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I §10. Hitting spheres
I §11. Spherical hitting distribution
I §12. Spherical entrance/exit distribution
I §13. Radial excursion theory



3/ 125

§1. §2. §3. §4. §5. §6. §7. §8. §9. §10. §11. §12. §13. References

§1. Quick review of Lévy processes
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(KILLED) LÉVY PROCESS
I (ξt, t ≥ 0) is a (killed) Lévy process if it has stationary and independents with

RCLL paths (and is sent to a cemetery state after and independent and
exponentially distributed time).

I Process is entirely characterised by its one-dimensional transitions, which are
coded by the Lévy–Khinchine formula [Exercise! Show that the exponent must
factorise]:

E[eiθ·ξt ] = e−Ψ(θ)t, θ ∈ Rd,

where,

Ψ(θ) = q + ia · θ +
1
2
θ · Aθ +

∫
Rd

(1− eiθ·x + i(θ · x)1(|x|<1))Π(dx),

where a ∈ R, A is a d× d Gaussian covariance matrix and Π is a measure
satisfying

∫
Rd (1 ∧ |x|2)Π(dx) <∞. Think of Π as the intensity of jumps in the

sense of
P(X has jump at time t of size dx) = Π(dx)dt + o(dt).

I In one dimension the path of a Lévy process can be monotone, in which case it is
called a subordinator and we work with the Laplace exponent

E[e−λξt ] = e−Φ(λ)t, t ≥ 0

where
Φ(λ) = q + δλ+

∫
(0,∞)

(1− e−λx)Υ(dx), λ ≥ 0.



4/ 125

§1. §2. §3. §4. §5. §6. §7. §8. §9. §10. §11. §12. §13. References

(KILLED) LÉVY PROCESS
I (ξt, t ≥ 0) is a (killed) Lévy process if it has stationary and independents with

RCLL paths (and is sent to a cemetery state after and independent and
exponentially distributed time).

I Process is entirely characterised by its one-dimensional transitions, which are
coded by the Lévy–Khinchine formula [Exercise! Show that the exponent must
factorise]:

E[eiθ·ξt ] = e−Ψ(θ)t, θ ∈ Rd,

where,

Ψ(θ) = q + ia · θ +
1
2
θ · Aθ +

∫
Rd

(1− eiθ·x + i(θ · x)1(|x|<1))Π(dx),

where a ∈ R, A is a d× d Gaussian covariance matrix and Π is a measure
satisfying

∫
Rd (1 ∧ |x|2)Π(dx) <∞. Think of Π as the intensity of jumps in the

sense of
P(X has jump at time t of size dx) = Π(dx)dt + o(dt).

I In one dimension the path of a Lévy process can be monotone, in which case it is
called a subordinator and we work with the Laplace exponent

E[e−λξt ] = e−Φ(λ)t, t ≥ 0

where
Φ(λ) = q + δλ+

∫
(0,∞)

(1− e−λx)Υ(dx), λ ≥ 0.



4/ 125

§1. §2. §3. §4. §5. §6. §7. §8. §9. §10. §11. §12. §13. References

(KILLED) LÉVY PROCESS
I (ξt, t ≥ 0) is a (killed) Lévy process if it has stationary and independents with

RCLL paths (and is sent to a cemetery state after and independent and
exponentially distributed time).

I Process is entirely characterised by its one-dimensional transitions, which are
coded by the Lévy–Khinchine formula [Exercise! Show that the exponent must
factorise]:

E[eiθ·ξt ] = e−Ψ(θ)t, θ ∈ Rd,

where,

Ψ(θ) = q + ia · θ +
1
2
θ · Aθ +

∫
Rd

(1− eiθ·x + i(θ · x)1(|x|<1))Π(dx),

where a ∈ R, A is a d× d Gaussian covariance matrix and Π is a measure
satisfying

∫
Rd (1 ∧ |x|2)Π(dx) <∞. Think of Π as the intensity of jumps in the

sense of
P(X has jump at time t of size dx) = Π(dx)dt + o(dt).

I In one dimension the path of a Lévy process can be monotone, in which case it is
called a subordinator and we work with the Laplace exponent

E[e−λξt ] = e−Φ(λ)t, t ≥ 0

where
Φ(λ) = q + δλ+

∫
(0,∞)

(1− e−λx)Υ(dx), λ ≥ 0.



5/ 125

§1. §2. §3. §4. §5. §6. §7. §8. §9. §10. §11. §12. §13. References

LÉVY PROCESS: ONE DIMENSION
Two examples in one dimension:
I Stable subordinator (ξt, t ≥ 0) is a subordinator which satisfies the additional

scaling property: For c > 0

under P, the law of (cξc−αt, t ≥ 0) is equal to P,

where α ∈ (0, 1). We have

Φ(λ) = λα, λ ≥ 0, and Π(dx) =
α

Γ(1− α)

1
x1+α

dx, x > 0.

I Hypgergeometric Lévy process: For β ≤ 1, γ ∈ (0, 1), β̂ ≥ 0, γ̂ ∈ (0, 1)

Ψ(θ) =
Γ(1− β + γ − iθ)

Γ(1− β − iθ)
Γ(β̂ + γ̂ + iθ)

Γ(β̂ + iθ)
θ ∈ R.

The Lévy measure has a density with respect to Lebesgue measure which is given
by

π(x) =


−

Γ(η)

Γ(η − γ̂)Γ(−γ)
e−(1−β+γ)x

2F1
(
1 + γ, η; η − γ̂; e−x) , if x > 0,

−
Γ(η)

Γ(η − γ)Γ(−γ̂)
e(β̂+γ̂)x

2F1 (1 + γ̂, η; η − γ; ex) , if x < 0,

where η := 1− β + γ + β̂ + γ̂.
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LÉVY PROCESS: ONE DIMENSION

I If ξ has a characteristic exponent Ψ then necessarily

Ψ(θ) = κ(−iθ)κ̂(iθ), θ ∈ R.

where κ and κ̂ are Bernstein functions, e.g.

κ(λ) = q + δλ+

∫
(0,∞)

(1− e−λx)Υ(dx), λ ≥ 0.

I The factorisation has a physical interpretation:
I range of the κ-subordinator agrees with the range of sups≤t ξs, t ≥ 0
I range κ̂-subordinator agrees with the range of − infs≤t ξs, t ≥ 0.

I Note if δ > 0, then P(ξ
τ+x

= x) > 0, where τ+
x = inf{t > 0 : ξt = x}, x > 0.

I We have already seen the hypergeometric example

Ψ(θ) =
Γ(1− β + γ − iθ)

Γ(1− β − iθ)
×

Γ(β̂ + γ̂ + iθ)

Γ(β̂ + iθ)
θ ∈ R.
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HITTING POINTS

I We say that ξ can hit a point x ∈ R if

P(ξt = x for at least one t > 0) > 0.

I Creeping is one way to hit a point, but not the only way

Theorem (Kesten (1969)/Bretagnolle (1971))
Suppose that ξ is not a compound Poisson process. Then ξ can hit points if and only if∫

R
Re
(

1
1 + Ψ(z)

)
dz <∞.

If the Kesten-Bretagnolle integral test is satisfied, then

P(τ{x} <∞) =
u(x)

u(0)
,

where τ{x} = inf{t > 0 : ξt = x}, providing we can compute the inversion

u(x) =

∫
c+iR

e−zx

Ψ(−iz)
dz

for some c ∈ R.
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§2. Self-similar Markov processes
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SELF-SIMILAR MARKOV PROCESSES (SSMP)

Definition
A regular strong Markov process (Zt : t ≥ 0) on Rd, with probabilities Px, x ∈ Rd, is a
rssMp if there exists an index α ∈ (0,∞) such that for all c > 0 and x ∈ Rd,

(cZtc−α : t ≥ 0) under Px is equal in law to (Zt : t ≥ 0) under Pcx.
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SOME OF YOUR BEST FRIENDS ARE SSMP

I WriteNd(0,Σ) for the Normal distribution with mean 0 ∈ Rd and correlation
(matrix) Σ. The moment generating function of Xt ∼ Nd(0,Σt) satisfies, for
θ ∈ Rd,

E[eθ·Xt ] = etθTΣθ/2 = e(c−2t)(cθ)TΣ(cθ)/2 = E[eθ·cXc−2 t ].

I Thinking about the stationary and independent increments of Brownian motion,
this can be used to show that Rd-Brownian motion: is a ssMp with α = 2.
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SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that (Xt : t ≥ 0) is an R-Brownian motion:

I Write Xt := infs≤t Xs. Then (Xt,Xt), t ≥ 0 is a Markov process.
I For c > 0 and α = 2,(cXc−αt

cXc−αt

)
=
(c infs≤c−αt Xs

cXc−αt

)
=
(infu≤t cXc−αu

cXc−αt

)
, t ≥ 0,

and the latter is equal in law to (X,X), because of the scaling property of X.
I [Exercise!]⇒Markov process Zt := Xt − (−x ∧ Xt), t ≥ 0 is also a ssMp on [0,∞)

issued from x > 0 with index 2.
I [Exercise!]⇒ Zt := Xt1(Xt>0), t ≥ 0 is also a ssMp, again on [0,∞).



11/ 125

§1. §2. §3. §4. §5. §6. §7. §8. §9. §10. §11. §12. §13. References

SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that (Xt : t ≥ 0) is an R-Brownian motion:

I Write Xt := infs≤t Xs. Then (Xt,Xt), t ≥ 0 is a Markov process.
I For c > 0 and α = 2,(cXc−αt

cXc−αt

)
=
(c infs≤c−αt Xs

cXc−αt

)
=
(infu≤t cXc−αu

cXc−αt

)
, t ≥ 0,

and the latter is equal in law to (X,X), because of the scaling property of X.
I [Exercise!]⇒Markov process Zt := Xt − (−x ∧ Xt), t ≥ 0 is also a ssMp on [0,∞)

issued from x > 0 with index 2.
I [Exercise!]⇒ Zt := Xt1(Xt>0), t ≥ 0 is also a ssMp, again on [0,∞).



11/ 125

§1. §2. §3. §4. §5. §6. §7. §8. §9. §10. §11. §12. §13. References

SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that (Xt : t ≥ 0) is an R-Brownian motion:

I Write Xt := infs≤t Xs. Then (Xt,Xt), t ≥ 0 is a Markov process.
I For c > 0 and α = 2,(cXc−αt

cXc−αt

)
=
(c infs≤c−αt Xs

cXc−αt

)
=
(infu≤t cXc−αu

cXc−αt

)
, t ≥ 0,

and the latter is equal in law to (X,X), because of the scaling property of X.
I [Exercise!]⇒Markov process Zt := Xt − (−x ∧ Xt), t ≥ 0 is also a ssMp on [0,∞)

issued from x > 0 with index 2.
I [Exercise!]⇒ Zt := Xt1(Xt>0), t ≥ 0 is also a ssMp, again on [0,∞).



11/ 125

§1. §2. §3. §4. §5. §6. §7. §8. §9. §10. §11. §12. §13. References

SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that (Xt : t ≥ 0) is an R-Brownian motion:

I Write Xt := infs≤t Xs. Then (Xt,Xt), t ≥ 0 is a Markov process.
I For c > 0 and α = 2,(cXc−αt

cXc−αt

)
=
(c infs≤c−αt Xs

cXc−αt

)
=
(infu≤t cXc−αu

cXc−αt

)
, t ≥ 0,

and the latter is equal in law to (X,X), because of the scaling property of X.
I [Exercise!]⇒Markov process Zt := Xt − (−x ∧ Xt), t ≥ 0 is also a ssMp on [0,∞)

issued from x > 0 with index 2.
I [Exercise!]⇒ Zt := Xt1(Xt>0), t ≥ 0 is also a ssMp, again on [0,∞).



12/ 125

§1. §2. §3. §4. §5. §6. §7. §8. §9. §10. §11. §12. §13. References

SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that (Xt : t ≥ 0) is an Rd-Brownian motion:

I Consider Zt := |Xt|, t ≥ 0. Because of rotational invariance, it is a Markov process.
[Exercise!]

I Again the self-similarity (index 2) of Brownian motion, transfers to the case of |X|.
Note again, this is a ssMp on [0,∞). [Exercise!]

