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Abstract. We discuss the construction of stopping lines in the branching random walk and
thus the existence of a class of supermartingales indexed by sequences of stopping lines.
Applying a method of Lyons (1997) and Lyons, Pemantle and Peres (1995) concerning
size biased branching trees, we establish a relationship between stopping lines and certain
stopping times. Consequently we develop conditions under which these supermartingales
are also martingales. Further we prove a generalization of Biggins’ Martingale Convergence
Theorem, Biggins (1977a) within this context.

1. Introduction

The branching random walk begins with an initial ancestor that we shall label !.
After one unit of time this individual gives birth to a random number of offspring,
the first generation, scattered at random points in !d according to the point process
Z. Attached to each child is an independent copy ofZ and so on.We assume that the
average number of children born to each individual is greater than one ("Z

(
!d
)

>

1) thus guaranteeing the survival of the process with positive probability. We shall
also assume throughout that each individual has an almost surely finite family size.
Any individual that appears in the process may be identified through its ancestry
using theUlam-Harris notation. So for example an individualu = (i1, . . . , in−1, in)
is the inth child of the in−1th child of. . . .of the i1th child of !. In this way, we
understand |u| to mean the generation in which u resides, u < v to indicate that u
is a strict ancestor of v and uv to refer to the individual who, from u’s perspective,
has line of descent expressed as v.

We understand ζu to be the position in !d of each realized individual u in the
branching randomwalk. For θ ∈ !d , defineWn (θ) =

∑
|u|=n exp{−θ ·ζu}/mn (θ)

wheneverm (θ) := "
(∑

|u|=1 exp{−θ · ζu}
)
is finite. (We havewritten θ ·ζumean-

ing the inner product in the usual sense). For the case that d = 1 and reproduction
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is restricted to !+, Kingman (1975) observed that Wn (θ) is a positive martin-
gale with mean 1, almost surely convergent to some limit W (θ). Biggins (1977a)
later demonstrated that the spatial restriction is not necessary and further provided
conditions equivalent to the convergence in mean of Wn (θ) (Biggins’ martingale
convergence theorem). Later, Lyons (1997) reproved this result for d = 1 with
a stronger probabilistic argument, weakening slightly the conditions of the theo-
rem. Lyons’ version of the Theorem is easily upgraded to d dimensions by simply
considering a one dimensional branching random walk with offspring distribution
{θ · ζu : |u| = 1}. In its enhanced form the theorem reads as follows.

Theorem 1 (Biggins’ Martingale Convergence Theorem). Suppose thatm (θ)

< ∞ and θ · ∇m (θ) := −"
(∑

|u|=1 θ · ζue
−θ ·ζu

)
exists and is finite, then Wn (θ)

converges in expectation to W (θ) if and only if "
[
W1 (θ) log+ W1 (θ)

]
< ∞ and

logm (θ) − (θ · ∇m (θ)) /m (θ) > 0. If either of these two conditions fail then
W (θ) is identically zero.

Since its first appearance, this result has been identified as being of relevance
within the study of the growth and spread of spatial branching processes [see for
example Biggins (1977b, 1979, 1992), Biggins andKyprianou (1997), Chauvin and
Rouault (1988), McDiarmid (1995), Neveu (1988) and Uchiyama (1978, 1982)]
and other related topics such as statistical physics, random cascades and the theory
of smoothing transforms [see for example Chauvin and Rouault (1997), Liu and
Rouault (1997), Koukiou (1997), Waymire and Williams (1996) and Liu (1997,
1998)]. From these references we should mention in particular that when the limit
W (θ) is non-trivial, its Laplace transform " (exp{−xW (θ)}) is a also a non-trivial
solution to the functional equation

# (x) = "




∏

|u|=1
#

(
x
exp{−θ · ζu}

m (θ)

)

 . (1)

This identity offers travelling wave solutions to a discrete time version of the K-P-P
equation which have an intimate relation with the asymptotic behaviour of the right
most individual in the branching random walk when d = 1. See for example the
discussion in Dekking and Host (1991) or Kyprianou (1998).

