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1 Lévy Processes and Infinite Divisibility

Let us begin by recalling the definition of two familiar processes, a Brownian
motion and a Poisson process.

A real-valued process B = {Bt : t ≥ 0} defined on a probability space
(Ω,F , P) is said to be a Brownian motion if the following hold:

(i) The paths of B are P-almost surely continuous.

(ii) P(B0 = 0) = 1.

(iii) For 0 ≤ s ≤ t, Bt − Bs is equal in distribution to Bt−s.

(iv) For 0 ≤ s ≤ t, Bt − Bs is independent of {Bu : u ≤ s}.

(v) For each t > 0, Bt is equal in distribution to a normal random variable
with variance t.

A process valued on the non-negative integers N = {Nt : t ≥ 0}, defined
on a probability space (Ω,F , P), is said to be a Poisson process with intensity
λ > 0 if the following hold:

(i) The paths of N are P-almost surely right continuous with left limits.

(ii) P(N0 = 0) = 1.

(iii) For 0 ≤ s ≤ t, Nt − Ns is equal in distribution to Nt−s.

(iv) For 0 ≤ s ≤ t, Nt − Ns is independent of {Nu : u ≤ s}.

(v) For each t > 0, Nt is equal in distribution to a Poisson random variable
with parameter λt.

On first encounter, these processes would seem to be considerably different
from one another. Firstly, Brownian motion has continuous paths whereas a
Poisson process does not. Secondly, a Poisson process is a non-decreasing process
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and thus has paths of bounded variation1 over finite time horizons, whereas a
Brownian motion does not have monotone paths and in fact its paths are of
unbounded variation over finite time horizons.

However, when we line up the definition of a Poisson process and a Brownian
motion next to one another, we see that they also have a lot in common. Both
processes have right continuous paths with left limits, are initiated from the
origin and both have stationary and independent increments; that is properties
(i), (ii), (iii) and (iv). We may use these common properties to define a general
class of one-dimensional stochastic processes, which are called Lévy processes.

Definition 1.1 (Lévy Process) A process X = {Xt : t ≥ 0} defined on a
probability space (Ω,F , P) is said to be a Lévy process if it possesses the following
properties:

(i) The paths of X are P-almost surely right continuous with left limits.

(ii) P(X0 = 0) = 1.

(iii) For 0 ≤ s ≤ t, Xt − Xs is equal in distribution to Xt−s.

(iv) For 0 ≤ s ≤ t, Xt − Xs is independent of {Xu : u ≤ s}.

Unless otherwise stated, from now on, when talking of a Lévy process, we
shall always use the measure P (with associated expectation operator E) to be
implicitly understood as its law.

Remark 1.1 Note that the properties of stationary and independent incre-
ments implies that a Lévy process is a Markov process. Thanks to almost sure
right continuity of paths, one may show in addition that Lévy processes are also
Strong Markov processes. The proof of this is somewhat techncial and time
consuming. We do not address it in this course.

1For the reader who is not familiar with the notion of path variation for a stochastic process
here is a brief reminder. First consider any function f : [0,∞) → ∞. Given any partition
P = {a = t0 < t2 < · · · < tn = b} of the bounded interval [a, b] we define the variation of f

over [a, b] with partition P by

VP (f, [a, b]) =
n

X

i=1

|f(ti) − f(ti−1)|.

The function f is said to be of bounded variation over [a, b] if

V (f, [a, b]) := sup
P

VP (f, [a, b]) < ∞

where the supremum is taken over all partitions of [a, b]. Moreover, f is said to be of bounded

variation if the above inequality is valid for all bounded intervals [a, b]. If V (f, [a, b]) = ∞
for all bounded intervals [a, b] then we say that f is of unbounded variation. Note moreover
that if f is a right continuous function with left limits (and therefore has at most a countable
number of discontinuities) then, defining fc(x) = f(x) −

P

y≤x ∆f(y) it can be shown that

V (f, [a, b]) = V (fc, [a, b]) +
P

x∈(a,b] |∆f(x)| where ∆f(x) = f(x) − f(x−). For any given

stochastic process X = {Xt : t ≥ 0} we may adopt these notions in the almost sure sense.
So for example, the statement X is a process of bounded variation (or has paths of bounded
variation) simply means that as a random mapping, X : [0,∞) → R is of bounded variation
almost surely.
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The term “Lévy process” honours the work of the French mathematician
Paul Lévy who, although not alone in his contribution, played an instrumental
role in bringing together an understanding and characterisation of processes with
stationary independent increments. In earlier literature, Lévy processes can be
found under a number of different names. In the 1940s, Lévy himself referred to
them as a sub-class of processus additifs (additive processes), that is processes
with independent increments. For the most part however, research literature
through the 1960s and 1970s refers to Lévy processes simply as processes with
stationary independent increments. One sees a change in language through the
1980s and by the 1990s the use of the term “Lévy process” had become standard.

From Definition 1.1 alone it is difficult to see just how rich a class of pro-
cesses the class of Lévy processes forms. De Finetti [4] introduced the notion
of an infinitely divisible distribution and showed that they have an intimate
relationship with Lévy processes. This relationship gives a reasonably good im-
pression of how varied the class of Lévy processes really is. To this end, let us
now devote a little time to discussing infinitely divisible distributions.

Definition 1.2 We say that a real-valued random variable Θ has an infinitely
divisible distribution if for each n = 1, 2, ... there exist a sequence of i.i.d. ran-
dom variables Θ1,n, ..., Θn,n such that

Θ
d
= Θ1,n + · · · + Θn,n

where
d
= is equality in distribution. Alternatively, we could have expressed this

relation in terms of probability laws. That is to say, the law µ of a real-valued
random variable is infinitely divisible if for each n = 1, 2, ... there exists another
law µn of a real valued random variable such that µ = µ∗n

n . (Here µ∗
n denotes

the n-fold convolution of µn).

In view of the above definition, one way to establish whether a given random
variable has an infinitely divisible distribution is via its characteristic exponent.
Suppose that Θ has characteristic exponent Ψ(u) := − log E(eiuΘ) for all u ∈ R.
Then Θ has an infinitely divisible distribution if for all n ≥ 1 there exists a
characteristic exponent of a probability distribution, say Ψn, such that Ψ(u) =
nΨn(u) for all u ∈ R.

The full extent to which we may characterise infinitely divisible distributions
is described by the characteristic exponent Ψ and an expression known as the
Lévy–Khintchine formula.2

Theorem 1.1 (Lévy–Khintchine formula) A probability law µ of a real-
valued random variable is infinitely divisible with characteristic exponent Ψ,

∫

R

eiθxµ (dx) = e−Ψ(θ) for θ ∈ R,

2Note, although it is a trivial fact, it is always worth reminding oneself of that one works
in general with the Fourier transform of a measure as opposed to the Laplace transform on
account of the fact that the latter may not exist.
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if and only if there exists a triple (a, σ, Π), where a ∈ R, σ ≥ 0 and Π is a
measure concentrated on R\{0} satisfying

∫
R

(
1 ∧ x2

)
Π(dx) < ∞, such that

Ψ (θ) = iaθ +
1

2
σ2θ2 +

∫

R

(1 − eiθx + iθx1(|x|<1))Π(dx)

for every θ ∈ R.

The measure Π is called the Lévy (characteristic) measure and it is important
to note that it is unique. The proof of the Lévy–Khintchine characterisation
of infinitely divisible random variables is quite lengthy and we exclude it. The
interested reader is referred to [20] or [23], to name but two of many possible ref-
erences. Let us now discuss in further detail the relationship between infinitely
divisible distributions and processes with stationary independent increments.

From the definition of a Lévy process we see that for any t > 0, Xt is a
random variable belonging to the class of infinitely divisible distributions. This
follows from the fact that for any n = 1, 2, ...,

Xt = Xt/n + (X2t/n − Xt/n) + · · · + (Xt − X(n−1)t/n) (1.1)

together with the fact that X has stationary independent increments. Suppose
now that we define for all θ ∈ R, t ≥ 0,

Ψt (θ) = − log E
(
eiθXt

)

then using (1.1) twice we have for any two positive integers m, n that

mΨ1 (θ) = Ψm (θ) = nΨm/n (θ)

and hence for any rational t > 0,

Ψt (θ) = tΨ1 (θ) . (1.2)

If t is an irrational number, then we can choose a decreasing sequence of rationals
{tn : n ≥ 1} such that tn ↓ t as n tends to infinity. Almost sure right continuity
of X implies right continuity of exp{−Ψt (θ)} (by dominated convergence) and
hence (1.2) holds for all t ≥ 0.

