssMp, we can also check
that (X, IP’,%), x > 01is a pssMp.

> In an appropriate sense, it turns out that (X, P), x > 0 is the law of a stable
process conditioned to continuously approach the origin from above.

28/ 77
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&, &" aND ¢

> The three examples of pssMp offer quite striking underlying Lévy processes

> Is this exceptional?
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CENSORED STABLE PROCESSES

> Start with X, the stable process.

> LetA; = fot 1(x,>0) dt.

> Let v be the right-inverse of A, and put Z; := X0

> Finally, make zero an absorbing state: Z; = Ztl(t<T0) where
To = inf{t > 0: X; = 0}.

Note Ty < oo a.s. if and only if o € (1,2) and otherwise Ty = oo a.s.

v

This is the censored stable process.
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CENSORED STABLE PROCESSES

Theorem -
Suppose that the underlying Lévy process for the censored stable process is denoted by & . Then

€ is equal in law to £* @ €€, with
> & equal in law to £* with the killing removed,
> ¢C a compound Poisson process with jump rate ¢* = T'(a)sin(wap) /.
Moreover, the characteristic exponent of E is given by
T () = T'(ap - iz) T(1—ap +-IZ) ’
I'(—iz) T'(l1—-a+iz)
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THE RADIAL PART OF A STABLE PROCESS

> Suppose that X is a symmetric stable process, i.e p = 1/2.
> We know that |X] is a pssMp.

Theorem
Suppose that the underlying Lévy process for |X| is written &, then it characteristic exponent is
given by

F(%(—iz + a)) I‘(%(iz +1))

V@ =27 r(—liz) TIllz+1-a)

z € R.
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HYPERGEOMETRIC LEVY PROCESSES (REMINDER)

Definition (and Theorem)
For (8,7, 5,9) in

{#<2,79€0Df>-1,and1-B+F+7A720 }
there exists a (killed) Lévy process, henceforth refered to as a hypergeometric Lévy
process, having the characteristic function
N1-8-iz) T(B+iz)

zeR.

The Lévy measure of Y has a density with respect to Lebesgue measure is given by

L'(n) - oty
TR A€ oF (T+v,mn—4e7"), if x>0,
I'(n—9T(—) ( )
w(x) =
I'(n) (B+4)x . . .
e C 2F1 (1 +4,m5m —v;e%), if x<0,
I'(n—yI'(—9)

wheren :=1— B+~ + B8+ 4, for |z| <1,2F1(a,b;c;2) :== ZkZO (‘E)CIS,({Z!)ka'
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§4. Real valued self-similar Markov processes
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> So far we only spoke about [0, co).
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> So far we only spoke about [0, co).

> What can we say about R-valued self-similar Markov processes.
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> So far we only spoke about [0, co).
> What can we say about R-valued self-similar Markov processes.

> This requires us to first investigate Markov Additive (Lévy) Processes
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MARKOV ADDITIVE PROCESSES (MAPS)

> Eis a finite state space
> (J(t))r>0 is a continuous-time, irreducible Markov chain on E
> process (§,]) in R x E is called a Markov additive process (MAP) with probabilities
P,; x € R,i € E if, foranyi € E,s,t > 0: Given {](t) = i},
d .
(€(t+5) = £(1), J(t+9)) L (£(5),J(5)) with law B .

> Strictly speaking, a more general definition would allow £ to be killed and sent to
a cemetery state { —oo} at a rate which depends on the current state of J.
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PATHWISE DESCRIPTION OF A MAP

The pair (&,]) is a Markov additive process if and only if, for each 7,j € E,
> there exist a sequence of iid Lévy processes (£/') >0
> and a sequence of iid random variables (UZ')”ZO’ independent of the chain J,
> such that if Ty = 0 and (Ty),>1 are the jump times of ],
the process £ has the representation

€ = 1>0) (€T =) + Ujr, ) yer,) + & (= T

fort € [Tu,Tyt1), n > 0.
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CHARACTERISTICS OF A MAP

> Denote the transition rate matrix of the chain ] by Q = (4;); jek-

> For eachi € E, the Laplace exponent of the Lévy process &; will be written v);
(when it exists).

> For each pair of i,j € E withi # j, define the Laplace transform G;;(z) = E(e*i) of
the jump distribution U;; (when it exists).

> Otherwise define U;; = 0, for each i € E.

Write G(z) for the N x N matrix whose (i, j)th element is G;;(z).

> Let

v

(z) = diag(¢1(2), .-, ¥n(2)) + Qo G(2),
(when it exists), where o indicates elementwise multiplication.

> The matrix exponent of the MAP (¢,]) is given by
EO,i(BZE(t);](t) :]) = (e‘I’(Z)t)i]'y i: ] S E7

(when it exists).
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LAMPERTI-KIU TRANSFORM

> Take | to be irreducible on E = {1, —1}.
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LAMPERTI-KIU TRANSFORM

> Take | to be irreducible on E = {1, —1}.

> Let
Z = x|ef BT (r(jx]7)  0<t< Ty,
where .
() = inf {s >0: / exp(ag(u))du > t}
0
and

Ty = |x|’°‘/ e qy.
0

> Then Z; is a real-valued self-similar Markov process in the sense that the law of
(¢Zy—a : t > 0) under Py is Pey.
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LAMPERTI-KIU TRANSFORM

> Take | to be irreducible on E = {1, —1}.

> Let
Z = x|ef BT (r(jx]7)  0<t< Ty,
where .
() = inf {s >0: / exp(ag(u))du > t}
0
and

oo
To = |x|~¢ / e dy.
0
> Then Z; is a real-valued self-similar Markov process in the sense that the law of
(¢Zy—a : t > 0) under Py is Pey.
> The converse (within a special class of rssMps) is also true.
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AN -STABLE PROCESS IS A RSSMP

> An a-stable process up to absorption in the origin is a rssMp.
» When a € (0, 1], the process never hits the origin a.s.
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AN -STABLE PROCESS IS A RSSMP

> An a-stable process up to absorption in the origin is a rssMp.
» When a € (0, 1], the process never hits the origin a.s.
> When a € (1,2), the process is absorbs at the origin a.s.
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AN -STABLE PROCESS IS A RSSMP

> An a-stable process up to absorption in the origin is a rssMp.
» When a € (0, 1], the process never hits the origin a.s.