We can look upon the martingaleWn (θ) as a Laplace-Stieltjes transformation
of the point process {ζu : |u| = n} (the n-th generation) weighted by itsmean. Close
examination of the proof thatWn (θ) is a martingale (Kingman (1975)) reveals that
the branching property on this point process plays an inevitable and indispensable
role. It is therefore natural to ask if there are any other sequences of ‘subpopulations’
like {ζu : |u| = n} , on which the branching property can be established and from
which we could show the existence of other martingales like Wn (θ) . Further, if
such martingales exist, what is the relationship between their limit and the limiting
variableW (θ)?

Similar questions to these have already been addressed for almost surely con-
vergent multiplicative martingales that are built from solutions to (1) that typically
look like
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Mn (θ) :=
∏

|u|=n

#

(
x
exp{−θ · ζu}

m (θ)n

)
. (2)

Between them, Lalley and Sellke (1997), Neveu (1988), Chauvin (1991), Biggins
and Kyprianou (1997), Harris (1999) and Kyprianou (1999) have shown that for
both the branching random walk and certain branching diffusions, multiplicative
martingales like (2) may be generalized to products over sequences of stopping
lines. Biggins and Kyprianou (1997) show that there is a close relationship between
the limit, as n tends to infinity, of− logMn (θ) andWn (θ) and the uniqueness and
asymptotic behaviour of solutions to the functional equation (1). Similar relation-
ships are also exposed for branching diffusions in Neveu (1988), Chauvin (1991)
and Harris (1999). The work that is presented in this paper thus also alludes to
alternative ways of characterizing solutions to (1) through martingales built from
stopping lines.

In the following sections we shall discuss the idea of stopping lines, a class
of which provide suitable ‘subpopulations’ from which we are able to construct
additive supermartingales. By applying a method of probabilistic analysis used by
Lyons (1997) and Lyons, Pemantle and Peres (1995), concerning size biased trees,
we are able to distinguish circumstances under which these supermartingales are
also martingales. Following this we prove what may be considered a generaliza-
tion of Biggins’ martingale convergence theorem; demonstrating necessary and
sufficient conditions under which our identified additive supermartingales are L1-
convergent martingales. In this case their limit is preciselyW . Lastly we conclude
this paper by discussing some examples of stopping lines.

For the multi-type general branching processes, Jagers (1989) has also studied
stopping lines and shown the existence of an intrinsic additive martingale. The
stopping lines we shall stick to here are less general in definition however than
those used by Jagers. Some of the results here overlap with those of Jagers in
certain circumstances, although the method of analysis is considerably different.
The application of measures on size biased trees that we use here provides an
attractive link between stopping lines and stopping times that is not apparent in
Jagers’ presentation (at a price however of a more restrictive definition of stopping
line). We shall indicate where appropriate in the text the points at which our results
meet those of Jagers.

2. Stopping lines

The branching random walk may also be considered as a marked tree T with
vertices realized from the space of possible nodes

I = ! ∪
∞⋃

n=1
#n .

Suppose now that$ is the space of possible events constituting the life of the initial
ancestor. Each individual u in the process is thus endowed with an independent
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copy of this life space; referred to as $u. Define a line to be a set of individuals
% ⊂ I with the property that for two distinct members of %, neither one is a
descendent of the other. Associated with a line % is its sigma algebra F% := σ

($u : u /∈ D%) ,whereD% := {u : ∃ v ≤ u such that v ∈ %} , the set of descendants
from individuals in the line. ThusF% gives information about all individuals who
are neither members of % nor descendent of members of %. Let us call Gu = σ

($v : v ≤ u) the sigma algebra describing the life histories of u and all its ancestry.
Suppose that τu : [$v : v ∈ T] → {0, 1}, u ∈ T is an ensemble of maps.

Definition 1. The set of individualsL (τ ) := {u ∈ T : τu = 1} is a stopping line
if (i) it is a line (that is to say τu = 1 *⇒ τv = 0 ∀ v < u) and (ii) τu is
Gu-measurable for all u ∈ T. Associated with the stopping line L is the sigma
algebraFL := σ ($u : u /∈ DL) . (Note that from now we will often refrain from
indicating the dependence ofL on τ ).