In conclusion, any Lévy process has the property that for all t ≥ 0

E
(
eiθXt

)
= e−tΨ(θ),

where Ψ (θ) := Ψ1 (θ) is the characteristic exponent of X1, which has an in-
finitely divisible distribution.

Definition 1.3 In the sequel we shall also refer to Ψ (θ) as the characteristic
exponent of the Lévy process.

It is now clear that each Lévy process can be associated with an infinitely
divisible distribution. What is not clear is whether given an infinitely divisible
distribution, one may construct a Lévy process X , such that X1 has that dis-
tribution. This latter issue is affirmed by the following theorem which gives the
Lévy–Khintchine formula for Lévy processes.

4



Theorem 1.2 (Lévy–Khintchine formula for Lévy processes) Suppose that
a ∈ R, σ ≥ 0 and Π is a measure concentrated on R\{0} such that

∫
R
(1 ∧

x2)Π(dx) < ∞. From this triple define for each θ ∈ R,

Ψ (θ) = iaθ +
1

2
σ2θ2 +

∫

R

(1 − eiθx + iθx1(|x|<1))Π(dx).

Then there exists a probability space on which a Lévy process is defined having
characteristic exponent Ψ.

The proof of this theorem is rather complicated but very rewarding as it also
reveals much more about the general structure of Lévy processes. In Section 3
we will prove a stronger version of this theorem, which also explains the path
structure of the Lévy process in terms of the triple (a, σ, Π).

Remark 1.2 What does the integral test on Π really say? Analytically speak-
ing it says two things. Firstly that Π(|x| ≥ 1) < ∞ and secondly that

∫

(−1,1)

x2Π(dx) < ∞. (1.3)

Note that these two conditions are sufficient to ensure that the integral in the
Lévy-Khintchine formula converges since the integrand is O(1) for |x| ≥ 1 and
O(x2) for |x| < 1.

In principle (1.3) means that one could have Π(−1, 1) < ∞ or indeed
Π(−1, 1) = ∞. If it is the case that Π(−1, 1) = ∞ then (1.3) necessarily implies
that Π(|x| ∈ (ε, 1)) < ∞ but Π(−ε, ε) = ∞ for all 0 < ε < 1. As we shall
eventually see, the measure Π describes the sizes and rate with which jumps of
the Lévy process occurs. Naively we can say that in a small period of time dt
a jump of size x will occur with probability Π(dx)dt + o(dt). If it were the case
that Π(−1, 1) = ∞ then the latter interpretation would suggest that the smaller
the jump size the greater the intensity and so the discontinuities in the path
of the Lévy process is predominantly made up of arbitrarily small jumps. The
Lévy-Itô decomposition discussed later will make this rather informal point of
view more rigorous.

2 Some Examples of Lévy Processes

To conclude our introduction to Lévy processes and infinite divisible distribu-
tions, let us proceed to some concrete examples. Some of these will also be of
use later to verify certain results from the forthcoming fluctuation theory we
will present.

2.1 Poisson Processes

For each λ > 0 consider a probability distribution µλ which is concentrated
on k = 0, 1, 2... such that µλ({k}) = e−λλk/k!. That is to say the Poisson
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distribution. An easy calculation reveals that

∑

k≥0

eiθkµλ({k}) = e−λ(1−eiθ)

=
[
e−

λ
n

(1−eiθ)
]n

.

The right-hand side is the characteristic function of the sum of n independent
Poisson processes, each of which with parameter λ/n. In the Lévy–Khintchine
decomposition we see that a = σ = 0 and Π = λδ1, the Dirac measure supported
on {1}.

Recall that a Poisson process, {Nt : n ≥ 0}, is a Lévy process with dis-
tribution at time t > 0, which is Poisson with parameter λt. From the above
calculations we have

E(eiθNt) = e−λt(1−eiθ)

and hence its characteristic exponent is given by Ψ(θ) = λ(1 − eiθ) for θ ∈ R.

2.2 Compound Poisson Processes

Suppose now that N is a Poisson random variable with parameter λ > 0 and
that {ξi : i ≥ 1} is an sequence of i.i.d. random variables (independent of N)
with common law F having no atom at zero. By first conditioning on N , we
have for θ ∈ R,

E(eiθ
PN

i=1 ξi) =
∑

n≥0

E(eiθ
Pn

i=1 ξi)e−λ λn

n!

=
∑

n≥0

(∫

R

eiθxF (dx)

)n

e−λ λn

n!

= e−λ
R

R
(1−eiθx)F (dx). (2.1)

Note we use the convention here and later that for any n = 0, 1, 2, ...

n∑

n+1

= 0.

We see from (2.1) that distributions of the form
∑N

i=1 ξi are infinitely divisible
with triple a = −λ

∫
0<|x|<1 xF (dx), σ = 0 and Π(dx) = λF (dx). When F has

an atom of unit mass at 1 then we have simply a Poisson distribution.
Suppose now that N = {Nt : t ≥ 0} is a Poisson process with intensity λ

and consider a compound Poisson process {Xt : t ≥ 0} defined by

Xt =

Nt∑

i=1

ξi, t ≥ 0.
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Using the fact that N has stationary independent increments together with the
mutual independence of the random variables {ξi : i ≥ 1}, for 0 ≤ s < t < ∞,
by writing

Xt = Xs +

Nt∑

i=Ns+1

ξi

it is clear that Xt is the sum of Xs and an independent copy of Xt−s. Right
continuity and left limits of the process N also ensure right continuity and left
limits of X . Thus compound Poisson processes are Lévy processes. From the
calculations in the previous paragraph, for each t ≥ 0 we may substitute Nt for
the variable N to discover that the Lévy–Khintchine formula for a compound
Poisson process takes the form Ψ(θ) = λ

∫
R
(1 − eiθx)F (dx). Note in particular

that the Lévy measure of a compound Poisson process is always finite with total
mass equal to the rate λ of the underlying process N .

If a drift of rate c ∈ R is added to a compound Poisson process so that now

Xt =

Nt∑

i=1

ξi + ct, t ≥ 0

then it is straightforward to see that the resulting process is again a Lévy process.
The associated infinitely divisible distribution is nothing more than a shifted
compound Poisson distribution with shift c. The Lévy-Khintchine exponent is
given by

Ψ(θ) = λ

∫

R

(1 − eiθx)F (dx) − icθ.

If further the shift is chosen to centre the compound Poisson distribution then
c = λ

∫
R

xF (dx) and then

Ψ(θ) =

∫

R

(1 − eiθx + iθx)λF (dx).

2.3 Linear Brownian Motion

Take the probability law

µs,γ(dx) :=
1√

2πs2
e−(x−γ)2/2s2

dx

supported on R where γ ∈ R and s > 0; the well-known Gaussian distribution
with mean γ and variance s2. It is well known that

∫

R

eiθxµs,γ(dx) = e−
1
2 s2θ2+iθγ

=
[
e
− 1

2 ( s√
n

)2θ2+iθ γ
n

]n
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showing again that it is an infinitely divisible distribution, this time with a =
−γ, σ = s and Π = 0.

We immediately recognise the characteristic exponent Ψ(θ) = s2θ2/2 − iθγ
as also that of a linear Brownian motion,

Xt := sBt + γt, t ≥ 0,

where B = {Bt : t ≥ 0} is a standard Brownian motion. It is a trivial exercise
to verify that X has stationary independent increments with continuous paths
as a consequence of the fact that B does.

2.4 Gamma Processes

For α, β > 0 define the probability measure

µα,β(dx) =
αβ

Γ (β)
xβ−1e−αxdx

concentrated on (0,∞); the gamma-(α, β) distribution. Note that when β = 1
this is the exponential distribution. We have

∫ ∞

0

eiθxµα,β(dx) =
1

(1 − iθ/α)
β

=

[
1

(1 − iθ/α)
β/n

]n

and infinite divisibility follows. For the Lévy–Khintchine decomposition we have

σ = 0 and Π(dx) = βx−1e−αxdx, concentrated on (0,∞) and a = −
∫ 1

0
xΠ(dx).

However this is not immediately obvious. The following lemma proves to be
useful in establishing the above triple (a, σ, Π). Its proof is Exercise 3.