I Note that |Xt|, t ≥ 0 is a Bessel-d process. It turns out that all Bessel processes, and
all squared Bessel processes are self-similar on [0,∞). Once can check this by e.g.
considering scaling properties of their transition semi-groups.
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SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that (Xt : t ≥ 0) is an Rd-Brownian motion:

I Note when d = 3, |Xt|, t ≥ 0 is also equal in law to a Brownian motion conditioned
to stay positive: i.e if we define, for a 1-d Brownian motion (Bt : t ≥ 0),

P↑x (A) = lim
s→∞

Px(A|Bt+s > 0) = Ex

[
Bt

x
1(Bt>0)1(A)

]
where A ∈ σ{Bt : u ≤ t}, then

(|Xt|, t ≥ 0) with |X0| = x is equal in law to (B,P↑x ).

I [Exercise!] Prove that
Bt

x
1(Bt>0), t ≥ 0,

is a martingale.
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SOME OF THE BEST FRIENDS OF YOUR BEST FRIENDS ARE SSMP

I All of the previous examples have in common that their paths are continuous. Is
this a necessary condition?

I We want to find more exotic examples as most of the previous examples have
been extensively studied through existing theories (of Brownian motion and
continuous semi-martingales).

I All of the previous examples are functional transforms of Brownian motion and
have made use of the scaling and Markov properties and (in some cases) isotropic
distributional invariance.

I If we replace Brownain motion by an α-stable process, a Lévy process that has
scale invariance, then all of the functional transforms still produce new examples
of self-similar Markov processes.
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α-STABLE PROCESS

Definition
A Lévy process X is called (strictly) α-stable if it is also a self-similar Markov process.

I Necessarily α ∈ (0, 2]. [α = 2→ BM, exclude this.]
I The characteristic exponent Ψ(θ) := −t−1 logE(eiθXt ) satisfies

Ψ(θ) = |θ|α(eπiα( 1
2−ρ)1(θ>0) + e−πiα( 1

2−ρ)1(θ<0)), θ ∈ R.

where ρ = P0(Xt ≥ 0) will frequently appear as will ρ̂ = 1− ρ
I Assume jumps in both directions (0 < αρ, αρ̂ < 1), so that the Lévy density takes

the form
Γ(1 + α)

π

1
|x|1+α

(
sin(παρ)1{x>0} + sin(παρ̂)1{x<0}

)
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α-STABLE PROCESS

Ψ(θ) = |θ|α(eπiα( 1
2−ρ)1(θ>0) + e−πiα( 1

2−ρ)1(θ<0)), θ ∈ R.

I Note that, for c > 0, c−αΨ(cθ) = Ψ(θ),
I which is equivalent to saying that cXc−αt =d Xt,
I which by stationary and independent increments is equivalent to saying

(cXc−αt, t ≥ 0) =d (Xt, t ≥ 0) when X0 = 0,

I or equivalently is equivalent to saying (cX(x)
c−αt

, t ≥ 0) =d (X(cx)
t , t ≥ 0), where we

have indicated the point of issue as an additional index.
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YOUR NEW FRIENDS

Suppose X = (Xt : t ≥ 0) is within the assumed class of α-stable processes in
one-dimension and let Xt = infs≤t Xs.

Your new friends are:

I Z = X
I Z = X − (−x ∧ X), x > 0.
I Z = X1(X>0)

I Z = |X| providing ρ = 1/2
I [Exercise!] Verify these cases!
I What about Z =“X conditioned to stay positive"?
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CONDITIONED α-STABLE PROCESSES

I Recall that each Lévy processes, ξ = {ξt : t ≥ 0}, enjoys the Wiener-Hopf
factorisation i.e. up to a multiplicative constant, Ψξ(θ) := t−1 logE[eiθξt ] respects
the factorisation

Ψξ(θ) = κ(−iθ)κ̂(iθ), θ ∈ R,

where κ and κ̂ are Bernstein functions. That is e.g. κ takes the form

κ(λ) = q + aλ+

∫
(0,∞)

(1− e−λx)ν(dx), λ ≥ 0

where ν is a measure satisfying
∫
(0,∞)(1 ∧ x)ν(dx) <∞.

I The probabilistic significance of these subordinators, is that their range
corresponds precisely to the range of the running maximum of ξ and of −ξ
respectively.

I In the case of α-stable processes, up to a multiplicative constant,

κ(λ) = λαρ and κ̂(λ) = λαρ̂, λ ≥ 0.
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CONDITIONED α-STABLE PROCESSES

I Associated to the descending ladder subordinator κ̂ is its potential measure Û,
which satisfies ∫

[0,∞)
e−λxÛ(dx) =

1
κ̂(λ)

, λ ≥ 0.

I It can be shown that for a Lévy process which satisfies lim supt→∞ ξt =∞, for
A ∈ σ(ξu : u ≤ t),

P↑x (A) = lim
s→∞

Px(A|Xt+s > 0) = Ex

[
Û(Xt)

Û(x)
1(Xt>0)1(A)

]
I In the α-stable case Û(x) ∝ xαρ̂

[Note in the excluded case that α = 2 and ρ = 1/2, i.e. Brownian motion,
Û(x) = x.]
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CONDITIONED α-STABLE PROCESSES

I For c, x > 0, t ≥ 0 and appropriately bounded, measurable and non-negative f , we
can write,

E↑x [f ({cXc−αs : s ≤ t})]

= E

f ({cX(x)
c−αs

: s ≤ t})
(X(x)

c−αt
)αρ̂

xαρ̂
1
(X(x)

c−α t
≥0)


= E

[
f ({X(cx)

s : s ≤ t}
(X(cx)

t )αρ̂

(cx)αρ̂
1
(X(cx)

t ≥0)

]
= E↑cx[f ({Xs : s ≤ t})].

I This also makes the process (X,P↑x ), x > 0, a self-similar Markov process on
[0,∞).

I Unlike the case of Brownian motion, the conditioned stable process does not have
the law of the radial part of a 3-dimensional stable process (the analogue to the
Brownian case).
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§3. Lamperti Transform
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NOTATION

I Use ξ := {ξt : t ≥ 0} to denote a Lévy process which is killed and sent to the
cemetery state −∞ at an independent and exponentially distributed random
time, eq, with rate in q ∈ [0,∞). The characteristic exponent of ξ is thus written

− log E(eiθξ1 ) = Ψ(θ) = q + Lévy–Khintchine

I Define the associated integrated exponential Lévy process

It =

∫ t

0
eαξs ds, t ≥ 0. (1)

and its limit, I∞ := limt↑∞ It.
I Also interested in the inverse process of I:

ϕ(t) = inf{s > 0 : Is > t}, t ≥ 0. (2)

As usual, we work with the convention inf ∅ =∞.
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LAMPERTI TRANSFORM FOR POSITIVE SSMP

Theorem (Part (i))
Fix α > 0. If Z(x), x > 0, is a positive self-similar Markov process with index of self-similarity
α, then up to absorption at the origin, it can be represented as follows. For x > 0,

Z(x)
t 1(t<ζ(x)) = x exp{ξϕ(x−αt)}, t ≥ 0,

where ζ(x) = inf{t > 0 : Z(x)
t = 0} and either

(1) ζ(x) =∞ almost surely for all x > 0, in which case ξ is a Lévy process
satisfying lim supt↑∞ ξt =∞,

(2) ζ(x) <∞ and Z(x)
ζ(x)−

= 0 almost surely for all x > 0, in which case ξ is a
Lévy process satisfying limt↑∞ ξt = −∞, or

(3) ζ(x) <∞ and Z(x)
ζ(x)−

> 0 almost surely for all x > 0, in which case ξ is a
Lévy process killed at an independent and exponentially distributed random
time.

In all cases, we may identify ζ(x) = xαI∞.
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LAMPERTI TRANSFORM FOR POSITIVE SSMP

Theorem (Part (ii))
Conversely, suppose that ξ is a given (killed) Lévy process. For each x > 0, define

Z(x)
t = x exp{ξϕ(x−αt)}1(t<xαI∞), t ≥ 0.

Then Z(x) defines a positive self-similar Markov process, up to its absorption time
ζ(x) = xαI∞, with index α.
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LAMPERTI TRANSFORM FOR POSITIVE SSMP

(Z,Px)x>0 pssMp

Zt = exp(ξS(t)),

S a random time-change

↔
(ξ,Py)y∈R killed Lévy

ξs = log(ZT(s)),

T a random time-change

Z never hits zero
Z hits zero continuously

Z hits zero by a jump

 ↔

 ξ →∞ or ξ oscillates
ξ → −∞
ξ is killed
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§4. Positive self-similar Markov processes
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STABLE PROCESS KILLED ON ENTRY TO (−∞, 0)

I The stable process cannot ‘creep’ downwards across the threshold 0 and so must
do so with a jump.

I This puts Z∗t := Xt1(Xt>0), t ≥ 0, in the class of pssMp for which the underlying
Lévy process experiences exponential killing.

I Write ξ∗ = {ξ∗t : t ≥ 0} for the underlying Lévy process and denote its killing rate
by q∗.

I Let’s try and decode the characteristics of ξ∗.
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STABLE PROCESS KILLED ON ENTRY TO (−∞, 0)
I We know that the α-stable process experiences downward jumps at rate

Γ(1 + α)

π
sin(παρ̂)

1
|x|1+α

dx, x < 0.

I Given that we know the value of Z∗t−, on {Xt > 0}, the stable process will pass
over the origin at rate

Γ(1 + α)

π
sin(παρ̂)

(∫ ∞
Z∗t−

1
|x|1+α

dx

)
=

Γ(1 + α)

απ
sin(παρ̂)(Z∗)−αt− .

I On the other hand, the Lamperti transform says that on {t < ζ}, as a pssMp, Z is
sent to the origin at rate

q∗
d
dt
ϕ(t) = q∗e−αξ

∗
ϕ(t) = q∗(Z∗)−αt .

I Comparing gives us

q∗ = Γ(α)sin(παρ̂)/π =
Γ(α)

Γ(αρ̂)Γ(1− αρ̂)
.
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STABLE PROCESS KILLED ON ENTRY TO (−∞, 0)

I Referring again to the Lamperti transform, we know that, under P1 (so that
P1(ξ∗0 = 0) = 1),

Z∗ζ− = X
τ−0 −

= e
ξ∗eq∗ ,

where eq∗ is an exponentially distributed random variable with rate q∗.
I This motivates the computation

E1[(Z∗ζ−)iθ] = E1[e
iθξ∗eq∗− ] =

q∗

(Ψ∗(z)− q∗) + q∗
, θ ∈ R,

where Ψ∗ is the characteristic exponent of ξ∗.
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STABLE PROCESS KILLED ON ENTRY TO (−∞, 0)

Setting

K =
sinαρ̂π
π

Γ(α+ 1)

Γ(αρ)Γ(αρ̂)
,

Remembering the “overshoot-undershoot" distributional law at first passage (well
known in the literature - see e.g. Chapter 8 of my book) and deduce that, for all
v ∈ [0, 1],

P1(X
τ−0 −

∈ dv)

= P̂0(1− X
τ+1 −

∈ dv)

= K
(∫ ∞

0

∫ ∞
0

1(y≤1∧v)
(1− y)αρ̂−1(v− y)αρ−1

(v + u)1+α
dudy

)
dv

=
K
α

(∫ 1

0
1(y≤v)v−α(1− y)αρ̂−1(v− y)αρ−1dy

)
dv,

where P̂0 is the law of −X issued from 0.
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STABLE PROCESS KILLED ON ENTRY TO (−∞, 0)

We are led to the conclusion that

q∗
Ψ∗(θ)

=
K
α

∫ 1

0
(1− y)αρ̂−1

∫ ∞
0

1(y≤v)viθ−αρ̂−1
(

1−
y
v

)αρ−1
dvdy

=
K
α

∫ 1

0
(1− y)αρ̂−1yiθ−αρ̂dy

Γ(αρ̂− iθ)Γ(αρ)

Γ(α− iθ)

=
Γ(αρ̂− iθ)Γ(αρ)Γ(1− αρ̂+ iθ)Γ(αρ̂)Γ(α+ 1)

αΓ(αρ)Γ(αρ̂)Γ(1− αρ̂)Γ(αρ̂)Γ(1 + iθ)Γ(α− iθ)
,

where in the first equality Fubini’s Theorem has been used, in the second equality a
straightforward substitution w = y/v has been used for the inner integral on the
preceding line together with the classical beta integral and, finally, in the third equality,
the Beta integral has been used for a second time. Inserting the respective values for
the constants q∗ and K, we come to rest at the following result:
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STABLE PROCESS KILLED ON ENTRY TO (−∞, 0)

Theorem
For the pssMp constructed by killing a stable process on first entry to (−∞, 0), the underlying
killed Lévy process, ξ∗, that appears through the Lamperti transform has characteristic
exponent given by

Ψ∗(z) =
Γ(α− iz)

Γ(αρ̂− iz)

Γ(1 + iz)

Γ(1− αρ̂+ iz)
, z ∈ R.
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STABLE PROCESSES CONDITIONED TO STAY POSITIVE

I Use the Lamperti representation of the α-stable process X to write, for
A ∈ σ(Xu : u ≤ t),

P↑x (A) = Ex

[
Xαρ̂t
xαρ̂

1(Xt>0)1(A)

]
= E

[
eαρ̂ξ

∗
τ 1(τ<eq∗ )1(A)

]
,

where τ = ϕ(x−αt) is a stopping time in the natural filtration of ξ∗.
I Noting that Ψ∗(−iαρ̂) = 0, the change of measure constitutes an Esscher

transform at the level of ξ∗.