This definition is consistentwith that ofChauvin (1991) for branchingBrownian
motion. Note there is a slight difference in terminology to Chauvin’s definition
though. In her case, it is the suite of maps τ that is referred to as the stopping line.
Jagers (1989) however gives a definition of stopping lines which is less restrictive.
He defines a stopping line L ⊂ T to be a random line which is optional in the
sense that {L ≤ %} ∈ F% for all lines % (here we understand L ≤ % to mean
∀ u ∈ %, ∃ v ∈ L such that u ≥ v). The following example, due to Peter Jagers
and communicated to me by John Biggins, shows nicely a set of nodes that is a
stopping line by Jagers’ definition, but not by Definition 1. Let N(1) be the first
generation in which there is a family of 27 children. For any individual u it cannot
be established whether it is a member of theN(1)th generation simply by looking
back at the history of its ancestry. This is because it may be another group of siblings
distinct from u’s but in the same generation which is first of size 27 and therefore
responsible for the inclusion of u inN(1). Therefore, in the context of Definition
1 we can see that Jagers’ stopping lines can accommodate for greater correlation
between the individual mappings of τ .

Let us now introduce some more notation, some of which is not necessarily
new to this presentation and can be seen used in the papers of Chauvin (1991) and
Biggins and Kyprianou (1997). For any two stopping linesL and Q, we say that
L dominates Q if for each u ∈ L there exists a v ∈ Q such that v ≤ u almost
surely. A sequence of stopping lines {Lt }t≥0 is said to be increasing to infinity if
Lt dominatesLs for all t ≥ s and limt↑∞ inf {|u| : u ∈ L} = ∞ almost surely.
Let

AL (Q) := {u ∈ Q :/ ∃ v ≤ u, v ∈ L}

be those individuals in Q who have no ancestor, including themselves, in the stop-
ping lineL. We can think ofAL (Q) as being the part of Q that is ‘below’L. We
will reserve the special notationAL (n) for the case that Q is the nth generation
(the simplest example of a stopping line, induced by setting τu = I (|u| = n) ,

u ∈ T).
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Lemma 2. For any two stopping linesL and Q, AL (Q) andL∩Q are stopping
lines which are both measurable with respect toFQ andFL.

Proof. Suppose thatL = L (τ ) and Q = Q (ρ) , then

AL (Q)={u : ρu =1 and τv =0 ∀ v ≤ u} andL∩Q={u : τu = 1 and ρu = 1} .

Define η and χ such that ηu = ρuI (τv = 0 ∀ v ≤ u) and χu = τuρu. It is easily
checked thatR := R (η) andP := P (χ) are stopping lines that are bothmeasurable
with respect toFQ andFL. Finally we note thatAL (Q) = R andL ∩ Q = P
almost surely. 12

Definition 2. A stopping lineL is called almost surely dissecting if

sup {n :AL (n) = ∅} < ∞ a.s.

This definition refers to the fact that under the given condition, there exists an
almost surely finiteN such that all members of theN -th generation are descendent
from members ofL.

Already established from previous works in this field, we have the following
two important Lemmas which are valid for the definition of stopping lines we have
given here.

Lemma 3. (Jagers (1989), Theorem 4.14) Let L be a stopping line and Tu be
the shift operator that renders u the initial ancestor. GivenFL, the treesT ◦ Tu

emanating from each u ∈ L are independent stochastic copies ofT.

Lemma 4. (Chauvin (1991), Lemma 2.4) Suppose that L and Q are two almost
surely dissecting stopping lines such that L dominates Q. Then L can be parti-
tioned exhaustively and uniquely into mutually exclusive subsets

L(v) := {u ∈ L : u ≥ v} , v ∈ Q

such that conditional onFQ, L(v) is an almost surely dissecting stopping line on
the treeT ◦ Tv.

The second of these two Lemmas is not necessarily true for stopping lines with
Jagers’ definition. The earlier example,N(1), can be used to show this is the case. It
suffices to consider the two stopping linesN(1) andN(2) (the generation in which
there is a family of size 27 appearing for the second time). See also the discussion
in Kyprianou (1999).

For convenience, set yu(θ) = e−θ ·ζu/m|u| (θ) . Where it is not necessary we
will not include the dependence on θ of these terms and functions of these terms.