Lemma 2.1 (Frullani integral) For all α, β > 0 and z ∈ C such that ℜz ≤ 0
we have

1

(1 − z/α)β
= e−

R

∞

0
(1−ezx)βx−1e−αxdx.

To see how this lemma helps note that the Lévy–Khintchine formula for a
gamma distribution takes the form

Ψ(θ) = β

∫ ∞

0

(1 − eiθx)
1

x
e−αxdx = β log(1 − iθ/α)

for θ ∈ R. The choice of a in the Lévy–Khintchine formula is the necessary
quantity to cancel the term coming from iθ1(|x|<1) in the integral with respect
to Π in the general Lévy–Khintchine formula.
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According to Theorem 1.2 there exists a Lévy process whose Lévy–Khintchine
formula is given by Ψ, the so-called gamma process.

Suppose now that X = {Xt : t ≥ 0} is a gamma process. Stationary

independent increments tell us that for all 0 ≤ s < t < ∞, Xt = Xs + X̃t−s

where X̃t−s is an independent copy of Xt−s. The fact that the latter is strictly
positive with probability one (on account of it being gamma distributed) implies
that Xt > Xs almost surely. Hence a gamma process is an example of a Lévy
process with almost surely non-decreasing paths (in fact its paths are strictly
increasing). Another example of a Lévy process with non-decreasing paths is
a compound Poisson process where the jump distribution F is concentrated on
(0,∞). Note however that a gamma process is not a compound Poisson process
on two counts. Firstly, its Lévy measure has infinite total mass unlike the Lévy
measure of a compound Poisson process, which is necessarily finite (and equal
to the arrival rate of jumps). Secondly, whilst a compound Poisson process with
positive jumps does have paths, which are almost surely non-decreasing, it does
not have paths that are almost surely strictly increasing.

Lévy processes whose paths are almost surely non-decreasing (or simply
non-decreasing for short) are called subordinators.

2.5 Inverse Gaussian Processes

Suppose as usual that B = {Bt : t ≥ 0} is a standard Brownian motion. Define
the first passage time

τs = inf{t > 0 : Bt + bt > s}, (2.2)

that is, the first time a Brownian motion with linear drift b > 0 crosses above
level s. Recall that τs is a stopping time3. Moreover, since Brownian motion has
continuous paths we know that Bτs

+ bτs = s almost surely. From the Strong
Markov Property it is known that {Bτs+t + b(τs + t)− s : t ≥ 0} is equal in law
to B and hence for all 0 ≤ s < t,

τt = τs + τ̃t−s,

where τ̃t−s is an independent copy of τt−s. This shows that the process τ :=
{τt : t ≥ 0} has stationary independent increments. Continuity of the paths of
{Bt + bt : t ≥ 0} ensures that τ has right continuous paths. Further, it is clear
that τ has almost surely non-decreasing paths, which guarantees its paths have
left limits as well as being yet another example of a subordinator. According to
its definition as a sequence of first passage times, τ is also the almost sure right
inverse of the path of the graph of {Bt + bt : t ≥ 0} in the sense of (2.2). From
this τ earns its name as the inverse Gaussian process.

3We assume that the reader is familiar with the notion of a stopping time for a Markov
process. By definition, the random time τ is a stopping time with respect to the filtration
{Gt : t ≥ 0} if for all t ≥ 0,

{τ ≤ t} ∈ Gt.
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According to the discussion following Theorem 1.1 it is now immediate that
for each fixed s > 0, the random variable τs is infinitely divisible. Its character-
istic exponent takes the form

Ψ(θ) = s(
√
−2iθ + b2 − b)

for all θ ∈ R and corresponds to a triple a = −2sb−1
∫ b

0
(2π)−1/2e−y2/2dy, σ = 0

and

Π(dx) = s
1√

2πx3
e−

b2x
2 dx

concentrated on (0,∞). The law of τs can also be computed explicitly as

µs(dx) =
s√

2πx3
esbe−

1
2 (s2x−1+b2x)

for x > 0. The proof of these facts forms Exercise 6.

2.6 Stable Processes

Stable processes are the class of Lévy processes whose characteristic exponents
correspond to those of stable distributions. Stable distributions were introduced
by [17, 18] as a third example of infinitely divisible distributions after Gaussian
and Poisson distributions. A random variable, Y , is said to have a stable dis-
tribution if for all n ≥ 1 it observes the distributional equality

Y1 + · · · + Yn
d
= anY + bn, (2.3)

where Y1, . . . , Yn are independent copies of Y , an > 0 and bn ∈ R. By sub-
tracting bn/n from each of the terms on the left-hand side of (2.3) one sees
in particular that this definition implies that any stable random variable is in-
finitely divisible. It turns out that necessarily an = n1/α for α ∈ (0, 2]; see [3],
Sect. VI.1. In that case we refer to the parameter α as the index. A smaller
class of distributions are the strictly stable distributions. A random variable Y
is said to have a strictly stable distribution if it observes (2.3) but with bn = 0.
In that case, we necessarily have

Y1 + · · · + Yn
d
= n1/αY. (2.4)

The case α = 2 corresponds to zero mean Gaussian random variables and is
excluded in the remainder of the discussion as it has essentially been dealt with
in Sect. 2.3.

Stable random variables observing the relation (2.3) for α ∈ (0, 1) ∪ (1, 2)
have characteristic exponents of the form

Ψ (θ) = c|θ|α(1 − iβ tan
πα

2
sgn θ) + iθη, (2.5)

where β ∈ [−1, 1], η ∈ R and c > 0. Stable random variables observing the
relation (2.3) for α = 1, have characteristic exponents of the form

Ψ (θ) = c|θ|(1 + iβ
2

π
sgn θ log |θ|) + iθη, (2.6)
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where β ∈ [−1, 1] η ∈ R and c > 0. Here we work with the definition of
the sign function sgn θ = 1(θ>0) − 1(θ<0). To make the connection with the
Lévy–Khintchine formula, one needs σ = 0 and

Π (dx) =

{
c1x

−1−αdx for x ∈ (0,∞)
c2|x|−1−αdx for x ∈ (−∞, 0),

(2.7)

where c = c1 + c2, c1, c2 ≥ 0 and β = (c1 − c2)/(c1 + c2) if α ∈ (0, 1)∪ (1, 2) and
c1 = c2 if α = 1. The choice of a ∈ R in the Lévy–Khintchine formula is then
implicit. Exercise 4 shows how to make the connection between Π and Ψ with
the right choice of a (which depends on α). Unlike the previous examples, the
distributions that lie behind these characteristic exponents are heavy tailed in
the sense that the tails of their distributions decay slowly enough to zero so that
they only have moments strictly less than α. The value of the parameter β gives
a measure of asymmetry in the Lévy measure and likewise for the distributional
asymmetry (although this latter fact is not immediately obvious). The densities
of stable processes are known explicitly in the form of convergent power series.
See [31], [23] and [22] for further details of all the facts given in this paragraph.
With the exception of the defining property (2.4) we shall generally not need
detailed information on distributional properties of stable processes in order
to proceed with their fluctuation theory. This explains the reluctance to give
further details here.

Two examples of the aforementioned power series that tidy up to more com-
pact expressions are centred Cauchy distributions, corresponding to α = 1,
β = 0 and η = 0, and stable- 1

2 distributions, corresponding to α = 1/2, β = 1
and η = 0. In the former case, Ψ(θ) = c|θ| for θ ∈ R and its law is given by

c

π

1

(x2 + c2)
dx (2.8)

for x ∈ R. In the latter case, Ψ(θ) = c|θ|1/2(1 − isgn θ) for θ ∈ R and its law is
given by

c√
2πx3

e−c2/2xdx.

Note then that an inverse Gaussian distribution coincides with a stable- 1
2 dis-

tribution for a = c and b = 0.
Suppose that S(c, α, β, η) is the distribution of a stable random variable with

parameters c, α, β and η. For each choice of c > 0, α ∈ (0, 2), β ∈ [−1, 1] and
η ∈ R Theorem 1.2 tells us that there exists a Lévy process, with characteristic
exponent given by (2.5) or (2.6) according to this choice of parameters. Further,
from the definition of its characteristic exponent it is clear that at each fixed
time the α-stable process will have distribution S(ct, α, β, η).

