§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	00000000000	0000000	000000000000	000	000000

Alpha-stable (Lévy) processes through the Lamperti-Kiu transform

Andreas Kyprianou University of Bath

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	00000000000	0000000	000000000000	000	000000

§1. Self-similar Markov processes

Self-Similar Markov processes (SSMP)

Definition

A regular strong Markov process $(Z_t : t \ge 0)$ on \mathbb{R}^d , with probabilities $\mathbb{P}_x, x \in \mathbb{R}^d$, is a rssMp if there exists an index $\alpha \in (0, \infty)$ such that for all c > 0 and $x \in \mathbb{R}^d$,

 $(cZ_{tc^{-\alpha}}: t \ge 0)$ under \mathbb{P}_x is equal in law to $(Z_t: t \ge 0)$ under \mathbb{P}_{cx} .

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
00000000000	000	00000000000000	00000000000	0000000	000000000000	000	000000

▶ Write $\mathcal{N}_d(\mathbf{0}, \Sigma)$ for the Normal distribution with mean $\mathbf{0} \in \mathbb{R}^d$ and covariance (matrix) Σ . The moment generating function of $X_t \sim \mathcal{N}_d(\mathbf{0}, \Sigma t)$ satisfies, for $\theta \in \mathbb{R}^d$,

$$\mathbf{E}[\mathbf{e}^{\theta \cdot X_t}] = \mathbf{e}^{t\theta^{\mathrm{T}} \boldsymbol{\Sigma} \theta/2} = \mathbf{e}^{(c^{-2}t)(c\theta)^{\mathrm{T}} \boldsymbol{\Sigma}(c\theta)/2} = E[\mathbf{e}^{\theta \cdot cX_{c^{-2}t}}].$$

4/77

イロト イロト イヨト イヨト ヨー のへぐ

• Write $\mathcal{N}_d(\mathbf{0}, \boldsymbol{\Sigma})$ for the Normal distribution with mean $\mathbf{0} \in \mathbb{R}^d$ and covariance (matrix) $\boldsymbol{\Sigma}$. The moment generating function of $X_t \sim \mathcal{N}_d(\mathbf{0}, \boldsymbol{\Sigma}t)$ satisfies, for $\theta \in \mathbb{R}^d$,

$$\mathbf{E}[\mathbf{e}^{\theta \cdot X_t}] = \mathbf{e}^{t\theta^{\mathrm{T}} \boldsymbol{\Sigma} \theta/2} = \mathbf{e}^{(c^{-2}t)(c\theta)^{\mathrm{T}} \boldsymbol{\Sigma}(c\theta)/2} = E[\mathbf{e}^{\theta \cdot cX_c - 2_t}].$$

4/77

Thinking about the stationary and independent increments of Brownian motion, this can be used to show that \mathbb{R}^d -Brownian motion: is a ssMp with $\alpha = 2$.

Suppose that $(X_t : t \ge 0)$ is an \mathbb{R} -Brownian motion:

▶ Write $\underline{X}_t := \inf_{s < t} X_s$. Then (X_t, \underline{X}_t) , $t \ge 0$ is a Markov process.

Suppose that $(X_t : t \ge 0)$ is an \mathbb{R} -Brownian motion:

- ▶ Write $\underline{X}_t := \inf_{s \leq t} X_s$. Then (X_t, \underline{X}_t) , $t \geq 0$ is a Markov process.
- For *c* > 0 and *α* = 2,

$$\binom{c\underline{X}_{c}-\alpha_{t}}{cX_{c}-\alpha_{t}} = \binom{c\inf_{s\leq c-\alpha_{t}}X_{s}}{cX_{c}-\alpha_{t}} = \binom{\inf_{u\leq t}cX_{c}-\alpha_{u}}{cX_{c}-\alpha_{t}}, \quad t\geq 0,$$

and the latter is equal in law to (X, \underline{X}) , because of the scaling property of X.

Suppose that $(X_t : t \ge 0)$ is an \mathbb{R} -Brownian motion:

- ▶ Write $\underline{X}_t := \inf_{s \leq t} X_s$. Then (X_t, \underline{X}_t) , $t \geq 0$ is a Markov process.
- For *c* > 0 and *α* = 2,

$$\binom{c\underline{X}_{c}-\alpha_{t}}{cX_{c}-\alpha_{t}} = \binom{c\inf_{s\leq c-\alpha_{t}}X_{s}}{cX_{c}-\alpha_{t}} = \binom{\inf_{u\leq t}cX_{c}-\alpha_{u}}{cX_{c}-\alpha_{t}}, \quad t\geq 0,$$

and the latter is equal in law to (X, \underline{X}) , because of the scaling property of X.

Markov process $Z_t := X_t - (-x \land \underline{X}_t), t \ge 0$ is also a ssMp on $[0, \infty)$ issued from x > 0 with index 2.

Suppose that $(X_t : t \ge 0)$ is an \mathbb{R} -Brownian motion:

- ▶ Write $\underline{X}_t := \inf_{s \leq t} X_s$. Then (X_t, \underline{X}_t) , $t \geq 0$ is a Markov process.
- For *c* > 0 and *α* = 2,

$$\binom{c\underline{X}_{c^{-\alpha}t}}{cX_{c^{-\alpha}t}} = \binom{c\inf_{s \le c^{-\alpha}t} X_s}{cX_{c^{-\alpha}t}} = \binom{\inf_{u \le t} cX_{c^{-\alpha}u}}{cX_{c^{-\alpha}t}}, \quad t \ge 0,$$

and the latter is equal in law to (X, \underline{X}) , because of the scaling property of X.

Markov process $Z_t := X_t - (-x \land \underline{X}_t), t \ge 0$ is also a ssMp on $[0, \infty)$ issued from x > 0 with index 2.

イロト イポト イヨト イヨト ニヨー のへぐ

► $Z_t := X_t \mathbf{1}_{(\underline{X}_t > 0)}, t \ge 0$ is also a ssMp, again on $[0, \infty)$.

Some of your best friends are $\ensuremath{\mathsf{ssMp}}$

Suppose that $(X_t : t \ge 0)$ is an \mathbb{R}^d -Brownian motion:

- Consider $Z_t := |X_t|, t \ge 0$. Because of rotational invariance, it is a Markov process.
- Again the self-similarity (index 2) of Brownian motion, transfers to the case of |X|. Note again, this is a ssMp on [0,∞).

6/77

Suppose that $(X_t : t \ge 0)$ is an \mathbb{R}^d -Brownian motion:

- Consider $Z_t := |X_t|$, $t \ge 0$. Because of rotational invariance, it is a Markov process.
- Again the self-similarity (index 2) of Brownian motion, transfers to the case of |X|. Note again, this is a ssMp on [0,∞).
- ▶ Note that $|X_t|$, $t \ge 0$ is a Bessel-*d* process. It turns out that all Bessel processes, *and* all squared Bessel processes are self-similar on $[0, \infty)$. Once can check this by e.g. considering scaling properties of their transition semi-groups.

6/77

Suppose that $(X_t : t \ge 0)$ is an \mathbb{R}^d -Brownian motion:

- Note when d = 3, |X_t|, t ≥ 0 is also equal in law to a Brownian motion conditioned to stay positive
- ▶ i.e if we define, for a 1-*d* Brownian motion $(B_t : t \ge 0)$,

$$\mathbb{P}_x^{\uparrow}(A) = \lim_{s \to \infty} \mathbb{P}_x(A | \underline{B}_{t+s} > 0) = \mathbb{E}_x \left[\frac{B_t}{x} \mathbf{1}_{(\underline{B}_t > 0)} \mathbf{1}_{(A)} \right]$$

where $A \in \sigma\{B_t : u \leq t\}$, then

 $(|X_t|, t \ge 0)$ with $|X_0| = x$ is equal in law to $(B, \mathbb{P}_x^{\uparrow})$.

<ロト < 置 > < 置 > < 置 > 、 置 > のへの

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	000000000000000000000000000000000000000	00000000000	0000000	000000000000	000	000000

Some of the best friends of your best friends are ssMp

All of the previous examples have in common that their paths are continuous. Is this a necessary condition?

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	00000000000	0000000	000000000000	000	000000

Some of the best friends of your best friends are ssMp

- All of the previous examples have in common that their paths are continuous. Is this a necessary condition?
- We want to find more exotic examples as most of the previous examples have been extensively studied through existing theories (of Brownian motion and continuous semi-martingales).

Some of the best friends of your best friends are ssMp

- All of the previous examples have in common that their paths are continuous. Is this a necessary condition?
- We want to find more exotic examples as most of the previous examples have been extensively studied through existing theories (of Brownian motion and continuous semi-martingales).
- All of the previous examples are functional transforms of Brownian motion and have made use of the scaling and Markov properties and (in some cases) isotropic distributional invariance.

Some of the best friends of your best friends are ssMp

- All of the previous examples have in common that their paths are continuous. Is this a necessary condition?
- We want to find more exotic examples as most of the previous examples have been extensively studied through existing theories (of Brownian motion and continuous semi-martingales).
- All of the previous examples are functional transforms of Brownian motion and have made use of the scaling and Markov properties and (in some cases) isotropic distributional invariance.
- If we replace Brownain motion by an α-stable process, a Lévy process that has scale invariance, then all of the functional transforms still produce new examples of self-similar Markov processes.

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	00000000000	0000000	000000000000	000	000000

(KILLED) LÉVY PROCESS

► (ξ_t, t ≥ 0) is a (killed) Lévy process if it has stationary and independents with RCLL paths (and is sent to a cemetery state after and independent and exponentially distributed time).

(KILLED) LÉVY PROCESS

- (ξ_t, t ≥ 0) is a (killed) Lévy process if it has stationary and independents with RCLL paths (and is sent to a cemetery state after and independent and exponentially distributed time).
- Process is entirely characterised by its one-dimensional transitions, which are coded by the Lévy–Khinchine formula

$$\mathbf{E}[\mathbf{e}^{\mathbf{i}\boldsymbol{\theta}\cdot\boldsymbol{\xi}_t}] = \mathbf{e}^{-\Psi(\boldsymbol{\theta})t}, \qquad \boldsymbol{\theta} \in \mathbb{R}^d,$$

where,

$$\Psi(\theta) = q + \mathrm{i} a \cdot \theta + \frac{1}{2} \theta \cdot \mathbf{A} \theta + \int_{\mathbb{R}^d} (1 - \mathrm{e}^{\mathrm{i} \theta \cdot x} + \mathrm{i} (\theta \cdot x) \mathbf{1}_{(|x| < 1)}) \Pi(\mathrm{d} x),$$

where $a \in \mathbb{R}$, **A** is a $d \times d$ Gaussian covariance matrix and Π is a measure satisfying $\int_{\mathbb{R}^d} (1 \wedge |x|^2) \Pi(dx) < \infty$. Think of Π as the intensity of jumps in the sense of

P(*X* has jump at time *t* of size dx) = $\Pi(dx)dt + o(dt)$.

- コン・4回シュ ヨシュ ヨン・9 くの

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
0000000000000	000	00000000000000	00000000000	0000000	000000000000	000	000000

$\alpha\text{-}\mathsf{STABLE}\ \mathsf{PROCESS}$

Definition

A Lévy process X is called (strictly) α -stable if it is also a self-similar Markov process.

$\alpha ext{-STABLE PROCESS}$

Definition

A Lévy process X is called (strictly) α -stable if it is also a self-similar Markov process.

▶ Necessarily $\alpha \in (0, 2]$. [$\alpha = 2 \rightarrow BM$, exclude this.]

$\alpha ext{-STABLE PROCESS}$

Definition

A Lévy process X is called (strictly) α -stable if it is also a self-similar Markov process.

- ▶ Necessarily $\alpha \in (0, 2]$. [$\alpha = 2 \rightarrow BM$, exclude this.]
- The characteristic exponent $\Psi(\theta) := -t^{-1} \log \mathbb{E}(e^{i\theta X_t})$ satisfies

$$\Psi(\theta) = |\theta|^{\alpha} (\mathrm{e}^{\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta > 0)} + \mathrm{e}^{-\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta < 0)}), \qquad \theta \in \mathbb{R}.$$

where $\rho = P_0(X_t \ge 0)$ will frequently appear as will $\hat{\rho} = 1 - \rho$

α -STABLE PROCESS

Definition

A Lévy process X is called (strictly) α -stable if it is also a self-similar Markov process.

- ▶ Necessarily $\alpha \in (0, 2]$. [$\alpha = 2 \rightarrow BM$, exclude this.]
- ▶ The characteristic exponent $\Psi(\theta) := -t^{-1} \log \mathbb{E}(e^{i\theta X_t})$ satisfies

$$\Psi(\theta) = |\theta|^{\alpha} (\mathrm{e}^{\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta > 0)} + \mathrm{e}^{-\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta < 0)}), \qquad \theta \in \mathbb{R}.$$

where $\rho = P_0(X_t \ge 0)$ will frequently appear as will $\hat{\rho} = 1 - \rho$

Assume jumps in both directions ($0 < \alpha \rho, \alpha \hat{\rho} < 1$), so that the Lévy **density** takes the form

$$\frac{\Gamma(1+\alpha)}{\pi} \frac{1}{|x|^{1+\alpha}} \left(\sin(\pi\alpha\rho) \mathbf{1}_{\{x>0\}} + \sin(\pi\alpha\hat{\rho}) \mathbf{1}_{\{x<0\}} \right)$$

10/77

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
00000000000000	000	00000000000000	00000000000	0000000	000000000000	000	000000

α -STABLE PROCESS

$$\Psi(\theta) = |\theta|^{\alpha} (\mathrm{e}^{\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta > 0)} + \mathrm{e}^{-\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta < 0)}), \qquad \theta \in \mathbb{R}.$$

• Note that, for c > 0, $c^{-\alpha}\Psi(c\theta) = \Psi(\theta)$,

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
00000000000000	000	00000000000000	00000000000	0000000	000000000000	000	000000

α -STABLE PROCESS

$$\Psi(\theta) = |\theta|^{\alpha} (\mathrm{e}^{\pi \mathrm{i}\alpha(\frac{1}{2}-\rho)} \mathbf{1}_{(\theta>0)} + \mathrm{e}^{-\pi \mathrm{i}\alpha(\frac{1}{2}-\rho)} \mathbf{1}_{(\theta<0)}), \qquad \theta \in \mathbb{R}.$$

11/77

・ロト・日本・モト・モト・モー りゃぐ

Note that, for
$$c > 0$$
, $c^{-\alpha}\Psi(c\theta) = \Psi(\theta)$,

• which is equivalent to saying that $cX_{c-\alpha_t} =^d X_t$,

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
00000000000000	000	00000000000000	00000000000	0000000	000000000000	000	000000

$\alpha\textsc{-stable process}$

$$\Psi(\theta) = |\theta|^{\alpha} (\mathrm{e}^{\pi \mathrm{i}\alpha(\frac{1}{2}-\rho)} \mathbf{1}_{(\theta>0)} + \mathrm{e}^{-\pi \mathrm{i}\alpha(\frac{1}{2}-\rho)} \mathbf{1}_{(\theta<0)}), \qquad \theta \in \mathbb{R}.$$

イロト イロト イヨト イヨト ヨー のへぐ

Note that, for
$$c > 0$$
, $c^{-\alpha}\Psi(c\theta) = \Psi(\theta)$,

- which is equivalent to saying that $cX_{c-\alpha_t} = dX_t$,
- ▶ which by stationary and independent increments is equivalent to saying $(cX_{c-\alpha_t}, t \ge 0) =^d (X_t, t \ge 0)$ when $X_0 = 0$,

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
00000000000000	000	00000000000000	00000000000	0000000	000000000000	000	000000

$\alpha\textsc{-stable process}$

$$\Psi(\theta) = |\theta|^{\alpha} (\mathrm{e}^{\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta > 0)} + \mathrm{e}^{-\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta < 0)}), \qquad \theta \in \mathbb{R}.$$

• Note that, for
$$c > 0$$
, $c^{-\alpha}\Psi(c\theta) = \Psi(\theta)$,

- which is equivalent to saying that $cX_{c-\alpha_t} = dX_t$,
- ▶ which by stationary and independent increments is equivalent to saying $(cX_{c-\alpha_t}, t \ge 0) =^d (X_t, t \ge 0)$ when $X_0 = 0$,
- or equivalently is equivalent to saying $(cX_{c-\alpha_t}^{(x)}, t \ge 0) =^d (X_t^{(cx)}, t \ge 0)$, where we have indicated the point of issue as an additional index.