Theorem
The underlying Lévy process, ξ↑, that appears through the Lamperti transform applied to
(X,P↑x ), x > 0,has characteristic exponent given by

Ψ↑(z) =
Γ(αρ− iz)

Γ(−iz)

Γ(1 + αρ̂+ iz)

Γ(1 + iz)
, z ∈ R.

I In particular Ψ↑(z) = Ψ∗(z− iαρ̂), z ∈ R so that Ψ↑(0) = 0 (i.e. no killing!)

I One can also check by hand that Ψ↑′(0+) = E[ξ↑1 ] > 0 so that limt→∞ ξ↑t =∞.
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DID YOU SPOT THE OTHER ROOT?
I In essence, the case of the stable process conditioned to stay positive boils down to

an Esscher transform in the underlying (Lamperti-transformed) Lévy process.
I It was important that we identified a root of Ψ∗(z) = 0 in order to avoid involving

a ‘time component’ of the Esscher transform.
I However, there is another root of the equation

Ψ∗(z) =
Γ(α− iz)

Γ(αρ̂− iz)

Γ(1 + iz)

Γ(1− αρ̂+ iz)
= 0,

namely z = −i(1− αρ̂).
I And this means that

e(1−αρ̂)ξ∗ , t ≥ 0,

is a unit-mean Martingale, which can also be used to construct an Esscher
transform:

Ψ↓(z) = Ψ∗(z− i(1− αρ̂)) = Ψ↓(z) =
Γ(1 + αρ− iz)

Γ(1− iz)

Γ(iz + αρ̂)

Γ(iz)
.

I The choice of notation is pre-emptive since we can also check that Ψ↓(0) = 0 and
Ψ↓′(0) < 0 so that if ξ↓ is a Lévy process with characteristic exponent Ψ↓, then
limt→∞ ξ↓t = −∞.
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REVERSE ENGINEERING

I What now happens if we define for A ∈ σ(Xu : u ≤ t),

P↓x (A) = E
[

e(1−αρ̂)ξ∗τ 1(τ<eq∗ )1(A)

]
= Ex

[
X(1−αρ̂)

t

x(1−αρ̂) 1(Xt>0)1(A)

]
,

where τ = ϕ(x−αt) is a stopping time in the natural filtration of ξ∗.

I In the same way we checked that (X,P↑x ), x > 0, is a pssMp, we can also check
that (X,P↓x ), x > 0 is a pssMp.
[Exercise!] Do it!

I In an appropriate sense, it turns out that (X,P↓x ), x > 0 is the law of a stable
process conditioned to continuously approach the origin from above.
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ξ∗, ξ↑ AND ξ↓

I The three examples of pssMp offer quite striking underlying Lévy processes
I Is this exceptional?
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CENSORED STABLE PROCESSES

I Start with X, the stable process.

I Let At =
∫ t

0 1(Xt>0) dt.

I Let γ be the right-inverse of A, and put Žt := Xγ(t).

I Finally, make zero an absorbing state: Zt = Žt1(t<T0) where

T0 = inf{t > 0 : Xt = 0}.

Note T0 <∞ a.s. if and only if α ∈ (1, 2) and otherwise T0 =∞ a.s.
I This is the censored stable process.
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CENSORED STABLE PROCESSES

Theorem
Suppose that the underlying Lévy process for the censored stable process is denoted by

 
ξ . Then

 
ξ is equal in law to ξ∗∗ ⊕ ξC, with
I ξ∗∗ equal in law to ξ∗ with the killing removed,
I ξC a compound Poisson process with jump rate q∗ = Γ(α)sin(παρ̂)/π.

Moreover, the characteristic exponent of
 
ξ is given by

 
Ψ (z) =

Γ(αρ− iz)

Γ(−iz)

Γ(1− αρ+ iz)

Γ(1− α+ iz)
, z ∈ R.
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THE RADIAL PART OF A STABLE PROCESS

I Suppose that X is a symmetric stable process, i.e ρ = 1/2.
I We know that |X| is a pssMp.

Theorem
Suppose that the underlying Lévy process for |X| is written ξ, then it characteristic exponent is
given by

Ψ(z) = 2α
Γ( 1

2 (−iz + α))

Γ(− 1
2 iz)

Γ( 1
2 (iz + 1))

Γ( 1
2 (iz + 1− α))

, z ∈ R.

[Exercise!] This is quite hard to prove for α ∈ (1, 2), but could can be proved in a
straightforward way for α ∈ (0, 1]. Try it!
[Hint!] Think about what happens after X first crosses the origin and apply the Markov
property as well as symmetry. You will need to use the law of the overshoot of X below
the origin given a few slides back.



40/ 125

§1. §2. §3. §4. §5. §6. §7. §8. §9. §10. §11. §12. §13. References

HYPERGEOMETRIC LÉVY PROCESSES (REMINDER)

Definition (and Theorem)
For (β, γ, β̂, γ̂) in{

β ≤ 2, γ, γ̂ ∈ (0, 1) β̂ ≥ −1, and 1− β + β̂ + γ ∧ γ̂ ≥ 0
}

there exists a (killed) Lévy process, henceforth refered to as a hypergeometric Lévy
process, having the characteristic function

Ψ(z) =
Γ(1− β + γ − iz)

Γ(1− β − iz)

Γ(β̂ + γ̂ + iz)

Γ(β̂ + iz)
z ∈ R.

The Lévy measure of Y has a density with respect to Lebesgue measure is given by

π(x) =


−

Γ(η)

Γ(η − γ̂)Γ(−γ)
e−(1−β+γ)x

2F1
(
1 + γ, η; η − γ̂; e−x) , if x > 0,

−
Γ(η)

Γ(η − γ)Γ(−γ̂)
e(β̂+γ̂)x

2F1 (1 + γ̂, η; η − γ; ex) , if x < 0,

where η := 1− β + γ + β̂ + γ̂, for |z| < 1, 2F1(a, b; c; z) :=
∑

k≥0
(a)k(b)k
(c)kk! zk.
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§5. Entrance Laws
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STARTING FROM ZERO

I We have carefully avoided the issue of talking about pssMp issued from the
origin.

I This should ring alarm bells when we look at the Lamperti transform

Z(x)
t 1(t<ζ(x)) = x exp{ξϕ(x−αt)} = exp{ξϕ(x−αt) + log x}, t ≥ 0,

I On the one hand log x ↓ −∞, which is the point of issue of ξ, but

ϕ(x−αt) = inf{s > 0 :

∫ s

0
eα(ξu+log x)du > t},

meaning that we are sampling the Lévy process over a longer and longer time
horizon.

I We know that 0 is an absorbing point, but it might also be an entrance point (can
it be both?).

I We know that some of our new friends have no problem using the origin as an
entrance point, e.g. |X|, where X is an α-stable process (or Brownian motion).

I We know that some of our new friends have no problem using the origin as an
entrance point, but also a point of recurrence, e.g. X − X, where X is an α-stable
process (or Brownian motion).
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STARTING FROM ZERO

I We want to find a way to give a meaning to “P0 := limx↓0 Px”.
I Could look at behaviour of the transition semigroup of Z as its initial value tends

to zero. That is to say, to consider whether the weak limit below is well defined:

P0(Zt ∈ dy) := lim
x↓0

Px(Zt ∈ dy), t, y > 0.

I In that case, for any sequence of times 0 < t1 ≤ t2 ≤ · · · ≤ tn <∞ and
y1, · · · , yn ∈ (0,∞), n ∈ N, the Markov property gives us

P0(Zt1 ∈ dy1, · · · ,Ztn ∈ dyn)

:= lim
x↓0

Px(Zt1 ∈ dy1, · · · ,Ztn ∈ dyn)

= lim
x↓0

Px(Zt1 ∈ dy1)Py1 (Zt2−t1 ∈ dy2, · · · ,Ztn−t2 ∈ dyn)

= P0(Zt1 ∈ dy1)Py1 (Zt2−t1 ∈ dy2, · · · ,Ztn−t2 ∈ dyn).

When the limit exists, it implies the existence of P0 as limit of Px as x ↓ 0, in the
sense of convergence of finite-dimensional distributions.
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STARTING FROM ZERO

I We would like a stronger sense of convergence e.g. we would like

E0[f (Zs : s ≤ t)] := lim
x→0

Ex[f (Zs : s ≤ t)]

for an appropriate measurable function on cadlag paths of length t.
I The right setting to discuss distributional convergence is with respect to so-called

Skorokhod topology.
I ROUGHLY: There is a metric on cadlag path space which does a better job of

measuring how “close" two paths are than e.g. the uniform functional metric.
I This metric induces a topology (the Skorokhod topology). From this topology, we

build a measurable space around the space of cadlag paths.
I Think of Px, x > 0 as a family of measures on this space and we want weak

convergence “P0 := limx→0 Px” on this space.
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STARTING FROM ZERO

Assume that Z is a pssMp with ζ =∞ a.s. Moreover, suppose that the Lévy process ξ,
associated with Z through the Lamperti transform, is not a compound Poisson process.

Theorem
Under the assumption that E(ξ1) > 0, for any positive measurable function f and t > 0,

E0(f (Zt)) =
1

αE(ξ1)
E

(
1

I−∞
f

((
t

I−∞

)1/α
))

,

where I−∞ =
∫∞

0 exp{−αξs}ds.

Theorem
The limit P0 := limx→0 Px exists in the sense of convergence with respect to the Skorokhod
topology if and only if E(H+

1 ) <∞ (H+ is the ascending ladder process of ξ).
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SKETCH PROOF OF THE SECOND THEOREM

I The basic idea is to give a pathwise construction of a candidate for “(Z,P0)" then
check that there is weak convergence to it.

I Suppose we can identify ξ◦ which is a version of the underlying Lévy process ξ of
(Z,Px), x > 0 but now indexed by R rather than indexed by [0,∞), then we can
identify the pathwise candidate for “(Z,P0)" by

Z(0)
t = exp{ξ◦ϕ◦(t)}, t ≥ 0,

where

I◦t =

∫ t

−∞
eαξ
◦
s ds and ϕ◦(t) = inf{s > 0 : I◦s ≥ t}.

I If the above makes sense, then ξ◦ must “enter" from the space-time point
(−∞,−∞).

I It is the existence of an ξ◦ and “convergence" to it of ξ + log x on [−s, t] as
x→ 0, s→∞which produces the necessary and sufficient condition that
E[H+

1 ] <∞.
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CONSTRUCTION OF ξ◦

I If ξ◦ enters from (−∞,∞), then it must make first passage over any level x in a
“stationary" way.

I Specifically, we would need that (ξ◦
σ+

a
− a, a− ξ◦

σ+
a −

) is independent of a ∈ R,

where σ+
a = inf{t > −∞ : ξ◦t > a}. This motivates the following construction:

I Take the stationary overshoot/undershoot law of ξ (which requires the necessary
and sufficient condition E[H+

1 ] <∞)

χ(dy,dz) =
1

E[H+
1 ]

(
Ûξ(z)Πξ(z + dy)dz + γδ0(dy)δ0(dz)

)
, y, z ≥ 0.

I Build the two-dimensional random variable (∆,∆↑) has distribution χ. Then

ξ◦t :=

{
ξt under P∆ if t ≥ 0,
−ξ↑|t|− under P↑

∆↑
if t < 0,

where (ξ,Px), x > 0 is an independent copy of the underlying Lévy process for Z
and ξ↑ = {ξ↑t : t ≥ 0} under P↑x is an independent copy of the process ξ
conditioned to stay positive.

I Hidden catch: Before constructing the entrance of Z from 0, we need to construct
the entrance of ξ↑ from 0.
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) is independent of a ∈ R,

where σ+
a = inf{t > −∞ : ξ◦t > a}. This motivates the following construction:

I Take the stationary overshoot/undershoot law of ξ (which requires the necessary
and sufficient condition E[H+

1 ] <∞)

χ(dy,dz) =
1

E[H+
1 ]

(
Ûξ(z)Πξ(z + dy)dz + γδ0(dy)δ0(dz)

)
, y, z ≥ 0.