2.7 Other Examples

There are many more known examples of infinitely divisible distributions (and
hence Lévy processes). Of the many known proofs of infinitely divisibility for
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Figure 1: A sample path of a Poisson process; Ψ(θ) = λ(1 − eiθ) where λ is the
jump rate.
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Figure 2: A sample path of a compound Poisson process; Ψ(θ) = λ
∫

R
(1 −

eiθx)F (dx) where λ is the jump rate and F is the common distribution of the
jumps.
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Figure 3: A sample path of a Brownian motion; Ψ(θ) = θ2/2.
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Figure 4: A sample path of the independent sum of a Brownian motion and a
compound Poisson process; Ψ(θ) = θ2/2 +

∫
R
(1 − eiθx)F (dx).
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0.0

0.2

Figure 5: A sample path of a variance gamma processes. The latter has charac-
teristic exponent given by Ψ(θ) = β log(1 − iθc/α + β2θ2/2α) where c ∈ R and
β > 0.

0.0 0.2 0.4 0.6 0.8 1.0

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Figure 6: A sample path of a normal inverse Gaussian process; Ψ(θ) =

δ(
√

α2 − (β + iθ)2 −
√

α2 − β2) where α, δ > 0, |β| < α.
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specific distributions, most of them are non-trivial, often requiring intimate
knowledge of special functions. A brief list of such distributions might include
generalised inverse Gaussian (see [5] and [14]), truncated stable (see [30], [8],
[15], [1] and [2]), generalised hyperbolic (see [7]), Meixner (see [24]), Pareto (see
[25] and [28]), F -distributions (see [10]), Gumbel (see [13] and [26]), Weibull
(see [13] and [25]), lognormal (see [29]) and Student t-distribution (see [6] and
[9]). See also the book of Steutel [27]

Despite being able to identify a large number of infinitely divisible distribu-
tions and hence associated Lévy processes, it is not clear at this point what the
paths of Lévy processes look like. The task of giving a mathematically precise
account of this lies ahead in the next section. In the meantime let us make the
following informal remarks concerning paths of Lévy processes.

Exercise 1 shows that a linear combination of a finite number of independent
Lévy processes is again a Lévy process. It turns out that one may consider any
Lévy process as an independent sum of a Brownian motion with drift and a
countable number of independent compound Poisson processes with different
jump rates, jump distributions and drifts. The superposition occurs in such
a way that the resulting path remains almost surely finite at all times and,
for each ε > 0, the process experiences at most a countably infinite number
of jumps of magnitude ε or less with probability one and an almost surely
finite number of jumps of magnitude greater than ε, over all fixed finite time
intervals. If in the latter description there is always an almost surely finite
number of jumps over each fixed time interval then it is necessary and sufficient
that one has the linear independent combination of a Brownian motion with
drift and a compound Poisson process. Depending on the underlying structure
of the jumps and the presence of a Brownian motion in the described linear
combination, a Lévy process will either have paths of bounded variation on all
finite time intervals or paths of unbounded variation on all finite time intervals.

We include six computer simulations to give a rough sense of how the paths of
Lévy processes look. Figs. 1 and 2 depict the paths of Poisson process and a com-
pound Poisson process, respectively. Figs. 3 and 4 show the paths of a Brownian
motion and the independent sum of a Brownian motion and a compound Poisson
process, respectively. Finally Figs. 5 and 6 show the paths of a variance gamma
process and a normal inverse Gaussian processes. Both are pure jump processes
(no Brownian component as described above). Variance gamma processes are
discussed in more detail later normal inverse Gaussian processes are Lévy pro-
cesses whose jump measure is given by Π(dx) = (δα/π|x|) exp{βx}K1(α|x|)dx
for x ∈ R where α, δ > 0, β ≤ |α| and K1(x) is the modified Bessel function of
the third kind with index 1 (the precise definition of the latter is not worth the
detail at this moment in the text). Both experience an infinite number of jumps
over a finite time horizon. However, variance gamma processes have paths of
bounded variation whereas normal inverse Gaussian processes have paths of
unbounded variation. The reader should be warned however that computer
simulations ultimately can only depict a finite number of jumps in any given
path. All figures were very kindly produced by Antonis Papapantoleon.
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3 The Lévy-Itô decomposition intuitively

One of our main objectives for the remainder of this text is to establish a rigorous
understanding of the structure of the paths of Lévy processes. The way we shall
do this is to prove the assertion in Theorem 1.2 that given any characteristic
exponent, Ψ, belonging to an infinitely divisible distribution, there exists a Lévy
process with the same characteristic exponent. This will be done by establishing
the so-called Lévy–Itô decomposition which describes the structure of a general
Lévy process in terms of three independent auxiliary Lévy processes, each with
different types of path behaviour.

According to Theorem 1.1, any characteristic exponent Ψ belonging to an
infinitely divisible distribution can be written, after some simple reorganisation,
in the form

Ψ(θ) =

{
iaθ +

1

2
σ2θ2

}

+

{
Π(R\(−1, 1))

∫

|x|≥1

(1 − eiθx)
Π(dx)

Π(R\(−1, 1))

}

+

{∫

0<|x|<1

(1 − eiθx + iθx)Π(dx)

}
(3.1)

for all θ ∈ R where a ∈ R, σ ≥ 0 and Π is a measure on R\{0} satisfying
∫

R
(1∧

x2)Π(dx) < ∞. Note that the latter condition on Π implies that Π(A) < ∞ for
all Borel A such that 0 is in the interior of Ac and particular that Π(R\(−1, 1)) ∈
[0,∞). In the case that Π(R\(−1, 1)) = 0 one should think of the second bracket
in (3.1) as absent. Call the three brackets in (3.1) Ψ(1), Ψ(2) and Ψ(3). The
essence of the Lévy–Itô decomposition revolves around showing that Ψ(1), Ψ(2)

and Ψ(3) all correspond to the characteristic exponents of three different types of
Lévy processes. Therefore Ψ may be considered as the characteristic exponent
of the independent sum of these three Lévy processes which is again a Lévy
process (cf. Exercise 1). Indeed, as we have already seen in the previous section,
Ψ(1) and Ψ(2) correspond, respectively, to a linear Brownian motion with drift,

X(1) = {X(1)
t : t ≥ 0} where

X
(1)
t = σBt − at, t ≥ 0 (3.2)

and a compound Poisson process, say X(2) = {X(2)
t : t ≥ 0}, where,

X
(2)
t =

Nt∑

i=1

ξi, t ≥ 0, (3.3)

{Nt : t ≥ 0} is a Poisson process with rate Π(R\(−1, 1)) and {ξi : i ≥ 1} are
independent and identically distributed with distribution Π(dx)/Π(R\(−1, 1))
concentrated on {x : |x| ≥ 1} (unless Π(R\(−1, 1)) = 0 in which case X(2) is
the process which is identically zero).
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The proof of existence of a Lévy process with characteristic exponent given
by (3.1) thus boils down to showing the existence of a Lévy process, X(3), whose
characteristic exponent is given by Ψ(3). Noting that

∫

0<|x|<1

(1 − eiθx + iθx)Π(dx)

=
∑

n≥0

{
λn

∫

2−(n+1)≤|x|<2−n

(1 − eiθx)Fn(dx)

+iθλn

(∫

2−(n+1)≤|x|<2−n

xFn(dx)

)}
, (3.4)

where λn = Π({x : 2−(n+1) ≤ |x| < 2−n}) and

Fn(dx) = λ−1
n Π(dx)|{x:2−(n+1)≤|x|<2−n}

(again with the understanding that the nth integral is absent if λn = 0). It would
appear from (3.4) that the process X(3) consists of the superposition of (at most)
a countable number of independent compound Poisson processes with different
arrival rates and additional linear drift. To understand the mathematical sense
of this superposition we shall look at related square integrable martingales. This
is done in subsequent sections, but let us now conclude this discussion with a
statement of our objectives in the form of a theorem.

The identification of a Lévy process, X as the independent sum of processes
X(1), X(2) and X(3) is attributed to Lévy [19] and Itô [11] (see also [12]) and
is thus known as the Lévy–Itô decomposition. Formally speaking and in a little
more detail we quote the Lévy–Itô decomposition in the form of a theorem.