> When a € (1,2), the process is absorbs at the origin a.s.

> The matrix exponent of the underlying MAP is given by:

 Da—2z)P(1+2z) T(a—2)I'(1+2z2)
T(ap—2)0(1 — ap +2) C(ep)T(1 — ap)
T'(a—2)I'(1+2z2)  Tla=2P(1+2)
T'(ap)T'(1 — ap) I(ap—2)T'(1 —ap+2)

for Re(z) € (—1, ). Note a matrix A in this context is arranged with the ordering

( Al A )
A1n A1 )7

40/ 77



§1. s2. $3. §4. §5. 56. §7. s8.
000000000000 [e]e]e] 000000000000 00 00000080000 0000000 000000000000 000 000000
. .

ESSCHER TRANSFORM FOR MAPS

> If ®(z) is well defined then it has a real simple eigenvalue x(z), which is larger
than the real part of all its other eigenvalues.

> Furthermore, the corresponding right-eigenvector v(z) = (v1(z),- - - ,on(z)) has
strictly positive entries and may be normalised such that 7 - v(z) = 1.

Theorem
Let G = o{(&(s),]J(s)) :s < t}, t >0, and

M, = e7EO—x(t IO (7)7 >0,
oi(v)

for some ~y € R such that x () is defined. Then, My, t > 0, is a unit-mean martingale.
Moreover, under the change of measure

dPg’i 6= M; dP0,i|gt , t>0,
the process (&, ]) remains in the class of MAPs with new exponent given by

U, (2) = Bo(7) ¥ (z+7)Ao(v) — (L.

Here, 1is the identity matrix and Ay (y) = diag(v()).
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ESSCHER AND DRIFT

> Suppose that x is defined in some open interval D of R, then, it is smooth and
convex on D.
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ESSCHER AND DRIFT

> Suppose that x is defined in some open interval D of R, then, it is smooth and
convex on D.

> Since ¥(0) = —Q, if, moreover, ] is irreducible, we always have x(0) = 0 and
v(0) = (1,---,1). So 0 € D and x’(0) is well defined and finite.
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ESSCHER AND DRIFT

> Suppose that x is defined in some open interval D of R, then, it is smooth and
convex on D.

> Since ¥(0) = —Q, if, moreover, ] is irreducible, we always have x(0) = 0 and
v(0) = (1,---,1). So 0 € D and x’(0) is well defined and finite.

> With all of the above
lim > = x/(0) a.s.
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ESSCHER AND THE STABLE-MAP

> For the MAP that underlies the stable process D = (—1, «v), it can be checked that
det¥(a — 1) = 0ie. x(ow — 1) = 0, remember the martingale

M; = evé(f)*x(’v)tz]](t) ) F>0
vi(y) -
which makes
T°(z) =AW (z+a—-1)A
P —z)(a+2z) 'l —z)I'(a+z)
T'(l—ap—2z)I'(ap+2z) T(ap)T(1 — ap)
a I(1—2)T(a +2) _ I(-2)(a+2) 7
C(ap)L(1 — ap) I(1—ap—2)l(ep+2)

where A = diag(sin(7ap), sin(mrap)).

43/77



§1. s2. $3. §4. §5. 56. §7. s8.
000000000000 [e]e]e] 000000000000 00 00000000800 0000000 000000000000 000 000000
. .

ESSCHER AND THE STABLE-MAP

> For the MAP that underlies the stable process D = (—1, «v), it can be checked that
det¥(a — 1) = 0ie. x(ow — 1) = 0, remember the martingale

vyt (V)

My = ev§O—x(nt T2 7 t>0,
vi(7) -
which makes
T°(z) =AW (z+a—-1)A
P —z)(a+2z) 'l —z)I'(a+z)
T'(l—ap—2z)I'(ap+2z) T(ap)T(1 — ap)
a I(1—2)T(a +2) _ I(-2)(a+2)
C(ap)L(1 — ap) I(1—ap—2)l(ep+2)

where A = diag(sin(7ap), sin(mrap)).

» When a € (0,1), x’(0) > 0 (because the stable process never touches the origin
a.s.) and ¥°(z)-MAP drifts to —oco
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ESSCHER AND THE STABLE-MAP

> For the MAP that underlies the stable process D = (—1, «v), it can be checked that
det¥(a — 1) = 0ie. x(ow — 1) = 0, remember the martingale

M, = e¥EO—x(nt IO () o,

vi(y) -
which makes
T°(z) =AW (z+a—-1)A
P —z)(a+2z) 'l —z)I'(a+z)
T'(l—ap—2z)I'(ap+2z) T(ap)T(1 — ap)
a I(1—2)T(a +2) _ I(-2)(a+2)
C(ap)L(1 — ap) I'(1—ap—2)I(ap+2)

where A = diag(sin(map), sin(rap)).

» When a € (0,1), x’(0) > 0 (because the stable process never touches the origin
a.s.) and ¥°(z)-MAP drifts to —oco

» When «a € (1,2), X' (0) < 0 (because the stable process touches the origin a.s.) and
W°(z)-MAP drifts to +oco.
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RIESZ-BOGDAN-ZAK TRANSFORM

Theorem (Riesz-Bogdan—Zak transform)
Suppose that X is an a-stable process as outlined in the introduction. Define

S
n(t) = inf{s > 0 : / Xu2odu> 1), t>0.
0

Then, for all x € R\{0}, (—=1/X,,(1))t>0 under Py is equal in law to (X, Pil/x), where

a—1

dpe
Licrton)

dPy

X
X

_ (sin(ﬂocp) + sin(rap) — (sin(rap) — sin(ﬂ'aﬁ))sgn(Xt))
x sin(rap) + sin(map) — (sin(wap) — sin(rap))sgn(x)

70} —inf{t > 0: X; = 0} and Fi := o(Xs : s < t),t > 0. Moreover, the process (X, P2),
x € R\{0} is a self-similar Markov process with underlying MAP via the Lamperti-Kiu
transform given by ¥° (z).
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WHAT IS THE W°-MADP?

