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We consider Monte Carlo methods for simulating solutions to the analogue of the Dirichlet boundary
value problem in which the Laplacian is replaced by the fractional Laplacian and boundary conditions are
replaced by conditions on the exterior of the domain. Specifically, we consider the analogue of the so-called
‘walk-on-spheres’ algorithm. In the diffusive setting, this entails sampling the path of Brownian motion
as it uniformly exits a sequence of spheres maximally inscribed in the domain. As this algorithm would
otherwise never end, it is truncated when the ‘walk-on-spheres’ comes within ε > 0 of the boundary. In
the setting of the fractional Laplacian, the role of Brownian motion is replaced by an isotropic α-stable
process with α ∈ (0, 2). A significant difference to the Brownian setting is that the stable processes will exit
spheres by a jump rather than hitting their boundary. This difference ensures that disconnected domains
may be considered and that, unlike the diffusive setting, the algorithm ends after an almost surely finite
number of steps.

Keywords: Walk-on-spheres; fractional Laplacian; Lévy processes; Monte Carlo methods

1. Introduction

We start by recalling the classical Dirichlet problem in d-dimensions and re-examining a, now, classical
Monte Carlo algorithm that is used to numerically simulate its solution. Suppose that D is a domain in
Rd , d ≥ 2, with sufficiently smooth boundary. We are interested in finding u : D → R such that

∆u(x) = 0, x ∈ D,

u(x) = g(x), x ∈ ∂D,
(1.1)

where g is a given continuous function on the boundary. Feynman–Kac representation tells us that, for
example, if u ∈ C2(D) is a solution to (1.1), then

u(x) = Ex[g(WτD)], x ∈ D, (1.2)

where τD := inf{t > 0 : Wt ̸∈ D} and W := (Wt , t ≥ 0) is the standard d-dimensional Brownian motion
with probabilities (Px, x ∈ Rd).
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The representation (1.2) suggests that solutions to (1.1) can be generated numerically via straight-
forward Monte Carlo simulations of the path of W until first exit from D. That is to say, if (W i

t , t ≤ τ i
D),

i ∈ N are i.i.d. copies of (Wt , t ≤ τD) issued from x ∈ D, then, by the strong law of large numbers,

lim
n→∞

1
n

n∑

i=1

g(Wi
τ i
D
) = u(x), almost surely (a.s.). (1.3)

For practical purposes, because it is impossible to take the limit, one truncates the series of estimates
for large n, and the central limit theorem gives O(1/n) upper bounds on the variance of the n-term sum,
which serves as a numerical error estimate.

Although forming the fundamental basis of most Monte Carlo methods for diffusive Dirichlet-type
problems, (1.3) is an inefficient numerical approach. Least of all, this is because the Monte Carlo
simulation of u(x) is independent for each x ∈ D. Moreover, it is unclear how exactly to simulate
the path of a Brownian motion on its first exit from D, that is to say, the quantity WτD . This is because of
the fractal properties of Brownian motion, making its path difficult to simulate. This introduces additional
numerical errors over and above that of Monte Carlo simulation.

A method proposed by Muller (1956), for the case that D is convex, subsamples special points along
the path of the Brownian motion to the boundary of the domain D. The method does not require a complete
simulation of its path and takes advantage of the distributional symmetry of the Brownian motion. To
describe the so-called ‘walk-on-spheres’, we need to first introduce some notation. We may thus set
ρ0 = x for x ∈ D and define r1 to be the radius of the largest sphere inscribed in D that is centred at x.
This sphere we will call S1 = {y ∈ Rd : |y − ρ0| = r1}. To avoid special cases, we, henceforth, assume
that the surface area of S1 ∩ ∂D is zero (this excludes, for example, the case that x = 0 and D is a sphere
centred at the origin).

Now set ρ1 ∈ D to be a point uniformly distributed on S1 and note that, given the assumption in the
previous sentence, Px(ρ1 ∈ ∂D) = 0. Construct the remainder of the sequence (ρn, n ≥ 1) inductively.
Given ρn−1, we define the radius, rn, of the largest sphere inscribed in D that is centred at ρn−1. Calling this
sphere Sn, we have that Sn = {y ∈ Rd : |y − ρn−1| = rn}. We now select ρn to be a point that is uniformly
positioned on Sn. Once again, we note that if ρn−1 ∈ D almost surely, then the uniform distribution of
both ρn−1 and ρn ensures that P(ρn ∈ ∂D) = 0. Consequently, the sequence ρn continues for all n ≥ 1.
In the case that ρn approaches the boundary, the sequence of spheres Sn become arbitrarily small in size.