Theorem 3.1 (Lévy–Itô decomposition) Given any a ∈ R, σ ≥ 0 and measure
Π concentrated on R\{0} satisfying

∫

R

(1 ∧ x2)Π(dx) < ∞,

there exists a probability space on which three independent Lévy processes exist,
X(1), X(2) and X(3) where X(1) is a linear Brownian motion given by (3.2), X(2)

is a compound Poisson process given by (3.3) and X(3) is a square integrable
martingale with characteristic exponent given by Ψ(3). By taking X = X(1) +
X(2) + X(3) we see that the conclusion of Theorem 1.2 holds, that there exists a
probability space on which a Lévy process is defined with characteristic exponent

Ψ(θ) = aiθ +
1

2
σ2θ2 +

∫

R

(1 − eiθx + iθx1(|x|<1))Π(dx) (3.5)

for θ ∈ R.
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4 The Lévy-Itô decomposition rigorously

In this section we deal with some technical issues concerning square integrable
martingales built from compound Poisson processes which form the the basis of
the proof of the Lévy-Itô decomposition. We begin by reminding ourselves of
some of the fundamentals about square integrable martingales and then move
to the proof of the Lévy-Itô decomposition.

4.1 Square integrable martingales

Fix a time horizon T > 0. Let us assume that (Ω,F , {F∗
t : t ∈ [0, T ]}, P) is a

filtered probability space in which the filtration {F∗
t : t ≥ 0} is complete with

respect to the null sets of P and right continuous in the sense that F∗
t =

⋂
s>t F∗

s .

Definition 4.1 Fix T > 0. Define M2
T = M2

T (Ω,F , {F∗
t : t ∈ [0, T ]}, P) to

be the space of real valued, zero mean right-continuous, square integrable P-
martingales with respect to the given filtration over the finite time period [0, T ].

One luxury that follows from the assumptions on {F∗
t : t ≥ 0} is that

any zero mean square integrable martingale with respect to the latter filtration
has a right continuous version which is also a member of M2

T . Recall that
M ′ = {M ′

t : t ∈ [0, T ]} is a version of M if it is defined on the same probability
space and {∃t ∈ [0, T ] : M ′

t 6= Mt} is measurable with zero probability.
It is straightforward to deduce that M2

T is a vector space over the real
numbers with zero element Mt = 0 for all t ∈ [0, T ] and all ω ∈ Ω. In fact, as
we shall shortly see, M2

T is a Hilbert space4 with respect to the inner product

〈M, N〉 = E (MT NT ) ,

where M, N ∈ M2
T . It is left to the reader to verify the fact that 〈·, ·〉 forms an

inner product. The only mild technical difficulty in this verification is showing
that for M ∈ M2

T , 〈M, M〉 = 0 implies that M = 0, the zero element. Note
however that if 〈M, M〉 = 0 then by Doob’s Maximal Inequality, which says
that for M ∈ M2

T ,

E

(
sup

0≤s≤T
M2

s

)
≤ 4E

(
M2

T

)
, (4.1)

we have that sup0≤t≤T Mt = 0 almost surely. Since M ∈ M2
T is right continuous

it follows necessarily that Mt = 0 for all t ∈ [0, T ] with probability one.
As alluded to above, we can show without too much difficulty that M2

T is
a Hilbert space. To do that we are required to show that given {M (n) : n =

4Recall that 〈·, ·〉 : L × L → R is an inner product on a vector space L over the reals if it
satisfies the following properties for f, g ∈ L and a, b ∈ R; (i) 〈af + bg, h〉 = a 〈f, h〉 + b 〈g, h〉
for all h ∈ L, (ii) 〈f, g〉 = 〈g, f〉, (iii) 〈f, f〉 ≥ 0 and (iv) 〈f, f〉 = 0 if and only if f = 0.

For each f ∈ L let ||f || = 〈f, f〉1/2. The pair (L, 〈·, ·〉) are said to form a Hilbert space if all
sequences, {fn : n = 1, 2, ...} in L that satisfy ||fn − fm|| → 0 as m, n → ∞, so called Cauchy
sequences, have a limit which exists in L.
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1, 2, ...} is a Cauchy sequence of martingales taken from M2
T then there exists

an M ∈ M2
T such that ∥∥∥M (n) − M

∥∥∥→ 0

as n ↑ ∞ where ‖·‖ := 〈·, ·〉1/2
. To this end let us assume that the sequence of

processes
{
M (n) : n = 1, 2, ...

}
is a Cauchy sequence, in other words,

{
E

[(
M

(m)
T − M

(n)
T

)2
]}1/2

→ 0 as m, n ↑ ∞.

Necessarily then the sequence of random variables {M (k)
T : k ≥ 1} is a Cauchy

sequence in the Hilbert space of zero mean, square integrable random vari-
ables defined on (Ω,FT , P), say L2(Ω,FT , P), endowed with the inner prod-
uct 〈M, N〉 = E(MN). Hence there exists a limiting variable, say MT in
L2(Ω,FT , P) satisfying

{
E

[
(M

(n)
T − MT )2

]}1/2

→ 0

as n ↑ ∞. Define the martingale M to be the right continuous version5 of

E (MT |F∗
t ) for t ∈ [0, T ]

and note that by definition

∥∥∥M (n) − M
∥∥∥→ 0

as n tends to infinity. Clearly it is an F∗
t -adapted process and by Jensen’s

inequality

E
(
M2

t

)
= E

(
E (MT |F∗

t )
2
)

≤ E
(
E
(
M2

T |F∗
t

))

= E
(
M2

T

)

which is finite. Hence Cauchy sequences converge in M2
T and we see that M2

T

is indeed a Hilbert space.

Having reminded ourselves of some relevant properties of the space of square
integrable martingales, let us consider a special class of martingale within the
latter class that are also Lévy processes and which are key to the proof of the
Lévy-Itô decomposition.

Henceforth, we shall suppose that {ξi : i ≥ 1} is a sequence of i.i.d. random
variables with common law F (which does not assign mass to the origin) and
that N = {Nt : t ≥ 0} is a Poisson process with rate λ > 0.

5Here we use the fact that {F∗
t : t ∈ [0, T ]} is complete and right continuous.
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Lemma 4.1 Suppose that
∫

R
|x|F (dx) < ∞.

(i) The process M = {Mt : t ≥ 0} where

Mt :=

Nt∑

i=1

ξi − λt

∫

R

xF (dx)

is a martingale with respect to its natural filtration.

(ii) If moreover
∫

R
x2F (dx) < ∞ then M is a square integrable martingale such

that

E(M2
t ) = λt

∫

R

x2F (dx).

Proof. For the first part, note that M has stationary and independent in-
crements (in fact, as seen earlier, it is a Lévy process). Hence if we define
Ft = σ(Ms : s ≤ t) then for t ≥ s ≥ 0

E(Mt|Fs) = Ms + E(Mt − Ms|Fs) = Ms + E(Mt−s).

Hence it suffices to prove that for all u ≥ 0, E(Mu) = 0. However the latter is
evident since, by a classical computation (left to the reader) which utilizes the
independence of N and {ξi : i ≥ 0},

E

(
Nt∑

i=1

ξi

)
= λtE(ξ1) = λt

∫

R

xF (dx).

Note that this computation also shows that E|Mt| < ∞ for each t ≥ 0.
For the second part, using the independence and distributional properties if

N and {ξi : i ≥ 1} we have that

E(M2
t ) = E



(

Nt∑

i=1

ξi

)2

− λ2t2

(∫

R

xF (dx)

)2

= E

(
Nt∑

i=1

ξ2

)
+ E




Nt∑

i=1

Nt∑

j=1

1{j 6=i}ξiξj


− λ2t2

(∫

R

xF (dx)

)2

= λt

∫

R

x2F (dx) + E(N2
t − Nt)

(∫

R

xF (dx)

)2

− λ2t2
(∫

R

xF (dx)

)2

= λt

∫

R

x2F (dx) + λ2t2
(∫

R

x2F (dx)

)2

− λ2t2
(∫

R

xF (dx)

)2

= λt

∫

R

x2F (dx)

as required.
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If we recall the intuition in the discussion following (3.4) then our interest in
the type of martingales described in Lemma 4.1 (which are also Lévy processes)
as far as the Lévy-Itô decomposition is concerned is tantamount to understand-
ing how to superimpose a countably infinite number of such processes together
so that the resulting sum converges in an appropriate sense. Precisely this point
is tackled in the next theorem.