We need a further classification of our stopping lines.

Definition 3. A stopping lineL is L1-dissecting if

lim
n↑∞

"




∑

u∈AL(n)

yu



 = 0 .
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As we shall later see almost sure dissection does not imply L1-dissection nor vice
versa. The above condition guarantees that lines of descent (essentially random
walks) are not able to drift too far from the origin in one direction creating unusually
large values of yu before (if at all) hitting the stopping line L. Note that L1-
dissection also implies that if v < u ∈ L almost surely then

lim
n↑∞

"




∑

u∈AL(v) (n)

yu

∣∣∣∣∣∣
Fv



 = 0 .

That is to say that conditional on Fv , L(v) is an L1-dissecting stopping line on
T ◦ Tv. If this were not true then, since v ∈ AL (|v|)

lim
n↑∞

"




∑

u∈AL(n)

yu



 = lim
n↑∞

"




∑

u∈AL(|v|)
yu

∑

uw∈AL(n)

yw ◦ Tu





= lim
n↑∞

"




∑

u∈AL(|v|)
yu"




∑

w∈AL(v) (n−|v|)
yw ◦ Tu

∣∣∣∣∣∣
F|v|









≥ "



yv lim
n↑∞

"




∑

w∈AL(v) (n−|v|)
yw ◦ Tv

∣∣∣∣∣∣
Fv







 > 0

which is a contradiction.

3. Martingales

For any stopping lineL, define WL =
∑

u∈L yu. Clearly as the n-th generation
is a stopping line,Wn is also of this form.

Lemma 5. Suppose thatL and Q are two stopping lines, then

" (WQ |FL ) ≤
∑

u∈AL(Q)

yu +
∑

u∈Q∩L
yu +

∑

u∈AQ(L)

yu . (3)

It is sufficient that Q is almost surely and L1-dissecting and thatL is almost surely
dissecting for equality to hold.

Proof. It is not difficult to show (a rough sketchmayhelp) thatQ can be decomposed
according to that part which is ‘below’L, the part that intersects withL and the
descendents of the part of L that sits ‘below’ Q (although some of these three
may be empty sets with positive probability). Taking advantage of the fact that we
can write yuv as yu × (yv ◦ Tu) (this decomposition is discussed in more detail in
Biggins and Kyprianou (1997)) we have

WQ =
∑

u∈AL (Q)

yu +
∑

u∈Q∩L
yu +

∑

u∈AQ(L)

yu

∑

v∈Q(u)

yv ◦ Tu (4)



Martingale convergence and the stopped branching random walk 411

where Q(u) = {v ∈ Q : v > u} is the (possibly empty) subset of Q which descends
from u. Taking conditional expectations we have as a consequence of Lemma 2

" (WQ |FL ) =
∑

u∈AL(Q)

yu +
∑

u∈Q∩L
yu +

∑

u∈AQ(L)

yu"




∑

v∈Q(u)

yv ◦ Tu

∣∣∣∣∣∣
FL



 .

(5)
Lemmas 3 and 4 imply that each of the conditional expectations on the right hand
side of (5) are independent and each is a version of "WR for some appropriately
defined stopping line R; which may, with probability one, be degenerately the
empty set. If bothL and Q are almost surely dissecting, then each of the Q(u) are
non-emptywith positive probability. If furtherQ isL1-dissecting, then in viewof the
comments following Definition 3, we see (3) holds with equality as a consequence
of the next Theorem. Otherwise, without these restrictions on L and Q, the best
we can say, again with the help of the next Theorem, is the inequality (3). 12

Theorem 6. SupposeR is a stopping line, then "WR ≤ 1. Further, equality holds
if and only if R is L1-dissecting.