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
00000000000000	000	00000000000000	00000000000	0000000	000000000000	000	000000

STABLE PROCESS PATH PROPERTIES

index	jumps	path	recurrence/transience
$\alpha \in (0,1)$			transient
$\rho = 0$	-	monotone decreasing	$\lim_{t\to\infty} X_t = -\infty$
$\rho = 1$	+	monotone increasing	$\lim_{t\to\infty} X_t = \infty$
$\rho \in (0,1)$	+, -	bounded variation	$\lim_{t\to\infty} X_t =\infty$
$\alpha = 1$			recurrent
$\rho = \frac{1}{2}$	+, -	unbounded variation	$\limsup_{t \to \infty} X_t = \infty,$ $\liminf_{t \to \infty} X_t = 0$
$\alpha \in (1,2)$			recurrent
$\alpha \rho = 1$	-	unbounded variation	$\mathbb{P}_{x}(\tau^{\{0\}} < \infty) = 1, x \in \mathbb{R}, \\ -\liminf_{t \to \infty} X_{t} = \limsup_{t \to \infty} X_{t} = \infty$
$\alpha \rho = \alpha - 1$	+	unbounded variation	$\mathbb{P}_{x}(\tau^{\{0\}} < \infty) = 1, x \in \mathbb{R}, \\ -\lim \inf_{t \to \infty} X_{t} = \limsup_{t \to \infty} X_{t} = \infty$
$\alpha \rho \in (\alpha - 1, 1)$	+,-	unbounded variation	$\mathbb{P}_{x}(\tau^{\{0\}} < \infty) = 1, x \in \mathbb{R}, \\ -\liminf_{t \to \infty} X_{t} = \limsup_{t \to \infty} X_{t} = \infty$

12/77 ▲□▶▲@▶▲콜▶▲콜▶ 콜 - 의약은

YOUR NEW FRIENDS

Suppose $X = (X_t : t \ge 0)$ is within the assumed class of α -stable processes in one-dimension and let $\underline{X}_t = \inf_{s \le t} X_s$.

Your new friends are:

$$\blacktriangleright$$
 Z = X

$$\blacktriangleright Z = X - (-x \wedge \underline{X}), x > 0.$$

 $\triangleright \ Z = X \mathbf{1}_{(\underline{X} > 0)}$

$$\blacktriangleright$$
 Z = |X| providing $\rho = 1/2$

 \triangleright *Z* = *X* conditioned to stay positive

$$\mathbb{P}_{x}^{\uparrow}(A) = \lim_{s \to \infty} \mathbb{P}_{x}(A | \underline{X}_{t+s} > 0) = \mathbb{E}_{x} \left[\frac{X_{t}^{\alpha \hat{\rho}}}{x^{\alpha \hat{\rho}}} \mathbf{1}_{(\underline{X}_{t} > 0)} \mathbf{1}_{(A)} \right]$$

for $A \in \sigma(X_u : u \leq t)$

13/77 <□> < 큔> < 흔> < 흔> < 흔 > 흔 _ ∽ < ぐ
 §1.
 §2.
 §3.
 §4.
 §5.
 §6.
 §7.
 §8.

 00000000000
 000
 00000000000
 0000000000
 0000000000
 00000000000
 00000000000

CONDITIONED α -STABLE PROCESSES

For $c, x > 0, t \ge 0$ and appropriately bounded, measurable and non-negative f, we can write,

$$\begin{split} \mathbb{E}_{x}^{\uparrow}[f(\{cX_{c-\alpha_{S}}:s\leq t\})] \\ &= \mathbb{E}\left[f(\{cX_{c-\alpha_{S}}^{(x)}:s\leq t\})\frac{(X_{c-\alpha_{t}}^{(x)})^{\alpha\hat{\rho}}}{x^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{c-\alpha_{t}}^{(x)}\geq 0)}\right] \\ &= \mathbb{E}\left[f(\{X_{s}^{(cx)}:s\leq t\}\frac{(X_{t}^{(cx)})^{\alpha\hat{\rho}}}{(cx)^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{t}^{(cx)}\geq 0)}\right] \\ &= \mathbb{E}_{cx}^{\uparrow}[f(\{X_{s}:s\leq t\})]. \end{split}$$

14/77

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

 §1.
 §2.
 §3.
 §4.
 §5.
 §6.
 §7.
 §8.

 00000000000
 000
 00000000000
 0000000000
 0000000000
 00000000000
 00000000000

CONDITIONED α -STABLE PROCESSES

For $c, x > 0, t \ge 0$ and appropriately bounded, measurable and non-negative f, we can write,

$$\begin{split} &\mathbb{E}_{x}^{\uparrow}[f(\{cX_{c-\alpha_{S}}:s\leq t\})]\\ &=\mathbb{E}\left[f(\{cX_{c-\alpha_{S}}^{(x)}:s\leq t\})\frac{(X_{c-\alpha_{t}}^{(x)})^{\alpha\hat{\rho}}}{x^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{c-\alpha_{t}}^{(x)}\geq 0)}\right]\\ &=\mathbb{E}\left[f(\{X_{s}^{(cx)}:s\leq t\}\frac{(X_{t}^{(cx)})^{\alpha\hat{\rho}}}{(cx)^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{t}^{(cx)}\geq 0)}\right]\\ &=\mathbb{E}_{cx}^{\uparrow}[f(\{X_{s}:s\leq t\})]. \end{split}$$

▶ This also makes the process $(X, \mathbb{P}_x^{\uparrow}), x > 0$, a self-similar Markov process on $[0, \infty)$.

14/77 《 ㅁ ▷ 《 큔 ▷ 《 흔 ▷ 《 흔 ▷ 《 은
 §1.
 §2.
 §3.
 §4.
 §5.
 §6.
 §7.
 §8.

 00000000000
 000
 00000000000
 0000000000
 0000000000
 00000000000
 00000000000

CONDITIONED α -STABLE PROCESSES

For $c, x > 0, t \ge 0$ and appropriately bounded, measurable and non-negative f, we can write,

$$\mathbb{E}_{x}^{\uparrow}[f(\{cX_{c-\alpha_{S}}:s\leq t\})]$$

$$=\mathbb{E}\left[f(\{cX_{c-\alpha_{S}}^{(x)}:s\leq t\})\frac{(X_{c-\alpha_{t}}^{(x)})^{\alpha\hat{\rho}}}{x^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{c-\alpha_{t}}^{(x)}\geq 0)}\right]$$

$$=\mathbb{E}\left[f(\{X_{s}^{(cx)}:s\leq t\}\frac{(X_{t}^{(cx)})^{\alpha\hat{\rho}}}{(cx)^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{t}^{(cx)}\geq 0)}\right]$$

$$=\mathbb{E}_{cx}^{\uparrow}[f(\{X_{s}:s\leq t\})].$$

- ▶ This also makes the process $(X, \mathbb{P}_x^{\uparrow})$, x > 0, a self-similar Markov process on $[0, \infty)$.
- Unlike the case of Brownian motion, the conditioned stable process does not have the law of the radial part of a 3-dimensional stable process (the analogue to the Brownian case).

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	00000000000	0000000	000000000000	000	000000

§2. Lamperti Transform

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	●00	0000000000000000	00000000000	0000000	0000000000000	000	000000
N T -							

NOTATION

▶ Use $\xi := \{\xi_t : t \ge 0\}$ to denote a Lévy process which is killed and sent to the cemetery state $-\infty$ at an independent and exponentially distributed random time, \mathbf{e}_q , with rate in $q \in [0, \infty)$. The characteristic exponent of ξ is thus written

 $-\log \mathbf{E}(e^{i\theta\xi_1}) = \Psi(\theta) = q + L$ évy–Khintchine

16/77

・ロト・日本・モート モー うへの

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	●00	0000000000000000	00000000000	0000000	000000000000	000	000000

NOTATION

▶ Use $\xi := \{\xi_t : t \ge 0\}$ to denote a Lévy process which is killed and sent to the cemetery state $-\infty$ at an independent and exponentially distributed random time, \mathbf{e}_q , with rate in $q \in [0, \infty)$. The characteristic exponent of ξ is thus written

$$-\log \mathbf{E}(\mathbf{e}^{\mathrm{i}\theta\xi_1}) = \Psi(\theta) = q + \mathrm{L\acute{e}vy}$$
-Khintchine

Define the associated integrated exponential Lévy process

$$I_t = \int_0^t e^{\alpha \xi_s} ds, \qquad t \ge 0.$$
(1)

16/77

・ロト・日本・モート・モー しょうろう

and its limit, $I_{\infty} := \lim_{t \uparrow \infty} I_t$.

§1. 000000000000	§2. ●00	§3. 000000000000000	§4. 00000000000	§5. 0000000	§6. 000000000000	§7. 000	§8. 000000

NOTATION

▶ Use $\xi := \{\xi_t : t \ge 0\}$ to denote a Lévy process which is killed and sent to the cemetery state $-\infty$ at an independent and exponentially distributed random time, \mathbf{e}_q , with rate in $q \in [0, \infty)$. The characteristic exponent of ξ is thus written

$$-\log \mathbf{E}(\mathbf{e}^{\mathrm{i}\theta\xi_1}) = \Psi(\theta) = q + \mathrm{L\acute{e}vy}$$
-Khintchine

Define the associated integrated exponential Lévy process

$$I_t = \int_0^t e^{\alpha \xi_s} ds, \qquad t \ge 0.$$
(1)

and its limit, $I_{\infty} := \lim_{t \uparrow \infty} I_t$.

Also interested in the inverse process of *I*:

$$\varphi(t) = \inf\{s > 0 : I_s > t\}, \quad t \ge 0.$$
 (2)

As usual, we work with the convention $\inf \emptyset = \infty$.

16/77 イロト (母) (主) (主) りんぐ

LAMPERTI TRANSFORM FOR POSITIVE ssMp

Theorem (Part (i))

Fix $\alpha > 0$. If $Z^{(x)}$, x > 0, is a positive self-similar Markov process with index of self-similarity α , then up to absorption at the origin, it can be represented as follows. For x > 0,

$$Z_t^{(x)} \mathbf{1}_{\{t < \zeta^{(x)}\}} = x \exp\{\xi_{\varphi(x^{-\alpha}t)}\}, \qquad t \ge 0,$$

where $\zeta^{(x)} = \inf\{t > 0 : Z_t^{(x)} = 0\}$ *and either*

- ζ^(x) = ∞ almost surely for all x > 0, in which case ξ is a Lévy process satisfying lim sup_{t↑∞} ξ_t = ∞,
- (2) ζ^(x) < ∞ and Z^(x)_{ζ^(x)-} = 0 almost surely for all x > 0, in which case ξ is a Lévy process satisfying lim_{t↑∞} ξ_t = -∞, or
- (3) ζ^(x) < ∞ and Z^(x)_{ζ^(x)} > 0 almost surely for all x > 0, in which case ξ is a Lévy process killed at an independent and exponentially distributed random time.

In all cases, we may identify $\zeta^{(x)} = x^{\alpha}I_{\infty}$.

17/77 イヨトイヨト ヨークへぐ
LAMPERTI TRANSFORM FOR POSITIVE SSMP

Theorem (Part (ii))

Conversely, suppose that ξ *is a given (killed) Lévy process. For each* x > 0*, define*

$$Z_t^{(x)} = x \exp\{\xi_{\varphi(x^{-\alpha}t)}\}\mathbf{1}_{(t < x^{\alpha}I_{\infty})}, \qquad t \ge 0.$$

18/77

<ロト < 個 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Then $Z^{(x)}$ *defines a positive self-similar Markov process, up to its absorption time* $\zeta^{(x)} = x^{\alpha}I_{\infty}$ *, with index* α *.*

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	00000000000	0000000	000000000000	000	000000

§3. Positive self-similar Markov processes

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	•0000000000000	00000000000	0000000	000000000000	000	000000

The stable process cannot 'creep' downwards across the threshold 0 and so must do so with a jump.

- The stable process cannot 'creep' downwards across the threshold 0 and so must do so with a jump.
- ► This puts $Z_t^* := X_t \mathbf{1}_{(\underline{X}_t > 0)}, t \ge 0$, in the class of pssMp for which the underlying Lévy process experiences exponential killing.

- The stable process cannot 'creep' downwards across the threshold 0 and so must do so with a jump.
- ▶ This puts $Z_t^* := X_t \mathbf{1}_{(\underline{X}_t > 0)}, t \ge 0$, in the class of pssMp for which the underlying Lévy process experiences exponential killing.
- ▶ Write $\xi^* = \{\xi_t^* : t \ge 0\}$ for the underlying Lévy process and denote its killing rate by q^* .

- The stable process cannot 'creep' downwards across the threshold 0 and so must do so with a jump.
- ► This puts $Z_t^* := X_t \mathbf{1}_{(\underline{X}_t > 0)}, t \ge 0$, in the class of pssMp for which the underlying Lévy process experiences exponential killing.
- ▶ Write $\xi^* = \{\xi_t^* : t \ge 0\}$ for the underlying Lévy process and denote its killing rate by q^* .

20/77

<ロト < 置 > < 置 > < 置 > 、 置 > のへの

• Let's try and decode the characteristics of ξ^* .

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	0000000000000	00000000000	0000000	000000000000	000	000000

STABLE PROCESS KILLED ON ENTRY TO $(-\infty, 0)$ • We know that the α -stable process experiences downward jumps at rate

$$\frac{\Gamma(1+\alpha)}{\pi}\sin(\pi\alpha\hat{\rho})\frac{1}{|x|^{1+\alpha}}\mathrm{d}x,\qquad x<0.$$

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	0000000000000	00000000000	0000000	000000000000	000	000000

STABLE PROCESS KILLED ON ENTRY TO $(-\infty, 0)$ \blacktriangleright We know that the α -stable process experiences downward jumps at rate

$$\frac{\Gamma(1+\alpha)}{\pi}\sin(\pi\alpha\hat{\rho})\frac{1}{|x|^{1+\alpha}}\mathrm{d}x,\qquad x<0.$$

• Given that we know the value of Z_{t-}^* , on $\{X_t > 0\}$, the stable process will pass over the origin at rate

$$\frac{\Gamma(1+\alpha)}{\pi}\sin(\pi\alpha\hat{\rho})\left(\int_{Z_{t-}^*}^\infty \frac{1}{|x|^{1+\alpha}}\mathrm{d}x\right) = \frac{\Gamma(1+\alpha)}{\alpha\pi}\sin(\pi\alpha\hat{\rho})(Z_{t-}^*)^{-\alpha}$$

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	0000000000000	00000000000	0000000	000000000000	000	000000

• We know that the α -stable process experiences downward jumps at rate

$$\frac{\Gamma(1+\alpha)}{\pi}\sin(\pi\alpha\hat{\rho})\frac{1}{|x|^{1+\alpha}}\mathrm{d}x,\qquad x<0.$$

▶ Given that we know the value of Z^{*}_{t−}, on {X_t > 0}, the stable process will pass over the origin at rate

$$\frac{\Gamma(1+\alpha)}{\pi}\sin(\pi\alpha\hat{\rho})\left(\int_{Z_{t-}^*}^\infty \frac{1}{|x|^{1+\alpha}}\mathrm{d}x\right) = \frac{\Gamma(1+\alpha)}{\alpha\pi}\sin(\pi\alpha\hat{\rho})(Z_{t-}^*)^{-\alpha}.$$

• On the other hand, the Lamperti transform says that on $\{t < \zeta\}$, as a pssMp, *Z* is sent to the origin at rate

$$q^* \frac{\mathrm{d}}{\mathrm{d}t} \varphi(t) = q^* \mathrm{e}^{-\alpha \xi^*_{\varphi(t)}} = q^* (Z^*_t)^{-\alpha}$$

21/77 《 ロ > 《 团 > 《 톤 > 《 톤 > ~ 톤 > ~ 톤 - ⑦ < ⓒ

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	0000000000000	00000000000	0000000	000000000000	000	000000

• We know that the α -stable process experiences downward jumps at rate

$$\frac{\Gamma(1+\alpha)}{\pi}\sin(\pi\alpha\hat{\rho})\frac{1}{|x|^{1+\alpha}}\mathrm{d}x,\qquad x<0.$$

▶ Given that we know the value of Z^{*}_{t−}, on {X_t > 0}, the stable process will pass over the origin at rate

$$\frac{\Gamma(1+\alpha)}{\pi}\sin(\pi\alpha\hat{\rho})\left(\int_{Z_{t-}^*}^\infty \frac{1}{|x|^{1+\alpha}}\mathrm{d}x\right) = \frac{\Gamma(1+\alpha)}{\alpha\pi}\sin(\pi\alpha\hat{\rho})(Z_{t-}^*)^{-\alpha}.$$

• On the other hand, the Lamperti transform says that on $\{t < \zeta\}$, as a pssMp, *Z* is sent to the origin at rate

$$q^* \frac{\mathrm{d}}{\mathrm{d}t} \varphi(t) = q^* \mathrm{e}^{-\alpha \xi^*_{\varphi(t)}} = q^* (Z^*_t)^{-\alpha}.$$

Comparing gives us

$$q^* = \Gamma(\alpha) \sin(\pi \alpha \hat{\rho}) / \pi = \frac{\Gamma(\alpha)}{\Gamma(\alpha \hat{\rho}) \Gamma(1 - \alpha \hat{\rho})}$$

21/77 イロト (団) (主) (主) (主) のので

► Referring again to the Lamperti transform, we know that, under \mathbb{P}_1 (so that $\xi_0^* = 0$ almost surely),

$$Z_{\zeta-}^* = X_{\tau_0^-} = e^{\xi_{e_q^*}^*},$$

where \mathbf{e}_{q^*} is an exponentially distributed random variable with rate q^* .