We need to introduce some notation first. Suppose that for each n = 1, 2, 3, ..

the process N (n) = {N (n)
t : t ≥ 0} is a Poisson process with rate λn ≥ 0. Here

we understand the process N
(n)
t = 0 for all t ≥ 0 if λn = 0. We shall also

assume that the processes N (n) are mutually independent. Moreover, for each

n = 1, 2, 3, ... let us introduce the i.i.d. sequences {ξ(n)
i : i = 1, 2, 3, ...} (which

are themselves mutually independent sequences) with common distribution Fn

which does not assign mass to the origin and which satisfies
∫

x2Fn(dx) < ∞.
Associated with each pair (λn, Fn) is the square integrable martingale described

in Lemma 4.1 which we denote by M (n) = {M (n)
t : t ≥ 0}. Suppose that we

denote by {F (n)
t : t ≥ 0} as the natural filtration generated by the process M (n),

then we can put all processes {M (n) : n ≥ 1} on the same probability space and
take them as martingales with respect to the common filtration

Ft := σ(
⋃

n≥1

F (n)
t )

which we may also assume without loss of generality is taken in its completed
and right continuous form6.

Theorem 4.1 If ∑

n≥1

λn

∫

R

x2Fn(dx) < ∞ (4.2)

then there exists a Lévy process X = {Xt : t ≥ 0} defined on the same prob-
ability space as the processes {M (n) : n ≥ 1} which is also a square integrable
martingale and whose characteristic exponent is given by

Ψ(θ) =

∫

R

(1 − eiθx + iθx)
∑

n≥1

λnFn(dx)

for all θ ∈ R such that the for each fixed T > 0,

lim
k↑∞

E


sup

t≤T

(
Xt −

k∑

n=1

M
(n)
t

)2

 = 0.

Proof. First note that by linearity of conditional expectation,
∑k

n=1 M (k) is a
square integrable martingale. In fact, since, by independence and the martingale

6That is to say, if Ft is not right continuous then we may work instead with F∗
t =

T

s>t Fs.
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property, for i 6= j we have E(M
(i)
t M

(j)
t ) = E(M

(i)
t )E(M

(j)
t ) = 0, it follows that

E




(

k∑

n=1

M
(n)
t

)2


 =

k∑

n=1

E

[
(M

(n)
t )2

]
= t

k∑

n=1

λn

∫

R

x2Fn(dx) < ∞ (4.3)

where the last equality follows by the assumption (4.2).
Fix T > 0. We now claim that the sequence {X(k) : k ≥ 1} is a Cauchy

sequence with respect to || · || where X(k) = {X(k)
t : 0 ≤ t ≤ T } and

X
(k)
t =

k∑

n=1

M
(n)
t .

To see why, note that for k ≥ l, similar calculations to those in (4.3) show that

||X(k) − X(l)||2 = E[(X
(k)
T − X

(l)
T )2] = T

k∑

n=l

λn

∫

R

x2Fn(dx)

which tends to zero as k, l ↑ ∞ by the assumption (4.2). It follows that there
exists a martingale, say X = {Xt : 0 ≤ t ≤ T } with respect to the filtration
{Ft : 0 ≤ t ≤ T } such that ||X − X(k)|| → 0 as k ↑ ∞. Thanks to Doob’s
maximal inequality (4.1), it follows moreover that

lim
k↑∞

E( sup
0≤t≤T

(Xt − X
(k)
t )2) = 0. (4.4)

From (4.4) it is implicit one-dimensional and hence finite-dimensional distribu-
tions of X(k) converge to those of X . Consequently since the processes X(k) are
all Lévy processes, for all 0 ≤ s ≤ t ≤ T ,

E(eiθ(Xt−Xs)) = lim
k↑∞

E(eiθ(X
(k)
t −X(k)

s ))

= lim
k↑∞

E(eiθX
(k)
t−s)

= E(eiθXt−s)

showing that X has stationary and independent increments. From Section 2.2
we see that for all t ≥ 0

E(eiθX
(k)
t ) =

k∏

n=1

E(eiθM
(n)
t ) = exp

{
−
∫

R

(1 − eiθx + iθx)

k∑

n=1

λnFn(dx)

}

which converges to exp{−Ψ(θ)} as k ↑ ∞. Note in particular that the last
integral converges thanks to the assumption (4.2).

To show that X is a Lévy process we need only to deduce the paths of X are
right continuous with left limits almost surely. However this is a direct result
of the fact that, if D[0, T ] is the space of functions f : [0, T ] → R which are
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right continuous with left limits, then D[0, T ] is a closed space under the metric
d(f, g) = supt∈[0,T ] |f(t) − g(t)| for f, g ∈ D[0, 1]. See Exercise 8 for a proof of
this fact.

There is one outstanding issue that needs to be dealt with to complete the
proof. In principle the limiting process X depends on T and we need to dismiss
this eventuality. Suppose we index X by the time horizon T , say XT . Using that
for any two sequences of real numbers {an} and {bn}, supn a2

n = (supn |an|)2
and supn |an + bn| ≤ supn |an|+supn |bn|, we have together with an application
of Minkowski’s inequality that, when T1 ≤ T2,

E[ sup
s≤T1

(XT1
t − XT2

t )2]1/2 ≤ E[ sup
s≤T1

(XT1
t − X

(k)
t )2]1/2 + E[ sup

s≤T1

(XT2
t − X

(k)
t )2]1/2.

Hence taking limits as k ↑ ∞ we may appeal to (4.4) to deduce that the right
hand side tends to 0. Consequently the two processes agree almost surely on the
time horizon [0, T1] and we may comfortably say that the limit X does indeed
not depend on the time horizon T .

4.2 Proof of the Lévy-Itô decomposition

We are now in a position to prove the Lévy-Itô decomposition.

Proof of Theorem 3.1. Recalling the decomposition (3.1) and the discussion
thereafter, it suffices to prove the existence of the process X(3) and that it has
a countable number of discontinuities which are less than unity in magnitude
over each finite time horizon. However this follows immediately from Theorem
4.1 when we take λn = Π({x : 2−(n+1) ≤ |x| < 2−n}) and

Fn(dx) = λ−1
n Π(dx)|{x:2−(n+1)≤|x|<2−n}.

Note in particular that

∞∑

n=0

λn

∫

R

x2Fn(dx) =

∫

(−1,1)

x2Π(dx) < ∞

where the last inequality follows by assumption.
The fact that the processes X(1), X(2) and X(3) may be constructed on

the same probability space is simply a matter of constructing an appropriate
product space which supports all the associated independent processes.

Remark 4.1 In the case that Π(R) < ∞ the Lévy-Itô decomposition is some-
what overkill as in that case it is clear that (1 − eix) is integrable on its own
against Π so we may write instead

Ψ(θ) =

{
iθ

(
a +

∫

0<|x|<1

xΠ(dx)

)
+

1

2
σ2θ2

}

+

{
Π(R)

∫

|x|≥1

(1 − eiθx)
Π(dx)

Π(R)

}
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showing that X is the independent sum of a linear Brownian motion and a
compound Poisson process.

Remark 4.2 Note that the Lévy-Itô decomposition indicates that when Π(R) =
∞ the compound Poisson martingales associated with (λn, Fn) is such that the
rate of arrival of the jumps increases and the size of the jump decreases as n
tends to infinity. The contribution of these compound Poisson processes is thus
to a countable infinity of arbitrarily small jumps. Note also that the use of the
interval (−1, 1) is completely arbitrary in the construction. One could equally
have constructed a sequence of compound Poisson processes martingales from
the concentration of the measure Π on (−α, β) for any α, β > 0. The effect
of this change would be that the constant a in the Lévy-Khintchine formula
changes.

5 Path variation

The proof of the Lévy-Itô decomposition reveals a little more than the decompo-
sition in Theorem 3.1. It provides us the necessary point of view to characterize
precisely the almost sure path variation of the process.

Suppose that X is any Lévy process whose characteristic exponent we shall
always refer to in the form (3.5). Moreover we shall talk about X(1), X(2)

and X(3) as the three components of the Lévy-Itô decomposition mentioned in
Theorem 3.1.

If σ > 0, since it is known that Brownian motion has unbounded variation
and since the continuous and discontinuous elements of the path of X make
independent contributions to its variation, the latter must also have unboudned
variation. In the case that σ = 0 however, the Lévy process may have either
bounded or unbounded variation. Since the process X(2) is a compound Poisson
process, which obviously has paths of bounded variation, the variation of X boils
down to the variation of X(3) in this case.