Thanks to the strong Markov property and the stationary and independent increments of Brownian
motion, it is straightforward to prove the following result.

Lemma 1.1 Fix x ∈ D and define ρ ′
1 = WτS′

1
, where τS′

1
= inf{t > 0 : Wt ∈ S′

1} and S′
1 is the largest sphere,

centred at x, inscribed in D. For n ≥ 2, given ρ ′
n−1 ∈ D, let ρ ′

n = WτS′
n
, where τS′

n = inf{t > 0 : Wt ∈ S′
n}

and S′
n is the largest sphere, centred at ρ ′

n−1. Then, the sequences (ρn, n ≥ 0) and (ρ ′
n, n ≥ 0) have the

same law.

As an immediate consequence, limn→∞ ρn almost surely exists and, moreover, it is equal in distribution
to WτD . The sequence ρ := (ρn, n ≥ 0) may now replace the role of (Wt , t ≤ τD) in (1.2), and hence
in (1.3), albeit that one must stop the sequence ρ at some finite N . By picking a threshold ε > 0, we
can choose N(ε) as a cut-off for the sequence ρ, such that N(ε) = min{n ≥ 0 : inf z∈∂D |ρn − z| ≤ ε}.
Intuitively, one is inwardly ‘thickening’ the boundary ∂D with an ‘ε-skin’ and stopping once the walk-on-
spheres hits the ε-skin. As the sequence ρ is random, N(ε) is also random. Starting with Theorem 6.6 of



UNBIASED ‘WALK-ON-SPHERES’ MONTE CARLO METHODS 3

Muller (1956) and the classical computations in Motoo (1959), it is known that Ex[N(ε)] = O(|log ε|).
To be more precise, we have the following result.

Theorem 1.2 Suppose that D is a convex domain. There exist constants c1, c2 > 0, such that Ex[N(ε)] ≤
c1 |log ε| + c2, ε ∈ (0, 1).

The Monte Carlo simulation (1.3) can now be replaced by the one based on simulating the quantity
g(ρN(ε)), ρ0 = x ∈ D, which, in turn, is justified by the strong law of large numbers:

lim
n→∞

1
n

n∑

i=1

g(ρ i
Ni(ε)

) = Ex

[
g(ρN(ε))

]
≈ Ex[g(WτD)] = u(x), a.s., (1.4)

where ε > 0 is some threshold and (ρ i
n, n ≤ Ni(ε)), i ≥ 0 are i.i.d. copies of the walk-on-spheres process

stopped at a distance ε or smaller from ∂D. Formally speaking, a convention is required to evaluate g just
inside the boundary ∂D in (1.4). In many cases, g can be evaluated without introducing any additional
bias (Given et al., 1997; Hwang et al., 2001).

The Laplacian serves as the infinitesimal generator of Brownian motion, in the sense that, for
appropriately smooth functions φ : Rd → R,

lim
t→0

Ex[φ(Wt)] − φ(x)
t

= 1
2
∆φ(x), x ∈ Rd . (1.5)

Intuitively speaking, this explains an underlying connection between the Dirichlet problem (1.1) and
the Feynman–Kac representation of the solution (1.2). In this article, we consider the analogue of (1.1)
when the operator ∆/2 is replaced by the fractional Laplacian −(−∆)α/2 for α ∈ (0, 2). In this case,
the fractional Laplacian corresponds, in the same sense as (1.5), to an isotropic stable Lévy process with
index α. This is a strong Markov process with stationary and independent increments, say X = (Xt , t ≥ 0)

with probabilities (Px, x ∈ Rd), whose semigroup is represented by the Fourier transform