I Build the two-dimensional random variable (∆,∆↑) has distribution χ. Then

ξ◦t :=

{
ξt under P∆ if t ≥ 0,
−ξ↑|t|− under P↑

∆↑
if t < 0,

where (ξ,Px), x > 0 is an independent copy of the underlying Lévy process for Z
and ξ↑ = {ξ↑t : t ≥ 0} under P↑x is an independent copy of the process ξ
conditioned to stay positive.

I Hidden catch: Before constructing the entrance of Z from 0, we need to construct
the entrance of ξ↑ from 0.
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RECURRENT EXTENSION

I The previous construction has insisted that Z is a pssMp with ζ =∞ a.s. But what
about the case that ζ <∞ a.s.

I We can say something about the case that ζ <∞ a.s. and Xζ− = 0.

I A cadlag strong Markov process,
→
Z := {

→
Z t: t ≥ 0}with probabilities {

→
Px, x ≥ 0},

is a recurrent extension of Z if, for each x > 0, the origin is not an absorbing state
→
P x-almost surely and {

→
Z

t∧
→
ζ

: t ≥ 0} under
→
P x has the same law as (Z,Px), where

→
ζ = inf{t > 0 :

→
Zt= 0}.

Theorem
If ζ <∞ a.s. and Xζ− = 0, then there exists a unique recurrent extension of Z which leaves 0
continuously if and only if there exists a β ∈ (0, α) such

E(eβξ1 ) = 1.

Here, as usual, α is the index of self-similarity.
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§6. Real valued self-similar Markov processes
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I So far we only spoke about [0,∞).
I What can we say about R-valued self-similar Markov processes.
I This requires us to first investigate Markov Additive (Lévy) Processes



50/ 125

§1. §2. §3. §4. §5. §6. §7. §8. §9. §10. §11. §12. §13. References

I So far we only spoke about [0,∞).
I What can we say about R-valued self-similar Markov processes.
I This requires us to first investigate Markov Additive (Lévy) Processes



50/ 125

§1. §2. §3. §4. §5. §6. §7. §8. §9. §10. §11. §12. §13. References

I So far we only spoke about [0,∞).
I What can we say about R-valued self-similar Markov processes.
I This requires us to first investigate Markov Additive (Lévy) Processes



51/ 125

§1. §2. §3. §4. §5. §6. §7. §8. §9. §10. §11. §12. §13. References

MARKOV ADDITIVE PROCESSES (MAPS)

I E is a finite state space
I (J(t))t≥0 is a continuous-time, irreducible Markov chain on E
I process (ξ, J) in R× E is called a Markov additive process (MAP) with probabilities

Px,i, x ∈ R, i ∈ E, if, for any i ∈ E, s, t ≥ 0: Given {J(t) = i},

(ξ(t + s)− ξ(t), J(t + s)) d
= (ξ(s), J(s)) with law P0,i.
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PATHWISE DESCRIPTION OF A MAP

The pair (ξ, J) is a Markov additive process if and only if, for each i, j ∈ E,

I there exist a sequence of iid Lévy processes (ξn
i )n≥0

I and a sequence of iid random variables (Un
ij)n≥0, independent of the chain J,

I such that if T0 = 0 and (Tn)n≥1 are the jump times of J,
the process ξ has the representation

ξ(t) = 1(n>0)(ξ(Tn−) + Un
J(Tn−),J(Tn)) + ξn

J(Tn)(t− Tn),

for t ∈ [Tn,Tn+1), n ≥ 0.
I [Exercise!] Show that the property above implies the definition on the previous

slide.
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CHARACTERISTICS OF A MAP

I Denote the transition rate matrix of the chain J by Q = (qij)i,j∈E.
I For each i ∈ E, the Laplace exponent of the Lévy process ξi will be written ψi

(when it exists).

I For each pair of i, j ∈ E with i 6= j, define the Laplace transform Gij(z) = E(ezUij ) of
the jump distribution Uij (when it exists).

I Otherwise define Ui,i ≡ 0, for each i ∈ E.
I Write G(z) for the N × N matrix whose (i, j)th element is Gij(z).
I Let

Ψ(z) = diag(ψ1(z), . . . , ψN(z)) + Q ◦ G(z),

(when it exists), where ◦ indicates elementwise multiplication.
I The matrix exponent of the MAP (ξ, J) is given by

E0,i(ezξ(t); J(t) = j) =
(
eΨ(z)t)

i,j, i, j ∈ E,

(when it exists).
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LAMPERTI-KIU TRANSFORM

I Take J to be irreducible on E = {1,−1}.
I Let

Zt = |x|eξ(τ(|x|−αt))J(τ(|x|−αt)) 0 ≤ t < T0,

where

τ(t) = inf
{

s > 0 :

∫ s

0
exp(αξ(u))du > t

}
and

T0 = |x|−α
∫ ∞

0
eαξ(u)du.

I Then Zt is a real-valued self-similar Markov process in the sense that the law of
(cZtc−α : t ≥ 0) under Px is Pcx.

I The converse (within a special class of rssMps) is also true.
I [Exercise!] Explain what happens if e.g. J is an absorbing Markov Chain on
{1,−1}with {1} as an absorbing state?
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ENTRANCE AT ZERO

I Given the Lamperti-Kiu representation

Zt = eξ(τ(|x|−αt))+log |x|J(τ(|x|−αt)) 0 ≤ t < T0,

it is clear that we can think of a similar construction from zero to the case of
pssMp.

I We need to construct a stationary version of the pair (ξ, J) which is indexed by R
and pinned at space-time point (−∞,∞).

I Just like the theory of Lévy processes, by observing the range of the process (ξt, Jt)

t ≥ 0, only at the points of its new suprema, we see a process (H+
t , J

+
t ), t ≥ 0,

which is also a MAP, where H+ is has increasing paths.

Theorem
Suppose that J is irreducible.
Then the limit P0 := lim|x|→0 Px exists in the sense of convergence with respect to the
Skorokhod topology if and only if E1(H+

1 ) + E−1(H+
1 ) <∞, and otherwise limit does not

exist.
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AN α-STABLE PROCESS IS A RSSMP

I An α-stable process up to absorption in the origin is a rssMp.
I When α ∈ (0, 1], the process never hits the origin a.s.
I When α ∈ (1, 2), the process is absorbs at the origin a.s.
I The matrix exponent of the underlying MAP is given by:

Γ(α− z)Γ(1 + z)

Γ(αρ̂− z)Γ(1− αρ̂+ z)
−

Γ(α− z)Γ(1 + z)

Γ(αρ̂)Γ(1− αρ̂)

−
Γ(α− z)Γ(1 + z)

Γ(αρ)Γ(1− αρ)

Γ(α− z)Γ(1 + z)

Γ(αρ− z)Γ(1− αρ+ z)

 ,
for Re(z) ∈ (−1, α).
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ESSCHER TRANSFORM FOR MAPS

I If Ψ(z) is well defined then it has a real simple eigenvalue χ(z), which is larger
than the real part of all its other eigenvalues.

I Furthermore, the corresponding right-eigenvector v(z) = (v1(z), · · · , vN(z)) has
strictly positive entries and may be normalised such that π · v(z) = 1.

Theorem
Let Gt = σ{(ξ(s), J(s)) : s ≤ t}, t ≥ 0, and

Mt := eγξ(t)−χ(γ)t vJ(t)(γ)

vi(γ)
, t ≥ 0,

for some γ ∈ R such that χ(γ) is defined. Then, Mt, t ≥ 0, is a unit-mean martingale.
Moreover, under the change of measure

dPγ0,i
∣∣∣
Gt

= Mt dP0,i
∣∣
Gt
, t ≥ 0,

the process (ξ, J) remains in the class of MAPs with new exponent given by

Ψγ(z) = ∆v(γ)−1Ψ(z + γ)∆v(γ)− χ(γ)I.

Here, I is the identity matrix and ∆v(γ) = diag(v(γ)).
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ESSCHER AND DRIFT

I Suppose that χ is defined in some open interval D of R, then, it is smooth and
convex on D.

I Since Ψ(0) = −Q, if, moreover, J is irreducible, we always have χ(0) = 0 and
v(0) = (1, · · · , 1). So 0 ∈ D and χ′(0) is well defined and finite.

I With all of the above

lim
t→∞

ξt

t
= χ′(0) a.s.

I [Exercise!] Show that in the above circumstances, if χ′(0) < 0, then the associated
ssMp hits the origin in an almost surely finite time, independently of its point of
issue x ∈ R.
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ESSCHER AND THE STABLE-MAP

I For the MAP that underlies the stable process D = (−1, α), it can be checked that
detΨ(α− 1) = 0 i.e. χ(α− 1) = 0, which makes

Ψ◦(z) = ∆−1Ψ(z + α− 1)∆

=


Γ(1− z)Γ(α+ z)

Γ(1− αρ− z)Γ(αρ+ z)
−

Γ(1− z)Γ(α+ z)

Γ(αρ)Γ(1− αρ)

−
Γ(1− z)Γ(α+ z)

Γ(αρ̂)Γ(1− αρ̂)

Γ(1− z)Γ(α+ z)

Γ(1− αρ̂− z)Γ(αρ̂+ z)

 ,

where ∆ = diag(sin(παρ̂), sin(παρ)).
I When α ∈ (0, 1), χ′(0) > 0 (because the stable process never touches the origin

a.s.) and Ψ◦(z)-MAP drifts to −∞
I When α ∈ (1, 2), χ′(0) < 0 (because the stable process touches the origin a.s.) and

Ψ◦(z)-MAP drifts to +∞.
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I When α ∈ (1, 2), χ′(0) < 0 (because the stable process touches the origin a.s.) and

Ψ◦(z)-MAP drifts to +∞.



59/ 125

§1. §2. §3. §4. §5. §6. §7. §8. §9. §10. §11. §12. §13. References

ESSCHER AND THE STABLE-MAP

I For the MAP that underlies the stable process D = (−1, α), it can be checked that
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RIESZ-BOGDAN-ZAK TRANSFORM

Theorem (Riesz–Bogdan–Zak transform)
Suppose that X is an α-stable process as outlined in the introduction. Define

η(t) = inf{s > 0 :

∫ s

0
|Xu|−2αdu > t}, t ≥ 0.

Then, for all x ∈ R\{0}, (−1/Xη(t))t≥0 under Px is equal in law to (X,P◦−1/x), where

dP◦x
dPx

∣∣∣∣
Ft

=

(
sin(παρ) + sin(παρ̂)− (sin(παρ)− sin(παρ̂))sgn(Xt)

sin(παρ) + sin(παρ̂)− (sin(παρ)− sin(παρ̂))sgn(x)

) ∣∣∣∣Xt

x

∣∣∣∣α−1
1(t<τ{0})

and Ft := σ(Xs : s ≤ t), t ≥ 0. Moreover, the process (X,P◦x ), x ∈ R\{0} is a self-similar
Markov process with underlying MAP via the Lamperti-Kiu transform given by Ψ◦(z).
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WHAT IS THE Ψ◦-MAP?

Thinking of the affect on the long term behaviour of the underlying MAP of the
Esscher transform
I When α ∈ (0, 1), (X,P◦x ), x 6= 0 has the law of the the stable process conditioned

to absorb continuously at the origin in the sense,

P◦y (A) = lim
a→0

Py(A, t < T0 | τ(−a,a) <∞),

for A ∈ Ft = σ(Xs, s ≤ t),
τ(−a,a) = inf{t > 0 : |Xt| < a} and T0 = inf{t > 0 : Xt = 0}.

I When α ∈ (1, 2), (X,P◦x ), x 6= 0 has the law of the stable process conditioned to
avoid the origin in the sense

P◦y (A) = lim
s→∞

Py(A |T0 > t + s),

for A ∈ Ft = σ(Xs, s ≤ t) and T0 = inf{t > 0 : Xt = 0}.
[Exercise!] Explain this change in behaviour heuristically.
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§7. Isotropic stable processes in dimension d ≥ 2 seen as Lévy processes
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ISOTROPIC α-STABLE PROCESS IN DIMENSION d ≥ 2

For d ≥ 2, let X := (Xt : t ≥ 0) be a d-dimensional isotropic stable process.

I X has stationary and independent increments (it is a Lévy process)
I Characteristic exponent Ψ(θ) = − logE0(eiθ·X1 ) satisfies

Ψ(θ) = |θ|α, θ ∈ R.