▶ Referring again to the Lamperti transform, we know that, under \mathbb{P}_1 (so that $\xi_0^* = 0$ almost surely),

$$Z_{\zeta-}^* = X_{\tau_0^-} = e^{\xi_{\mathbf{e}_{q^*}}^*},$$

where \mathbf{e}_{q^*} is an exponentially distributed random variable with rate q^* . This motivates the computation

$$\mathbb{E}_{1}[(Z_{\zeta-}^{*})^{\mathrm{i}\theta}] = \mathbf{E}_{0}[\mathrm{e}^{\mathrm{i}\theta\xi_{\mathbf{e}_{q^{*}}}^{*}-}] = \frac{q^{*}}{(\Psi^{*}(z) - q^{*}) + q^{*}}, \qquad \theta \in \mathbb{R},$$

イロト 不得 とくほ とくほ とうほう

where Ψ^* is the characteristic exponent of ξ^* .

Stable process killed on entry to $(-\infty,0)$

Remembering the "overshoot-undershoot" distributional law at first passage (well known in the literature for Lévy processes c.f. the quintuple law - Chapter 7 of my book) and deduce that, for all $v \in [0, 1]$,

$$\begin{split} \mathbb{P}_{1}(X_{\tau_{0}^{-}-} \in \mathrm{d}v) \\ &= \hat{\mathbb{P}}_{0}(1 - X_{\tau_{1}^{+}-} \in \mathrm{d}v) \\ &= \frac{\sin(\alpha\hat{\rho}\pi)}{\pi} \frac{\Gamma(\alpha+1)}{\Gamma(\alpha\rho)\Gamma(\alpha\hat{\rho})} \left(\int_{0}^{\infty} \int_{0}^{\infty} \mathbf{1}_{(y \leq 1 \wedge v)} \frac{(1-y)^{\alpha\hat{\rho}-1}(v-y)^{\alpha\rho-1}}{(v+u)^{1+\alpha}} \mathrm{d}u \mathrm{d}y\right) \mathrm{d}v \\ &= \frac{\sin(\alpha\hat{\rho}\pi)}{\pi} \frac{\Gamma(\alpha)}{\Gamma(\alpha\rho)\Gamma(\alpha\hat{\rho})} \left(\int_{0}^{1} \mathbf{1}_{(y \leq v)}v^{-\alpha}(1-y)^{\alpha\hat{\rho}-1}(v-y)^{\alpha\rho-1} \mathrm{d}y\right) \mathrm{d}v, \end{split}$$

where $\hat{\mathbb{P}}_0$ is the law of -X issued from 0.

Stable process killed on entry to $(-\infty,0)$

Remembering the "overshoot-undershoot" distributional law at first passage (well known in the literature for Lévy processes c.f. the quintuple law - Chapter 7 of my book) and deduce that, for all $v \in [0, 1]$,

$$\begin{split} \mathbb{P}_{1}(X_{\tau_{0}^{-}-} \in \mathrm{d}v) \\ &= \hat{\mathbb{P}}_{0}(1 - X_{\tau_{1}^{+}-} \in \mathrm{d}v) \\ &= \frac{\sin(\alpha\hat{\rho}\pi)}{\pi} \frac{\Gamma(\alpha+1)}{\Gamma(\alpha\rho)\Gamma(\alpha\hat{\rho})} \left(\int_{0}^{\infty} \int_{0}^{\infty} \mathbf{1}_{(y \leq 1 \wedge v)} \frac{(1-y)^{\alpha\hat{\rho}-1}(v-y)^{\alpha\rho-1}}{(v+u)^{1+\alpha}} \mathrm{d}u \mathrm{d}y\right) \mathrm{d}v \\ &= \frac{\sin(\alpha\hat{\rho}\pi)}{\pi} \frac{\Gamma(\alpha)}{\Gamma(\alpha\rho)\Gamma(\alpha\hat{\rho})} \left(\int_{0}^{1} \mathbf{1}_{(y \leq v)}v^{-\alpha}(1-y)^{\alpha\hat{\rho}-1}(v-y)^{\alpha\rho-1} \mathrm{d}y\right) \mathrm{d}v, \end{split}$$

where $\hat{\mathbb{P}}_0$ is the law of -X issued from 0. Note: more generally:

$$\mathbb{P}_{1}(-X_{\tau_{0}^{-}} \in du, X_{\tau_{0}^{-}-} \in dv)$$

$$= \frac{\sin(\alpha\hat{\rho}\pi)}{\pi} \frac{\Gamma(\alpha+1)}{\Gamma(\alpha\rho)\Gamma(\alpha\hat{\rho})} \left(\int_{0}^{\infty} \mathbf{1}_{(y\leq 1\wedge v)} \frac{(1-y)^{\alpha\hat{\rho}-1}(v-y)^{\alpha\rho-1}}{(v+u)^{1+\alpha}} dy \right) dv du$$

3/77

We are led to the conclusion that

$$\begin{split} & \frac{q^*}{\Psi^*(\theta)} \\ &= \frac{\sin(\alpha\hat{\rho}\pi)}{\pi} \frac{\Gamma(\alpha+1)}{\Gamma(\alpha\rho)\Gamma(\alpha\hat{\rho})} \int_0^1 (1-y)^{\alpha\hat{\rho}-1} \int_0^\infty \mathbf{1}_{(y\leq v)} v^{\mathbf{i}\theta-\alpha\hat{\rho}-1} \left(1-\frac{y}{v}\right)^{\alpha\rho-1} \mathrm{d}v \mathrm{d}y \\ &= \frac{\sin(\alpha\hat{\rho}\pi)}{\pi} \frac{\Gamma(\alpha+1)}{\Gamma(\alpha\rho)\Gamma(\alpha\hat{\rho})} \int_0^1 (1-y)^{\alpha\hat{\rho}-1} y^{\mathbf{i}\theta-\alpha\hat{\rho}} \mathrm{d}y \frac{\Gamma(\alpha\hat{\rho}-\mathbf{i}\theta)\Gamma(\alpha\rho)}{\Gamma(\alpha-\mathbf{i}\theta)} \\ &= \frac{\Gamma(\alpha\hat{\rho}-\mathbf{i}\theta)\Gamma(\alpha\rho)\Gamma(1-\alpha\hat{\rho}+\mathbf{i}\theta)\Gamma(\alpha\hat{\rho})\Gamma(\alpha)}{\Gamma(\alpha\rho)\Gamma(1-\alpha\hat{\rho})\Gamma(1+\mathbf{i}\theta)\Gamma(\alpha-\mathbf{i}\theta)}, \end{split}$$

where in the first equality Fubini's Theorem has been used, in the second equality a straightforward substitution w = y/v has been used for the inner integral on the preceding line together with the classical beta integral and, finally, in the third equality, the Beta integral has been used for a second time. Inserting the respective values for the constants q^* and K, we come to rest at the following result:

Theorem

For the pssMp constructed by killing a stable process on first entry to $(-\infty, 0)$, the underlying killed Lévy process, ξ^* , that appears through the Lamperti transform has characteristic exponent given by

$$\Psi^*(z) = \frac{\Gamma(\alpha - iz)}{\Gamma(\alpha \hat{\rho} - iz)} \frac{\Gamma(1 + iz)}{\Gamma(1 - \alpha \hat{\rho} + iz)}, \qquad z \in \mathbb{R}.$$

25/77

STABLE PROCESSES CONDITIONED TO STAY POSITIVE

• Use the Lamperti representation of the α -stable process *X* to write, for $A \in \sigma(X_u : u \leq t)$,

$$\mathbb{P}_{x}^{\uparrow}(A) = \mathbb{E}_{x}\left[\frac{X_{t}^{\alpha\hat{\rho}}}{x^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{t}>0)}\mathbf{1}_{(A)}\right] = \mathbf{E}_{0}\left[e^{\alpha\hat{\rho}\xi_{\tau}^{*}}\mathbf{1}_{(\tau<\mathbf{e}_{q^{*}})}\mathbf{1}_{(A)}\right],$$

26/77

<ロト < 個 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

where $\tau = \varphi(x^{-\alpha}t)$ is a stopping time in the natural filtration of ξ^* .

STABLE PROCESSES CONDITIONED TO STAY POSITIVE

• Use the Lamperti representation of the α -stable process *X* to write, for $A \in \sigma(X_u : u \leq t)$,

$$\mathbb{P}_{x}^{\uparrow}(A) = \mathbb{E}_{x}\left[\frac{X_{t}^{\alpha\hat{\rho}}}{x^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{t}>0)}\mathbf{1}_{(A)}\right] = \mathbb{E}_{0}\left[e^{\alpha\hat{\rho}\xi_{\tau}^{*}}\mathbf{1}_{(\tau<\mathbf{e}_{q^{*}})}\mathbf{1}_{(A)}\right],$$

26/77

where $\tau = \varphi(x^{-\alpha}t)$ is a stopping time in the natural filtration of ξ^* .

Noting that $\Psi^*(-i\alpha\hat{\rho}) = 0$, the change of measure constitutes an Esscher transform at the level of ξ^* .

STABLE PROCESSES CONDITIONED TO STAY POSITIVE

• Use the Lamperti representation of the α -stable process *X* to write, for $A \in \sigma(X_u : u \leq t)$,

$$\mathbb{P}_{x}^{\uparrow}(A) = \mathbb{E}_{x}\left[\frac{X_{t}^{\alpha\hat{\rho}}}{x^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{t}>0)}\mathbf{1}_{(A)}\right] = \mathbb{E}_{0}\left[e^{\alpha\hat{\rho}\xi_{\tau}^{*}}\mathbf{1}_{(\tau<\mathbf{e}_{q^{*}})}\mathbf{1}_{(A)}\right],$$

where $\tau = \varphi(x^{-\alpha}t)$ is a stopping time in the natural filtration of ξ^* .

Noting that $\Psi^*(-i\alpha\hat{\rho}) = 0$, the change of measure constitutes an Esscher transform at the level of ξ^* .

Theorem

The underlying Lévy process, ξ^{\uparrow} , that appears through the Lamperti transform applied to $(X, \mathbb{P}_x^{\uparrow}), x > 0$, has characteristic exponent given by

$$\Psi^{\uparrow}(z) = \frac{\Gamma(\alpha \rho - \mathrm{i}z)}{\Gamma(-\mathrm{i}z)} \frac{\Gamma(1 + \alpha \hat{\rho} + \mathrm{i}z)}{\Gamma(1 + \mathrm{i}z)}, \qquad z \in \mathbb{R}.$$

► In particular $\Psi^{\uparrow}(z) = \Psi^*(z - i\alpha\hat{\rho}), z \in \mathbb{R}$ so that $\Psi^{\uparrow}(0) = 0$ (i.e. no killing!)

• One can also check by hand that $\Psi^{\uparrow\prime}(0+) = \mathbf{E}_0[\xi_1^{\uparrow}] > 0$ so that $\lim_{t\to\infty} \xi_t^{\uparrow} = \infty$.

- In essence, the case of the stable process conditioned to stay positive boils down to an Esscher transform in the underlying (Lamperti-transformed) Lévy process.
- It was important that we identified a root of $\Psi^*(z) = 0$ in order to avoid involving a 'time component' of the Esscher transform.

- In essence, the case of the stable process conditioned to stay positive boils down to an Esscher transform in the underlying (Lamperti-transformed) Lévy process.
- It was important that we identified a root of $\Psi^*(z) = 0$ in order to avoid involving a 'time component' of the Esscher transform.
- However, there is another root of the equation

$$\Psi^*(z) = \frac{\Gamma(\alpha - iz)}{\Gamma(\alpha \hat{\rho} - iz)} \frac{\Gamma(1 + iz)}{\Gamma(1 - \alpha \hat{\rho} + iz)} = 0,$$

namely $z = -i(1 - \alpha \hat{\rho})$.

- In essence, the case of the stable process conditioned to stay positive boils down to an Esscher transform in the underlying (Lamperti-transformed) Lévy process.
- It was important that we identified a root of $\Psi^*(z) = 0$ in order to avoid involving a 'time component' of the Esscher transform.
- However, there is another root of the equation

$$\Psi^*(z) = \frac{\Gamma(\alpha - iz)}{\Gamma(\alpha \hat{\rho} - iz)} \frac{\Gamma(1 + iz)}{\Gamma(1 - \alpha \hat{\rho} + iz)} = 0,$$

namely $z = -i(1 - \alpha \hat{\rho})$.

And this means that

$$\mathrm{e}^{(1-\alpha\hat{\rho})\xi^*}, \qquad t \ge 0,$$

is a unit-mean Martingale, which can also be used to construct an Esscher transform:

$$\Psi^{\downarrow}(z) = \Psi^*(z - \mathrm{i}(1 - \alpha\hat{\rho})) = \Psi^{\downarrow}(z) = \frac{\Gamma(1 + \alpha\rho - \mathrm{i}z)}{\Gamma(1 - \mathrm{i}z)} \frac{\Gamma(\mathrm{i}z + \alpha\hat{\rho})}{\Gamma(\mathrm{i}z)}.$$

2// ・ ヨ ト イヨ ト ヨ - シへ(

- In essence, the case of the stable process conditioned to stay positive boils down to an Esscher transform in the underlying (Lamperti-transformed) Lévy process.
- It was important that we identified a root of $\Psi^*(z) = 0$ in order to avoid involving a 'time component' of the Esscher transform.
- However, there is another root of the equation

$$\Psi^*(z) = \frac{\Gamma(\alpha - iz)}{\Gamma(\alpha\hat{\rho} - iz)} \frac{\Gamma(1 + iz)}{\Gamma(1 - \alpha\hat{\rho} + iz)} = 0,$$

namely $z = -i(1 - \alpha \hat{\rho})$.

And this means that

$$\mathrm{e}^{(1-\alpha\hat{\rho})\xi^*}, \qquad t \ge 0,$$

is a unit-mean Martingale, which can also be used to construct an Esscher transform:

$$\Psi^{\downarrow}(z) = \Psi^*(z - i(1 - \alpha\hat{\rho})) = \Psi^{\downarrow}(z) = \frac{\Gamma(1 + \alpha\rho - iz)}{\Gamma(1 - iz)} \frac{\Gamma(iz + \alpha\hat{\rho})}{\Gamma(iz)}.$$

► The choice of notation is pre-emptive since we can also check that $\Psi^{\downarrow}(0) = 0$ and $\Psi^{\downarrow\prime}(0) < 0$ so that if ξ^{\downarrow} is a Lévy process with characteristic exponent Ψ^{\downarrow} , then $\lim_{t\to\infty} \xi_t^{\downarrow} = -\infty$.

Reverse engineering

• What now happens if we define for $A \in \sigma(X_u : u \leq t)$,

$$\mathbb{P}_{x}^{\downarrow}(A) = \mathbf{E}_{0}\left[\mathbf{e}^{(1-\alpha\hat{\rho})\xi_{\tau}^{*}}\mathbf{1}_{(\tau < \mathbf{e}_{q^{*}})}\mathbf{1}_{(A)}\right] = \mathbb{E}_{x}\left[\frac{\mathbf{X}_{t}^{(1-\alpha\hat{\rho})}}{x^{(1-\alpha\hat{\rho})}}\mathbf{1}_{(\underline{X}_{t}>0)}\mathbf{1}_{(A)}\right],$$

28/77

<ロト < 置 > < 置 > < 置 > 、 置 > のへの

where $\tau = \varphi(x^{-\alpha}t)$ is a stopping time in the natural filtration of ξ^* .