E0
[
ei⟨θ ,Xt ⟩] = e−|θ |α t , θ ∈ Rd , t ≥ 0,

where ⟨·, ·⟩ represents the usual Euclidian inner product. Stable processes enjoy an isotropy in the follow-
ing sense: if U is any orthogonal matrix in Rd×d , then (UXt , t ≥ 0) under P0 has the same law as (X , P0).
Moreover, we have the following important scaling property: for all c > 0,

((cXc−α t , t ≥ 0), P0) is equal in law to ((Xt , t ≥ 0), P0). (1.6)

In dimension two or greater, the operator −(−∆)α/2 can be expressed in the form

−(−∆)α/2u(x) = −2α Γ ((d + α)/2)

π d/2 Γ (−α/2)
lim
ε↓0

∫

Rd\B(0,ε)

[u(y) − u(x)]
|y − x|d+α

dy, x ∈ Rd ,

where B(0, ε) = {x ∈ Rd : |x| < ε} and u is smooth enough for the limit to make sense.
Noting that −(−∆)α/2 is no longer a local operator, the analogous formulation of (1.1) needs a little

more care. In particular, the boundary condition on the domain D is no longer stated on ∂D, but must now
be stated on the complement of D, written Dc. To avoid pathological cases, we must assume throughout
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that Dc has positive d-dimensional Lebesgue measure. The Dirichlet problem for −(−∆)α/2 requires one
to find u : D → R, such that

−(−∆)α/2u(x) = 0, x ∈ D,

u(x) = g(x), x ∈ Dc,
(1.7)

where g is a suitably regular function. The fractional Dirichlet problem and variants thereof appear in many
applications, in particular in physical settings where anomalous dynamics occur and where the spread
of mass grows faster than linearly in time. Examples include turbulent fluids, contaminant transport in
fractured rocks, chaotic dynamics and disordered quantum ensembles (see Shlesinger et al., 1995; Klages
et al., 2008; Klafter et al., 2011). The numerical analysis of (1.7) is no less deserving than in the diffusive
setting.

Just as with the classical Dirichlet setting, the solution to (1.7) has a Feynman–Kac representation,
expressed as an expectation at first exit from D of the associated stable process. The theorem below
is proved in this article in a probabilistic way. Similar statements and proofs we found in the existing
literature take a more analytical perspective. See for example, the review in Bucur (2016), as well as the
monographs Bliedtner & Hansen (1986), Bucur & Valdinoci (2016) and Bogdan et al. (2009); the articles
Bogdan & Byczkowski (1999), Ros-Oton & Serra (2014) and Ros-Oton (2016) and references therein.

We say a real-valued function φ on a Borel set S ⊂ Rd belongs to L1
α(S) if it is a measurable function

that satisfies
∫

S

|φ(x)|
1 + |x|α+d

dx < ∞. (1.8)

Theorem 1.3 For dimension d ≥ 2, suppose that D is a bounded domain in Rd and that g is a continuous
function in L1

α(D
c).Then, there exists a unique continuous solution to (1.7) in L1

α(Rd), which is given by

u(x) = Ex[g(XσD)], x ∈ D,

where X = (Xt , t ≥ 0) is an isotropic stable Lévy process with index α and σD = inf{t > 0 : Xt ̸∈ D}.

The case that D is a ball can be found, for example, in Theorem 2.10 of Bucur (2016). We exclude the
case d = 1, because convex domains are intervals for which exact solutions are known; see again Bucur
(2016) or the forthcoming Theorem 3.1 lifted from Blumenthal et al. (1961). Theorem 1.3 follows in fact
as a corollary of a more general result stated later in Theorem 6.1, which is proved in the appendix.