I Necessarily, α ∈ (0, 2], we exclude 2 as it pertains to the setting of a Brownian
motion.

I Associated Lévy measure satisfies, for B ∈ B(Rd),

Π(B) =
2αΓ((d + α)/2)

πd/2|Γ(−α/2)|

∫
B

1
|y|α+d dy

=
2α−1Γ((d + α)/2)Γ(d/2)

πd
∣∣Γ(−α/2)

∣∣
∫
Sd−1

rd−1σ1(dθ)
∫ ∞

0
1B(rθ)

1
rα+d dr,

where σ1(dθ) is the surface measure on Sd−1 normalised to have unit mass.

I X is Markovian with probabilities denoted by Px, x ∈ Rd
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ISOTROPIC α-STABLE PROCESS IN DIMENSION d ≥ 2

I Stable processes are also self-similar. For c > 0 and x ∈ Rd \ {0},

under Px, the law of (cXc−αt, t ≥ 0) is equal to Pcx.

I Isotropy means, for all orthogonal transformations (e.g. rotations) U : Rd 7→ Rd

and x ∈ Rd,
under Px, the law of (UXt, t ≥ 0) is equal to PUx.

I If (St, t ≥ 0) is a stable subordinator with index α/2 (a Lévy process with Laplace
exponent −t−1 logE[e−λSt ] = λα) and (Bt, t ≥ 0) for a standard (isotropic)
d-dimensional Brownian motion, then it is known that Xt :=

√
2BSt , t ≥ 0, is a

stable process with index α.

E[eiθXt ] = E
[

e−θ
2St
]

= e−|θ|
αt, θ ∈ R.

[Exercise!] Show, more generally, that if (Λt, t ≥ 0) is a subordinator and (Yt, t ≥ 0) is a
Lévy process (in Rd), then (YΛt , t ≥ 0) is a Lévy process in Rd.
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SAMPLE PATH, α = 1.7
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SAMPLE PATH, α = 1.5

3.0 2.5 2.0 1.5 1.0 0.5 0.0

1.
0

0.
5

0.
0

0.
5

1.
0

X

Y



68/ 125

§1. §2. §3. §4. §5. §6. §7. §8. §9. §10. §11. §12. §13. References

SAMPLE PATH, α = 1.2
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SAMPLE PATH, α = 0.9
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SOME CLASSICAL PROPERTIES: TRANSIENCE

We are interested in the potential measure

U(x,dy) =

∫ ∞
0

Px(Xt ∈ dy)dt =

(∫ ∞
0

pt(y− x)dt
)

dy, x, y ∈ R.

Note: stationary and independent increments means that it suffices to consider
U(0,dy).

Theorem
The potential of X is absolutely continuous with respect to Lebesgue measure, in which case, its
density in collaboration with spatial homogeneity satisfies U(x,dy) = u(y− x)dy, x, y ∈ Rd,
where

u(z) = 2−απ−d/2 Γ((d− α)/2)

Γ(α/2)
|z|α−d, z ∈ Rd.

In this respect X is transient. It can be shown moreover that

lim
t→∞

|Xt| =∞

almost surely
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PROOF OF THEOREM

Now note that, for bounded and measurable f : Rd 7→ Rd,

E
[∫ ∞

0
f (Xt)dt

]
= E

[∫ ∞
0

f (
√

2BSt )dt
]

=

∫ ∞
0

ds
∫ ∞

0
dtP(St ∈ ds)

∫
R
P(Bs ∈ dx)f (

√
2x)

=
1

Γ(α/2)πd/22d

∫
R

dy
∫ ∞

0
ds e−|y|

2/4ss−1+(α−d)/2f (y)

=
1

2αΓ(α/2)πd/2

∫
R

dy |y|(α−d)
∫ ∞

0
du e−uu−1+(d−α/2)f (y)

=
Γ((d− α)/2)

2αΓ(α/2)πd/2

∫
R

dy |y|(α−d)f (y).
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SOME CLASSICAL PROPERTIES: POLARITY

I Kesten-Bretagnolle integral test, in dimension d ≥ 2,∫
R

Re
(

1
1 + Ψ(z)

)
dz =

∫
R

1
1 + |z|α

dz ∝
∫
R

1
1 + rα

rd−1drσ1(dθ) =∞.

I Px(τ{y} <∞) = 0, for x, y ∈ Rd.
I i.e. the stable process cannot hit individual points almost surely.
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§8. Isotropic stable processes in dimension d ≥ 2 seen as a self-similar Markov
process
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THE RADIAL PART OF A STABLE PROCESS

Lemma
The process (|Xt|, t ≥ 0) is strong Markov and self-similar.

I Temporarily write (X(x)
t , t ≥ 0) in place of (X,Px)

I Markov property of X tells us that, for s, t ≥ 0,

X(x)
t+s = X̃

(X(x)
t )

s ,

where X̃(x) is an independent copy of X(x).
I Isotropy implies that

|X(x)
t+s| = |X̃

(y)
s |y=X(x)

t
=d |X̃(z)

s |z=(|X(x)
t |,0,0··· ,0)

I Hence Markov property holds, strong Markov property (and Feller property) can
be developed from this argument

I Self-similarity of |X| follows directly from the self-similarity of X.
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LAMPERTI-TRANSFORM OF |X|

Theorem (Caballero-Pardo-Perez (2011))
For the pssMp constructed using the radial part of an isotropic d-dimensional stable process,
the underlying Lévy process, ξ that appears through the Lamperti has characteristic exponent
given by

Ψ(z) = 2α
Γ( 1

2 (−iz + α))

Γ(− 1
2 iz)

Γ( 1
2 (iz + d))

Γ( 1
2 (iz + d− α))

, z ∈ R.

I The fact that limt→∞ |Xt| =∞ implies that limt→∞ ξt =∞
I If we write ψ(λ) = −Ψ(−iλ) = logE[eλX1 ] for the Laplace exponent of ξ, then it

is well defined for λ ∈ (−d, α) with roots at λ = 0 and λ = α− d.
I Note that

exp((α− d)ξt), t ≥ 0,

is a martingale
I Recalling that |Xt| = exp(ξϕt ) and that ϕt is an almost surely finite stopping time

(because limt→∞ ξt =∞) we can deduce that

|Xt|α−d, t ≥ 0,

is a martingale (effectively invoking an Esscher transform to ψ).
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CONDITIONED STABLE PROCESS

I We can define the change of measure

dP◦x
dPx

∣∣∣∣
Ft

=
|Xt|α−d

|x|α−d , t ≥ 0, x 6= 0

I Suppose that f is a bounded measurable function then, for all c > 0,

E◦x [f (cXc−αs, s ≤ t)] = Ex

[
|cXc−αt|α−d

|cx|d−α
f (cXc−αs, s ≤ t)

]

= Ecx

[
|Xt|α−d

|cx|d−α
f (Xs, s ≤ t)

]
= E◦cx[f (Xs, , s ≤ t)]

I Markovian, isotropy and self-similarity properties pass through to (X,P◦x ), x 6= 0.
I Similarly (|X|,P◦x ), x 6= 0 is a positive self-similar Markov process.
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CONDITIONED STABLE PROCESS

I It turns out that (X,P◦x ), x 6= 0, corresponds to the stable process conditioned to be
continuously absorbed at the origin.

I More precisely, for A ∈ σ(Xs, s ≤ t), if we set {0} to be ‘cemetery’ state and
k = inf{t > 0 : Xt = 0}, then

P◦x (A, t < k) = lim
a↓0

Px(A, t < k|τ⊕a <∞),

where τ⊕a = inf{t > 0 : |Xt| < a}.
I In light of the associated Esscher transform on ξ, we note that the Lamperti

transform of (|X|,P◦x ), x 6= 0, corresponds to the Lévy process with characteristic
exponent

Ψ◦(z) = 2α
Γ( 1

2 (−iz + d))

Γ(− 1
2 (iz + α− d))

Γ( 1
2 (iz + α))

Γ( 1
2 iz)

, z ∈ R.

I Given the pathwise interpretation of (X,P◦x ), x 6= 0, it follows immediately that
limt→∞ ξt = −∞, P◦x almost surely, for any x 6= 0.
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Rd-SELF-SIMILAR MARKOV PROCESSES

Definition
A Rd-valued regular Feller process Z = (Zt, t ≥ 0) is called a Rd-valued self-similar
Markov process if there exists a constant α > 0 such that, for any x > 0 and c > 0,

the law of (cZc−αt, t ≥ 0) under Px is Pcx,

where Px is the law of Z when issued from x.

I Same definition as before except process now lives on Rd.
I Is there an analogue of the Lamperti representation?
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LAMPERTI–KIU TRANSFORM

In order to introduce the analogue of the Lamperti transform in d-dimensions, we need
to remind ourselves of what we mean by a Markov additive process in this context.

Definition
An R× E valued regular Feller process (ξ,Θ) = ((ξt,Θt) : t ≥ 0) with probabilities
Px,θ , x ∈ R, θ ∈ E, and cemetery state (−∞, †) is called a Markov additive process (MAP)
if Θ is a regular Feller process on E with cemetery state † such that, for every bounded
measurable function f : (R ∪ {−∞})× (E ∪ {†})→ R, t, s ≥ 0 and (x, θ) ∈ R× E, on
{t < ς},

Ex,θ[f (ξt+s − ξt,Θt+s)|σ((ξu,Θu), u ≤ t)] = E0,Θt [f (ξs,Θs)],

where ς = inf{t > 0 : Θt = †}.

I Roughly speaking, one thinks of a MAP as a ‘Markov modulated’ Lévy process
I It has ‘conditional stationary and independent increments’
I Think of the E-valued Markov process Θ as modulating the characteristics of ξ

(which would otherwise be a Lévy processes).
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LAMPERTI–KIU TRANSFORM

Theorem
Fix α > 0. The process Z is a ssMp with index α if and only if there exists a (killed) MAP,
(ξ,Θ) on R× Sd−1 such that

Zt := eξϕ(t)Θϕ(t) , t ≤ Iς ,

where

ϕ(t) = inf
{

s > 0 :

∫ s

0
eαξu du > t

}
, t ≤ Iς ,

and Iς =
∫ ς

0 eαξs ds is the lifetime of Z until absorption at the origin. Here, we interpret
exp{−∞} × † := 0 and inf ∅ :=∞.

I In the representation (??), the time to absorption in the origin,

ζ = inf{t > 0 : Zt = 0},

satisfies ζ = Iς .
I Note x ∈ Rd if and only if

x = (|x|,Arg(x)),

where Arg(x) = x/|x| ∈ Sd−1. The Lamperti–Kiu decomposition therefore gives
us a d-dimensional skew product decomposition of self-similar Markov processes.
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LAMPERTI-STABLE MAP

I The stable process X is an Rd-valued self-similar Markov process and therefore fits
the description above

I How do we characterise its underlying MAP (ξ,Θ)?
I We already know that |X| is a positive similar Markov process and hence ξ is a

Lévy process, albeit corollated to Θ

I What properties does Θ and what properties to the pair (ξ,Θ) have?
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MAP ISOTROPY

Theorem
Suppose (ξ,Θ) is the MAP underlying the stable process. Then ((ξ,U−1Θ),Px,θ) is equal in
law to ((ξ,Θ),Px,U−1θ), for every orthogonal d-dimensional matrix U and x ∈ Rd, θ ∈ Sd−1.

Proof.
First note that ϕ(t) =

∫ t
0 |Xu|−αdu. It follows that

(ξt,Θt) = (log |XA(t)|, Arg(XA(t))), t ≥ 0,

where the random times A(t) = inf
{

s > 0 :
∫ s

0 |Xu|−αdu > t
}

are stopping times in
the natural filtration of X.