Reverse engineering

▶ What now happens if we define for $A \in \sigma(X_u : u \leq t)$,

$$\mathbb{P}_{x}^{\downarrow}(A) = \mathbf{E}_{0}\left[\mathbf{e}^{(1-\alpha\hat{\rho})\xi_{\tau}^{*}}\mathbf{1}_{(\tau < \mathbf{e}_{q^{*}})}\mathbf{1}_{(A)}\right] = \mathbb{E}_{x}\left[\frac{X_{t}^{(1-\alpha\hat{\rho})}}{x^{(1-\alpha\hat{\rho})}}\mathbf{1}_{(\underline{X}_{t}>0)}\mathbf{1}_{(A)}\right],$$

28/77

<ロト < 置 > < 置 > < 置 > 、 置 > のへの

where $\tau = \varphi(x^{-\alpha}t)$ is a stopping time in the natural filtration of ξ^* .

▶ In the same way we checked that $(X, \mathbb{P}_x^{\uparrow})$, x > 0, is a pssMp, we can also check that $(X, \mathbb{P}_x^{\downarrow})$, x > 0 is a pssMp.

Reverse engineering

▶ What now happens if we define for $A \in \sigma(X_u : u \leq t)$,

$$\mathbb{P}_{x}^{\downarrow}(A) = \mathbf{E}_{0}\left[\mathbf{e}^{(1-\alpha\hat{\rho})\xi_{\tau}^{*}}\mathbf{1}_{(\tau < \mathbf{e}_{q^{*}})}\mathbf{1}_{(A)}\right] = \mathbb{E}_{x}\left[\frac{\mathbf{X}_{t}^{(1-\alpha\hat{\rho})}}{x^{(1-\alpha\hat{\rho})}}\mathbf{1}_{(\underline{X}_{t}>0)}\mathbf{1}_{(A)}\right],$$

28/77

where $\tau = \varphi(x^{-\alpha}t)$ is a stopping time in the natural filtration of ξ^* .

- ▶ In the same way we checked that $(X, \mathbb{P}_x^{\uparrow}), x > 0$, is a pssMp, we can also check that $(X, \mathbb{P}_x^{\downarrow}), x > 0$ is a pssMp.
- In an appropriate sense, it turns out that (X, ℙ[↓]_x), x > 0 is the law of a stable process conditioned to continuously approach the origin from above.

31. 34.	go.	§4.	§5.	§6.	§7.	§8.
00000000000 000	000000000000000	00000000000	0000000	000000000000	000	000000

 ξ^*,ξ^{\uparrow} and ξ^{\downarrow}

▶ The three examples of pssMp offer quite striking underlying Lévy processes

29/77

イロト イロト イヨト イヨト ヨー のへぐ

Is this exceptional?

CENSORED STABLE PROCESSES

- Start with *X*, the stable process.
- Let $A_t = \int_0^t \mathbf{1}_{(X_t > 0)} dt$.
- Let γ be the right-inverse of A, and put $\check{Z}_t := X_{\gamma(t)}$.
- Finally, make zero an absorbing state: $Z_t = \check{Z}_t \mathbf{1}_{(t < T_0)}$ where

$$T_0 = \inf\{t > 0 : X_t = 0\}.$$

30/77

<ロト < 置 > < 置 > < 置 > 、 置 > のへの

Note $T_0 < \infty$ a.s. if and only if $\alpha \in (1, 2)$ and otherwise $T_0 = \infty$ a.s. This is the censored stable process.

CENSORED STABLE PROCESSES

Theorem

Suppose that the underlying Lévy process for the censored stable process is denoted by $\tilde{\xi}$. Then $\tilde{\xi}$ is equal in law to $\xi^{**} \oplus \xi^{C}$, with

- \triangleright ξ^{**} equal in law to ξ^* with the killing removed,
- ► ξ^{C} a compound Poisson process with jump rate $q^{*} = \Gamma(\alpha) \sin(\pi \alpha \hat{\rho})/\pi$.

Moreover, the characteristic exponent of $\widetilde{\xi}$ is given by

$$\widetilde{\Psi}(z) = \frac{\Gamma(\alpha \rho - \mathrm{i}z)}{\Gamma(-\mathrm{i}z)} \frac{\Gamma(1 - \alpha \rho + \mathrm{i}z)}{\Gamma(1 - \alpha + \mathrm{i}z)}, \qquad z \in \mathbb{R}$$

31/77 ▲큔▶▲코▶▲코▶ 코 ∽오...

THE RADIAL PART OF A STABLE PROCESS

- Suppose that *X* is a symmetric stable process, i.e $\rho = 1/2$.
- We know that |X| is a pssMp.

Theorem

Suppose that the underlying Lévy process for |X| is written ξ , then it characteristic exponent is given by

$$\Psi(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-iz+\alpha))}{\Gamma(-\frac{1}{2}iz)} \frac{\Gamma(\frac{1}{2}(iz+1))}{\Gamma(\frac{1}{2}(iz+1-\alpha))}, \qquad z \in \mathbb{R}$$

HYPERGEOMETRIC LÉVY PROCESSES (REMINDER)

Definition (and Theorem) For $(\beta, \gamma, \hat{\beta}, \hat{\gamma})$ in

$$\left\{ \begin{array}{l} \beta \leq 2, \ \gamma, \hat{\gamma} \in (0,1) \ \hat{\beta} \geq -1, \ \text{and} \ 1 - \beta + \hat{\beta} + \gamma \wedge \hat{\gamma} \geq 0 \end{array} \right\}$$

there exists a (killed) Lévy process, henceforth refered to as a hypergeometric Lévy process, having the characteristic function

$$\Psi(z) = \frac{\Gamma(1 - \beta + \gamma - \mathrm{i}z)}{\Gamma(1 - \beta - \mathrm{i}z)} \frac{\Gamma(\hat{\beta} + \hat{\gamma} + \mathrm{i}z)}{\Gamma(\hat{\beta} + \mathrm{i}z)} \qquad z \in \mathbb{R}$$

The Lévy measure of Y has a density with respect to Lebesgue measure is given by

$$\pi(x) = \begin{cases} -\frac{\Gamma(\eta)}{\Gamma(\eta - \hat{\gamma})\Gamma(-\gamma)} e^{-(1-\beta+\gamma)x} {}_2F_1\left(1 + \gamma, \eta; \eta - \hat{\gamma}; e^{-x}\right), & \text{if } x > 0, \\ \\ -\frac{\Gamma(\eta)}{\Gamma(\eta - \gamma)\Gamma(-\hat{\gamma})} e^{(\hat{\beta} + \hat{\gamma})x} {}_2F_1\left(1 + \hat{\gamma}, \eta; \eta - \gamma; e^x\right), & \text{if } x < 0, \end{cases}$$

where $\eta := 1 - \beta + \gamma + \hat{\beta} + \hat{\gamma}$, for |z| < 1, ${}_2F_1(a, b; c; z) := \sum_{k \ge 0} \frac{(a)_k(b)_k}{(c)_k k!} z^k$.

33/77 イロト (母) (主) (主) し う う へ ()

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	00000000000	0000000	000000000000	000	000000

§4. Real valued self-similar Markov processes

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	●0000000000	0000000	000000000000	000	000000

So far we only spoke about $[0, \infty)$.

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	●0000000000	0000000	000000000000	000	000000

- So far we only spoke about $[0, \infty)$.
- ▶ What can we say about ℝ-valued self-similar Markov processes.

§1. §	§2.	§3.	§4.	§5.	§6.	§7.	§8.
00000000000000000	000	00000000000000	●0000000000	0000000	000000000000	000	000000

- So far we only spoke about $[0, \infty)$.
- ▶ What can we say about ℝ-valued self-similar Markov processes.
- ▶ This requires us to first investigate Markov Additive (Lévy) Processes

MARKOV ADDITIVE PROCESSES (MAPS)

- E is a finite state space
- ▶ $(J(t))_{t\geq 0}$ is a continuous-time, irreducible Markov chain on *E*
- ▶ process (ξ , J) in $\mathbb{R} \times E$ is called a *Markov additive process* (*MAP*) with probabilities $\mathbf{P}_{x,i}, x \in \mathbb{R}, i \in E$, if, for any $i \in E, s, t \ge 0$: Given {J(t) = i},

 $(\xi(t+s) - \xi(t), J(t+s)) \stackrel{d}{=} (\xi(s), J(s))$ with law $\mathbf{P}_{0,i}$.

Strictly speaking, a more general definition would allow ξ to be killed and sent to a cemetery state $\{-\infty\}$ at a rate which depends on the current state of *J*.

36/77
PATHWISE DESCRIPTION OF A MAP

The pair (ξ, J) is a Markov additive process if and only if, for each $i, j \in E$,

- ► there exist a sequence of iid Lévy processes (ξⁿ_i)_{n≥0}
- ▶ and a sequence of iid random variables $(U_{ii}^n)_{n\geq 0}$, independent of the chain *J*,
- ▶ such that if $T_0 = 0$ and $(T_n)_{n \ge 1}$ are the jump times of *J*, the process ξ has the representation

$$\xi(t) = \mathbf{1}_{(n>0)}(\xi(T_n-) + U_{J(T_n-),J(T_n)}^n) + \xi_{J(T_n)}^n(t-T_n),$$

for $t \in [T_n, T_{n+1}), n \ge 0$.

CHARACTERISTICS OF A MAP

- Denote the transition rate matrix of the chain *J* by $\mathbf{Q} = (q_{ij})_{i,j \in E}$.
- For each *i* ∈ *E*, the Laplace exponent of the Lévy process ξ_i will be written ψ_i (when it exists).
- ▶ For each pair of $i, j \in E$ with $i \neq j$, define the Laplace transform $G_{ij}(z) = \mathbb{E}(e^{zU_{ij}})$ of the jump distribution U_{ij} (when it exists).
- Otherwise define $U_{i,i} \equiv 0$, for each $i \in E$.
- Write G(z) for the $N \times N$ matrix whose (i, j)th element is $G_{ij}(z)$.
- Let

 $\Psi(z) = \operatorname{diag}(\psi_1(z), \ldots, \psi_N(z)) + \mathbf{Q} \circ G(z),$

(when it exists), where o indicates elementwise multiplication.

• The matrix exponent of the MAP (ξ, J) is given by

$$\mathbf{E}_{0,i}(e^{z\xi(t)}; J(t) = j) = \left(e^{\Psi(z)t}\right)_{i,j}, \qquad i, j \in E,$$

(when it exists).

38/77

LAMPERTI-KIU TRANSFORM

• Take *J* to be irreducible on $E = \{1, -1\}$.

LAMPERTI-KIU TRANSFORM

• Take *J* to be irreducible on
$$E = \{1, -1\}$$
.

Let

$$Z_t = |x| e^{\xi(\tau(|x|^{-\alpha}t))} J(\tau(|x|^{-\alpha}t)) \qquad 0 \le t < T_0,$$

where

$$\tau(t) = \inf\left\{s > 0 : \int_0^s \exp(\alpha\xi(u)) \mathrm{d}u > t\right\}$$

and

$$T_0 = |x|^{-\alpha} \int_0^\infty e^{\alpha \xi(u)} du.$$

▶ Then Z_t is a real-valued self-similar Markov process in the sense that the law of $(cZ_{tc-\alpha} : t \ge 0)$ under \mathbb{P}_x is \mathbb{P}_{cx} .

39/77 《□》《聞》《重》《重》 重 ∽)<<

LAMPERTI-KIU TRANSFORM

• Take *J* to be irreducible on
$$E = \{1, -1\}$$
.

Let

$$Z_t = |x| e^{\xi(\tau(|x|^{-\alpha}t))} J(\tau(|x|^{-\alpha}t)) \qquad 0 \le t < T_0,$$

where

$$\tau(t) = \inf\left\{s > 0 : \int_0^s \exp(\alpha\xi(u)) \mathrm{d}u > t\right\}$$

and

$$T_0 = |x|^{-\alpha} \int_0^\infty e^{\alpha \xi(u)} du.$$

39/77

(日)(四)(日)(日)(日)(日)

- ► Then Z_t is a real-valued self-similar Markov process in the sense that the law of $(cZ_{tc-\alpha} : t \ge 0)$ under \mathbb{P}_x is \mathbb{P}_{cx} .
- The converse (within a special class of rssMps) is also true.

An α -stable process is a rssMp

- An α -stable process up to absorption in the origin is a rssMp.
- When $\alpha \in (0, 1]$, the process never hits the origin a.s.

An α -stable process is a rssMp

- An α -stable process up to absorption in the origin is a rssMp.
- When $\alpha \in (0, 1]$, the process never hits the origin a.s.
- When $\alpha \in (1, 2)$, the process is absorbs at the origin a.s.

An α -stable process is a rssMp

- An α -stable process up to absorption in the origin is a rssMp.
- When $\alpha \in (0, 1]$, the process never hits the origin a.s.
- When $\alpha \in (1, 2)$, the process is absorbs at the origin a.s.
- The matrix exponent of the underlying MAP is given by:

$$\begin{bmatrix} -\frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\hat{\rho}-z)\Gamma(1-\alpha\hat{\rho}+z)} & \frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\hat{\rho})\Gamma(1-\alpha\hat{\rho})} \\ \frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\rho)\Gamma(1-\alpha\rho)} & -\frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\rho-z)\Gamma(1-\alpha\rho+z)} \end{bmatrix},$$

for $\operatorname{Re}(z) \in (-1, \alpha)$. Note a matrix *A* in this context is arranged with the ordering

$$\left(\begin{array}{cc} A_{1,1} & A_{1,-1} \\ A_{-1,1} & A_{-1,-1} \end{array}\right)$$

40/77

ESSCHER TRANSFORM FOR MAPS

- If $\Psi(z)$ is well defined then it has a real simple eigenvalue $\chi(z)$, which is larger than the real part of all its other eigenvalues.
- Furthermore, the corresponding right-eigenvector $\mathbf{v}(z) = (v_1(z), \dots, v_N(z))$ has strictly positive entries and may be normalised such that $\pi \cdot \mathbf{v}(z) = 1$.

Theorem

Let $\mathcal{G}_t = \sigma\{(\xi(s), J(s)) : s \le t\}, t \ge 0$, and

$$M_t := \mathrm{e}^{\gamma \xi(t) - \chi(\gamma)t} \frac{v_{J(t)}(\gamma)}{v_i(\gamma)}, \qquad t \ge 0,$$

for some $\gamma \in \mathbb{R}$ such that $\chi(\gamma)$ is defined. Then, M_t , $t \ge 0$, is a unit-mean martingale. Moreover, under the change of measure

$$\left. \mathrm{d} \mathbf{P}_{0,i}^{\gamma} \right|_{\mathcal{G}_t} = M_t \left. \mathrm{d} \mathbf{P}_{0,i} \right|_{\mathcal{G}_t}, \qquad t \ge 0,$$

the process (ξ, J) remains in the class of MAPs with new exponent given by

$$\Psi_{\gamma}(z) = \mathbf{\Delta}_{v}(\gamma)^{-1}\Psi(z+\gamma)\mathbf{\Delta}_{v}(\gamma) - \chi(\gamma)\mathbf{I}.$$

Here, **I** *is the identity matrix and* $\Delta_{v}(\gamma) = \text{diag}(v(\gamma))$ *.*

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	0000000000000	0000000	000000000000	000	000000

ESSCHER AND DRIFT

Suppose that χ is defined in some open interval *D* of \mathbb{R} , then, it is smooth and convex on *D*.

S1. S2.	§3.	§4.	§5.	§6.	§7.	§8.
00000000000 000	00000000000000	000000000000	0000000	000000000000	000	000000

ESSCHER AND DRIFT

- Suppose that χ is defined in some open interval *D* of \mathbb{R} , then, it is smooth and convex on *D*.
- Since $\Psi(0) = -\mathbf{Q}$, if, moreover, *J* is irreducible, we always have $\chi(0) = 0$ and $\mathbf{v}(0) = (1, \dots, 1)$. So $0 \in D$ and $\chi'(0)$ is well defined and finite.