Recall that we may see the process X(3) as the uniform L2-limit over finite
time horizons of a sequence of partial sums of compound Poisson martingales

X
(k)
t =

∑k
n=0 M

(n)
t for t ≥ 0. Suppose in the aforementioned analysis we split

the compound Poisson martingales into two sub-proceses containing the positive
and negative jumps respectively. To be more precise, define

M
(n,+)
t =

N
(n)
t∑

i=1

ξ
(n)
i 1

(ξ
(n)
i >0)

− tλn

∫

(0,∞)

xFn(dx)

and

M
(n,−)
t =

N
(n)
t∑

i=1

|ξ(n)
i |1

(ξ
(n)
i <0)

− tλn

∫

(−∞,0)

|x|Fn(dx)

for t ≥ 0 so that M
(n,+)
t = M

(n)
t − M

(n,−)
t . It is straightforward to check as

before that the processes X(k,+) :=
∑k

n=0 M (n,+) and X(k,−) :=
∑k

n=0 M (n,−)
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are compound Poisson martingales that form Cauchy sequences which converge
uniformly over finite time horizons in L2 to their limits which we denote by
X(+) and X(−). Moreover it is clear that necessarily X = X(+) − X(−).

Next note that for each fixed t

C
(k,+)
t := X

(k,+)
t + t

∫

(0,∞)

x

k∑

n=0

λnFn(dx) =

k∑

n=0

N
(n)
t∑

i=1

ξ
(n)
i 1

(ξ
(n)
i >0)

is increasing in k and therefore has a limit almost surely (which may be infinite).

Since X
(k,+)
t converges in distribution to a non-degenerate random variable, it

follows that

lim
k↑∞

C
(k,+)
t < ∞ a.s. ⇔

∫

(0,∞)

x

∞∑

n=0

λnFn(dx) < ∞

With C(k,−) defined in the obvious way it also follows that

lim
k↑∞

C
(k,−)
t < ∞ a.s. ⇔

∫

(−∞,0)

|x|
∞∑

n=0

λnFn(dx) < ∞

and hence since

k∑

n=0

N
(n)
t∑

i=1

ξ
(n)
i = X

(k)
t + t

∫

R

x
k∑

n=0

λnFn(dx) = C
(k,+)
t − C

(k,−)
t ,

the left hand side above is almost surely absolutely convergent if and only if

∫

R

|x|
∞∑

n=0

λnFn(dx) < ∞.

The latter integral test is tantamount to saying

∫

(−1,1)

|x|Π(dx) < ∞. (5.1)

The importance of the previous calculations is that it is straightforward to

check that the variation of X(3) over [0, t] is at least C
(∞,+)
t + C

(∞,−)
t which

explodes if and only if (5.1) fails and, when it is well defined, is equal to

C
(∞,+)
t + C

(∞,−)
t + t

∫

R

x
k∑

n=0

λnFn(dx)

which is almost surely finite if and only if (5.1) holds.
In conclusion we have the following result.
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Lemma 5.1 Any Lévy process has paths of bounded variation if and only if

σ = 0 and

∫

(−1,1)

|x|Π(dx) < ∞.

In the case that X has bounded variation, we may express the process X(3) in
the, now meaningful, way

X
(3)
t =

∑

s≤t

∆Xs1(|∆Xs|<1) − t

∫

(−1,1)

xΠ(dx)

where ∆Xs = Xs − Xs−. Note that there are only countably many times s ≤ t
for which ∆Xs 6= 0 on account of the fact that the paths are right continuous
with left limits and hence the sum over a continuum of values s ≤ t is in fact a
sum over a countable set of times s ≤ t. We may then write

Xt = −at +
∑

s≤t

∆Xs − t

∫

(−1,1)

xΠ(dx). (5.2)

Indeed the calculations above have shown that the sum
∑

s≤t ∆Xs is necessarily
absolutely convergent almost surely.

Note that montone functions necessarily have bounded variation and hence
a Lévy process is a subordinator only if it has paths of bounded variation. In
that case inspecting (5.2) tells us the following.

Lemma 5.2 A Lévy process is a subordinator if and only if it has paths of
bounded variation, Π(−∞, 0) = 0 and

δ := −a −
∫

(0,1)

xΠ(dx) ≥ 0.

In that case the characteristic exponent may be written

Ψ(θ) = −iδθ +

∫

(0,∞)

(1 − eiθx)Π(dx).
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Exercises

Exercise 1 Using Definition 1.1, show that the sum of two (or indeed any finite
number of) independent Lévy processes is again a Lévy process.

Exercise 2 Suppose that S = {Sn : n ≥ 0} is any random walk7 and Γp is an
independent random variable with a geometric distribution on {0, 1, 2, ...} with
parameter p.

(i) Show that Γp is infinitely divisible.

(ii) Show that SΓp
is infinitely divisible.

Exercise 3 [Proof of Lemma 2.1] In this exercise we derive the Frullani identity.

(i) Show for any function f such that f ′ exists and is continuous and f(0) and
f(∞) are finite, that

∫ ∞

0

f(ax) − f(bx)

x
dx = (f(0) − f(∞)) log

(
b

a

)
,

where b > a > 0.

(ii) By choosing f(x) = e−x, a = α > 0 and b = α − z where z < 0, show that

1

(1 − z/α)β
= e−

R

∞

0
(1−ezx) β

x
e−αxdx

and hence by analytic extension show that the above identity is still valid
for all z ∈ C such that ℜz ≤ 0.

Exercise 4 Establishing formulae (2.5) and (2.6) from the Lévy measure given
in (2.7) is the result of a series of technical manipulations of special integrals.
In this exercise we work through them. In the following text we will use the
gamma function Γ(z), defined by

Γ(z) =

∫ ∞

0

tz−1e−tdt

for z > 0. Note the gamma function can also be analytically extended so that
it is also defined on R\{0,−1,−2, ...} (see [16]). Whilst the specific definition
of the gamma function for negative numbers will not play an important role in
this exercise, the following two facts that can be derived from it will. For z ∈
R\{0,−1,−2, ...} the gamma function observes the recursion Γ(1 + z) = zΓ(z)
and Γ(1/2) =

√
π.

7Recall that S = {Sn : n ≥ 0} is a random walk if S0 = 0 and for n = 1, 2, 3, ... the
increments Sn − Sn−1 are independent and identically distributed.
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(i) Suppose that 0 < α < 1. Prove that for u > 0,
∫ ∞

0

(e−ur − 1)r−α−1dr = Γ(−α)uα

and show that the same equality is valid when −u is replaced by any
complex number w 6= 0 with ℜw ≤ 0. Conclude by considering w = i that

∫ ∞

0

(1 − eir)r−α−1dr = −Γ(−α)e−iπα/2 (E.1)

as well as the complex conjugate of both sides being equal. Deduce (2.5)
by considering the integral

∫ ∞

0

(1 − eiξθr)r−α−1dr

for ξ = ±1 and θ ∈ R. Note that you will have to take a = η −∫
R

x1(|x|<1)Π(dx), which you should check is finite.

(ii) Now suppose that α = 1. First prove that

∫

|x|<1

eiθx(1 − |x|)dx = 2

(
1 − cos θ

θ2

)

for θ ∈ R and hence by Fourier inversion,
∫ ∞

0

1 − cos r

r2
dr =

π

2
.

Use this identity to show that for z > 0,
∫ ∞

0

(1 − eirz + izr1(r<1))
1

r2
dr =

π

2
z + iz log z − ikz

for some constant k ∈ R. By considering the complex conjugate of the
above integral establish the expression in (2.6). Note that you will need a
different choice of a to part (i).

(iii) Now suppose that 1 < α < 2. Integrate (E.1) by parts to reach
∫ ∞

0

(eir − 1 − ir)r−α−1dr = Γ(−α)e−iπα/2.

Consider the above integral for z = ξθ, where ξ = ±1 and θ ∈ R and
deduce the identity (2.5) in a similar manner to the proof in (i) and (ii).

Exercise 5 Prove for any θ ∈ R that

exp{iθXt + tΨ(θ)}, t ≥ 0

is a martingale where {Xt : t ≥ 0} is a Lévy process with characteristic exponent
Ψ.
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Exercise 6 In this exercise we will work out in detail the features of the inverse
Gaussian process discussed earlier on in this chapter. Recall that τ = {τs : s ≥
0} is a non-decreasing Lévy process defined by τs = inf{t ≥ 0 : Bt + bt > s},
s ≥ 0, where B = {Bt : t ≥ 0} is a standard Brownian motion and b > 0.

(i) Argue along the lines of Exercise 5 to show that for each λ > 0,

eλBt− 1
2λ2t, t ≥ 0

is a martingale. Use Doob’s Optional Sampling Theorem to obtain

E(e−( 1
2λ2+bλ)τs) = e−λs.