Now suppose that U is any orthogonal d-dimensional matrix and let X′ = U−1X. Since
X is isotropic and since |X′| = |X|, and Arg(X′) = U−1Arg(X), we see that, for x ∈ R
and θ ∈ Sd−1

((ξ,U−1Θ),Plog |x|,θ) = ((log |XA(·)|, U−1Arg(XA(·))),Px)

d
= ((log |XA(·)|, Arg(XA(·))),PU−1x)

= ((ξ,Θ),Plog |x|,U−1θ)

as required.
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MAP CORROLATION

I We will work with the increments ∆ξt = ξt − ξt− ∈ R, t ≥ 0,

Theorem (Bo Li, Victor Rivero, Bertoin-Werner (1996))
Suppose that f is a bounded measurable function on [0,∞)× R× R× Sd−1 × Sd−1 such that
f (·, ·, 0, ·, ·) = 0, then, for all θ ∈ Sd−1,

E0,θ

∑
s>0

f (s, ξs−,∆ξs,Θs−,Θs)


=

∫ ∞
0

∫
R

∫
Sd−1

∫
Sd−1

∫
R

Vθ(ds,dx,dϑ)σ1(dφ)dy
c(α)eyd

|eyφ− ϑ|α+d f (s, x, y, ϑ, φ),

where

Vθ(ds, dx,dϑ) = P0,θ(ξs ∈ dx,Θs ∈ dϑ)ds, x ∈ R, ϑ ∈ Sd−1, s ≥ 0,

is the space-time potential of (ξ,Θ) under P0,θ , σ1(φ) is the surface measure on Sd−1
normalised to have unit mass and

c(α) = 2α−1π−dΓ((d + α)/2)Γ(d/2)/
∣∣Γ(−α/2)

∣∣.
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MAP OF (X,P◦· )
I Recall that (|Xt|α−d, t ≥ 0), is a martingale.
I Informally, we should expect Lh = 0, where h(x) = |x|α−d and L is the

infinitesimal generator of the stable process, which has action

Lf (x) = a · ∇f (x) +

∫
Rd

[f (x + y)− f (x)− 1(|y|≤1)y · ∇f (x)]Π(dy), |x| > 0,

for appropriately smooth functions.
I Associated to (X,Px), x 6= 0 is the generator

L◦f (x) = lim
t↓0

E◦x [f (Xt)]− f (x)

t
= lim

t↓0

Ex[|Xt|α−df (Xt)]− |x|α−df (x)

|x|α−dt
,

I That is to say

L◦f (x) =
1

h(x)
L(hf )(x),

I Straightforward algebra using Lh = 0 gives us

L◦f (x) = a · ∇f (x) +

∫
Rd

[f (x + y)− f (x)− 1(|y|≤1)y · ∇f (x)]
h(x + y)

h(x)
Π(dy), |x| > 0

I Equivalently, the rate at which (X,P◦x ), x 6= 0 jumps given by

Π◦(x,B) :=
2α−1Γ((d + α)/2)Γ(d/2)

πd
∣∣Γ(−α/2)

∣∣
∫
Sd−1

dσ1(φ)

∫
(0,∞)

1B(rφ)
dr

rα+1

|x + rφ|α−d

|x|α−d ,

for |x| > 0 and B ∈ B(Rd).
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MAP OF (X,P◦· )

Theorem
Suppose that f is a bounded measurable function on [0,∞)× R× R× Sd−1 × Sd−1 such that
f (·, ·, 0, ·, ·) = 0, then, for all θ ∈ Sd−1,

E◦0,θ

∑
s>0

f (s, ξs−,∆ξs,Θs−,Θs)


=

∫ ∞
0

∫
R

∫
Sd−1

∫
Sd−1

∫
R

V◦θ (ds,dx,dϑ)σ1(dφ)dy
c(α)eyd

|eyφ− ϑ|α+d f (s, x,−y, ϑ, φ),

where

V◦θ (ds, dx,dϑ) = P◦0,θ(ξs ∈ dx,Θs ∈ dϑ)ds, x ∈ R, ϑ ∈ Sd−1, s ≥ 0,

is the space-time potential of (ξ,Θ) under P◦0,θ .

Comparing the right-hand side above with that of the previous Theorem, it now
becomes immediately clear that the the jump structure of (ξ,Θ) under P◦x,θ , x ∈ R,
θ ∈ Sd−1, is precisely that of (−ξ,Θ) under Px,θ , x ∈ R, θ ∈ Sd−1.
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§9. Riesz–Bogdan–Żak transform



88/ 125

§1. §2. §3. §4. §5. §6. §7. §8. §9. §10. §11. §12. §13. References

RIESZ–BOGDAN–ŻAK TRANSFORM

I Define the transformation K : Rd 7→ Rd, by

Kx =
x
|x|2

, x ∈ Rd\{0}.

I This transformation inverts space through the unit sphere {x ∈ Rd : |x| = 1}.
I Write x ∈ Rd in skew product form x = (|x|,Arg(x)), and note that

Kx = (|x|−1,Arg(x)), x ∈ Rd\{0},

showing that the K-transform ‘radially inverts’ elements of Rd through Sd−1.
I In particular K(Kx) = x

Theorem (d-dimensional Riesz–Bogdan–Żak Transform, d ≥ 2)
Suppose that X is a d-dimensional isotropic stable process with d ≥ 2. Define

η(t) = inf{s > 0 :

∫ s

0
|Xu|−2αdu > t}, t ≥ 0. (3)

Then, for all x ∈ Rd\{0}, (KXη(t), t ≥ 0) under Px is equal in law to (X,P◦Kx).
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Suppose that X is a d-dimensional isotropic stable process with d ≥ 2. Define

η(t) = inf{s > 0 :

∫ s

0
|Xu|−2αdu > t}, t ≥ 0. (3)

Then, for all x ∈ Rd\{0}, (KXη(t), t ≥ 0) under Px is equal in law to (X,P◦Kx).



88/ 125

§1. §2. §3. §4. §5. §6. §7. §8. §9. §10. §11. §12. §13. References

RIESZ–BOGDAN–ŻAK TRANSFORM
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PROOF OF RIESZ–BOGDAN–ŻAK TRANSFORM
We give a proof, different to the original proof of Bogdan and Żak (2010).
I Recall that Xt = eξϕ(t)Θϕ(t), where∫ ϕ(t)

0
eαξu du = t, t ≥ 0.

I Note also that, as an inverse,∫ η(t)

0
|Xu|−2αdu = t, t ≥ 0.

I Differentiating,

dϕ(t)
dt

= e−αξϕ(t) and
dη(t)

dt
= e2αξϕ◦η(t) , η(t) < τ{0}.

and chain rule now tells us that
d(ϕ ◦ η)(t)

dt
=

dϕ(s)
ds

∣∣∣∣
s=η(t)

dη(t)
dt

= eαξϕ◦η(t) .

I Said another way, ∫ ϕ◦η(t)

0
e−αξu du = t, t ≥ 0,

or

ϕ ◦ η(t) = inf{s > 0 :

∫ s

0
e−αξu du > t}
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I Recall that Xt = eξϕ(t)Θϕ(t), where∫ ϕ(t)

0
eαξu du = t, t ≥ 0.

I Note also that, as an inverse,∫ η(t)

0
|Xu|−2αdu = t, t ≥ 0.

I Differentiating,

dϕ(t)
dt

= e−αξϕ(t) and
dη(t)

dt
= e2αξϕ◦η(t) , η(t) < τ{0}.

and chain rule now tells us that
d(ϕ ◦ η)(t)

dt
=

dϕ(s)
ds

∣∣∣∣
s=η(t)

dη(t)
dt

= eαξϕ◦η(t) .

I Said another way, ∫ ϕ◦η(t)

0
e−αξu du = t, t ≥ 0,

or

ϕ ◦ η(t) = inf{s > 0 :

∫ s

0
e−αξu du > t}



89/ 125

§1. §2. §3. §4. §5. §6. §7. §8. §9. §10. §11. §12. §13. References

PROOF OF RIESZ–BOGDAN–ŻAK TRANSFORM
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PROOF OF RIESZ–BOGDAN–ŻAK TRANSFORM

I Next note that
KXη(t) = e−ξϕ◦η(t)Θϕ◦η(t), t ≥ 0,

and we have just shown that

ϕ ◦ η(t) = inf{s > 0 :

∫ s

0
e−αξu du > t}.

I It follows that (KXη(t), t ≥ 0) is a self-similar Markov process with underlying
MAP (−ξ,Θ)

I We have also seen that (X,P◦x ), x 6= 0, is also a self-similar Markov process with
underlying MAP given by (−ξ,Θ).

I The statement of the theorem follows.
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§10. Hitting spheres
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PORT’S SPHERE HITTING PROBABILITY

I Recall that a stable process cannot hit points
I We are ultimately interested in the distribution of the position of X on first hitting

of the sphere Sd−1 = {x ∈ Rd : |x| = 1}.
I Define

τ� = inf{t > 0 : |Xt| = 1}.

I We start with an easier result

Theorem (Port (1969))
If α ∈ (1, 2), then

Px(τ� <∞)

=
Γ
(
α+d

2 − 1
)

Γ
(
α
2

)
Γ
(

d
2

)
Γ(α− 1)

 2F1((d− α)/2, 1− α/2, d/2; |x|2) 1 > |x|

|x|α−d
2F1((d− α)/2, 1− α/2, d/2; 1/|x|2) 1 ≤ |x|.

Otherwise, if α ∈ (0, 1], then Px(τ� =∞) = 1 for all x ∈ Rd.
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PROOF OF PORT’S HITTING PROBABILITY

I If (ξ,Θ) is the underlying MAP then

Px(τ� <∞) = Plog |x|(τ
{0} <∞) = P0(τ{log(1/|x|)} <∞),

where τ{z} = inf{t > 0 : ξt = z}, z ∈ R. (Note, the time change in the
Lamperti–Kiu representation does not level out.)

I Using Sterling’s formula, we have, |Γ(x + iy)| =
√

2πe−
π
2 |y||y|x−

1
2 (1 + o(1)), for

x, y ∈ R, as y→∞, uniformly in any finite interval −∞ < a ≤ x ≤ b <∞.
Hence,

1
Ψ(z)

=
Γ(− 1

2 iz)

Γ( 1
2 (−iz + α))

Γ( 1
2 (iz + d− α))

Γ( 1
2 (iz + d))

∼ |z|−α

uniformly on R as |z| → ∞.
I From Kesten-Brestagnolle integral test we conclude that (1 + Ψ(z))−1 is

integrable and each sphere Sd−1 can be reached with positive probability from
any x with |x| 6= 1 if and only if α ∈ (1, 2).
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PROOF OF PORT’S HITTING PROBABILITY
I Note that

Γ( 1
2 (−iz + α))

Γ(− 1
2 iz)

Γ( 1
2 (iz + d))

Γ( 1
2 (iz + d− α))

so that Ψ(−iz), is well defined for Re(z) ∈ (−d, α) with roots at 0 and α− d.
I We can use the identity

Px(τ� <∞) =
uξ(log(1/|x|))

uξ(0)
,

providing

uξ(x) =
1

2πi

∫
c+iR

e−zx

Ψ(−iz)
dz, x ∈ R,

for c ∈ (α− d, 0).
I Build the contour integral around simple poles at {−2n− (d− α) : n ≥ 0}.

1
2πi

∫ c+iR

c−iR

e−zx

Ψ(−iz)
dz

= −
1

2πi

∫
c+Reiθ :θ∈(π/2,3π/2)

e−zx

Ψ(−iz)
dz

+
∑

1≤n≤bRc
Res

(
e−zx

Ψ(−iz)
; z = −2n− (d− α)

)
.

R

−R

γR

c

0

−2− (d− α)

−(d− α)
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PROOF OF PORT’S HITTING PROBABILITY
I Now fix x ≤ 0 and recall estimate |1/Ψ(−iz)| / |z|−α. The assumption x ≤ 0 and

the fact that the arc length of {c + Reiθ : θ ∈ (π/2, 3π/2)} is πR, gives us∣∣∣∣∣
∫

c+Reiθ :θ∈(π/2,3π/2)

e−xz

Ψ(−iz)
dz

∣∣∣∣∣ ≤ CR−(α−1) → 0

as R→∞ for some constant C > 0.
I Moreover,

uξ(x) =
∑
n≥1

Res
(

e−zx

Ψ(−iz)
; z = −2n− (d− α)

)

=
∞∑
0

(−1)n+1 Γ(n + (d− α)/2)

Γ(−n + α/2)Γ(n + d/2)

e2nx

n!

= ex(d−α) Γ((d− α)/2)

Γ(α/2)Γ(d/2)
2F1((d− α)/2, 1− α/2, d/2; e2x),

Which also gives a value for uξ(0).
I Hence, for 1 ≤ |x|,

Px(τ� <∞) =
uξ(log(1/|x|))

uξ(0)

=
Γ
(
α+d

2 − 1
)

Γ
(
α
2

)
Γ
(

d
2

)
Γ(α− 1)

|x|α−d
2F1((d− α)/2, 1− α/2, d/2; |x|−2).