42/77

- コン・4回シュ ヨシュ ヨン・9 くの

51. 54.	§5.	S4.	§5.	§6.	57.	58.
00000000000 000	00000000000000	000000000000	0000000	000000000000	000	000000

ESSCHER AND DRIFT

- Suppose that χ is defined in some open interval *D* of \mathbb{R} , then, it is smooth and convex on *D*.
- Since $\Psi(0) = -\mathbf{Q}$, if, moreover, *J* is irreducible, we always have $\chi(0) = 0$ and $\mathbf{v}(0) = (1, \dots, 1)$. So $0 \in D$ and $\chi'(0)$ is well defined and finite.
- With all of the above

$$\lim_{t \to \infty} \frac{\xi_t}{t} = \chi'(0) \qquad \text{a.s.}$$

42/77

- コン・4回シュ ヨシュ ヨン・9 くの

ESSCHER AND THE STABLE-MAP

For the MAP that underlies the stable process $D = (-1, \alpha)$, it can be checked that $\det \Psi(\alpha - 1) = 0$ i.e. $\chi(\alpha - 1) = 0$, remember the martingale

$$M_t := \mathrm{e}^{\gamma \xi(t) - \chi(\gamma)t} \frac{v_{J(t)}(\gamma)}{v_i(\gamma)}, \qquad t \ge 0,$$

which makes

$$\begin{split} \Psi^{\circ}(z) &= \mathbf{\Delta}^{-1} \Psi(z+\alpha-1) \mathbf{\Delta} \\ &= \begin{bmatrix} -\frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(1-\alpha\rho-z)\Gamma(\alpha\rho+z)} & \frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(\alpha\rho)\Gamma(1-\alpha\rho)} \\ & \frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(\alpha\hat{\rho})\Gamma(1-\alpha\hat{\rho})} & -\frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(1-\alpha\hat{\rho}-z)\Gamma(\alpha\hat{\rho}+z)} \end{bmatrix}, \end{split}$$

43/77

where $\Delta = \text{diag}(\sin(\pi \alpha \hat{\rho}), \sin(\pi \alpha \rho)).$

 §1.
 §2.
 §3.
 §4.
 §5.
 §6.
 §7.
 §8.

 00000000000
 000
 00000000000
 00000000000
 00000000000
 00000000000
 00000000000

ESSCHER AND THE STABLE-MAP

For the MAP that underlies the stable process $D = (-1, \alpha)$, it can be checked that $\det \Psi(\alpha - 1) = 0$ i.e. $\chi(\alpha - 1) = 0$, remember the martingale

$$M_t := \mathrm{e}^{\gamma \xi(t) - \chi(\gamma)t} \frac{v_{J(t)}(\gamma)}{v_i(\gamma)}, \qquad t \ge 0,$$

which makes

$$\begin{split} \Psi^{\circ}(z) &= \mathbf{\Delta}^{-1} \Psi(z+\alpha-1) \mathbf{\Delta} \\ &= \begin{bmatrix} -\frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(1-\alpha\rho-z)\Gamma(\alpha\rho+z)} & \frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(\alpha\rho)\Gamma(1-\alpha\rho)} \\ & \frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(\alpha\hat{\rho})\Gamma(1-\alpha\hat{\rho})} & -\frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(1-\alpha\hat{\rho}-z)\Gamma(\alpha\hat{\rho}+z)} \end{bmatrix}, \end{split}$$

where $\Delta = \text{diag}(\sin(\pi \alpha \hat{\rho}), \sin(\pi \alpha \rho)).$

▶ When $\alpha \in (0, 1)$, $\chi'(0) > 0$ (because the stable process never touches the origin a.s.) and $\Psi^{\circ}(z)$ -MAP drifts to $-\infty$

43/77

<ロト < 個 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 §1.
 §2.
 §3.
 §4.
 §5.
 §6.
 §7.
 §8.

 00000000000
 000
 00000000000
 00000000000
 0000000000
 0000000000
 00000000000

ESSCHER AND THE STABLE-MAP

For the MAP that underlies the stable process $D = (-1, \alpha)$, it can be checked that $\det \Psi(\alpha - 1) = 0$ i.e. $\chi(\alpha - 1) = 0$, remember the martingale

$$M_t := e^{\gamma \xi(t) - \chi(\gamma)t} \frac{v_{J(t)}(\gamma)}{v_i(\gamma)}, \qquad t \ge 0,$$

which makes

$$\begin{split} \Psi^{\circ}(z) &= \mathbf{\Delta}^{-1} \Psi(z+\alpha-1) \mathbf{\Delta} \\ &= \begin{bmatrix} -\frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(1-\alpha\rho-z)\Gamma(\alpha\rho+z)} & \frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(\alpha\rho)\Gamma(1-\alpha\rho)} \\ & \frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(\alpha\hat{\rho})\Gamma(1-\alpha\hat{\rho})} & -\frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(1-\alpha\hat{\rho}-z)\Gamma(\alpha\hat{\rho}+z)} \end{bmatrix}, \end{split}$$

where $\Delta = \text{diag}(\sin(\pi \alpha \hat{\rho}), \sin(\pi \alpha \rho)).$

- ▶ When $\alpha \in (0, 1)$, $\chi'(0) > 0$ (because the stable process never touches the origin a.s.) and $\Psi^{\circ}(z)$ -MAP drifts to $-\infty$
- ▶ When $\alpha \in (1, 2)$, $\chi'(0) < 0$ (because the stable process touches the origin a.s.) and $\Psi^{\circ}(z)$ -MAP drifts to $+\infty$.

43/77 ▷ < Ē > Ē ∽ Q Q

RIESZ-BOGDAN-ZAK TRANSFORM

Theorem (Riesz–Bogdan–Zak transform)

Suppose that X is an α -stable process as outlined in the introduction. Define

$$\eta(t) = \inf\{s > 0 : \int_0^s |X_u|^{-2\alpha} du > t\}, \qquad t \ge 0.$$

Then, for all $x \in \mathbb{R} \setminus \{0\}$, $(-1/X_{\eta(t)})_{t \geq 0}$ under \mathbb{P}_x is equal in law to $(X, \mathbb{P}_{-1/x}^{\circ})$, where

$$\frac{\mathrm{d}\mathbb{P}_{x}^{\circ}}{\mathrm{d}\mathbb{P}_{x}}\Big|_{\mathcal{F}_{t}} = \left(\frac{\sin(\pi\alpha\rho) + \sin(\pi\alpha\hat{\rho}) - (\sin(\pi\alpha\rho) - \sin(\pi\alpha\hat{\rho}))\mathrm{sgn}(X_{t})}{\sin(\pi\alpha\rho) + \sin(\pi\alpha\hat{\rho}) - (\sin(\pi\alpha\rho) - \sin(\pi\alpha\hat{\rho}))\mathrm{sgn}(x)}\right) \left|\frac{X_{t}}{x}\right|^{\alpha-1} \mathbf{1}_{\{t < \tau^{\{0\}}\}}$$

 $\tau^{\{0\}} = \inf\{t > 0 : X_t = 0\}$ and $\mathcal{F}_t := \sigma(X_s : s \le t), t \ge 0$. Moreover, the process $(X, \mathbb{P}_x^\circ), x \in \mathbb{R} \setminus \{0\}$ is a self-similar Markov process with underlying MAP via the Lamperti-Kiu transform given by $\Psi^\circ(z)$.

44/77 ≪륜▶《필▶《필▶ 필 - 외익⊙

WHAT IS THE Ψ° -MAP?

Thinking of the affect on the long term behaviour of the underlying MAP of the Esscher transform

▶ When $\alpha \in (0,1)$, $(X, \mathbb{P}^{\circ}_{x})$, $x \neq 0$ has the law of the the stable process conditioned to absorb continuously at the origin in the sense,

$$\mathbb{P}_y^{\circ}(A) = \lim_{a \to 0} \mathbb{P}_y(A, t < T_0 \mid \tau_{(-a,a)} < \infty),$$

for
$$A \in \mathcal{F}_t = \sigma(X_s, s \le t)$$
,
 $\tau_{(-a,a)} = \inf\{t > 0 : |X_t| < a\}$ and $T_0 = \inf\{t > 0 : X_t = 0\}$.

▶ When $\alpha \in (1, 2)$, $(X, \mathbb{P}^{\circ}_{x})$, $x \neq 0$ has the law of the stable process conditioned to avoid the origin in the sense

$$\mathbb{P}_{y}^{\circ}(A) = \lim_{s \to \infty} \mathbb{P}_{y}(A \mid T_{0} > t + s),$$

for $A \in \mathcal{F}_t = \sigma(X_s, s \le t)$ and $T_0 = \inf\{t > 0 : X_t = 0\}.$

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	000000000000000000000000000000000000000	00000000000	0000000	000000000000	000	000000

§5. Isotropic stable processes in dimension $d \geq 2$ seen as Lévy processes

For $d \ge 2$, let $X := (X_t : t \ge 0)$ be a *d*-dimensional isotropic stable process.

- X has stationary and independent increments (it is a Lévy process)
- Characteristic exponent $\Psi(\theta) = -\log \mathbb{E}_0(e^{i\theta \cdot X_1})$ satisfies

$$\Psi(\theta) = |\theta|^{\alpha}, \qquad \theta \in \mathbb{R}$$

- Necessarily, α ∈ (0,2], we exclude 2 as it pertains to the setting of a Brownian motion.
- ▶ Associated Lévy measure satisfies, for $B \in \mathcal{B}(\mathbb{R}^d)$,

$$\begin{split} \Pi(B) &= \frac{2^{\alpha} \Gamma((d+\alpha)/2)}{\pi^{d/2} |\Gamma(-\alpha/2)|} \int_{B} \frac{1}{|y|^{\alpha+d}} \mathrm{d}y \\ &= \frac{2^{\alpha-1} \Gamma((d+\alpha)/2) \Gamma(d/2)}{\pi^{d} |\Gamma(-\alpha/2)|} \int_{\mathbb{S}_{d-1}} r^{d-1} \sigma_{1}(\mathrm{d}\theta) \int_{0}^{\infty} \mathbf{1}_{B}(r\theta) \frac{1}{r^{\alpha+d}} \mathrm{d}r, \end{split}$$

where $\sigma_1(d\theta)$ is the surface measure on \mathbb{S}_{d-1} normalised to have unit mass.

▶ *X* is Markovian with probabilities denoted by \mathbb{P}_x , $x \in \mathbb{R}^d$

Stable processes are also self-similar. For c > 0 and $x \in \mathbb{R}^d \setminus \{0\}$,

under \mathbb{P}_x , the law of $(cX_{c-\alpha_t}, t \ge 0)$ is equal to \mathbb{P}_{cx} .

Stable processes are also self-similar. For c > 0 and $x \in \mathbb{R}^d \setminus \{0\}$,

under \mathbb{P}_x , the law of $(cX_{c^{-\alpha}t}, t \ge 0)$ is equal to \mathbb{P}_{cx} .

▶ Isotropy means, for all orthogonal transformations (e.g. rotations) $U : \mathbb{R}^d \mapsto \mathbb{R}^d$ and $x \in \mathbb{R}^d$,

under \mathbb{P}_x , the law of $(UX_t, t \ge 0)$ is equal to \mathbb{P}_{Ux} .

Stable processes are also self-similar. For c > 0 and $x \in \mathbb{R}^d \setminus \{0\}$,

under \mathbb{P}_x , the law of $(cX_{c^{-\alpha}t}, t \ge 0)$ is equal to \mathbb{P}_{cx} .

▶ Isotropy means, for all orthogonal transformations (e.g. rotations) $U : \mathbb{R}^d \mapsto \mathbb{R}^d$ and $x \in \mathbb{R}^d$,

under \mathbb{P}_x , the law of $(UX_t, t \ge 0)$ is equal to \mathbb{P}_{Ux} .

▶ If $(S_t, t \ge 0)$ is a stable subordinator with index $\alpha/2$ (a Lévy process with Laplace exponent $-t^{-1} \log \mathbb{E}[e^{-\lambda S_t}] = \lambda^{\alpha}$) and $(B_t, t \ge 0)$ for a standard (isotropic) *d*-dimensional Brownian motion, then it is known that $X_t := \sqrt{2}B_{S_t}, t \ge 0$, is a stable process with index α .

$$\mathbb{E}[\mathrm{e}^{\mathrm{i}\theta X_t}] = \mathbb{E}\left[\mathrm{e}^{-\theta^2 S_t}\right] = \mathrm{e}^{-|\theta|^{\alpha}t}, \qquad \theta \in \mathbb{R}.$$

48/77

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	00000000000	000000	000000000000	000	000000

49/77

◆□> ◆舂> ◆注> ◆注> 「注

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	00000000000	0000000	000000000000	000	000000

Х

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	00000000000	0000000	000000000000	000	000000

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	00000000000	00000000	000000000000	000	000000

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	00000000000	000000	000000000000	000	000000

53/77

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	000000000000000000000000000000000000000	00000000000	0000000	000000000000	000	000000

§6. Isotropic stable processes in dimension $d \geq 2$ seen as a self-similar Markov process

LAMPERTI-TRANSFORM OF |X|

Theorem (Caballero-Pardo-Perez (2011))

For the pssMp constructed using the radial part of an isotropic d-dimensional stable process, the underlying Lévy process, ξ that appears through the Lamperti has characteristic exponent given by

$$\Psi(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-\mathrm{i}z+\alpha))}{\Gamma(-\frac{1}{2}\mathrm{i}z)} \frac{\Gamma(\frac{1}{2}(\mathrm{i}z+d))}{\Gamma(\frac{1}{2}(\mathrm{i}z+d-\alpha))}, \qquad z \in \mathbb{R}.$$

LAMPERTI-TRANSFORM OF |X|

Theorem (Caballero-Pardo-Perez (2011))

For the pssMp constructed using the radial part of an isotropic d-dimensional stable process, the underlying Lévy process, ξ that appears through the Lamperti has characteristic exponent given by

$$\Psi(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-iz+\alpha))}{\Gamma(-\frac{1}{2}iz)} \frac{\Gamma(\frac{1}{2}(iz+d))}{\Gamma(\frac{1}{2}(iz+d-\alpha))}, \qquad z \in \mathbb{R}$$

55/77

Here are some facts that can be deduced from the above Theorem

• The fact that $\lim_{t\to\infty} |X_t| = \infty$

LAMPERTI-TRANSFORM OF |X|

Theorem (Caballero-Pardo-Perez (2011))

For the pssMp constructed using the radial part of an isotropic d-dimensional stable process, the underlying Lévy process, ξ that appears through the Lamperti has characteristic exponent given by

$$\Psi(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-iz+\alpha))}{\Gamma(-\frac{1}{2}iz)} \frac{\Gamma(\frac{1}{2}(iz+d))}{\Gamma(\frac{1}{2}(iz+d-\alpha))}, \qquad z \in \mathbb{R}$$

Here are some facts that can be deduced from the above Theorem

- The fact that $\lim_{t\to\infty} |X_t| = \infty$
- The fact that

$$|X_t|^{\alpha-d}, \qquad t \ge 0,$$

55/77

is a martingale.

We can define the change of measure

$$\frac{\mathrm{d}\mathbb{P}_{x}^{\circ}}{\mathrm{d}\mathbb{P}_{x}}\Big|_{\mathcal{F}_{t}} = \frac{|X_{t}|^{\alpha-d}}{|x|^{\alpha-d}}, \qquad t \ge 0, x \neq 0$$

We can define the change of measure

$$\frac{\mathrm{d}\mathbb{P}_x^{\circ}}{\mathrm{d}\mathbb{P}_x}\Big|_{\mathcal{F}_t} = \frac{|X_t|^{\alpha-d}}{|x|^{\alpha-d}}, \qquad t \ge 0, x \ne 0$$

Suppose that *f* is a bounded measurable function then, for all c > 0,

$$\mathbb{E}_{x}^{\circ}[f(cX_{c-\alpha_{s}}, s \leq t)] = \mathbb{E}_{x}\left[\frac{|cX_{c-\alpha_{t}}|^{\alpha-d}}{|cx|^{d-\alpha}}f(cX_{c-\alpha_{s}}, s \leq t)\right]$$
$$= \mathbb{E}_{cx}\left[\frac{|X_{t}|^{\alpha-d}}{|cx|^{d-\alpha}}f(X_{s}, s \leq t)\right] = \mathbb{E}_{cx}^{\circ}[f(X_{s}, s \leq t)]$$

56/77 《 니 ▷ 《 클 ▷ 《 클 ▷ 《 클 ▷ ① 및 ○ 및 ⓒ

We can define the change of measure

$$\frac{\mathrm{d}\mathbb{P}_x^{\circ}}{\mathrm{d}\mathbb{P}_x}\bigg|_{\mathcal{F}_t} = \frac{|X_t|^{\alpha-d}}{|x|^{\alpha-d}}, \qquad t \ge 0, x \ne 0$$

▶ Suppose that *f* is a bounded measurable function then, for all *c* > 0,

$$\mathbb{E}_{x}^{\circ}[f(cX_{c-\alpha_{s}}, s \leq t)] = \mathbb{E}_{x}\left[\frac{|cX_{c-\alpha_{t}}|^{\alpha-d}}{|cx|^{d-\alpha}}f(cX_{c-\alpha_{s}}, s \leq t)\right]$$
$$= \mathbb{E}_{cx}\left[\frac{|X_{t}|^{\alpha-d}}{|cx|^{d-\alpha}}f(X_{s}, s \leq t)\right] = \mathbb{E}_{cx}^{\circ}[f(X_{s}, s \leq t)]$$

▶ Markovian, isotropy and self-similarity properties pass through to (X, \mathbb{P}_x°) , $x \neq 0$.