In this article, our objective is to demonstrate that the walk-on-spheres method may also be extended
to the setting of the Dirichlet problem with fractional Laplacian. In particular, we will show that, thanks to
various distributional and path properties of stable processes, notably spatial homogeneity, isotropy, self-
similarity and that it exits D by a jump, simulations can be made unbiased, without the need to truncate the
algorithm at an ε tolerance. Although there exist many methods for numerically examining the fractional
Dirichlet problem (1.7), which mostly appeal to classical methodology for diffusive operators (see, for
example, Zoia et al., 2007; Huang & Oberman, 2014; Dybiec & Szczepaniec, 2015; Szczepaniec &
Dybiec, 2015; Acosta et al., 2016; D’Elia & Gunzburger, 2016; Nochetto et al., 2016), to name a few, but
not all of the existing literature, we believe that no other work appeals to the walk-on-spheres algorithm
in this context.
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The remainder of this article is structured as follows. In the next section, we give a brief historical
review of Theorem 1.2 and its proofs as well as providing a new, short proof. In Section 3, we show
how an old result of Blumenthal et al. (1961) can be used to give an exact simulation of the paths of
stable processes. In Section 4, we introduce the walk-on-spheres algorithm for the fractional Laplacian
Dirichlet problem. We start with domains D that are convex, but not necessarily bounded. Our main
result shows that the walk-on-spheres algorithm ends in an a.s. finite number of steps (without the need
for approximation), which can be stochastically bounded by a geometric distribution. Moreover, the
parameter of this distribution does not depend on the starting point of the walk-on-spheres algorithm.
Section 5 looks at the extensions to nonconvex domains. In Section 6, we consider a fractional Poisson
equation, where an inhomogeneous term is introduced on the right-hand side of the fractional Laplacian
Dirichlet problem (1.7). Appealing to the related results concerning the resolvent of stable processes
until first exit from the unit ball, we are able to develop the walk-on-spheres algorithm further. Finally,
in Section 7, we discuss some numerical experiments to illustrate the methods developed as well as their
implementation.

2. The classical setting

As promised above, we give a brief historical review of the classical walk-on-spheres algorithm and,
below, for completeness, we provide a proof of Theorem 1.2, which, to the authors’ knowledge, is new.
The walk-on-spheres algorithm was first derived by Muller (1956). In Theorem 6.1 of his article, Muller
claims that one can compare Ex[N(ε)] with the mean number of steps of a walk-on-spheres process
that is stopped when it reaches an ε-skin of the tangent hyperplane that passes through a point on ∂D
that is closest to x. Although the claim is correct (indeed the proof that we give for our main result
Theorem 4.1 below provides the basis for an alternative justification of this fact), it is not entirely clear
from Muller’s reasoning. Motoo (1959) uses Muller’s comparison of the mean number of steps to prove
Theorem 1.2. He considers the total expected occupation of an appropriately time changed version of
Brownian motion when crossing each sphere of the walk until touching the aforementioned ε-skin of the
tangent hyperplane. Using the self-similarity of Brownian motion, Motoo argues that the time change
during passage to the boundary of each sphere is such that the expected occupation across each step is
uniformly bounded below. It follows that the sum of these weighted expected occupations can be bounded
below by Ex[N(ε)]. On the other hand, the aforesaid sum can also be bounded above by the total expected
time-changed occupation until exiting the half-space (as defined by the tangent plane), which can be
computed explicitly, thereby providing the |log ε| comparison.

Following the foundational work of Muller and Motoo, there have been many reproofs and gener-
alizations of the original algorithm to different processes and domain types. Notable in this respect are
the works of Mikhailov (1979) and Binder & Braverman (2012), who consider nonconvex domains, and
Sabelfeld (1991), who appeals to renewal theory to analyse the growth in ε of the mean number of steps
to completion of the walk-on-spheres algorithm. His method also allows for variants of the algorithm in
which the sphere sizes do not need to be optimally inscribed in D. Later, Sabelfeld & Talay (1995) gave
an elementary proof of the |log ε| bound. Mascagni and colleagues have extensively developed the walk-
on-spheres algorithm in applications (see, for example, Given et al., 2001, 2002; Hwang & Mascagni,
2001; Hwang et al., 2003; Mackoy et al., 2013.

Proof Theorem 1.2. We break the proof into two parts. In the first part, we analyse the walk-on-spheres
process over one step, by considering the distance of the next point in the algorithm from the orthogonal
tangent hyperplane of the first point. (Note the existence of a tangent hyperplane requires convexity of
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Fig. 1. Geometric setting of the proof.

the domain.) In the second part of the proof, we use this analysis to build a supermartingale, from which
the desired result follows via optional stopping.