Use analytic extension to deduce further that τs has characteristic expo-
nent

Ψ(θ) = s(
√
−2iθ + b2 − b)

for all θ ∈ R.

(ii) Defining the measure Π(dx) = (2πx3)−1/2e−xb2/2dx on x > 0, check using
(E.1) from Exercise 4 that

∫ ∞

0

(1 − eiθx)Π(dx) = Ψ(θ)

for all θ ∈ R. Confirm that the triple (a, σ, Π) in the Lévy–Khintchine

formula are thus σ = 0, Π as above and a = −2sb−1
∫ b

0
(2π)−1/2e−y2/2dy.

(iii) Taking

µs(dx) =
s√

2πx3
esbe−

1
2 (s2x−1+b2x)dx

on x > 0 show that
∫ ∞

0

e−λxµs(dx) = ebs−s
√

b2+2λ

∫ ∞

0

s√
2πx3

e
− 1

2 ( s√
x
−
√

(b2+2λ)x)2
dx

= ebs−s
√

b2+2λ

∫ ∞

0

√
2λ + b2

2πu
e
− 1

2 ( s√
u
−
√

(b2+2λ)u)2
du.

Hence by adding the last two integrals together deduce that

∫ ∞

0

e−λxµs(dx) = e−s(
√

b2+2λ−b)

confirming both that µs(dx) is a probability distribution as well as being
the probability distribution of τs.

Exercise 7 Show that for a simple Brownian motion B = {Bt : t > 0} the first
passage process τ = {τs : s > 0} (where τs = inf{t ≥ 0 : Bt ≥ s}) is a stable
process with parameters α = 1/2 and β = 1.
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Exercise 8 Recall that D[0, 1] is the space of functions f : [0, 1] → R which
are right continuous with left limits.

(i) Define the norm ||f || = supx∈[0,1] |f(x)|. Use the triangle inequality to
deduce that D[0, 1] is closed under uniform convergence with respect to
the norm || · ||. That is to say, show that if {fn : n ≥ 1} is a sequence in
D[0, 1] and f : [0, 1] → R such that limn↑∞ ||fn − f || = 0 then f ∈ D[0, 1].

(ii) Suppose that f ∈ D[0, 1] and let ∆ = {t ∈ [0, 1] : |f(t) − f(t−)| 6= 0} (the
set of discontinuity points). Show that ∆ is countable if ∆c is countable
for all c > 0 where ∆c = {t ∈ [0, 1] : |f(t) − f(t−)| > c}. Next fix c > 0.
By supposing for contradiction that ∆c has an accumulation point, say x,
show that the existence of either a left or right limit at x fails as it would
imply that there is no left or right limit of f at x. Deduce that ∆c and
hence ∆ is countable.

Exercise 9 The explicit construction of a Lévy process given in the Lévy–Itô
decomposition begs the question as to whether one may construct examples of
deterministic functions which have similar properties to those of the paths of
Lévy processes. The objective of this exercise is to do precisely that. The reader
is warned however, that this is purely an analytical exercise and one should not
necessarily think of the paths of Lévy processes as being entirely similar to the
functions constructed below in all respects.

(i) Let us recall the definition of the Cantor function which we shall use to
construct a deterministic function which has bounded variation and that
is right continuous with left limits and whose points of discontinuity are
dense in its domain. Take the interval C0 := [0, 1] and perform the fol-
lowing iteration. For n ≥ 0 define Cn as the union of intervals which
remain when removing the middle third of each of the intervals which
make up Cn−1. The Cantor set C is the limiting object,

⋂
n≥0 Cn and can

be described by

C = {x ∈ [0, 1] : x =
∑

k≥1

αk

3k
such that αk ∈ {0, 2} for each k ≥ 1}.

One sees then that the Cantor set is simply the points in [0, 1] which
omits numbers whose tertiary expansion contain the digit 1. To describe
the Cantor function, for each x ∈ [0, 1] let j(x) be the smallest j for which
αj = 1 in the tertiary expansion of

∑
k≥1 αk/3k of x. If x ∈ C then

j(x) = ∞ and otherwise if x ∈ [0, 1]\C then 1 ≤ j(x) < ∞. The Cantor
function is defined as follows

f(x) =
1

2j(x)
+

j(x)−1∑

i=1

αi

2i+1
for x ∈ [0, 1].

Now consider the function g : [0, 1] → [0, 1] given by g(x) = f−1(x) − ax
for a ∈ R. Here we understand f−1(x) = inf{θ : f(θ) > x}. Note that g is
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monotone if and only if a ≤ 0. Show that g has only positive jumps and
the value of x for which g jumps form a dense set in [0, 1]. Show further
that g has bounded variation on [0, 1].

(ii) Now let us construct an example of a deterministic function which has
unbounded variation, whose points of discontinuity are dense in its domain
and that is right continuous with left limits. Denote by Q2 the dyadic
rationals. Consider a function J : [0,∞) → R as follows. For all x ≥ 0
which are not in Q2, set J(x) = 0. It remains to assign a value for each
x = a/2n where a = 1, 3, 5, ... (even values of a cancel). Let

J(a/2n) =

{
2−n if a = 1, 5, 9, ...
−2−n if a = 3, 7, 11, ...

and define
f(x) =

∑

s∈[0,x]∩Q2

J(s).

Show that f is uniformly bounded on [0, 1], is right continuous with left
limits and has unbounded variation over [0, 1].

Exercise 10 Show that any Lévy process of bounded variation may be written
as the difference of two independent subordinators.

Exercise 11 Suppose that X = {Xt : t ≥ 0} is a Lévy process with charac-
teristic exponent Ψ and τ = {τs : s ≥ 0} is an independent subordinator with
characteristic exponent Ξ. Show that Y = {Xτs

: s ≥ 0} is again a Lévy process
with characteristic exponent Ξ ◦ iΨ.

Exercise 12 This exercise gives another explicit example of a Lévy process;
the variance gamma process, introduced by [21] for modelling financial data.

(i) Suppose that Γ = {Γt : t ≥ 0} is a gamma subordinator with parameters
α, β and that B = {Bt : t ≥ 0} is an independent standard Brownian
motion. Show that for c ∈ R and σ > 0, the variance gamma process

Xt := cΓt + σBΓt
, t ≥ 0

is a Lévy process with characteristic exponent

Ψ(θ) = β log(1 − i
θc

α
+

σ2θ2

2α
).

(ii) Show that the variance gamma process is equal in law to the Lévy process

Γ(1) − Γ(2) = {Γ(1)
t − Γ

(2)
t : t ≥ 0},

where Γ(1) is a Gamma subordinator with parameters

α(1) =

(√
1

4

c2

α2
+

1

2

σ2

α
+

1

2

c

α

)−1

and β(1) = β
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and Γ(2) is a Gamma subordinator, independent of Γ(1), with parameters

α(2) =

(√
1

4

c2

α2
+

1

2

σ2

α
− 1

2

c

α

)−1

and β(2) = β.

Exercise 13 Suppose that d is an integer greater than one. Choose a ∈ Rd

and let Π be a measure concentrated on Rd\{0} satisfying

∫

Rd

(1 ∧ |x|2)Π(dx)

where | · | is the standard Euclidian norm. Show that it is possible to construct a
d-dimensional process X = {Xt : t ≥ 0} on a probability space (Ω,F , P) having
the following properties.

(i) The paths of X are right continuous with left limits P-almost surely in the
sense that for each t ≥ 0, P(lims↓t Xs = Xt) = 1 and P(lims↑t Xs exists) =
1.

(ii) P(X0 = 0) = 1, the zero vector in Rd.

(iii) For 0 ≤ s ≤ t, Xt − Xs is independent of σ(Xu : u ≤ s).

(iv) For 0 ≤ s ≤ t, Xt − Xs is equal in distribution to Xt−s.

(v) For any t ≥ 0 and θ ∈ Rd,

E(eiθ·Xt) = e−Ψ(θ)t

and

Ψ(θ) = ia · θ +
1

2
θ ·Aθ +

∫

Rd

(1 − eiθ·x + i(θ · x)1(|x|<1))Π(dx), (E.2)

where for any two vectors x and y in Rd, x · y is the usual inner product
and A is a d × d matrix whose eigenvalues are all non-negative.
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[23] Sato, K. (1999) Lévy Processes and Infinitely Divisible Distributions. Cam-
bridge University Press, Cambridge.

[24] Schoutens, W. and Teugels, J.L. (1998) Lévy processes, polynomials and
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