56/77

We can define the change of measure

$$\frac{\mathrm{d}\mathbb{P}_x^{\circ}}{\mathrm{d}\mathbb{P}_x}\Big|_{\mathcal{F}_t} = \frac{|X_t|^{\alpha-d}}{|x|^{\alpha-d}}, \qquad t \ge 0, x \ne 0$$

▶ Suppose that *f* is a bounded measurable function then, for all *c* > 0,

$$\mathbb{E}_{x}^{\circ}[f(cX_{c-\alpha_{s}}, s \leq t)] = \mathbb{E}_{x}\left[\frac{|cX_{c-\alpha_{t}}|^{\alpha-d}}{|cx|^{d-\alpha}}f(cX_{c-\alpha_{s}}, s \leq t)\right]$$
$$= \mathbb{E}_{cx}\left[\frac{|X_{t}|^{\alpha-d}}{|cx|^{d-\alpha}}f(X_{s}, s \leq t)\right] = \mathbb{E}_{cx}^{\circ}[f(X_{s}, s \leq t)]$$

Markovian, isotropy and self-similarity properties pass through to $(X, \mathbb{P}_x^\circ), x \neq 0$.

56/77

Similarly $(|X|, \mathbb{P}_x^{\circ}), x \neq 0$ is a positive self-similar Markov process.

▶ It turns out that (X, \mathbb{P}_x°) , $x \neq 0$, corresponds to the stable process conditioned to be continuously absorbed at the origin.
CONDITIONED STABLE PROCESS

- ▶ It turns out that (X, \mathbb{P}_x°) , $x \neq 0$, corresponds to the stable process conditioned to be continuously absorbed at the origin.
- ▶ More precisely, for $A \in \sigma(X_s, s \le t)$, if we set {0} to be 'cemetery' state and $k = \inf\{t > 0 : X_t = 0\}$, then

$$\mathbb{P}_{x}^{\circ}(A, t < \Bbbk) = \lim_{a \downarrow 0} \mathbb{P}_{x}(A, t < \Bbbk | \tau_{a}^{\oplus} < \infty),$$

57/77

where $\tau_a^{\oplus} = \inf\{t > 0 : |X_t| < a\}.$

CONDITIONED STABLE PROCESS

- ▶ It turns out that (X, \mathbb{P}_x°) , $x \neq 0$, corresponds to the stable process conditioned to be continuously absorbed at the origin.
- ▶ More precisely, for $A \in \sigma(X_s, s \le t)$, if we set {0} to be 'cemetery' state and $k = \inf\{t > 0 : X_t = 0\}$, then

$$\mathbb{P}_{x}^{\circ}(A, t < \Bbbk) = \lim_{a \downarrow 0} \mathbb{P}_{x}(A, t < \Bbbk | \tau_{a}^{\oplus} < \infty),$$

where $\tau_a^{\oplus} = \inf\{t > 0 : |X_t| < a\}.$

▶ In light of the associated Esscher transform on ξ , we note that the Lamperti transform of $(|X|, \mathbb{P}_x^\circ)$, $x \neq 0$, corresponds to the Lévy process with characteristic exponent

$$\Psi^{\circ}(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-iz+d))}{\Gamma(-\frac{1}{2}(iz+\alpha-d))} \frac{\Gamma(\frac{1}{2}(iz+\alpha))}{\Gamma(\frac{1}{2}iz)}, \qquad z \in \mathbb{R}.$$

57/77

CONDITIONED STABLE PROCESS

- ▶ It turns out that (X, \mathbb{P}_x°) , $x \neq 0$, corresponds to the stable process conditioned to be continuously absorbed at the origin.
- More precisely, for $A \in \sigma(X_s, s \le t)$, if we set {0} to be 'cemetery' state and $k = \inf\{t > 0 : X_t = 0\}$, then

$$\mathbb{P}_{x}^{\circ}(A, t < \Bbbk) = \lim_{a \downarrow 0} \mathbb{P}_{x}(A, t < \Bbbk | \tau_{a}^{\oplus} < \infty),$$

where $\tau_a^{\oplus} = \inf\{t > 0 : |X_t| < a\}.$

▶ In light of the associated Esscher transform on ξ , we note that the Lamperti transform of $(|X|, \mathbb{P}_x^\circ)$, $x \neq 0$, corresponds to the Lévy process with characteristic exponent

$$\Psi^{\circ}(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-iz+d))}{\Gamma(-\frac{1}{2}(iz+\alpha-d))} \frac{\Gamma(\frac{1}{2}(iz+\alpha))}{\Gamma(\frac{1}{2}iz)}, \qquad z \in \mathbb{R}.$$

57/77

- コン・4回シュ ヨシュ ヨン・9 くの

Given the pathwise interpretation of $(X, \mathbb{P}_x^{\circ})$, $x \neq 0$, it follows immediately that $\lim_{t\to\infty} \xi_t = -\infty$, \mathbb{P}_x° almost surely, for any $x \neq 0$.

\mathbb{R}^d -self-similar Markov processes

Definition

A \mathbb{R}^d -valued regular Feller process $Z = (Z_t, t \ge 0)$ is called a \mathbb{R}^d -valued self-similar Markov process if there exists a constant $\alpha > 0$ such that, for any x > 0 and c > 0,

the law of $(cZ_{c-\alpha_t}, t \ge 0)$ under P_x is P_{cx} ,

where P_x is the law of *Z* when issued from *x*.

\mathbb{R}^{d} -Self-Similar Markov processes

Definition

A \mathbb{R}^d -valued regular Feller process $Z = (Z_t, t \ge 0)$ is called a \mathbb{R}^d -valued self-similar Markov process if there exists a constant $\alpha > 0$ such that, for any x > 0 and c > 0,

the law of $(cZ_{c-\alpha_t}, t \ge 0)$ under P_x is P_{cx} ,

58/77

- コン・4日ン・4日ン・4日ン・4日ン

where P_x is the law of *Z* when issued from *x*.

Same definition as before except process now lives on \mathbb{R}^d .

\mathbb{R}^d -self-similar Markov processes

Definition

A \mathbb{R}^d -valued regular Feller process $Z = (Z_t, t \ge 0)$ is called a \mathbb{R}^d -valued self-similar Markov process if there exists a constant $\alpha > 0$ such that, for any x > 0 and c > 0,

the law of $(cZ_{c-\alpha_t}, t \ge 0)$ under P_x is P_{cx} ,

58/77

- コン・4日ン・4日ン・4日ン・4日ン

where P_x is the law of *Z* when issued from *x*.

- Same definition as before except process now lives on \mathbb{R}^d .
- Is there an analogue of the Lamperti representation?

In order to introduce the analogue of the Lamperti transform in *d*-dimensions, we need to remind ourselves of what we mean by a Markov additive process in this context.

Definition

An $\mathbb{R} \times E$ valued regular Feller process $(\xi, \Theta) = ((\xi_t, \Theta_t) : t \ge 0)$ with probabilities $\mathbf{P}_{x,\theta}, x \in \mathbb{R}, \theta \in E$, and cemetery state $(-\infty, \dagger)$ is called a *Markov additive process* (MAP) if Θ is a regular Feller process on E with cemetery state \dagger such that, for every bounded measurable function $f : (\mathbb{R} \cup \{-\infty\}) \times (E \cup \{\dagger\}) \to \mathbb{R}, t, s \ge 0$ and $(x, \theta) \in \mathbb{R} \times E$, on $\{t < \varsigma\}$,

$$\mathbf{E}_{x,\theta}[f(\xi_{t+s} - \xi_t, \Theta_{t+s}) | \sigma((\xi_u, \Theta_u), u \le t)] = \mathbf{E}_{0,\Theta_t}[f(\xi_s, \Theta_s)],$$

where $\varsigma = \inf\{t > 0 : \Theta_t = \dagger\}.$

In order to introduce the analogue of the Lamperti transform in *d*-dimensions, we need to remind ourselves of what we mean by a Markov additive process in this context.

Definition

An $\mathbb{R} \times E$ valued regular Feller process $(\xi, \Theta) = ((\xi_t, \Theta_t) : t \ge 0)$ with probabilities $\mathbf{P}_{x,\theta}, x \in \mathbb{R}, \theta \in E$, and cemetery state $(-\infty, \dagger)$ is called a *Markov additive process* (MAP) if Θ is a regular Feller process on E with cemetery state \dagger such that, for every bounded measurable function $f : (\mathbb{R} \cup \{-\infty\}) \times (E \cup \{\dagger\}) \to \mathbb{R}, t, s \ge 0$ and $(x, \theta) \in \mathbb{R} \times E$, on $\{t < \varsigma\}$,

$$\mathbf{E}_{x,\theta}[f(\xi_{t+s} - \xi_t, \Theta_{t+s}) | \sigma((\xi_u, \Theta_u), u \le t)] = \mathbf{E}_{0,\Theta_t}[f(\xi_s, \Theta_s)],$$

where $\varsigma = \inf\{t > 0 : \Theta_t = \dagger\}.$

Roughly speaking, one thinks of a MAP as a 'Markov modulated' Lévy process

59/77

In order to introduce the analogue of the Lamperti transform in *d*-dimensions, we need to remind ourselves of what we mean by a Markov additive process in this context.

Definition

An $\mathbb{R} \times E$ valued regular Feller process $(\xi, \Theta) = ((\xi_t, \Theta_t) : t \ge 0)$ with probabilities $\mathbf{P}_{x,\theta}, x \in \mathbb{R}, \theta \in E$, and cemetery state $(-\infty, \dagger)$ is called a *Markov additive process* (MAP) if Θ is a regular Feller process on E with cemetery state \dagger such that, for every bounded measurable function $f : (\mathbb{R} \cup \{-\infty\}) \times (E \cup \{\dagger\}) \to \mathbb{R}, t, s \ge 0$ and $(x, \theta) \in \mathbb{R} \times E$, on $\{t < \varsigma\}$,

$$\mathbf{E}_{x,\theta}[f(\xi_{t+s} - \xi_t, \Theta_{t+s}) | \sigma((\xi_u, \Theta_u), u \le t)] = \mathbf{E}_{0,\Theta_t}[f(\xi_s, \Theta_s)],$$

where $\varsigma = \inf\{t > 0 : \Theta_t = \dagger\}.$

Roughly speaking, one thinks of a MAP as a 'Markov modulated' Lévy process

59/77

(日) (日) (日) (日) (日) (日) (日) (日) (日)

It has 'conditional stationary and independent increments'

In order to introduce the analogue of the Lamperti transform in *d*-dimensions, we need to remind ourselves of what we mean by a Markov additive process in this context.

Definition

An $\mathbb{R} \times E$ valued regular Feller process $(\xi, \Theta) = ((\xi_t, \Theta_t) : t \ge 0)$ with probabilities $\mathbf{P}_{x,\theta}, x \in \mathbb{R}, \theta \in E$, and cemetery state $(-\infty, \dagger)$ is called a *Markov additive process* (MAP) if Θ is a regular Feller process on E with cemetery state \dagger such that, for every bounded measurable function $f : (\mathbb{R} \cup \{-\infty\}) \times (E \cup \{\dagger\}) \to \mathbb{R}, t, s \ge 0$ and $(x, \theta) \in \mathbb{R} \times E$, on $\{t < \varsigma\}$,

$$\mathbb{E}_{x,\theta}[f(\xi_{t+s} - \xi_t, \Theta_{t+s}) | \sigma((\xi_u, \Theta_u), u \le t)] = \mathbb{E}_{0,\Theta_t}[f(\xi_s, \Theta_s)],$$

where $\varsigma = \inf\{t > 0 : \Theta_t = \dagger\}.$

- Roughly speaking, one thinks of a MAP as a 'Markov modulated' Lévy process
- It has 'conditional stationary and independent increments'
- Think of the *E*-valued Markov process Θ as modulating the characteristics of ξ (which would otherwise be a Lévy processes).

Theorem

Fix $\alpha > 0$. The process Z is a ssMp with index α , issued from $x \in \mathbb{R}^d$, if and only if there exists a (killed) MAP, (ξ, Θ) on $\mathbb{R} \times \mathbb{S}_{d-1}$, issued from $(\log |x|, \arg(x))$, such that

$$Z_t := \mathrm{e}^{\xi_{\varphi(t)}} \Theta_{\varphi(t)} \qquad , \qquad t \leq I_{\varsigma},$$

where

$$\varphi(t) = \inf\left\{s > 0 : \int_0^s e^{\alpha \xi_u} \, \mathrm{d}u > t\right\}, \qquad t \le I_\varsigma,$$

and $\int_0^{\varsigma} e^{\alpha \xi_s} ds$ is the lifetime of Z until absorption at the origin. Here, we interpret $\exp\{-\infty\} \times \dagger := 0$ and $\inf \emptyset := \infty$.

▶ In the above representation, the time to absorption in the origin,

$$\zeta = \inf\{t > 0 : Z_t = 0\},\$$

satisfies $\zeta = \int_0^{\zeta} e^{\alpha \xi_s} ds$.

▶ Note $x \in \mathbb{R}^d$ if and only if

$$x = (|x|, \operatorname{Arg}(x)),$$

where $\operatorname{Arg}(x) = x/|x| \in \mathbb{S}_{d-1}$. The Lamperti–Kiu decomposition therefore gives us a *d*-dimensional skew product decomposition of self-similar Markov processes.

60/77

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	00000000000	0000000	000000000000	000	000000

$LAMPERTI\text{-}STABLE \ MAP$

▶ The stable process *X* is an ℝ^{*d*}-valued self-similar Markov process and therefore fits the description above

LAMPERTI-STABLE MAP

- ▶ The stable process *X* is an ℝ^{*d*}-valued self-similar Markov process and therefore fits the description above
- How do we characterise its underlying MAP (ξ, Θ) ?

LAMPERTI-STABLE MAP

- ▶ The stable process *X* is an ℝ^{*d*}-valued self-similar Markov process and therefore fits the description above
- How do we characterise its underlying MAP (ξ, Θ) ?
- We already know that |X| is a positive similar Markov process and hence ξ is a Lévy process, albeit corollated to Θ

LAMPERTI-STABLE MAP

- ▶ The stable process *X* is an ℝ^{*d*}-valued self-similar Markov process and therefore fits the description above
- How do we characterise its underlying MAP (ξ, Θ) ?
- We already know that |X| is a positive similar Markov process and hence ξ is a Lévy process, albeit corollated to Θ

61/77

• What properties does Θ have and what properties to the pair (ξ, Θ) have?

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	0000000000000000	00000000000	0000000	0000000●00000	000	000000

MAP ISOTROPY

Theorem

Suppose (ξ, Θ) is the MAP underlying the stable process. Then $((\xi, U^{-1}\Theta), \mathbf{P}_{x,\theta})$ is equal in law to $((\xi, \Theta), \mathbf{P}_{x,U^{-1}\theta})$, for every orthogonal d-dimensional matrix U and $x \in \mathbb{R}^d$, $\theta \in \mathbb{S}_{d-1}$.

62/77

・ロト・日本・日本・日本・日本・今日や

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	000000000000000	00000000000	0000000	0000000000000	000	000000

MAP ISOTROPY

Theorem

Suppose (ξ, Θ) is the MAP underlying the stable process. Then $((\xi, U^{-1}\Theta), \mathbf{P}_{x,\theta})$ is equal in law to $((\xi, \Theta), \mathbf{P}_{x,U^{-1}\theta})$, for every orthogonal d-dimensional matrix U and $x \in \mathbb{R}^d$, $\theta \in \mathbb{S}_{d-1}$.

Proof.

First note that $\varphi(t) = \int_0^t |X_u|^{-\alpha} du$. It follows that

 $(\xi_t, \Theta_t) = (\log |X_{A(t)}|, \operatorname{Arg}(X_{A(t)})), \quad t \ge 0,$

where the random times $A(t) = \inf \{s > 0 : \int_0^s |X_u|^{-\alpha} du > t\}$ are stopping times in the natural filtration of *X*.