For the first part of the proof, we start by introducing notation. For any x = (x1, . . . , xd) ∈ Rd , such that
x1 > 0, let us write V(x) = {(z1, . . . , zd) ∈ Rd : z1 > 0} for the open half-space containing x and denote
its boundary ∂V(x) = {(z1, . . . , zd) ∈ Rd : z1 = 0}. Suppose that we choose our coordinate system, so
that x ∈ D is such that ρ0 = x = (x1, 0, . . . , 0) and ∂V(ρ0) is a tangent hyperplane to both D and S1. This
assumption comes at no cost, thanks to the isotropy and the spatial homogeneity of Brownian motion. Let
us define ζ0, the orthogonal distance of ρ0 from ∂V(ρ0). With the assumed choice of coordinate system,
write ζ0 := r1 = x1 = |x| = |ρ0| and define

ζ1 = min
{
ε, inf

z∈∂V(ρ0)
|ρ1 − z|

}
;

that is, the minimum of ε and the orthogonal distance of ρ1 from ∂V(ρ0). Next, define θ1, the angle that
subtends at ρ0 between ρ1 and the origin (0, . . . , 0) and recall that symmetry implies that θ1 is uniformly
distributed on [0, 2π ]. Simple geometric considerations tell us that

ζ1 = x1 − r1 sin
(π

2
− θ1

)
= ζ0 − ζ0 sin

(π

2
− θ1

)
= ζ0(1 − cos(θ1)). (2.1)

This provides an implicit expression for θ1 in terms of the orthogonal distance ρ0 from the nearest tangent
hyperplane. See Fig. 1.

Assuming that ζ0 > ε, thanks to the isotropic symmetry, the walk-on-sphere algorithm will end at the
first step if θ1 lies in a certain critical interval dictated by the choice of skin thickness ε. We can compute
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this critical (and obviously) symmetric interval as a function of ζ0, say (−θ∗(ζ0), θ∗(ζ0)), where

θ∗(ζ0) = arccos
(

ζ0 − ε

ζ0

)
. (2.2)

A quantity that will be of interest to us to complete the proof is the expectation Ex[
√

ζ1] = Eρ0 [
√

ζ1].
To this end, we compute

Eρ0

[√
ζ1

]
≤ √

ε Pρ0 (θ1 ∈ (−θ∗(ζ0), θ∗(ζ0))) + Eρ0

[
1(θ1 ̸∈(−θ∗(ζ0),θ∗(ζ0)))

√
ζ1

]

= √
ε

θ∗(ζ0)

π
+ 1

π

∫ π

θ∗(ζ0)

√
ζ0(1 − cos(u)) du

=: Λ(ε/ζ0)
√

ζ0, (2.3)

where 1S denotes the indicator function on the set S. Using the primitive
∫ √

1 − cos(u) du =
−2

√
1 − cos(u) cot(u/2), we have

Λ(u) = √
u

arccos(1 − u)

π
+ 2

π

√
u cot

(
arccos(1 − u)

2

)
.

One easily verifies that there is a constant λ ∈ (0, 1), such that supu∈[0,1] Λ(u) < λ.
Next, we move to the second part of the proof. At each step of the walk-on-spheres, we can construct

the quantities ζn+1, the orthogonal distance of ρn+1 to the tangential hyperplane that passes through the
closest point on ∂D to ρn; and θn, the angle that is subtended at ρn between the aforesaid point and ρn+1.
Note that ε is an absorbing state for the sequence (ζn, n ≥ 0) in the sense that, if ζn = ε, then ζn+k = ε

for all k ≥ 0. We may thus write N(ε) ≤ N ′(ε) := min{n ≥ 0 : ζn = ε}.
By the strong Markov property and the spatial homogeneity of Brownian motion, given the analysis

leading to (2.3), we have, on {n < N(ε)},

E
[√

ζ(n+1)∧N(ε)

∣∣∣ ζ0, . . . , ζn

]
= E

[√
ζ(n+1)∧N(ε)

∣∣∣ ζn

]
≤ Λ(ε/ζn)

√
ζn < λ

√
ζn.

As a consequence, the process
(
λ−(n∧N(ε))

√
ζn∧N(ε), n ≥ 0

)
is a supermartingale. The optional sampling

theorem and Jensen’s inequality give us

ελ−Ex [N ′(ε)] ≥ Ex[λ−N ′(ε)ε] ≤ √
r1, x ∈ D.

The result now follows by taking logarithms. !