Thinking of the affect on the long term behaviour of the underlying MAP of the
Esscher transform

> When a € (0,1), (X,Pg), x # 0 has the law of the the stable process conditioned
to absorb continuously at the origin in the sense,

]P’;(A) = t}i_l;%]P’y(A,t < Ty ‘ T(—a) < OO),

forA e F =o0(Xs,s <t),
T(—a,) = Inf{t > 0:|X;| <a}and Ty = inf{t > 0: X; = 0}.

» When a € (1,2), (X,Pg), x # 0 has the law of the stable process conditioned to
avoid the origin in the sense

Pg(A) = lim Py(A|Ty > £ +5),

forA € Ft = o(Xs,s <t)and Ty = inf{t > 0: X; = 0}.

45/77



§1. s $3. §4. §5. 56. §7. §8.
000000000000 [e]e]e] 000000000000 00 00000000000 0000000 000000000000 000 000000

§5. Isotropic stable processes in dimension d > 2 seen as Lévy processes
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[SOTROPIC a-STABLE PROCESS IN DIMENSION d > 2

Ford > 2,let X := (X; : t > 0) be a d-dimensional isotropic stable process.
> X has stationary and independent increments (it is a Lévy process)
> Characteristic exponent ¥ () = — log Ey(e'?*1) satisfies

wo) =lo]", ek

> Necessarily, a € (0,2], we exclude 2 as it pertains to the setting of a Brownian
motion.
> Associated Lévy measure satisfies, for B € B(IRY),
29T ((d + @) /2) 1
O = Zanr ) Jy e
_297I0((d 4 ) /2)1(d/2)
N 7| T(—a/2)]

o0 1
151 (d0O / 15(r0) ——dr,
- (do) A ( )ra+d

where o1(d0) is the surface measure on S;_; normalised to have unit mass.

> X is Markovian with probabilities denoted by Py, x € R?
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ISOTROPIC a-STABLE PROCESS IN DIMENSION d > 2

> Stable processes are also self-similar. For ¢ > 0 and x € R \ {0},

under Py, the law of (¢X.— o, t > 0) is equal to Pey.
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ISOTROPIC a-STABLE PROCESS IN DIMENSION d > 2

> Stable processes are also self-similar. For ¢ > 0 and x € R \ {0},

under Py, the law of (¢X.— o, t > 0) is equal to Pey.

> TIsotropy means, for all orthogonal transformations (e.g. rotations) U : R? +— R¥
and x € RY,
under Py, the law of (UX;,t > 0) is equal to Pyjy.
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[SOTROPIC a-STABLE PROCESS IN DIMENSION d > 2

> Stable processes are also self-similar. For ¢ > 0 and x € R \ {0},

under Py, the law of (¢X.— o, t > 0) is equal to Pey.

> Isotropy means, for all orthogonal transformations (e.g. rotations) U : R? s R?
and x € RY,
under Py, the law of (UX;,t > 0) is equal to Py,

> If (S¢,t > 0) is a stable subordinator with index «/2 (a Lévy process with Laplace
exponent — ! log Efe~*%] = A%) and (B, t > 0) for a standard (isotropic)
d-dimensional Brownian motion, then it is known that X; := \@Bst/ t>0,isa
stable process with index cv.

E[eioxf] =K [e_ezsf] = e_‘g‘at, 6 € R.
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SAMPLE PATH, o = 1.9

25

2.0

1.5

1.0

0.5

0.0
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SAMPLE PATH, o = 1.7

1.0

0.0

-0.5 0.0 0.5 1.0
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SAMPLE PATH, o = 1.5

1.0
%

0.0
|
3;’
I?‘.
>

-1.0

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0
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SAMPLE PATH, o« = 0.9
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§6. Isotropic stable processes in dimension d > 2 seen as a self-similar Markov
process
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LAMPERTI-TRANSFORM OF |X|

Theorem (Caballero-Pardo-Perez (2011))
For the pssMp constructed using the radial part of an isotropic d-dimensional stable process,
the underlying Lévy process, £ that appears through the Lamperti has characteristic exponent
given by

r(3(-iz+a)) T(i(z+4d)

NIz TQ@+d_ay) 0

W(z) = 2°

55/77



§1. s §3. 4. §5. 56. §7. §8.
000000000000 [e]e]e] 000000000000 00 00000000000 0000000 @00000000000 000 000000
. .

LAMPERTI-TRANSFORM OF |X|

Theorem (Caballero-Pardo-Perez (2011))

For the pssMp constructed using the radial part of an isotropic d-dimensional stable process,

the underlying Lévy process, £ that appears through the Lamperti has characteristic exponent

given by

F(3(—iz+a)) T(3(z+4d)
I(-%iz) TGGz+d-a)’

W(z) =2 zER.

Here are some facts that can be deduced from the above Theorem
> The fact that lim;_, o |X¢| = 00
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LAMPERTI-TRANSFORM OF |X|

Theorem (Caballero-Pardo-Perez (2011))

For the pssMp constructed using the radial part of an isotropic d-dimensional stable process,

the underlying Lévy process, £ that appears through the Lamperti has characteristic exponent

given by

F(3(—iz+a)) T(3(z+4d)
I(-%iz) TGGz+d-a)’

W(z) =2 zER.