MAP ISOTROPY

Theorem

Suppose (ξ, Θ) is the MAP underlying the stable process. Then $((\xi, U^{-1}\Theta), \mathbf{P}_{x,\theta})$ is equal in law to $((\xi, \Theta), \mathbf{P}_{x,U^{-1}\theta})$, for every orthogonal d-dimensional matrix U and $x \in \mathbb{R}^d$, $\theta \in \mathbb{S}_{d-1}$.

Proof.

First note that $\varphi(t) = \int_0^t |X_u|^{-\alpha} du$. It follows that

$$(\xi_t, \Theta_t) = (\log |X_{A(t)}|, \operatorname{Arg}(X_{A(t)})), \qquad t \ge 0,$$

where the random times $A(t) = \inf \{s > 0 : \int_0^s |X_u|^{-\alpha} du > t\}$ are stopping times in the natural filtration of *X*.

Now suppose that *U* is any orthogonal *d*-dimensional matrix and let $X' = U^{-1}X$. Since *X* is isotropic and since |X'| = |X|, and $\operatorname{Arg}(X') = U^{-1}\operatorname{Arg}(X)$, we see that, for $x \in \mathbb{R}$ and $\theta \in \mathbb{S}_{d-1}$

$$\begin{aligned} ((\xi, U^{-1}\Theta), \mathbf{P}_{\log|x|, \theta}) &= ((\log|X_{A(\cdot)}|, U^{-1}\operatorname{Arg}(X_{A(\cdot)})), \mathbb{P}_x) \\ &\stackrel{d}{=} ((\log|X_{A(\cdot)}|, \operatorname{Arg}(X_{A(\cdot)})), \mathbb{P}_{U^{-1}x}) \\ &= ((\xi, \Theta), \mathbf{P}_{\log|x|, U^{-1}\theta}) \end{aligned}$$

62/77

as required.

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	00000000000	0000000	00000000000000	000	000000

MAP CORROLATION

• We will work with the increments $\Delta \xi_t = \xi_t - \xi_{t-1} \in \mathbb{R}, t \ge 0$,

MAP CORROLATION

• We will work with the increments $\Delta \xi_t = \xi_t - \xi_{t-1} \in \mathbb{R}, t \ge 0$,

Theorem (Bo Li, Victor Rivero, Bertoin-Werner)

Suppose that f is a bounded measurable function on $[0, \infty) \times \mathbb{R} \times \mathbb{R} \times \mathbb{S}_{d-1} \times \mathbb{S}_{d-1}$ such that $f(\cdot, \cdot, 0, \cdot, \cdot) = 0$, then, for all $\theta \in \mathbb{S}_{d-1}$,

$$\begin{split} \mathbf{E}_{0,\theta} \left(\sum_{s>0} f(s,\xi_{s-},\Delta\xi_s,\Theta_{s-},\Theta_s) \right) \\ &= \int_0^\infty \int_{\mathbb{R}} \int_{\mathbb{S}_{d-1}} \int_{\mathbb{R}} \int_{\mathbb{R}} V_{\theta}(\mathrm{d} s,\mathrm{d} x,\mathrm{d} \vartheta) \sigma_1(\mathrm{d} \phi) \mathrm{d} y \frac{c(\alpha) \mathrm{e}^{yd}}{|\mathrm{e}^y \phi - \vartheta|^{\alpha+d}} f(s,x,y,\vartheta,\phi), \end{split}$$

where

$$V_{\theta}(\mathrm{d} s, \mathrm{d} x, \mathrm{d} \vartheta) = \mathbf{P}_{0,\theta}(\xi_s \in \mathrm{d} x, \Theta_s \in \mathrm{d} \vartheta) \mathrm{d} s, \qquad x \in \mathbb{R}, \vartheta \in \mathbb{S}_{d-1}, s \ge 0,$$

is the space-time potential of (ξ, Θ) under $\mathbf{P}_{0,\theta}$, $\sigma_1(\phi)$ is the surface measure on \mathbb{S}_{d-1} normalised to have unit mass and

$$c(\alpha) = 2^{\alpha - 1} \pi^{-d} \Gamma((d + \alpha)/2) \Gamma(d/2) / \left| \Gamma(-\alpha/2) \right|.$$

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	00000000000	0000000	0000000000000	000	000000

- Recall that $(|X_t|^{\alpha-d}, t \ge 0)$, is a martingale.
- ► Informally, we should expect $\mathcal{L}h = 0$, where $h(x) = |x|^{\alpha d}$ and \mathcal{L} is the infinitesimal generator of the stable process, which has action

$$\mathcal{L}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)} y \cdot \nabla f(x)] \Pi(\mathrm{d} y), \qquad |x| > 0,$$

for appropriately smooth functions.

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	00000000000	0000000	0000000000000	000	000000

- Recall that $(|X_t|^{\alpha-d}, t \ge 0)$, is a martingale.
- ▶ Informally, we should expect $\mathcal{L}h = 0$, where $h(x) = |x|^{\alpha d}$ and \mathcal{L} is the infinitesimal generator of the stable process, which has action

$$\mathcal{L}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)} y \cdot \nabla f(x)] \Pi(\mathrm{d}y), \qquad |x| > 0,$$

for appropriately smooth functions.

Associated to (X, \mathbb{P}_x) , $x \neq 0$ is the generator

$$\mathcal{L}^{\circ}f(x) = \lim_{t\downarrow 0} \frac{\mathbb{E}_{\lambda}^{\circ}[f(X_t)] - f(x)}{t} = \lim_{t\downarrow 0} \frac{\mathbb{E}_{x}[|X_t|^{\alpha - d}f(X_t)] - |x|^{\alpha - d}f(x)}{|x|^{\alpha - d}t},$$

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	00000000000	0000000	0000000000000	000	000000

- Recall that $(|X_t|^{\alpha-d}, t \ge 0)$, is a martingale.
- ► Informally, we should expect $\mathcal{L}h = 0$, where $h(x) = |x|^{\alpha d}$ and \mathcal{L} is the infinitesimal generator of the stable process, which has action

$$\mathcal{L}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)} y \cdot \nabla f(x)] \Pi(\mathrm{d}y), \qquad |x| > 0,$$

for appropriately smooth functions.

Associated to (X, \mathbb{P}_x) , $x \neq 0$ is the generator

$$\mathcal{L}^{\circ}f(x) = \lim_{t \downarrow 0} \frac{\mathbb{E}_{x}^{\circ}[f(X_{t})] - f(x)}{t} = \lim_{t \downarrow 0} \frac{\mathbb{E}_{x}[|X_{t}|^{\alpha - d}f(X_{t})] - |x|^{\alpha - d}f(x)}{|x|^{\alpha - d}t},$$

That is to say

$$\mathcal{L}^{\circ}f(x) = \frac{1}{h(x)}\mathcal{L}(hf)(x),$$

64/77

・ロト・日本・モート モー うへの

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	00000000000	0000000	0000000000000	000	000000

- Recall that $(|X_t|^{\alpha-d}, t \ge 0)$, is a martingale.
- ► Informally, we should expect $\mathcal{L}h = 0$, where $h(x) = |x|^{\alpha d}$ and \mathcal{L} is the infinitesimal generator of the stable process, which has action

$$\mathcal{L}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)} y \cdot \nabla f(x)] \Pi(\mathrm{d}y), \qquad |x| > 0,$$

for appropriately smooth functions.

Associated to (X, \mathbb{P}_x) , $x \neq 0$ is the generator

$$\mathcal{L}^{\circ}f(x) = \lim_{t \downarrow 0} \frac{\mathbb{E}_{x}^{\circ}[f(X_{t})] - f(x)}{t} = \lim_{t \downarrow 0} \frac{\mathbb{E}_{x}[|X_{t}|^{\alpha - d}f(X_{t})] - |x|^{\alpha - d}f(x)}{|x|^{\alpha - d}t},$$

That is to say

$$\mathcal{L}^{\circ}f(x) = \frac{1}{h(x)}\mathcal{L}(hf)(x),$$

▶ Straightforward algebra using $\mathcal{L}h = 0$ gives us

$$\mathcal{L}^{\circ}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)} y \cdot \nabla f(x)] \frac{h(x+y)}{h(x)} \Pi(\mathrm{d}y), \qquad |x| > 0$$

MAP of $(X, \mathbb{P}^{\circ}_{\cdot})$

- Recall that $(|X_t|^{\alpha-d}, t \ge 0)$, is a martingale.
- ▶ Informally, we should expect $\mathcal{L}h = 0$, where $h(x) = |x|^{\alpha d}$ and \mathcal{L} is the infinitesimal generator of the stable process, which has action

$$\mathcal{L}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)} y \cdot \nabla f(x)] \Pi(\mathrm{d}y), \qquad |x| > 0,$$

for appropriately smooth functions.

Associated to (X, \mathbb{P}_x) , $x \neq 0$ is the generator

$$\mathcal{L}^{\circ}f(x) = \lim_{t \downarrow 0} \frac{\mathbb{E}_{x}^{\circ}[f(X_{t})] - f(x)}{t} = \lim_{t \downarrow 0} \frac{\mathbb{E}_{x}[|X_{t}|^{\alpha - d}f(X_{t})] - |x|^{\alpha - d}f(x)}{|x|^{\alpha - d}t},$$

That is to say

$$\mathcal{L}^{\circ}f(x) = \frac{1}{h(x)}\mathcal{L}(hf)(x),$$

Straightforward algebra using $\mathcal{L}h = 0$ gives us

$$\mathcal{L}^{\circ}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)} y \cdot \nabla f(x)] \frac{h(x+y)}{h(x)} \Pi(\mathrm{d}y), \qquad |x| > 0$$

Equivalently, the rate at which (X, \mathbb{P}_x°) , $x \neq 0$ jumps given by

$$\Pi^{\circ}(x,B) := \frac{2^{\alpha-1}\Gamma((d+\alpha)/2)\Gamma(d/2)}{\pi^{d}|\Gamma(-\alpha/2)|} \int_{\mathbb{S}_{d-1}} \mathrm{d}\sigma_{1}(\phi) \int_{(0,\infty)} \mathbf{1}_{B}(r\phi) \frac{\mathrm{d}r}{r^{\alpha+1}} \frac{|x+r\phi|^{\alpha-d}}{|x|^{\alpha-d}},$$

for $|x| > 0$ and $B \in \mathcal{B}(\mathbb{R}^{d}).$

MAP OF $(X, \mathbb{P}^{\circ}_{\cdot})$

Theorem

Suppose that f is a bounded measurable function on $[0, \infty) \times \mathbb{R} \times \mathbb{R} \times \mathbb{S}_{d-1} \times \mathbb{S}_{d-1}$ such that $f(\cdot, \cdot, 0, \cdot, \cdot) = 0$, then, for all $\theta \in \mathbb{S}_{d-1}$,

$$\begin{split} \mathbf{E}_{0,\theta}^{\circ}\left(\sum_{s>0}f(s,\xi_{s-},\Delta\xi_{s},\Theta_{s-},\Theta_{s})\right) \\ &= \int_{0}^{\infty}\int_{\mathbb{R}}\int_{\mathbb{S}_{d-1}}\int_{\mathbb{S}_{d-1}}\int_{\mathbb{R}}V_{\theta}^{\circ}(\mathrm{d}s,\mathrm{d}x,\mathrm{d}\vartheta)\sigma_{1}(\mathrm{d}\phi)\mathrm{d}y\frac{c(\alpha)\mathrm{e}^{yd}}{|\mathrm{e}^{y}\phi-\vartheta|^{\alpha+d}}f(s,x,-y,\vartheta,\phi), \end{split}$$

where

$$V^{\circ}_{\theta}(\mathrm{d} s, \mathrm{d} x, \mathrm{d} \vartheta) = \mathbf{P}^{\circ}_{0,\theta}(\xi_s \in \mathrm{d} x, \Theta_s \in \mathrm{d} \vartheta) \mathrm{d} s, \qquad x \in \mathbb{R}, \vartheta \in \mathbb{S}_{d-1}, s \ge 0,$$

is the space-time potential of (ξ, Θ) *under* $\mathbf{P}_{0,\theta}^{\circ}$ *.*

Comparing the right-hand side above with that of the previous Theorem, it now becomes immediately clear that the the jump structure of (ξ, Θ) under $\mathbf{P}_{x,\theta}^{\circ}$, $x \in \mathbb{R}$, $\theta \in \mathbb{S}_{d-1}$, is precisely that of $(-\xi, \Theta)$ under $\mathbf{P}_{x,\theta}$, $x \in \mathbb{R}$, $\theta \in \mathbb{S}_{d-1}$.

MAP OF (X, \mathbb{P}_{\cdot})

Theorem

Suppose that f is a bounded measurable function on $[0, \infty) \times \mathbb{R} \times \mathbb{R} \times \mathbb{S}_{d-1} \times \mathbb{S}_{d-1}$ such that $f(\cdot, \cdot, 0, \cdot, \cdot) = 0$, then, for all $\theta \in \mathbb{S}_{d-1}$,

$$\begin{split} \mathbf{E}_{0,\theta} \left(\sum_{s>0} f(s,\xi_{s-},\Delta\xi_s,\Theta_{s-},\Theta_s) \right) \\ &= \int_0^\infty \int_{\mathbb{R}} \int_{\mathbb{S}_{d-1}} \int_{\mathbb{R}} \int_{\mathbb{R}} V_{\theta}(\mathrm{d} s,\mathrm{d} x,\mathrm{d} \vartheta) \sigma_1(\mathrm{d} \phi) \mathrm{d} y \frac{c(\alpha) \mathrm{e}^{yd}}{|\mathrm{e}^y \phi - \vartheta|^{\alpha+d}} f(s,x,y,\vartheta,\phi), \end{split}$$

where

$$V_{\theta}(\mathrm{d} s, \mathrm{d} x, \mathrm{d} \vartheta) = \mathbf{P}_{0,\theta}(\xi_s \in \mathrm{d} x, \Theta_s \in \mathrm{d} \vartheta) \mathrm{d} s, \qquad x \in \mathbb{R}, \vartheta \in \mathbb{S}_{d-1}, s \ge 0,$$

is the space-time potential of (ξ, Θ) *under* $\mathbf{P}_{0,\theta}^{\circ}$ *.*

Comparing the right-hand side above with that of the previous Theorem, it now becomes immediately clear that the the jump structure of (ξ, Θ) under $\mathbf{P}_{x,\theta}^{\circ}, x \in \mathbb{R}$, $\theta \in \mathbb{S}_{d-1}$, is precisely that of $(-\xi, \Theta)$ under $\mathbf{P}_{x,\theta}, x \in \mathbb{R}, \theta \in \mathbb{S}_{d-1}$.

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	00000000000	0000000	000000000000	000	000000

§7. Riesz–Bogdan–Żak transform

• Define the transformation $K : \mathbb{R}^d \mapsto \mathbb{R}^d$, by

$$Kx = \frac{x}{|x|^2}, \qquad x \in \mathbb{R}^d \setminus \{0\}.$$

• Define the transformation
$$K : \mathbb{R}^d \mapsto \mathbb{R}^d$$
, by

$$Kx = \frac{x}{|x|^2}, \qquad x \in \mathbb{R}^d \setminus \{0\}.$$

▶ This transformation inverts space through the unit sphere $\{x \in \mathbb{R}^d : |x| = 1\}$.

▶ Define the transformation
$$K : \mathbb{R}^d \mapsto \mathbb{R}^d$$
, by

$$Kx = \frac{x}{|x|^2}, \qquad x \in \mathbb{R}^d \setminus \{0\}.$$

▶ This transformation inverts space through the unit sphere $\{x \in \mathbb{R}^d : |x| = 1\}$.

▶ Write $x \in \mathbb{R}^d$ in skew product form $x = (|x|, \operatorname{Arg}(x))$, and note that

$$Kx = (|x|^{-1}, \operatorname{Arg}(x)), \qquad x \in \mathbb{R}^d \setminus \{0\},$$

showing that the *K*-transform 'radially inverts' elements of \mathbb{R}^d through \mathbb{S}_{d-1} .