In order to prove this theorem we must import some ideas from Lyons (1997)
and Lyons, Pemantle and Peres (1995) concerning size biased trees. The marked
size biased tree associated with the branching random walk is constructed as fol-
lows. From the initial ancestor, ! =: ξ0, we begin with a reproduction process Z̃

defined by a random number of offspring and spatial positions whose distribution
has Radon-Nikodym derivative W1 with respect to the joint probability distribu-
tion of offspring numbers and spacings of Z. From this first generation we select
an individual ξ1 with probability yξ1/

(∑
|u|=1 yu

)
. From those individuals not se-

lected we generate independent branching randomwalks with reproduction process
Z. The selected individual ξ1 reproduces according to an independent copy of Z̃.
From the offspring of ξ1 we select at random an individual ξ2 = ξ1v with probabil-
ity
(
yv ◦ Tξ1

)
/
(∑

|u|=1 yu ◦ Tξ1

)
and so on. Lyons (1997) shows that there exists

a joint probability measure, $̃, of the marked tree T̃ with random ray or spine
ξ =

(
ξ0,ξ1, ξ2, ξ3, ....

)
. Let $ be the probability measure that is the projection

of $̃ to the space generated by the sequence of point processes
{
Z̃(ξn)

}
n≥0 on the

spine, where Z̃(ξn) is an independent copy of Z̃, for each n ≥ 0.

Proof of Theorem 6.We can prove Theorem 6 by finding an expression for "WR

in terms of an event measured under$. LetR = R (τ ) (not necessarily dissecting
in either sense) and define Un (R) = "

(∑
|u|=n I (τu = 1) yu

)
so that

"WR = "

[
∑

u∈T
I (τu = 1) yu

]

=
∑

n≥1
Un (R) .

LetN (ξ,R) be a stopping time such that {N (ξ,R) = n} if and only if
{
τξn = 1

}
.

For the first part of the theorem we shall demonstrate that Un (R) = $ (N = n)
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and hence "WR = $ (N < ∞) ≤ 1 (we have abused our notation and written N

as shorthand for N (ξ,R)). We argue by induction, so for n = 1,

U1 (R) = "




∑

|u|=1
I (τu = 1) yu





= "




∑

|u|=1
I (τu = 1)

yu∑
|v|=1 yv

∑

|v|=1
yv





= "




∑

|u|=1
I
(
u = ξ1,τu = 1

) yξ1∑
|v|=1 yv

W1





=
∫

I (N = 1) d$

= $ (N = 1) .

Assume now that Un (L) = $ (N (ξ,L) = n) for all stopping linesL, then

Un+1 (R) = "




∑

|u|=n+1
I (τu = 1) yu





= "




∑

|u|=n+1
I (τu = 1, τv = 0 ∀ v < u) yu





= "




∑

|u|=1
I (u = ξ1, τu = 0)

yξ1∑
|v|=1 yv

W1

×"




∑

|w|=n

I
(
τw ◦ Tξ1 = 1

)
yw ◦ Tξ1

∣∣∣∣∣∣
F1









where the inner conditional expectation in the second equality is a version of
Un

(
R(ξ1)

)
on the tree T̃ ◦ Tξ1 . It is important to note at this stage that the previous

computation is not necessarily possible had we been working with stopping lines
defined in the sense of Jagers (1989).

Define $1 the restriction of $ toF1 := σ ($) , ξ ′ = (ξ1, ξ2, ξ3, ...) , $(ξ1) to
be the version of $ associated with the spine ξ ′ on T̃ ◦ Tξ1 and finally Nξ1 =
N
(
ξ ′,R(ξ1)

)
. We have

Un+1 (R) = "




∑

|u|=1
I
(
u = ξ1,τu = 0

)
$(ξ1)

(
Nξ1 = n

) yξ1∑
|v|=1 yv

W1





=
∫

I (N > 1) $(ξ1)
(
Nξ1 = n

)
d$1

= $ (N = n + 1)
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thus proving "WR = $ (N < ∞) ≤ 1. As we shall see from Example 1 in the
final section, it is not necessarily true that N is $-almost surely finite even when
we impose that R is almost surely dissecting.

To prove the second part of the Theorem, define

ρu (n) = I (|u| = n and τv = 0 ∀ v ≤ u) ,

so thatAR (n) = L (ρ (n)) .We now have

{N (ξ,AR (n)) = m} if and only if
{
ρξm (n) = 1

}

and

{N (ξ,AR (n)) = m} =
{

∅ if n /= m
{N (ξ,R) > n} if n = m

.