Here are some facts that can be deduced from the above Theorem
> The fact that lim;_, o |X¢| = 00

» The fact that
IXi|*~,  t>0,

is a martingale.
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CONDITIONED STABLE PROCESS

> We can define the change of measure

dPg - | X
dPy |z |x|a—d’

t>0,x#0
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CONDITIONED STABLE PROCESS

> We can define the change of measure

dP?
dP,

_ |Xt|o<7d
- |x|a—d )

t>0,x#0
Fi

> Suppose that f is a bounded measurable function then, for all ¢ > 0,

|CXC—°‘t|a_d

SRt )= | D fox s )

|Xt|a—d
|Cx|d7a

— ex

f(sts < t):| = E?x[f(st ;5 < t)]
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CONDITIONED STABLE PROCESS

> We can define the change of measure

dP?
dP,

_ |Xt|a7d
- |x|a—d )

t>0,x#0
Fi

> Suppose that f is a bounded measurable function then, for all ¢ > 0,

|CXC—°‘t|a_d

SRt )= | D fox s )

|Xt|a—d
|Cx|d7a

cxX

f(sts < t):| = E?x[f(st ;5 < t)]

> Markovian, isotropy and self-similarity properties pass through to (X, Py), x # 0.
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CONDITIONED STABLE PROCESS

> We can define the change of measure

dPpe
dP,

_ |Xt|a7d
- |x|a—d )

t>0,x#0
Fi

> Suppose that f is a bounded measurable function then, for allc > 0,

|CXC—°‘t|a_d

SRt )= | D fox s )

|Xt|a—d
|Cx|d7a

cxX

f(sts < t):| = E?x[f(st ;5 < t)]

> Markovian, isotropy and self-similarity properties pass through to (X, Py), x # 0.
> Similarly (|X],Pg), x # 01is a positive self-similar Markov process.
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CONDITIONED STABLE PROCESS

> It turns out that (X, PY), x # 0, corresponds to the stable process conditioned to be
continuously absorbed at the origin.
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CONDITIONED STABLE PROCESS

> It turns out that (X, PY), x # 0, corresponds to the stable process conditioned to be
continuously absorbed at the origin.

> More precisely, for A € o(Xs,s < t), if we set {0} to be ‘cemetery’ state and
k = inf{t > 0: X; = 0}, then
P2(A,t < k) = 111511@,((14, t < k|7 < o0),
a

where 7.7 = inf{t > 0: |X;| < a}.
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CONDITIONED STABLE PROCESS

> It turns out that (X, PY), x # 0, corresponds to the stable process conditioned to be
continuously absorbed at the origin.

> More precisely, for A € o(Xs,s < t), if we set {0} to be ‘cemetery’ state and
k = inf{t > 0: X; = 0}, then

PY(At < k) = 1iﬁ)11P’x(A, t < k|7® < o0),
a

where 7.7 = inf{t > 0: |X;| < a}.
> In light of the associated Esscher transform on &, we note that the Lamperti

transform of (|X|,Pg), x # 0, corresponds to the Lévy process with characteristic
exponent

F(3(—iz+d)) T(i(z+a))

M(-3(z+a—d) T(3iz)

0O (z) =2 zeR
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CONDITIONED STABLE PROCESS

> It turns out that (X, PY), x # 0, corresponds to the stable process conditioned to be
continuously absorbed at the origin.

> More precisely, for A € o(Xs,s < t), if we set {0} to be ‘cemetery’ state and
k = inf{t > 0: X; = 0}, then

PY(At < k) = 1iﬁ)11P’x(A, t < k|7® < o0),
a

where 7.7 = inf{t > 0: |X;| < a}.

> In light of the associated Esscher transform on &, we note that the Lamperti
transform of (|X|,Pg), x # 0, corresponds to the Lévy process with characteristic
exponent

F(3(—iz+d)) T(i(z+a))

M(-3(z+a—d) T(3iz)

0O (z) =2 zeR

> Given the pathwise interpretation of (X, P?), x # 0, it follows immediately that
lim¢ o0 & = —oo, PY almost surely, for any x # 0.
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R?-SELF-SIMILAR MARKOV PROCESSES

Definition

A Rf-valued regular Feller process Z = (Z;,t > 0) is called a R¥-valued self-similar

Markov process if there exists a constant a > 0 such that, for any x > 0 and ¢ > 0,
the law of (cZ.—a;,t > 0) under Py is Py,

where Py is the law of Z when issued from x.
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R?-SELF-SIMILAR MARKOV PROCESSES

Definition
A Rf-valued regular Feller process Z = (Z;,t > 0) is called a R¥-valued self-similar
Markov process if there exists a constant a > 0 such that, for any x > 0 and ¢ > 0,

the law of (cZ.—a;,t > 0) under Py is Py,

where Py is the law of Z when issued from x.

> Same definition as before except process now lives on R¥.
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R?-SELF-SIMILAR MARKOV PROCESSES

Definition
A Rf-valued regular Feller process Z = (Z;,t > 0) is called a R¥-valued self-similar
Markov process if there exists a constant a > 0 such that, for any x > 0 and ¢ > 0,

the law of (cZ.—a;,t > 0) under Py is Py,

where Py is the law of Z when issued from x.

> Same definition as before except process now lives on R¥.
> Is there an analogue of the Lamperti representation?
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LAMPERTI-KIU TRANSFORM

In order to introduce the analogue of the Lamperti transform in d-dimensions, we need
to remind ourselves of what we mean by a Markov additive process in this context.