▶ Define the transformation
$$K : \mathbb{R}^d \mapsto \mathbb{R}^d$$
, by

$$Kx = \frac{x}{|x|^2}, \qquad x \in \mathbb{R}^d \setminus \{0\}.$$

- ▶ This transformation inverts space through the unit sphere $\{x \in \mathbb{R}^d : |x| = 1\}$.
- ▶ Write $x \in \mathbb{R}^d$ in skew product form $x = (|x|, \operatorname{Arg}(x))$, and note that

$$Kx = (|x|^{-1}, \operatorname{Arg}(x)), \qquad x \in \mathbb{R}^d \setminus \{0\},$$

showing that the *K*-transform 'radially inverts' elements of \mathbb{R}^d through \mathbb{S}_{d-1} . In particular K(Kx) = x

• Define the transformation
$$K : \mathbb{R}^d \mapsto \mathbb{R}^d$$
, by

$$Kx = \frac{x}{|x|^2}, \qquad x \in \mathbb{R}^d \setminus \{0\}.$$

- ▶ This transformation inverts space through the unit sphere $\{x \in \mathbb{R}^d : |x| = 1\}$.
- ▶ Write $x \in \mathbb{R}^d$ in skew product form $x = (|x|, \operatorname{Arg}(x))$, and note that

$$Kx = (|x|^{-1}, \operatorname{Arg}(x)), \qquad x \in \mathbb{R}^d \setminus \{0\},$$

showing that the *K*-transform 'radially inverts' elements of \mathbb{R}^d through \mathbb{S}_{d-1} . In particular K(Kx) = x

Theorem (*d*-dimensional Riesz–Bogdan–Żak Transform, $d \ge 2$) Suppose that X is a *d*-dimensional isotropic stable process with $d \ge 2$. Define

$$\eta(t) = \inf\{s > 0: \int_0^s |X_u|^{-2\alpha} du > t\}, \qquad t \ge 0.$$
(3)

Then, for all $x \in \mathbb{R}^d \setminus \{0\}$, $(KX_{\eta(t)}, t \ge 0)$ under \mathbb{P}_x is equal in law to $(X, \mathbb{P}_{Kx}^{\circ})$.

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	00000000000	0000000	000000000000	000	000000

PROOF OF RIESZ–BOGDAN–ŻAK TRANSFORM

We give a proof, different to the original proof of Bogdan and Żak (2010).

• Recall that $X_t = e^{\xi_{\varphi(t)}} \Theta_{\varphi(t)}$, where

$$\int_0^{\varphi(t)} \mathrm{e}^{\alpha \xi_u} \, \mathrm{d}u = t, \qquad t \ge 0$$

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	0000000000000000000	00000000000	0000000	000000000000	000	000000

PROOF OF RIESZ–BOGDAN–ŻAK TRANSFORM

We give a proof, different to the original proof of Bogdan and Żak (2010).

• Recall that $X_t = e^{\xi_{\varphi(t)}} \Theta_{\varphi(t)}$, where

$$\int_0^{\varphi(t)} \mathrm{e}^{\alpha \xi_u} \, \mathrm{d}u = t, \qquad t \ge 0$$

Note also that, as an inverse,

$$\int_0^{\eta(t)} |X_u|^{-2\alpha} \mathrm{d}u = t, \qquad t \ge 0.$$

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	00000000000	0000000	000000000000	000	000000

PROOF OF RIESZ–BOGDAN–ŻAK TRANSFORM

We give a proof, different to the original proof of Bogdan and Żak (2010).

• Recall that $X_t = e^{\xi_{\varphi(t)}} \Theta_{\varphi(t)}$, where

$$\int_0^{\varphi(t)} \mathrm{e}^{\alpha \xi_u} \, \mathrm{d}u = t, \qquad t \ge 0$$

Note also that, as an inverse,

$$\int_0^{\eta(t)} |X_u|^{-2\alpha} \mathrm{d}u = t, \qquad t \ge 0.$$

Differentiating,

$$\frac{\mathrm{d}\varphi(t)}{\mathrm{d}t} = \mathrm{e}^{-\alpha\xi_{\varphi(t)}} \text{ and } \frac{\mathrm{d}\eta(t)}{\mathrm{d}t} = \mathrm{e}^{2\alpha\xi_{\varphi\circ\eta(t)}}, \qquad \eta(t) < \tau^{\{0\}}.$$

and chain rule now tells us that

$$\frac{\mathrm{d}(\varphi \circ \eta)(t)}{\mathrm{d}t} = \left. \frac{\mathrm{d}\varphi(s)}{\mathrm{d}s} \right|_{s=\eta(t)} \frac{\mathrm{d}\eta(t)}{\mathrm{d}t} = \mathrm{e}^{\alpha \xi_{\varphi} \circ \eta(t)}.$$
§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	0000000000000000000	00000000000	0000000	000000000000	000	000000

We give a proof, different to the original proof of Bogdan and Żak (2010).

• Recall that $X_t = e^{\xi_{\varphi(t)}} \Theta_{\varphi(t)}$, where

$$\int_0^{\varphi(t)} \mathrm{e}^{\alpha \xi_u} \, \mathrm{d}u = t, \qquad t \ge 0$$

Note also that, as an inverse,

$$\int_0^{\eta(t)} |X_u|^{-2\alpha} \mathrm{d}u = t, \qquad t \ge 0.$$

Differentiating,

$$\frac{\mathrm{d}\varphi(t)}{\mathrm{d}t} = \mathrm{e}^{-\alpha\xi_{\varphi}(t)} \text{ and } \frac{\mathrm{d}\eta(t)}{\mathrm{d}t} = \mathrm{e}^{2\alpha\xi_{\varphi}\circ\eta(t)}, \qquad \eta(t) < \tau^{\{0\}}.$$

and chain rule now tells us that

$$\frac{\mathrm{d}(\varphi \circ \eta)(t)}{\mathrm{d}t} = \left. \frac{\mathrm{d}\varphi(s)}{\mathrm{d}s} \right|_{s=\eta(t)} \frac{\mathrm{d}\eta(t)}{\mathrm{d}t} = \mathrm{e}^{\alpha \xi_{\varphi} \circ \eta(t)}.$$

Said another way,

$$\int_0^{\varphi \circ \eta(t)} \mathrm{e}^{-\alpha \xi_u} \mathrm{d}u = t, \qquad t \ge 0,$$

or

$$\varphi \circ \eta(t) = \inf\{s > 0 : \int_0^s e^{-\alpha \xi_u} du > t\}$$

Next note that

$$KX_{\eta(t)} = e^{-\xi_{\varphi \circ \eta(t)}} \Theta_{\varphi \circ \eta(t)}, \qquad t \ge 0,$$

and we have just shown that

$$\varphi \circ \eta(t) = \inf\{s > 0 : \int_0^s e^{-\alpha \xi_u} \mathrm{d}u > t\}.$$

Next note that

$$KX_{\eta(t)} = e^{-\xi_{\varphi \circ \eta(t)}} \Theta_{\varphi \circ \eta(t)}, \qquad t \ge 0,$$

and we have just shown that

$$\varphi \circ \eta(t) = \inf\{s > 0 : \int_0^s e^{-\alpha \xi_u} \mathrm{d}u > t\}.$$

▶ It follows that $(KX_{\eta(t)}, t \ge 0)$ is a self-similar Markov process with underlying MAP $(-\xi, \Theta)$

Next note that

$$KX_{\eta(t)} = e^{-\xi_{\varphi \circ \eta(t)}} \Theta_{\varphi \circ \eta(t)}, \qquad t \ge 0,$$

and we have just shown that

$$\varphi \circ \eta(t) = \inf\{s > 0 : \int_0^s e^{-\alpha \xi_u} \mathrm{d}u > t\}.$$

- ▶ It follows that $(KX_{\eta(t)}, t \ge 0)$ is a self-similar Markov process with underlying MAP $(-\xi, \Theta)$
- ▶ We have also seen that $(X, \mathbb{P}^{\circ}_{x}), x \neq 0$, is also a self-similar Markov process with underlying MAP given by $(-\xi, \Theta)$.

70/77 《 다) 《 쿱) 《 클) 《 클) 《 은

Next note that

$$KX_{\eta(t)} = e^{-\xi_{\varphi \circ \eta(t)}} \Theta_{\varphi \circ \eta(t)}, \qquad t \ge 0,$$

and we have just shown that

$$\varphi \circ \eta(t) = \inf\{s > 0 : \int_0^s e^{-\alpha \xi_u} \mathrm{d}u > t\}.$$

- ▶ It follows that $(KX_{\eta(t)}, t \ge 0)$ is a self-similar Markov process with underlying MAP $(-\xi, \Theta)$
- ▶ We have also seen that $(X, \mathbb{P}^{\circ}_{x}), x \neq 0$, is also a self-similar Markov process with underlying MAP given by $(-\xi, \Theta)$.

- コン・4回シュ ヨシュ ヨン・9 くの

The statement of the theorem follows.

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	00000000000	0000000	000000000000	000	000000

§8. Other developments

HARMONIC FUNCTIONS ON THE CONE

- Lipchitz cone, $\Gamma = \{x \in \mathbb{R}^d : x \neq 0, \arg(x) \in \Omega\},\$
- Exit time from the cone i.e. $\kappa_{\Gamma} = \inf\{s > 0 : X_s \notin \Gamma\}.$
- ▶ Bañuelos and Bogdan (2004): There exists $M : \mathbb{R}^d \to \mathbb{R}$ such that
 - M(x) = 0 for all $x \notin \Gamma$.
 - *M* is locally bounded on \mathbb{R}^d
 - There is a $\beta = \beta(\Gamma, \alpha) \in (0, \alpha)$, such that

$$M(x)=|x|^\beta M(x/|x|)=|x|^\beta M(\arg(x)),\qquad x\neq 0.$$

Up to a multiplicative constant, M is the unique such that

$$M(x) = \mathbb{E}_{x}[M(X_{\tau_{B}})\mathbf{1}_{(\tau_{B} < \kappa_{\Gamma})}], \qquad x \in \mathbb{R}^{d},$$

where *B* is any open bounded domain and $\tau_B = \inf\{t > 0 : X_t \notin B\}$.

Bañuelos and Bogdan (2004) and Bogdan, Palmowski, Wang (2018): We have

$$\lim_{a \to 0} \sup_{x \in \Gamma, \ |t^{-1/\alpha}x| \le a} \frac{\mathbb{P}_x(\kappa_{\Gamma} > t)}{M(x)t^{-\beta/\alpha}} = C,$$

イロト イポト イヨト イヨト ニヨー のへぐ

where C > 0 is a constant.

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	00000000000	0000000	000000000000	000	000000

Theorem

(i) For any t > 0, and $x \in \Gamma$,

$$\mathbb{P}_{x}^{\triangleleft}(A) := \lim_{s \to \infty} \mathbb{P}_{x} \left(A \left| \kappa_{\Gamma} > t + s \right) \right, \qquad A \in \mathcal{F}_{t},$$

defines a family of conservative probabilities on the space of càdlàg paths such that

$$\frac{\mathbb{d}\mathbb{P}_x^d}{\mathbb{d}\mathbb{P}_x}\Big|_{\mathcal{F}_t} := \mathbf{1}_{(t < \kappa_{\Gamma})} \frac{M(X_t)}{M(x)}, \qquad t \ge 0, \text{ and } x \in \Gamma.$$

In particular, the right-hand side above is a martingale. (Note: this is nothing but an Esscher transform for the underlying MAP!)
(ii) Let P^d := (P^d_x, x ∈ Γ). The process (X, P^d), is a self-similar Markov process.

> 73/77 다 《 큔 》 《 콘 》 《 콘 》 《 콘 》 이 익 ⓒ

ENTRANCE LAW

Let $p_t^{\Gamma}(x, y), x, y \in \Gamma, t \ge 0$, be the semigroup of *X* killed on exiting the cone Γ .

Theorem (Bogdan, Palmowski, Wang (2018))

The following limit exits,

$$n_t(y) := \lim_{\Gamma \ni x \to 0} \frac{p_t^{\Gamma}(x, y)}{\mathbb{P}_x(\kappa_{\Gamma} > t)t^{\beta/\alpha}}, \qquad x, y \in \Gamma, t > 0,$$
(4)

74/77

- コン・4回シュ ヨシュ ヨン・9 くの

and $(n_t(y)dy, t > 0)$, serves as an entrance law to (X, \mathbb{P}^{Γ}) , in the sense that

$$n_{t+s}(y) = \int_{\Gamma} n_t(x) p_s^{\Gamma}(x, y) \mathrm{d}x, \qquad y \in \Gamma, s, t \ge 0.$$

ENTRANCE LAW

Let $p_t^{\Gamma}(x, y), x, y \in \Gamma, t \ge 0$, be the semigroup of *X* killed on exiting the cone Γ . Theorem (Bogdan, Palmowski, Wang (2018)) *The following limit exits*,

$$n_t(y) := \lim_{\Gamma \ni x \to 0} \frac{p_t^{\Gamma}(x, y)}{\mathbb{P}_x(\kappa_{\Gamma} > t) t^{\beta/\alpha}}, \qquad x, y \in \Gamma, t > 0,$$
(4)

and $(n_t(y)dy, t > 0)$, serves as an entrance law to (X, \mathbb{P}^{Γ}) , in the sense that

$$n_{t+s}(y) = \int_{\Gamma} n_t(x) p_s^{\Gamma}(x, y) \mathrm{d}x, \qquad y \in \Gamma, s, t \ge 0.$$

Also easy to show that, in the sense of weak convergence,

$$\mathbb{P}_0^{\triangleleft}(X_t \in \mathrm{d} y) := \lim_{\Gamma \ni x \to 0} \frac{M(y)}{M(x)} \mathbb{P}_x(X_t \in \mathrm{d} y, \, t < \kappa_{\Gamma}) = CM(y)n_t(y)\mathrm{d} y.$$

Can the process 'start from the apex of the cone' in a stronger sense?

74/77 < □ > < 酉 > < 直 > < 直 > < 直 > ○ < ⊙

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	00000000000	0000000	000000000000	000	000000

CONTINUOUS ENTRANCE AT THE APEX OF THE CONE

Theorem

The limit $\mathbb{P}_{q}^{d} := \lim_{\Gamma \ni x \to 0} \mathbb{P}_{x}^{d}$ is well defined on the Skorokhod space, so that, $(X, (\mathbb{P}_{x}^{d}, x \in \Gamma \cup \{0\}))$ is both Feller and self-similar which enters continuously at the origin, after which it never returns.

POINT OF CLOSEST REACH

 Recall that we can represent an isotropic Lévy process through the Lamperti transform

$$X_t := \mathrm{e}^{\xi_{\varphi(t)}} \Theta_{\varphi(t)} \qquad t \ge 0,$$

where

$$\varphi(t) = \inf\left\{s > 0 : \int_0^s e^{\alpha \xi_u} du > t\right\}$$

and (ξ, Θ) with probabilities $\mathbf{P}_{x,\theta}$, $x \neq 0$, $\theta \in \mathbb{S}_d$, is a MAP. Recall also that, although corollated to Θ , ξ alone is a Lévy process.

Define

$$g_t = \sup\{s < t : \xi_s = \underline{\xi}_s\}$$

76/77

<ロト < 置 > < 置 > < 置 > 、 置 > のへの

so that $g_{\infty} = \lim_{t \to \infty} g_t < \infty$ is the time of the point of closest reach.

POINT OF CLOSEST REACH

 Recall that we can represent an isotropic Lévy process through the Lamperti transform

$$X_t := \mathrm{e}^{\xi_{\varphi(t)}} \Theta_{\varphi(t)} \qquad t \ge 0,$$

where

$$\varphi(t) = \inf\left\{s > 0 : \int_0^s e^{\alpha \xi_u} \, \mathrm{d}u > t\right\}$$

and (ξ, Θ) with probabilities $\mathbf{P}_{x,\theta}$, $x \neq 0$, $\theta \in \mathbb{S}_d$, is a MAP. Recall also that, although corollated to Θ , ξ alone is a Lévy process.

Define

$$g_t = \sup\{s < t : \xi_s = \underline{\xi}_s\}$$

so that $g_{\infty} = \lim_{t \to \infty} g_t < \infty$ is the time of the point of closest reach.

Theorem (Point of Closest Reach to the origin)

The law of the point of closest reach to the origin is given by

$$\mathbb{P}_{x}(X_{\mathcal{G}_{\infty}} \in \mathrm{d}y) = \pi^{-d/2} \frac{\Gamma(d/2)^{2}}{\Gamma((d-\alpha)/2) \,\Gamma(\alpha/2)} \, \frac{(|x|^{2} - |y|^{2})^{\alpha/2}}{|x - y|^{d}|y|^{\alpha}} \mathrm{d}y, \qquad 0 < |y| < |x|.$$

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.
000000000000	000	00000000000000	00000000000	0000000	000000000000	000	000000

Bedankt