The previous part of the Theorem shows that

"




∑

u∈AR(n)

yu



 =
∑

m≥1
$ [N (ξ,AR (n)) = m]

= $ [N (ξ,R) > n] . (6)

Since limn↑∞ $ [N (ξ,R) > n]= 0 if andonly if$ [N (ξ,R) < ∞] = 1, equality
(6) completes the proof of the second part of the Theorem. 12

Clearly the size biased tree provides us with amechanism of looking at stopping
lines in terms of stopping times. The condition of L1-dissection has significance in
terms of stopping the random ray ξ on the size biased tree. The equality (6) gives
us the following useful corollary in this respect.

Corollary 7. A stopping lineR isL1-dissecting if and only ifN (ξ,R) is$-almost
surely finite.

We also now have the following Corollary to Lemma 5 and Theorem 6 which
identifies for us sufficient conditions for the existence of additive supermartingales
and martingales built from stopping lines.

Corollary 8. Let {Lt }t≥0 be an increasing sequence of almost surely dissecting
stopping lines tending to infinity, then WLt is an almost surely convergent super-
martingale with respect toFLt . If furtherLt is alsoL1-dissecting for each t ≥ 0,
then WLt is a mean 1 martingale.

Proof. This result follows simply from the fact that for s < t, Ls = ALt
(Ls) ∪

(Ls ∩ Lt ) andALs
(Lt ) = ∅ almost surely. 12

So far we have concerned ourselves with conditions under which we can pro-
duce martingales. The following theorem, which we may consider as a generaliza-
tion of Biggins’ Martingale Convergence Theorem, gives necessary and sufficient
conditions under whichWLt is an L1-convergent martingale with a specific limit.
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Theorem 9. Suppose thatm (θ) < ∞and θ ·∇m (θ) := −"
(∑

|u|=1 θ · ζue
−θ ·ζu

)

exists and is finite and {Lt }t≥0 is as in Corollary 8. Then WLt (θ) is an L1-
convergent martingale with limit W (θ) (the limit of Wn (θ)) if and only if

"
[
W1 (θ) log+ W1 (θ)

]
< ∞ and logm (θ) − (θ · ∇m (θ)) /m (θ) > 0.

Note that the combined effect of the two necessary and sufficient conditions
overrides the need for an L1-dissecting sequence of stopping lines in order that
WLt may enjoy martingale status.

Proof. Assume first that "
[
W1 (θ) log+ W1 (θ)

]
< ∞ and logm (θ)−(θ · ∇m (θ))

/m (θ) > 0. From the decomposition (4) we have that for any t ≥ 0,

Wn =
∑

u∈ALt (n)

yu +
∑

|u|≤n
u∈Lt

yu

∑

|v|=n−|u|
yu ◦ Tu (7)

where conditional onFLt ,
∑

|v|=n−|u| yu ◦Tu is an independent version ofWn−|u|
for each u ∈ Lt , |u| ≤ n. AsLt is almost surely dissecting for all t ≥ 0, taking
expectations of (7) conditional onFLt and then the limit as n ↑ ∞ we have

lim
n↑∞

"FLt
(Wn) = lim

n↑∞




∑

u∈ALt (n)

yu +
∑

|u|≤n
u∈Lt

yu × "FLt




∑

|v|=n−|u|
yu ◦ Tu









= lim
n↑∞




∑

u∈ALt (n)

yu +
∑

|u|≤n
u∈Lt

yu





= WLt . (8)

SinceWn converges in mean,

lim
n↑∞

"
∣∣"FLt

(Wn) − "FLt
(W)

∣∣ ≤ lim
n↑∞

" |Wn − W | = 0

and hence WLt = "FLt
(W) thus revealing that WLt is a martingale with mean

1. Now letF∞ = σ
(
∪t≥0FLt

)
. SinceLt is tending to infinity with t we have

that limt↑∞ ALt (n) = {u : |u| = n} and limt↑∞ {u ∈ Lt : |u| ≤ n} = ∅ almost
surely. Therefore taking limits in (8) with respect to t instead of n yields

"F∞ (Wn) = lim
t↑∞

"FLt
(Wn)

= lim
t↑∞




∑

u∈ALt (n)

yu +
∑

|u|≤n
u∈Lt

yu





= Wn
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thus implying thatWn isF∞-measurable for all n which in turn implies that so is
the limitW . We can now easily identify the martingale limit asW.