3. Exact simulation of stable paths

The key ingredient to the walk-on-spheres in the Brownian setting is the knowledge that spheres are
exited continuously and uniformly on the boundary of spheres. In the stable setting, the inclusion of path
discontinuities means that the process will exit a sphere by a jump. The analogous key observation that
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makes our analysis possible is the following result, which gives the distribution of a stable process issued
from the origin, when it first exits a unit sphere.

Theorem 3.1 (Blumenthal et al., 1961) Suppose that B(0, 1) is a unit ball centred at the origin and write
σB(0,1) = inf{t > 0 : Xt ̸∈ B(0, 1)}. Then,

P0(XσB(0,1)
∈ dy) = π−(d/2+1) Γ (d/2) sin(πα/2)

∣∣1 − |y|2
∣∣−α/2 |y|−d dy, |y| > 1.

This result provides a method for constructing precise sample paths of stable processes in phase space
(i.e., exploring sample paths as ordered subsets of Rd rather than as functions [0, ∞] → Rd). Choose a
tolerance ϵ and initial point X0 = x. Denote by E1 a sampling from the distribution given in Theorem 3.1.
This gives the exit from a ball of radius one when X is issued from the origin. By the scaling property
(1.6) and the stationary and independent increments, x + ϵ E1 is distributed as the exit position from a
ball of radius ϵ centred at x when the process is issued from x. Hence, we define X1 = x + ϵ E1 and then,
inductively for n ≥ 1, generate Xn+1 as the exit point of the ball centred on Xn with radius ϵ by noting this
is equal in distribution to Xn + ϵ En+1, where En+1 is an i.i.d. copy of E1. It is important to remark for later
that the value of ϵ in this algorithm does not need to be fixed and may vary with each step. Note, however,
the method does not generate the corresponding time to exit from each ball. Therefore, the sample paths
that are produced, while being exact in the distribution of points that the stable process will pass through,
cannot be represented graphically in time, as there is only an equal mean duration to exiting each sphere.
If the tolerance ϵ is altered on each step, then even this mean duration feature is lost. The method is used
to generate Fig. 2.

On account of classical Feynman–Kac representation, simulation of solutions to parabolic and elliptic
equations involving the fractional Laplacian and, more generally, the infinitesimal generator of a Lévy
process are synonymous with the simulation of the paths of the associated stochastic process. On account
of the fact that such equations occur naturally in mathematical finance in connection with (exotic) option
pricing, there are already many numerical and stochastic methods in existence for the general Lévy setting.
The reader is referred, for example, to the books Cont & Tankov (2004), Boyarchenko & Levendorskiı̆
(2002) and the references therein. Other sources offering simulation techniques can be found (e.g., Janicki
& Weron, 1994; Asmussen & Rosiński, 2001; Cohen & Rosinski, 2007; Cohen et al., 2010). Similarly
to works in mathematical finance, they are mostly focused on the approximation of the stable process
(and indeed the general Lévy process) by a compound Poisson process or a power series representation
of the path, with a diffusive component to mimic the effect of small jumps. To our knowledge, however,
the walk-on-spheres approach to path simulation has not been used in the context of simulating stable
processes to date, nor, as alluded to above, to the end of numerically solving Dirichlet-type problems for
the fractional Laplacian.

4. Walk-on-spheres for the fractional Laplacian

We start by describing the walk-on-spheres for the fractional Laplacian Dirichlet problem (1.7) on a
convex domain D. The domain D may be unbounded, as long as Dc has nonzero measure (even though
Theorem 1.3 requires boundedness). Fix x ∈ D. The walk-on-spheres (ρn, n ≥ 0), with ρ0 = x is
defined in a similar way to the Brownian setting in the sense that, given ρn−1, the distribution of ρn is
selected according to an independent copy of XσBn

under Pρn−1 , where Bn = {x ∈ Rd : |x−ρn−1| < rn} and
σBn = inf{t > 0 : Xt ̸∈ Bn}. The algorithm comes to an end at the random index N = min{n ≥ 0 : ρn ̸∈ D},
again using the standard understanding that min ∅ := ∞. See, for example, the depiction in Fig. 3.