Definition
An R X E valued regular Feller process (¢, ©) = ((&, ©¢) : t > 0) with probabilities
P, ¢, x € R, 6 € E, and cemetery state (—oo, T) is called a Markov additive process (MAP)
if © is a regular Feller process on E with cemetery state  such that, for every bounded
measurable functionf : (RU {—o0}) X (EU{f}) = R, t,s > 0and (x,0) € R x E, on
{t<s},

EX,9 [f(gt-FS — &, @H—S)|U((£u7 @u), u< t)] = EO,Gt [f(§57 95)]7

where ¢ = inf{t > 0: ©; = t}.
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LAMPERTI-KIU TRANSFORM

In order to introduce the analogue of the Lamperti transform in d-dimensions, we need
to remind ourselves of what we mean by a Markov additive process in this context.

Definition

An R X E valued regular Feller process (¢, ©) = ((&, ©¢) : t > 0) with probabilities

P, ¢, x € R, 6 € E, and cemetery state (—oo, T) is called a Markov additive process (MAP)
if © is a regular Feller process on E with cemetery state  such that, for every bounded
measurable function f : (RU {—o0}) x (EU{t}) = R, f,s > 0and (x,0) € R X E, on

{t <<},
EX,9 [f(&-FS — &, @H—S)|U((£u7 @u), u< t)] = E(),@t [f(§57 95)]7
where ¢ = inf{t > 0: ©; = t}.

> Roughly speaking, one thinks of a MAP as a ‘Markov modulated” Lévy process
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LAMPERTI-KIU TRANSFORM

In order to introduce the analogue of the Lamperti transform in d-dimensions, we need
to remind ourselves of what we mean by a Markov additive process in this context.

Definition
An R X E valued regular Feller process (¢, ©) = ((&, ©¢) : t > 0) with probabilities
P, ¢, x € R, 6 € E, and cemetery state (—oo, T) is called a Markov additive process (MAP)
if © is a regular Feller process on E with cemetery state  such that, for every bounded
measurable function f : (RU {—o0}) x (EU{t}) = R, f,s > 0and (x,0) € R X E, on
{t<s},

EX,9 [f(&-#s — &, @H—S)|U((£u7 @u), u< t)] = E(),@t [f(§57 95)]7

where ¢ = inf{t > 0: ©; = t}.

> Roughly speaking, one thinks of a MAP as a ‘Markov modulated” Lévy process

> It has ‘conditional stationary and independent increments’
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LAMPERTI-KIU TRANSFORM

In order to introduce the analogue of the Lamperti transform in d-dimensions, we need
to remind ourselves of what we mean by a Markov additive process in this context.

Definition
An R X E valued regular Feller process (¢, ©) = ((&, ©¢) : t > 0) with probabilities
P, ¢, x € R, 6 € E, and cemetery state (—oo, T) is called a Markov additive process (MAP)
if © is a regular Feller process on E with cemetery state  such that, for every bounded
measurable function f : (RU {—o0}) x (EU{t}) = R, f,s > 0and (x,0) € R X E, on
{t<s},

EX,9 [f(&-FS — &, @H—S)|U((£u7 @u), u< t)] = E(),@t [f(§57 95)]7

where ¢ = inf{t > 0: ©; = t}.

> Roughly speaking, one thinks of a MAP as a ‘Markov modulated” Lévy process
> It has ‘conditional stationary and independent increments’

> Think of the E-valued Markov process © as modulating the characteristics of £
(which would otherwise be a Lévy processes).
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LAMPERTI-KIU TRANSFORM

Theorem
Fix o > 0. The process Z is a ssMp with index «, issued from x € RY, if and only if there
exists a (killed) MAP, (§,©) on R x Sy_1, issued from (log |x|, arg(x)), such that

Zi = eng) GW(Q 5 t<I,

where

S
<p(t):inf{s>0:/ e°‘5“du>t}7 t< I,
0

and [;; e*&ds is the lifetime of Z until absorption at the origin. Here, we interpret
exp{—oo} x T := 0and inf ) := oo.

> In the above representation, the time to absorption in the origin,
¢ =inf{t >0:Z =0},
satisfies ¢ = [; e“%ds.

> Note x € R if and only if
x = (|x], Arg(x)),

where Arg(x) = x/|x| € Sy_1. The Lamperti-Kiu decomposition therefore gives

us a d-dimensional skew product decomposition of self-similar Markov processes. ~ *”/ 7/
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LAMPERTI-STABLE MAP

> The stable process X is an R?-valued self-similar Markov process and therefore fits
the description above
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LAMPERTI-STABLE MAP

> The stable process X is an R?-valued self-similar Markov process and therefore fits
the description above

> How do we characterise its underlying MAP (¢, ©)?
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LAMPERTI-STABLE MAP

> The stable process X is an R?-valued self-similar Markov process and therefore fits
the description above

> How do we characterise its underlying MAP (¢, ©)?

> We already know that |X| is a positive similar Markov process and hence ¢ is a
Lévy process, albeit corollated to ©
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LAMPERTI-STABLE MAP

> The stable process X is an R?-valued self-similar Markov process and therefore fits
the description above

> How do we characterise its underlying MAP (¢, ©)?

> We already know that |X]| is a positive similar Markov process and hence ¢ is a
Lévy process, albeit corollated to ©

> What properties does © have and what properties to the pair (£, ©) have?
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MAP 1ISOTROPY

Theorem
Suppose (€, ©) is the MAP underlying the stable process. Then ((£,U~1©), Py o) is equal in

law to ((€,©), P, ;—14), for every orthogonal d-dimensional matrix U and x € RY, 0 € Sy_1.
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MAP 1ISOTROPY

Theorem
Suppose (£, ©) is the MAP underlying the stable process. Then ((¢, U~10), P, ) is equal in

law to ((€,©), P, ;—14), for every orthogonal d-dimensional matrix U and x € RY, 0 € Sy_1.

Proof.
First note that ¢(t) = fot | Xy |~ *du. It follows that

(&, 01) = (log [Xal, Arg(Xa)),  t=0,

where the random times A(t) = inf {s > 0 : [; |Xy|~“du > t} are stopping times in
the natural filtration of X.
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MAP ISOTROPY

Theorem
Suppose (£, ©) is the MAP underlying the stable process. Then ((¢, U~10), P, ) is equal in
law to ((€,©), P, ;—14), for every orthogonal d-dimensional matrix U and x € R, 6 € Sy_1.