Suppose now that we assume thatWLt is a martingale convergent almost surely
and in mean toW . Then asWLt is a positive martingale we must haveW > 0 with
positive probability and thus by Biggins’ martingale convergence theorem the two
conditions "

[
W1 (θ) log+ W1 (θ)

]
< ∞ and logm (θ) − (θ · ∇m (θ)) /m (θ) > 0

are implied. 12
The sufficient conditions of this theorem reflect those of Corollary 6.6 of Jagers

(1989) in which the existence of additive martingales for the multi-type general
branching process is also demonstrated using a less restrictive definition of stopping
lines. In fact, aside from the difference in definition of stopping lines, the ‘sufficient’
direction above and Jagers’ Corollary 6.6 say the same thing when we consider a
single type general branching process.

4. Examples

We shall finish off by giving some examples of stopping lines, demonstrating more
clearly the difference between almost surely dissecting and L1-dissecting and fur-
ther, how to take advantage of the interpretation in Corollary 7.

Example 1. Suppose m (θ) < ∞ and logm(θ) − (θ · ∇m (θ)) /m(θ) < 0. Let

τu (t) = I (θ · ζu + |u| logm (θ) > t, θ · ζv + |v| logm (θ) ≤ t ∀ v < u)

= I
(
yu < e−t , yv ≥ e−t ∀ v < u

)
.

It is easily checked that Lt := L (τ (t)) is a stopping line and constitutes the
set of individuals who are first in their line of descent to cross the hyperplane
θ ·y + s logm (θ) = t where y ∈ !d , s ∈ !+ and t > 0 is a fixed constant. For the
case that d = 1 it was proved in Biggins and Kyprianou (1997) that {Lt }t≥0 is a
sequence of almost surely dissecting stopping lines tending to infinity, albeit under
the slightly more restrictive condition that θ ∈ int{φ : m (φ) < ∞} /= ∅. The proof
of this result (which we shall refrain from reproducing here) is centred around the
fact that limn↑∞ sup{yu : |u| = n} = 0 and also works also for the d-dimensional
case. By considering Theorem 3 of Biggins (1998) it is easy to see that this argument
holds even when we relax the condition on θ to simply m (θ) < ∞. We shall now
consider to what extent {Lt }t≥0 is an L1-dissecting sequence. As was shown in
Lyons (1997) the positions of the ray ξ are a d-dimensional $-random walk with
mean step size

"$

(
ζξ1
)

= "$




∑

|u|=1
ζu

e−θ ·ζu
∑

|v|=1 e−θ ·ζv W1



 = −∇m (θ)

m (θ)
.

Let Sn−n logm (θ) = θ ·ζξn be the randomwalk which is the projection of {ζξn}n≥1
onto the line passing through the origin and parallel to θ . Then

$ [N (ξ,Lt ) < ∞] =
∑

n≥1
$ (Sn > t, Sk ≤ t ∀ k < n) = $ (Sn > t eventually) .
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Since the average step size of Sn is equal to

"$ (S1) = logm(θ) − θ · ∇m (θ)

m(θ)
,

which is assumed negative, we see that $ (Sn > t eventually) < 1 (for any t > 0)
and thusLt is an example of an almost surely dissecting stopping line that is not
L1-dissecting. In this instance WLt is a supermartingale. On the other hand, had
we insisted that

logm(θ) − θ · ∇m (θ)

m(θ)
≥ 0

thenLt would be L1-dissecting thus making WLt a martingale.

Example 2. Suppose in the previous example we assume that

logm(θ) − θ · ∇m (θ)

m(θ)
= 0 .