95/ 125

§1. §2. §3. §4. §5. §6. §7. §8. §9. §10. §11. §12. §13. References

PROOF OF PORT’S HITTING PROBABILITY
I Now fix x ≤ 0 and recall estimate |1/Ψ(−iz)| / |z|−α. The assumption x ≤ 0 and

the fact that the arc length of {c + Reiθ : θ ∈ (π/2, 3π/2)} is πR, gives us∣∣∣∣∣
∫

c+Reiθ :θ∈(π/2,3π/2)

e−xz

Ψ(−iz)
dz

∣∣∣∣∣ ≤ CR−(α−1) → 0

as R→∞ for some constant C > 0.
I Moreover,

uξ(x) =
∑
n≥1

Res
(

e−zx

Ψ(−iz)
; z = −2n− (d− α)

)

=
∞∑
0

(−1)n+1 Γ(n + (d− α)/2)

Γ(−n + α/2)Γ(n + d/2)

e2nx

n!

= ex(d−α) Γ((d− α)/2)

Γ(α/2)Γ(d/2)
2F1((d− α)/2, 1− α/2, d/2; e2x),

Which also gives a value for uξ(0).
I Hence, for 1 ≤ |x|,

Px(τ� <∞) =
uξ(log(1/|x|))

uξ(0)

=
Γ
(
α+d

2 − 1
)

Γ
(
α
2

)
Γ
(

d
2

)
Γ(α− 1)

|x|α−d
2F1((d− α)/2, 1− α/2, d/2; |x|−2).



95/ 125

§1. §2. §3. §4. §5. §6. §7. §8. §9. §10. §11. §12. §13. References

PROOF OF PORT’S HITTING PROBABILITY
I Now fix x ≤ 0 and recall estimate |1/Ψ(−iz)| / |z|−α. The assumption x ≤ 0 and

the fact that the arc length of {c + Reiθ : θ ∈ (π/2, 3π/2)} is πR, gives us∣∣∣∣∣
∫

c+Reiθ :θ∈(π/2,3π/2)

e−xz

Ψ(−iz)
dz

∣∣∣∣∣ ≤ CR−(α−1) → 0

as R→∞ for some constant C > 0.
I Moreover,

uξ(x) =
∑
n≥1

Res
(

e−zx

Ψ(−iz)
; z = −2n− (d− α)

)

=
∞∑
0

(−1)n+1 Γ(n + (d− α)/2)

Γ(−n + α/2)Γ(n + d/2)

e2nx

n!

= ex(d−α) Γ((d− α)/2)

Γ(α/2)Γ(d/2)
2F1((d− α)/2, 1− α/2, d/2; e2x),

Which also gives a value for uξ(0).
I Hence, for 1 ≤ |x|,

Px(τ� <∞) =
uξ(log(1/|x|))

uξ(0)

=
Γ
(
α+d

2 − 1
)

Γ
(
α
2

)
Γ
(

d
2

)
Γ(α− 1)

|x|α−d
2F1((d− α)/2, 1− α/2, d/2; |x|−2).
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PROOF OF PORT’S HITTING PROBABILITY

I To deal with the case |x| < 1, we can appeal to the Riesz–Bogdan–Żak transform
to help us.

I To this end we note that, for |x| < 1, |Kx| > 1

PKx(τ� <∞) = P◦x (τ� <∞) = Ex

[
|Xτ� |α−d

|x|α−d 1(τ�<∞)

]
=

1
|x|α−d Px(τ� <∞)

I Hence plugging in the expression for |x| < 1,

Px(τ� <∞) =
Γ
(
α+d

2 − 1
)

Γ
(
α
2

)
Γ
(

d
2

)
Γ(α− 1)

2F1((d− α)/2, 1− α/2, d/2; |x|2),

thus completing the proof.
I To deal with the case x = 0, take limits in the established identity as |x| → 0.
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RIESZ REPRESENTATION OF PORT’S HITTING PROBABILITY

Theorem
Suppose α ∈ (1, 2). For all x ∈ Rd,

Px(τ� <∞) =
Γ
(
α+d

2 − 1
)

Γ
(
α
2

)
Γ
(

d
2

)
Γ(α− 1)

∫
Sd−1

|z− x|α−dσ1(dz),

where σ1(dz) is the uniform measure on Sd−1, normalised to have unit mass. In particular, for
y ∈ Sd−1, ∫

Sd−1

|z− y|α−dσ1(dz) =
Γ
(

d
2

)
Γ(α− 1)

Γ
(
α+d

2 − 1
)

Γ
(
α
2

) .
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PROOF OF RIESZ REPRESENTATION OF PORT’S HITTING PROBABILITY
I We know that |Xt − z|α−d, t ≥ 0 is a martingale.
I Hence we know that

Mt :=

∫
Sd−1

|z− Xt∧τ� |
α−dσ1(dz), t ≥ 0,

is a martingale.
I Recall that limt→∞ |Xt| = 0 and α < d and hence

M∞ := lim
t→∞

Mt =

∫
Sd−1

|z− Xτ� |
α−dσ1(dz)1(τ�<∞)

d
= C1(τ�<∞).

where, despite the randomness in Xτ� , by rotational symmetry,

C =

∫
Sd−1

|z− 1|α−dσ1(dz),

and 1 = (1, 0, · · · , 0) ∈ Rd is the ‘North Pole’ on Sd−1.
I Since M is a UI martingale, taking expectations of M∞∫

Sd−1

|z− x|α−dσ1(dz) = Ex[M0] = Ex[M∞] = CPx(τ� <∞)

I Taking limits as |x| → 0,

C = 1/P(τ� <∞) = Γ
(

d
2

)
Γ(α− 1)/Γ

(
α+d

2 − 1
)

Γ
(
α
2

)
.
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Sphere inversions
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SPHERE INVERSIONS

I Fix a point b ∈ Rd and a value r > 0.
I The spatial transformation x∗ : Rd\{b} 7→ Rd\{b}

x∗ = b +
r2

|x− b|2
(x− b),

is called an inversion through the sphere Sd−1(b, r) := {x ∈ Rd : |x− b| = r}.

b
r

x1

x∗1
x2

x∗2

Figure: Inversion relative to the sphere Sd−1(b, r).
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INVERSION THROUGH Sd−1(b, r): KEY PROPERTIES

Inversion through Sd−1(b, r)

x∗ = b +
r2

|x− b|2
(x− b),

The following can be deduced by straightforward algebra
I Self inverse

x = b + r2 (x∗ − b)

|x∗ − b|2

I Symmetry
r2 = |x∗ − b||x− b|

I Difference

|x∗ − y∗| =
r2|x− y|
|x− b||y− b|

I Differential

dx∗ =
r2d

|x− b|2d dx
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INVERSION THROUGH Sd−1(b, r): KEY PROPERTIES

I The sphere Sd−1(c,R) maps to itself under inversion through Sd−1(b, r) provided
the former is orthogonal to the latter, which is equivalent to r2 + R2 = |c− b|2.

b
c

Rr

I In particular, the area contained in the blue segment is mapped to the area in the
red segment and vice versa.
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SPHERE INVERSION WITH REFLECTION

A variant of the sphere inversion transform takes the form

x� = b−
r2

|x− b|2
(x− b),

and has properties

I Self inverse

x = b−
r2

|x� − b|2
(x� − b),

I Symmetry
r2 = |x� − b||x− b|,

I Difference

|x� − y�| =
r2|x− y|
|x− b||y− b|

.

I Differential

dx� =
r2d

|x− b|2d dx
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SPHERE INVERSION WITH REFLECTION

I Fix b ∈ Rd and r > 0. The sphere Sd−1(c,R) maps to itself through Sd−1(b, r)
providing |c− b|2 + r2 = R2.

c b

rR

I However, this time, the exterior of the sphere Sd−1(c,R) maps to the interior of the
sphere Sd−1(c,R) and vice versa. For example, the region in the exterior of
Sd−1(c,R) contained by blue boundary maps to the portion of the interior of
Sd−1(c,R) contained by the red boundary.



105/ 125

§1. §2. §3. §4. §5. §6. §7. §8. §9. §10. §11. §12. §13. References

§11. Spherical hitting distribution
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PORT’S SPHERE HITTING DISTRIBUTION

A richer version of the previous theorem:

Theorem (Port (1969))
Define the function

h�(x, y) =
Γ
(
α+d

2 − 1
)

Γ
(
α
2

)
Γ
(

d
2

)
Γ(α− 1)

||x|2 − 1|α−1

|x− y|α+d−2

for |x| 6= 1, |y| = 1. Then, if α ∈ (1, 2),

Px(Xτ� ∈ dy) = h�(x, y)σ1(dy)1(|x|6=1) + δx(dy)1(|x|=1), |y| = 1,

where σ1(dy) is the surface measure on Sd−1, normalised to have unit total mass.

Otherwise, if α ∈ (0, 1], Px(τ� =∞) = 1, for all |x| 6= 1.
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PROOF OF PORT’S SPHERE HITTING DISTRIBUTION

I Write µ�x (dz) = Px(Xτ� ∈ dz) on Sd−1 where x ∈ Rd\Sd−1.
I Recall the expression for the resolvent of the stable process in Theorem 17 which

states that, due to transience,∫ ∞
0

Px(Xt ∈ dy)dt = C(α)|x− y|α−ddy, x, y ∈ Rd,

where C(α) is an unimportant constant in the following discussion.

I The measure µ�x is the solution to the ‘functional fixed point equation’

|x− y|α−d =

∫
Sd−1

|z− y|α−dµ(dz), y ∈ Sd−1.

Note that y ∈ Sd−1, so the occupation of y from x, will at least see the the process
pass through the sphere Sd−1 somewhere first (if not y).

I With a little work, we can show it is the unique solution in the class of probability
measures.
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PROOF OF PORT’S SPHERE HITTING DISTRIBUTION
Recall, for y∗ ∈ Sd−1, from the Riesz representation of the sphere hitting probability,

Γ
(

d
2

)
Γ(α− 1)

Γ
(
α+d

2 − 1
)

Γ
(
α
2

) =

∫
Sd−1

|z∗ − y∗|α−dσ1(dz∗).

we are going to manipulate this identity using sphere inversion to solve the fixed point
equation first assuming that |x| > 1
I Apply the sphere inversion with respect to the sphere Sd−1(x, (|x|2 − 1)1/2)

remembering that this transformation maps Sd−1 to itself and using

1
|z∗ − x|d−1

σ1(dz∗) =
1

|z− x|d−1
σ1(dz)

(|x|2 − 1) = |z∗ − x||z− x| and |z∗ − y∗| =
(|x|2 − 1)|z− y|
|z− x||y− x|

I We have

Γ
(

d
2

)
Γ(α− 1)

Γ
(
α+d

2 − 1
)

Γ
(
α
2

) =

∫
Sd−1

|z∗ − x|d−1|z∗ − y∗|α−d σ1(dz∗)
|z∗ − x|d−1

=
(|x|2 − 1)α−1

|y− x|α−d

∫
Sd−1

|z− y|α−d

|z− x|α+d−2
σ1(dz).

I For the case |x| < 1, use Riesz–Bogdan–Żak theorem again!
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§12. Spherical entrance/exit distribution
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BLUMENTHAL–GETOOR–RAY EXIT/ENTRANCE DISTRIBUTION

Theorem
Define the function

g(x, y) = π−(d/2+1) Γ(d/2) sin(πα/2)

∣∣1− |x|2∣∣α/2

|1− |y|2|α/2
|x− y|−d

for x, y ∈ Rd\Sd−1. Let

τ⊕ := inf{t > 0 : |Xt| < 1} and τ	a := inf{t > 0 : |Xt| > 1}.

(i) Suppose that |x| < 1, then

Px(Xτ	 ∈ dy) = g(x, y)dy, |y| ≥ 1.

(ii) Suppose that |x| > 1, then

Px(Xτ⊕ ∈ dy, τ⊕ <∞) = g(x, y)dy, |y| ≤ 1.
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PROOF OF B–G–R ENTRANCE/EXIT DISTRIBUTION (I)

I Appealing again to the potential density and the strong Markov property, it
suffices to find a solution to

|x− y|α−d =

∫
|z|≥1

|z− y|α−dµ(dz), |y| > 1,

with a straightforward argument providing uniqueness.
I The proof is complete as soon as we can verify that

|x− y|α−d = cα,d

∫
|z|≥1

|z− y|α−d |1− |x|2|α/2

|1− |z|2|α/2
|x− z|−ddz

for |y| > 1 > |x|, where

cα,d = π−(1+d/2) Γ(d/2) sin(πα/2).
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PROOF OF B–G–R ENTRANCE/EXIT DISTRIBUTION (I)

I Transform z 7→ z� (sphere inversion with reflection) through the sphere
Sd−1(x, (1− |x|2)1/2), noting in particular that

|z� − y�| = (1− |x|2)
|z− y|

|z− x||y− x|
and |z|2 − 1 =

|z− x|2

1− |x|2
(1− |z�|2)

and
dz� = (1− |x|2)d|z− x|−2ddz, z ∈ Rd.