Proof.
First note that ¢(t) = fot | Xy |~ *du. It follows that

(&, 01) = (log [Xal, Arg(Xa)),  t=0,

where the random times A(t) = inf {s > 0 : [; |Xy|~“du > t} are stopping times in
the natural filtration of X.

Now suppose that U is any orthogonal d-dimensional matrix and let X’ = U~!X. Since
X is isotropic and since | X’| = |X|, and Arg(X’) = U~ Arg(X), we see that, for x € R
and 0 € Sy;_1

((57 u_1®)7 I)log \x\,@) = (IOg |XA() |7 u_lArg(XA(-)))7 PX)

(
L ((log [Xa(y |, Arg(Xa())), Py—1y)
((&7 6)1 l)log \x\,u—le)

as required.
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MAP CORROLATION

> We will work with the increments A& = & — &— € R, t >0,
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MAP CORROLATION

> We will work with the increments A& = & — &— € R, t >0,

Theorem (Bo Li, Victor Rivero, Bertoin-Werner)

Suppose that f is a bounded measurable function on [0, 00) X R x R X Sy_1 X Sy_1 such that
f(,+,0,-,-) =0, then, forall 0 € Sy_1,

Eo,0 (Zf(s,és_,Ass,@s_,@s)>

s>0

/ / / / / Vo(ds, dx, dﬁ)al(d¢)dy| y;(a);aM F5,59,9,8),

Vg (ds,dx,dd) = Py g(& € dx, ©s € dv)ds, xeR,9eS;_1,8>0,

where

is the space-time potential of (£, ©) under Py g, o1 () is the surface measure on Sy_q
normalised to have unit mass and

c(a) =272 0((d + @) /2)T(d/2)/|T(—/2)].
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MAP OF (X, P°)
> Recall that (|X;|*~,t > 0), is a martingale.
> Informally, we should expect £h = 0, where h(x) = |x|*~¢ and L is the
infinitesimal generator of the stable process, which has action

Lf(x) = a- Vf(x) + /Rd[f(x +y) —f(0) =Ly <py - VI@IL(dy), x>0,

for appropriately smooth functions.
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MAP OF (X, P°)
> Recall that (|X;|*~,t > 0), is a martingale.
> Informally, we should expect £h = 0, where h(x) = |x|*~¢ and L is the
infinitesimal generator of the stable process, which has action

Lf(x) = a- Vf(x) + /Rd[f(x +y) —f) =1y <y - VA@OILAy),  [x] >0,

for appropriately smooth functions.
> Associated to (X, Py), x # 0 is the generator

£F(x) = lim EFFXOI —f(0) _ o0 Ex[|Xe |~ (Xe)] — [x]*~f (x)
T o t "o |x|e—dt

)
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MAP OF (X, P°)
> Recall that (|X;|*~,t > 0), is a martingale.
> Informally, we should expect £h = 0, where h(x) = |x|*~¢ and L is the
infinitesimal generator of the stable process, which has action

Lf(x) = a- Vf(x) + /Rd[f(x +y) —f) =1y <y - VA@OILAy),  [x] >0,

for appropriately smooth functions.
> Associated to (X, Py), x # 0 is the generator

BRI () _ o EIX T (X)) — (x0T "’f(X)

1o t tL0 x|t

Lof(x) =
> That is to say

LOF(x) = =< L(hf) (x),

h()
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MAP OF (X, P°)
> Recall that (|X;|*~,t > 0), is a martingale.
> Informally, we should expect £h = 0, where h(x) = |x|*~¢ and L is the
infinitesimal generator of the stable process, which has action

Lf(x) = a- Vf(x) + /Rd[f(x +y) —f) =1y <y - VA@OILAy),  [x] >0,

for appropriately smooth functions.
> Associated to (X, Py), x # 0 is the generator

BRI () _ o EIX T (X)) — (x0T "’f(x)

1o t tL0 x|t

Lo (x) =

> That is to say

O
() = =< L(f) (x),
Lof h( yEf
> Straightforward algebra using £h = 0 gives us

L) = 2 VF) + [ [+ 9) =) ~ 1cny - TF St

h(x)

I(dy),  |x[>0
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MAP OF (X, P°)

> Recall that (|X;|*~,t > 0), is a martingale.
> Informally, we should expect £h = 0, where h(x) = |x|*~¢ and L is the

infinitesimal generator of the stable process, which has action

Lf(x) = a- Vf(x) + /Rd[f(x +y) —f(0) =Ly <py - VI@IL(dy), x>0,

for appropriately smooth functions.
Associated to (X, Py), x # 0 is the generator

BRI () _ o EIX T (X)) — (x0T "’f(x)

£ = 1o t tL0 x|t

That is to say

O

(x) = - L) (),

Lof h( ) if

Straightforward algebra using Lh = 0 gives us
h(x +
L7 = 2 V) + [ [Fx+0) =) = ey TFI D), >0
Equivalently, the rate at which (X, P ), x # 0 jumps given by
297I0((d + ) /2)T(d/2) dr |x 4 re|e—
I1°(x, B) := doq (¢ 15(r _
( ) Tl'd|1—‘(7a/2)| 5, 1( ) (0,00) B( )Ta+1 |x\°‘—d

for |x| > 0and B € B(RY). o
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MAP OF (X, P°)

Theorem

Suppose that f is a bounded measurable function on [0,00) X R x R X Sg_1 X Sg_1 such that
f(-,+,0,+,+) =0, then, forall 0 € Sy_1,

ES,G (Zf(s’ 55—7 A£S7 @S— ) @s)>

s>0

_/ / /Sd ) /s,, 1 / Vi (ds,dx, d0)on (do)dy 5= 0 y;(a)z|a+df(s =y, 9,),

where
Vo (ds,dx,dd) = Pg »(& € dx, ©s € dd)ds, xeR,YES;_1,5s>0,

is the space-time potential of (£, ©) under P§ .