Define for some fixed t,

ρu (t) =
∑

!<v≤u

I
(
yv < e−t , ym(v) ≥ e−t

)

and
τu (k, t) = I

(
ρu (t) = k, ρm(u) (t) = k − 1

)
.

where m(v) is v’s mother, v ∈ T. We now have the stopping line Lt,k :=
L (τ (k, t)) consisting of those individuals who are k-th in their line of descent
to cross the hyperplane θ · y + s logm (θ) = t (y ∈ !d , s ∈ !+) from below. Note
in particular that Lt,1 = Lt as before. In light of the discussion in the previous
example we have that

$
[
N
(
ξ,Lt,k

)
< ∞

]
= $ (Sn eventually crosses t from left to right k times) .

This last probability is one since by our initial assumption the random walk Sn is
oscillating (a little thought concerning ladder heights justifies this statement, see
for example the chapter on random walks in Feller (1971)). Therefore Lt,k is an
L1-dissecting stopping line. We can show thatLt,k is tending to infinity as k ↑ ∞.

This follows as a simple consequence of the fact that inf{|u| : u ∈ Lt,k} ≥ 2k−1 as
the random walk Sn can, at maximum efficiency, cross t (in alternating directions)
at every step. It is not clear whetherLt,k is almost surely dissecting in view of the
fact that limn↑∞ sup{yu : |u| = n} = 0. It may indeed be possible to find a counter
example in this respect. Until then we shall not pass judgement as to whetherWLt,k

is a martingale.
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Example 3. Suppose now we consider a branching random walk in which each
individual u has position ζu = (pu, σu) , where pu is the its point of birth in !d

and σu is its moment of birth in !+. This process, is an example of what Biggins
(1995) calls a general branching random walk. It is in effect a general branching
process in which we have assigned spatial positions in !d to each individual. Let

τu (t) = I (σu > t, σv ≤ t ∀ v < u)

thenCt := C (τ (t)) is precisely the coming generation (defined byNerman (1981)).
That is to say, those who are born after time t but whose mother is born before time
t. It is not difficult to reason that Ct is both almost surely dissecting and also
tending to infinity as t ↑ ∞. As with Example 1,

{
ζξn
}
n≥1 is a (d + 1)-dimensional

$-random walk and hence so is its projection onto the real time axis -n := σξn .

Also as before

$ [N (ξ,Ct ) < ∞] = $ (-n > t eventually)

which equals one since the mean step size

"$ (-1) = "




∑

|u|=1
σu exp{−θ · ζu}/m(θ)



 > 0

provided m(θ) < ∞. Consequently, under this last condition Ct is both almost
surely and L1-dissecting and WCt is always a martingale.

Example 4. In the two type branching random walk we colour individuals either
red or blue independently of one another such that the probability of being coloured
red is p. Let cu be valued 1 if u is red and zero otherwise. Define for n ≥ 1

τu (n) = I

(

cu = 1,
∑

v<u

cv = n − 1

)

then Rn := R (τ (n)) is a stopping line consisting of those individuals who are
n-th in their line of descent to be coloured red. This stopping line has been used in
the past by Doney (1976) and Ryan (1968) (although not presented at the time as
a stopping line). Note that

Rn+1 =
⋃

u∈Rn

R(u)
1 where R(u)

1
i.i.d∼ R1 onT ◦ Tu,

so that |Rn| is the number of offspring in the n-th generation of an embedded
Galton-Watson process. Therefore to guarantee thatRn is almost surely dissecting,
it suffices to prove that R1 is almost surely dissecting. Consider Bn, the stopping
line consisting of individuals n-th in their line of descent to be coloured blue. As
before |Bn| is also a Galton-Watson Process and further, it becomes extinct with
probability 1 if and only ifR1 is almost surely dissecting. HenceR1 is almost surely
dissecting if and only if (1− p)"

(
Z
(
!d
))

≤ 1. Under the probability measure $̃,
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nodes in T̃ are coloured with the same probability and thusN (ξ,Rn) are renewal
times with

$ [N (ξ,R1) < ∞] =
∑

n≥1
p (1− p)n−1 = 1

implying that "WRn = 1 for all n ∈ % + and that WRn is a martingale. Note that
the above equalities also hold even when (1−p)"

(
Z
(
!d
))

> 1, thus giving us an
example of when L1-dissection does not imply almost sure dissection. In this case
it is still true that WRn is a martingale showing that the martingale conditions in
Corollary 8 are not necessary.
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