I For |x| < 1 < |y|,∫
|z|≥1

|z− y|α−d |1− |x|2|α/2

|1− |z|2|α/2
|x− z|−ddz = |y− x|α−d

∫
|z�|≤1

|z� − y�|α−d

|1− |z�|2|α/2
dz�.

I Now perform similar transformation z� 7→ w (inversion with reflection), albeit
through the sphere Sd−1(y�, (1− |y�|2)1/2).

|y−x|α−d
∫
|z�|≤1

|z� − y�|α−d

|1− |z�|2|α/2
dz� = |y−x|α−d

∫
|w|≥1

|1− |y�|2|α/2

|1− |w|2|α/2
|w−y�|−ddw.
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PROOF OF B–G–R ENTRANCE/EXIT DISTRIBUTION (I)
Thus far:∫
|z|≥1

|z−y|α−d |1− |x|2|α/2

|1− |z|2|α/2
|x−z|−ddz = |y−x|α−d

∫
|w|≥1

|1− |y�|2|α/2

|1− |w|2|α/2
|w−y�|−ddw.

I Taking the integral in red and decomposition into generalised spherical polar
coordinates∫
|v|≥1

1
|1− |w|2|α/2

|w−y�|−ddw =
2πd/2

Γ(d/2)

∫ ∞
1

rd−1dr
|1− r2|α/2

∫
Sd−1(0,r)

|z− y�|−dσr(dz)

I Poisson’s formula (the probability that a Brownian motion hits a sphere of radius
r > 0) states that∫

Sd−1(0,r)

rd−2(r2 − |y�|2)

|z− y�|d
σr(dz) = 1, |y�| < 1 < r.

gives us∫
|v|≥1

1
|1− |w|2|α/2

|w− y�|−ddw =
πd/2

Γ(d/2)

∫ ∞
1

2r
(r2 − 1)α/2(r2 − |y�|2)

dr

=
π

sin(απ/2)

1
(1− |y�|2)α/2

I Plugging everything back in gives the result for |x| < 1.
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PROOF OF B–G–R ENTRANCE/EXIT DISTRIBUTION (II)

The interesting part of the proof is the derivation of the the identity in (ii) (i.e. |x| > 1)
from the identity in (i) (i.e. |x| < 1).
I Start by noting from the Riesz–Bogdan–Żak transform that, for |x| > 1,

Px(Xτ⊕ ∈ D) = P◦Kx(KXτ	 ∈ D),

where Kx = x/|x|2, |Kx− Kz| = |x− z|/|x||z| and KD = {Kx : x ∈ D}.
I Noting that d(Kz) = |z|−2ddz, we have

Px(Xτ⊕ ∈ D)

=

∫
KD

|y|α−d

|Kx|α−d g(Kx, y)dy

= cα,d

∫
KD
|z|d−α|Kx|d−α

|1− |Kx|2|α/2

|1− |y|2|α/2
|Kx− y|−ddy

= cα,d

∫
D
|z|2d |1− |x|2|α/2

|1− |z|2|α/2
|x− z|−dd(Kz)

= cα,d

∫
D

|1− |x|2|α/2

|1− |z|2|α/2
|x− z|−ddz
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§13. Radial excursion theory
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EXCURSIONS FROM THE RADIAL MINIMUM
Recall that we can represent an isotropic Lévy process through the Lamperti transform

Xt := eξϕ(t)Θϕ(t) t ≥ 0,

where

ϕ(t) = inf
{

s > 0 :

∫ s

0
eαξu du > t

}
and (ξ,Θ) with probabilities Px,θ , x 6= 0, θ ∈ Sd−1, is a MAP. Recall also that, although
corollated to Θ, ξ alone is a Lévy process.
I Let ` = (`t, t ≥ 0), the local time at 0 of the reflected Lévy process ξt − ξt

, t ≥ 0,
where ξ

t
:= infs≤t ξs, t ≥ 0.

I The process ` serves as an adequate choice for the local time of the Markov
process (ξ − ξ,Θ) on the set {0} × Sd−1.

I Define
gt = sup{s < t : ξs = ξ

s
} and dt = inf{s > t : ξs = ξ

s
}.

I For all t > 0 such that dt > gt the process

(εgt (s),Θεgt
(s)) := (ξgt+s − ξgt ,Θgt+s), s ≤ ζgt := dt − gt,

codes the excursions of (ξ − ξ,Θ) from the set (0, Sd−1) or equivalently,
excursions of (Xt/ infs≤t |Xs|, t ≥ 0), from Sd−1, or equivalently an excursion of X
from its running radial infimum.

I Moreover, we see that, for all t > 0 such that dt > gt,

Xgt+s = eξgt eεgt (s)Θεgt
(s) = |Xgt |e

εgt (s)Θεgt
(s), s ≤ ζgt .
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EXCURSIONS FROM THE RADIAL MINIMUM

I The classical theory of exit systems in Maisonneuve (1975) now implies that there
exists a family of excursion measures, Nθ , θ ∈ Sd−1, such that:

I the map θ 7→ Nθ is a kernel from Sd−1 to R× Sd−1, such that Nθ(1− e−ζ) <∞
and Nθ is carried by the set {(ε(0),Θε(0) = (0, θ)} and {ζ > 0};

I we have the exit formula

Ex,θ

∑
g∈G

F((ξs,Θs) : s < g)H((εg,Θ
ε
g))


= Ex,θ

[∫ ∞
0

F((ξs,Θs) : s < t)NΘt (H(ε,Θε))d`t

]
,

for x 6= 0, where F and H are continuous on the space of càdlàg paths on
R× Sd−1) and G = {gs : s ≥ 0}

I under any measure Nθ the process (ε,Θε) is Markovian with the same transition
semigroup as (ξ,Θ) stopped at its first hitting time of (−∞, 0]× Sd−1.

I The couple (`,N·) is called an exit system. The pair ` and the kernels Nθ ,
θ ∈ Sd−1, are not unique, but once ` is chosen the measures Nθ are determined but
for a `-neglectable set.
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RADIAL LADDER MAP
I For bounded measurable f on Rd and G(∞) := sup{s ≥ 0 : |Xs| = infu≤s |Xu|},

Ex[f (XG(∞))] = Elog |x|,arg(x)

∑
t∈G

f (eξt Θt)1(ζt =∞)


= Elog |x|,arg(x)

[∫ ∞
0

f (eξt Θt)NΘt (ζ =∞)d`t

]
= Elog |x|,arg(x)

[∫ `∞

0
f (e−H−t Θ−t )N

Θ−t
(ζ =∞)dt

]
where (H−t ,Θ

−
t ) = (−ξ

`−1
t
,Θ

`−1
t

), t < `∞.

I Define the potential

U−x (dz) :=

∫ ∞
0

Plog |x|,arg(x)(e−H−t Θ−t ∈ dz, t < `∞)dt, |z| ≤ |x|.

I As X is transient, (H−,Θ−) experiences killing at Θ−-dependent rate
Nθ(ζ =∞), θ ∈ Sd−1. Isotropy implies Nθ(ζ =∞) independent of θ. Scaling of
local time ` chosen so that Nθ(ζ =∞) = 1.

I In conclusion, we reach the identity

Ex[f (XG(∞))] =

∫
|z|<|x|

f (z)U−x (dz)
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POINT OF CLOSEST REACH

Theorem (Point of Closest Reach to the origin)
The law of the point of closest reach to the origin is given by

Px(XG(∞) ∈ dy) = π−d/2 Γ (d/2)2

Γ ((d− α)/2) Γ (α/2)

(|x|2 − |y|2)α/2

|x− y|d|y|α
dy, 0 < |y| < |x|.
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POINT OF CLOSEST REACH: SKETCH PROOF

I First define, for x 6= 0, |x| > r, δ > 0 and continuous, positive and bounded f on
Rd,

∆δ
r f (x) :=

1
δ
Ex [f (arg(XG∞ )), |XG∞ | ∈ [r− δ, r]] .

I Then, with the help of Blumenthal–Getoor–Ray first entry distribution,

∆δ
r f (x)

=
1
δ

∫
|y|∈[r−δ,r]

Px(X
τ⊕r
∈ dy; τ⊕r <∞)Ey [f (arg(XG∞ )); |XG∞ | ∈ (r− δ, |y|]]

=
1
δ

Cα,d

∫
|y|∈[r−δ,r]

dy
∣∣∣∣ r2 − |x|2

r2 − |y|2

∣∣∣∣α/2

|y− x|−dEy [f (arg(XG∞ )); |XG∞ | ∈ (r− δ, |y|]]

=
1
δ

Cα,d|r2 − |x|2|α/2
∫
|y|∈(r−δ,r]

dy
|y− x|−d

|r2 − |y|2|α/2

∫
r−δ≤|z|≤|y|

U−y (dz)f (arg(z)),

Lemma
Suppose that f is a bounded continuous function on Rd. Then

lim
δ→0

sup
|y|∈(r−δ,r]

∣∣∣∣∣
∫

r−δ≤|z|≤|y| U
−
y (dz)f (z)∫

r−δ≤|z|≤|y| U
−
y (dz)

− f (y)

∣∣∣∣∣ = 0.
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POINT OF CLOSEST REACH: SKETCH PROOF
I Hence

∆δ
r f (x)

δ↓0∼
1
δ

Cα,d|r2 − |x|2|α/2
∫
|y|∈(r−δ,r]

dy
|y− x|−d

|r2 − |y|2|α/2
f (arg(y))

∫
r−δ≤|z|≤|y|

U−y (dz)

and for |y| ∈ (r− δ, r],∫
r−δ≤|z|≤|y|

U−y (dz) = Py(τ⊕r−δ =∞) = P(ξ∞ ≥ log((r− δ)/y))

I The right hand side above can be determined explicitly thanks to the known
Wiener–Hopf factorisation of ξ

I Note also

∆δ
r f (x)

δ↓0∼ Cα,d|r2−|x|2|α/2 1
δ

∫ r

r−δ
ρd−1dρ

P(ξ∞ ≥ log((r− δ)/y))

|r2 − ρ2|α/2

∫
ρSd−1

σρ(dθ)|ρθ−x|−df (θ)

Lemma
Let Dα,d = Γ(d/2)/Γ((d− α)/2)Γ(α/2). Then

lim
δ→0

sup
|y|∈[r−δ,r]

∣∣∣∣(ρ2 − (r− δ)2)−α/2rαP(ξ∞ ≥ log((r− δ)/y))−
2Dα,d
α

∣∣∣∣ = 0
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MORE EXCURSION THEORY-BASED RESULTS

Theorem (Triple law at first entrance/exit of a ball)
Fix r > 0 and define, for x, z, y, v ∈ Rd\{0},

χx(z, y, v) := π−3d/2 Γ((d + α)/2)

|Γ(−α/2)|
Γ(d/2)2

Γ(α/2)2

||z|2 − |x|2|α/2||y|2 − |z|2|α/2

|z|α|z− x|d|z− y|d|v− y|α+d .

(i) Write
G(τ⊕r ) = sup{s < τ⊕r : |Xs| = inf

u≤s
|Xu|}

for the instant of closest reach of the origin before first entry into rSd−1. For |x| > |z| > r,
|y| > |z| and |v| < r,

Px(X
G(τ⊕r )

∈ dz, X
τ⊕r −

∈ dy, X
τ⊕r
∈ dv; τ⊕r <∞) = χx(z, y, v) dz dy dv.

(ii) Define G(t) = sup{s < t : |Xs| = supu≤s |Xu|}, t ≥ 0, and write

G(τ	r ) = sup{s < τ	r : |Xs| = sup
u≤s
|Xu|}.

for the instant of furtherest reach from the origin immediately before first exit from rSd−1.
For |x| < |z| < r, |y| < |z| and |v| > r,

Px(XG(τ	r )
∈ dz, X

τ	r −
∈ dy, X

τ	r
∈ dv) = χx(z, y, v) dz dy dv.
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MORE EXCURSION THEORY-BASED RESULTS

Theorem
Write Mt = sups≤t |Xt|, t ≥ 0. For all bounded measurable f : Bd 7→ R and x ∈ R\{0}

lim
t→∞

Ex[f (Xt/Mt)] = π−d/2 Γ((d + α)/2)

Γ(α/2)

∫
Sd−1

σ1(dφ)

∫
|w|<1

f (w)
|1− |w|2|α/2

|φ− w|d
dw,

where σ1(dy) is the surface measure on Sd−1, normalised to have unit mass.
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