Comparing the right-hand side above with that of the previous Theorem, it now
becomes immediately clear that the the jump structure of (§, ©) under P¢ ,, x € R,

0 € Sy_1, is precisely that of (-, ©) under Py g, x € R, 0 € Sy_1.
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MAP OF (X, P.)

Theorem

Suppose that f is a bounded measurable function on [0,00) X R x R X Sg_1 X Sg_1 such that
f(-,+,0,+,+) =0, then, forall 0 € Sy_1,

E 0 (Zf(s755—7A£57®5—7@5)>

s>0

/ // / / V(ds, . do)on (de)dy 0o y;(a)§|a+df(s %y, 9, ),

where
Vi (ds, dx,dy) = Py g (& € dx, ©5 € do)ds, x€R, Y E€Sy_1,5 >0,

is the space-time potential of (£, ©) under P§ .

Comparing the right-hand side above with that of the previous Theorem, it now
becomes immediately clear that the the jump structure of (§, ©) under P¢ ,, x € R,

0 € Sy_1, is precisely that of (-, ©) under Py g, x € R, 0 € Sy_1.
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§7. Riesz-Bogdan-Zak transform
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RIESZ-BOGDAN-ZAK TRANSFORM

» Define the transformation K : R — R%, by

X
Kx = - e RN\{0}.
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RIESZ—BOGDAN—ZAK TRANSFORM
» Define the transformation K : R — R%, by
x d
Kx = — x € R"\{0}.

2’

> This transformation inverts space through the unit sphere {x € R? : x| = 1}.
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RIESZ—BOGDAN—ZAK TRANSFORM
» Define the transformation K : R — R%, by

X
Kx = - e RN\{0}.

> This transformation inverts space through the unit sphere {x € R? : x| = 1}.
> Write x € R? in skew product form x = (|x|, Arg(x)), and note that

Ke= (]| !, Arg(x)),  x € R\{0},

showing that the K-transform ‘radially inverts’ elements of R through S;_;.
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RIESZ—BOGDAN—ZAK TRANSFORM
» Define the transformation K : R — R%, by

X
Kx = - e RN\{0}.

> This transformation inverts space through the unit sphere {x € R? : x| = 1}.
> Write x € R? in skew product form x = (|x|, Arg(x)), and note that
Ke= (x|, Arg(x)),  x€R\{0},

showing that the K-transform ‘radially inverts’ elements of R through S;_;.

» In particular K(Kx) = x
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RIESZ-BOGDAN-ZAK TRANSFORM

» Define the transformation K : R — R%, by

X
Kx = - e RN\{0}.

> This transformation inverts space through the unit sphere {x € R? : x| = 1}.
> Write x € R? in skew product form x = (|x|, Arg(x)), and note that
Ke= (x|, Arg(x)),  x€R\{0},

showing that the K-transform ‘radially inverts’ elements of R through S;_;.

» In particular K(Kx) = x

Theorem (d-dimensional Riesz—Bogdan—Zak Transform, d > 2)
Suppose that X is a d-dimensional isotropic stable process with d > 2. Define

S
n(t) =inf{s > 0: / |Xu|72%du > t}, >0, 3)
0

Then, for all x € R\{0}, (KX (1), t = 0) under Py is equal in law to (X, PR.).
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PROOF OF RIESZ-BOGDAN-ZAK TRANSFORM
We give a proof, different to the original proof of Bogdan and Zak (2010).

P> Recall that X; = e @«p(t)/ where

P(t)
/ e dy = t, £>0.
0
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PROOF OF RIESZ-BOGDAN-ZAK TRANSFORM
We give a proof, different to the original proof of Bogdan and Zak (2010).

P> Recall that X; = e @«p(t)/ where

P(t)
/ e dy = t, £>0.
0

> Note also that, as an inverse,

n(t) )
/ Xu|20du—t >0,
0
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PROOF OF RIESZ-BOGDAN-ZAK TRANSFORM
We give a proof, different to the original proof of Bogdan and Zak (2010).

P> Recall that X; = e @«p(t)/ where

@(t)
/ e dy = t, £>0.
0

> Note also that, as an inverse,

n(t) )
/ Xu|20du—t >0,
0

> Differentiating,

dn(t)

dL(t) = e_O‘&«P(f) and % = ez‘lfkﬁ(”?(f)7 n(t) < T{D}.

dt
and chain rule now tells us that
d(pomn)(t) _ de(s)

= dn(t) = ea5¢°n(t),
dt ds

dt

s=n(t)
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PROOF OF RIESZ-BOGDAN-ZAK TRANSFORM
We give a proof, different to the original proof of Bogdan and Zak (2010).
> Recall that X; = IS0) © (1), where

@(t)
/ e dy = t, £>0.
0

> Note also that, as an inverse,

n(t) )
/ Xu|20du—t >0,
0

> Differentiating,

dn(t)

de(t) _ —ato) and % =e?eonn,  p(t) < 710},

dt
and chain rule now tells us that

dlpon)(t) _ de(s)

= dn(t) = ea5¢°n(t)_
dt ds

dt

s=n(t)
> Said another way,
won(f)
/ e udy = ¢, t>0,
0

or
S
pon(t)=inf{s >0: / e “Sudy > t} 69/ 77
0
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PROOF OF RIESZ-BOGDAN-ZAK TRANSFORM

> Next note that

KX,y = e Sven0© >0,

won(t)
and we have just shown that

S
pon(t) =inf{s >0: / e Sudy > t}.
0
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PROOF OF RIESZ-BOGDAN-ZAK TRANSFORM

> Next note that

KX,y = e Sven0© >0,

won(t)
and we have just shown that

S
pon(t) =inf{s >0: / e Sudy > t}.
0

> It follows that (KX, (), > 0) is a self-similar Markov process with underlying
MAP (—¢,0)
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PROOF OF RIESZ-BOGDAN-ZAK TRANSFORM

> Next note that

KX, = e Seon© t>0,

won(t)
and we have just shown that

S
won(t)=inf{s >0: / e Sudy > t}.
0

> It follows that (KX, (), > 0) is a self-similar Markov process with underlying
MAP (—¢,0)

> We have also seen that (X, P?), x # 0, is also a self-similar Markov process with
underlying MAP given by (—¢, ©).
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PROOF OF RIESZ-BOGDAN-ZAK TRANSFORM

> Next note that

KX, = e Seon© t>0,

won(t)
and we have just shown that

S
won(t)=inf{s >0: / e Sudy > t}.
0

> It follows that (KX, (), > 0) is a self-similar Markov process with underlying
MAP (—¢,0)

> We have also seen that (X, P?), x # 0, is also a self-similar Markov process with
underlying MAP given by (—¢, ©).

> The statement of the theorem follows.
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§8. Other developments
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HARMONIC FUNCTIONS ON THE CONE

> Lipchitz cone, I' = {x € R? : x # 0, arg(x) € Q},
> Exit time from the cone i.e. kr = inf{s > 0: X; ¢ T'}.

> Banuelos and Bogdan (2004): There exists M : RY — R such that
> M(x) =0forallx ¢ T.
> M is locally bounded on RY
P Thereisa 8 = B(I', a) € (0, ), such that

M(x) = [x|"M(x/|x]) = [x|"M(arg(x)),  x#0.
> Up to a multiplicative constant, M is the unique such that
M(x) = Bx[M(Xrp)l(rycrpy),  x ERY,
where B is any open bounded domain and 73 = inf{t > 0: X; ¢ B}.
> Bafiuelos and Bogdan (2004) and Bogdan, Palmowski, Wang (2018): We have

P t
lim sup Lj/i =C,
aﬂoxel‘, |t=1/ x| <a M(x)t

where C > 0 is a constant.
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Theorem

(i) Foranyt>0,andx €T,
PY(A) ::sl_iglo]Px (Alkp > t+5s), AeF,
defines a family of conservative probabilities on the space of cadlag paths such that

ol M(X)
dPy |7 = Lit<nr) M(x)’

t>0,andx €T.

In particular, the right-hand side above is a martingale.
(Note: this is nothing but an Esscher transform for the underlying MAP!)

(ii) Let P9 := (P{,x € I') . The process (X, P), is a self-similar Markov process.
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ENTRANCE LAW

Letp! (x,y), x,y € T, t > 0, be the semigroup of X killed on exiting the cone I".
Theorem (Bogdan, Palmowski, Wang (2018))

The following limit exits,

r
n(y) == lim Pi (5Y)

_— It 4
ors0 Px(/"il" > t)tﬂ/o" xyel, >07 ( )

and (n(y)dy, t > 0), serves as an entrance law to (X, PV, in the sense that

s (y) = / m(pF (Ly)dx,  yeT,st>0.
N

74/ 77



§1. s §3. 4. §5. 56. §7. s8.
000000000000 [e]e]e] 000000000000 00 00000000000 0000000 000000000000 000 00e000
. .

ENTRANCE LAW

Letp! (x,y), x,y € T, t > 0, be the semigroup of X killed on exiting the cone I".
Theorem (Bogdan, Palmowski, Wang (2018))

The following limit exits,

T
. . pi (x,y)
n(y) == rggn . 7&(%1“ > ipla’ x,yel',t>0, 4)

and (n(y)dy, t > 0), serves as an entrance law to (X, PV, in the sense that

s(y) = / m(pL (v y)dy,  yET,s,t>0.
N

> Also easy to show that, in the sense of weak convergence,
P§(X; € dy) := lim MIP’X(Xt edy, t < kp) = CM(y)n(y)dy.
0 I'3x—0 M(x) ’

> Can the process ‘start from the apex of the cone’ in a stronger sense?
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CONTINUOUS ENTRANCE AT THE APEX OF THE CONE

Theorem

The limit P := limr 5,0 P¥ is well defined on the Skorokhod space, so that,

(X, (Pg,x € T'U{0})) is both Feller and self-similar which enters continuously at the origin,
after which it never returns.
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POINT OF CLOSEST REACH

> Recall that we can represent an isotropic Lévy process through the Lamperti
transform
X = eg‘f’(t) @w(t) t>0,

S
@(t) = inf{s >0: / e“Su dy > t}
0

and (&, ©) with probabilities P, g, x # 0, 6 € Sy, is a MAP. Recall also that,
although corollated to ©, £ alone is a Lévy process.

> Define

where

gt:sup{s<t:§s:§5}

so that g, = lim;_, g; < o0 is the time of the point of closest reach.

76/ 77



§1. s §3. 4. §5. 56. §7. s8.
000000000000 [e]e]e] 000000000000 00 00000000000 0000000 000000000000 000 000080
. .

POINT OF CLOSEST REACH

> Recall that we can represent an isotropic Lévy process through the Lamperti
transform
X = eg‘f’(t) ®¢(t) t>0,

S
@(t) = inf{s >0: / e“Su dy > t}
0

and (&, ©) with probabilities P, g, x # 0, 6 € Sy, is a MAP. Recall also that,
although corollated to ©, £ alone is a Lévy process.

> Define

where

gt:sup{s<t:§s:§9}

so that g, = lim;_, g; < o0 is the time of the point of closest reach.

Theorem (Point of Closest Reach to the origin)
The law of the point of closest reach to the origin is given by

I (d/2)? (I — ly»)~/?
(d=a)/2)T(/2)  |x—yllyl~

Px(Xg, € dy) = W_d/zr dy,  0<[y| <[l
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Bedankt
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