UNBIASED ‘WALK-ON-SPHERES’ MONTE CARLO METHODS 9

Fig. 2. Example sample paths for the α-stable Levy process generated using the exit distribution in Theorem 3.1 for spheres of
radius 10−6. Rows show sample paths in two and three dimensions for α = 0.9 (left) and α = 1.8 (right). The yellow lines indicate
jumps of the process and blue dots show where the process has been.

Fig. 3. Steps of the walks-on-sphere algorithm until exiting the convex domain D in the stable setting. In this realization, N = 3.

Even though the domain D may be unbounded, our main result predicts that, irrespective of the point
of issue of the algorithm, there will always be at most a geometrically distributed number of steps (whose
parameter also does not depend on the point of issue) before the algorithm ends.
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Theorem 4.1 Suppose that D is a convex domain. For all x ∈ D, there exists a constant p = p(α, d) > 0
(independent of x and D) and a real-valued random variable Γ , such that N ≤ Γ a.s., where

P(Γ = k) = (1 − p)k−1p, k ∈ N.

There are a number of remarks that we can make from the conclusion above.

1. AlthoughΓ has the same distribution for each x ∈ D, it is not the same random variable for each x ∈ D.
As we shall see in the proof of the above theorem, the inequality N ≤ Γ is derived by comparing
each step of the walk-on-spheres algorithm with a sequence of Bernoulli random variables. This
sequence of Bernoulli random variables are defined up to null sets, which may be different under
each Px. Therefore, although the distribution of Γ does not depend on x, its null sets do.

2. The stochastic domination in Theorem 4.1 is much stronger than the usual comparison of the mean
number of steps. Indeed, although it immediately implies that Ex[N] = 1/p, we can also deduce that
there is an exponentially decaying tail in the distribution of the number of steps. Specifically, for any
x ∈ D,

P(N > n) ≤ P(Γ > n) = (1 − p)n, n ∈ N.

3. The randomness in the geometric random variables Γ is heavily correlated to N . The fact that each
of the Γ are geometrically distributed has the advantage that

sup
x∈D

Ex[N] ≤ sup
x∈D

Ex[Γ ] = 1
p

.

However, it is less clear as to what kind of distributional properties can be said of the random variable
supx∈D Γ , which a.s. upper bounds supx∈D N .

Finally, it is worth stating formally that the walk-on-spheres algorithm is unbiased and therefore,
providing Ex[g(XτD)] < ∞, the strong law of large numbers applies and a straightforward Monte Carlo
simulation of the solution to (1.7) is possible. Moreover, providing Ex[g(XτD)2] < ∞, the central limit
theorem offers the rate of convergence.

Corollary 4.2 When D is bounded and convex and g is continuous and in L1
α(D

c),

lim
n→∞

1
n

n∑

i=1

g(ρ i
Ni) = Ex[g(ρN)] = Ex[g(XτD)] = u(x), (4.1)

a.s., where (ρ i
n, n ≤ Ni), i ≥ 1 are i.i.d. copies of the walk-on-spheres with ρ i

0 = x ∈ D, i ≥ 1 and u(x)
is the solution to (1.7). Moreover, when

∫

Dc

g(x)2

1 + |x|α+d
dx < ∞, (4.2)
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then Var(g(ρN)) < ∞ and, in the sense of weak convergence,

lim
n→∞

n1/2

(
1
n

n∑

i=1

g(ρ i
Ni) − u(x)

)

= Normal(0, Var(g(ρN))).

Proof. The first part is a straightforward consequence of the earlier mentioned strong law of large numbers
and the fact that Theorem 1.3 ensures that Ex[g(ρN)] = Ex[g(XτD)] < ∞. For the second part, we need
to show that (4.2) implies Ex[g(ρN)2] = Ex[g(XτD)2] < ∞. However, if we consider the computation in
(A.2) of the appendix, which shows that Ex[g(XτD)] < ∞ when g is continuous and in L1

α(D
c), then it is

easy to see that the same statement holds replacing g by g2. Under finiteness of the second moment, the
central limit theorem completes the proof. !

We now return to the proof of Theorem 4.1. Our approach is to break it into several parts. For
convenience, we shall henceforth write X (x) = (X (x)(t) : t ≥ 0) to indicate the dependency of X on its
initial position X0 = x (equivalent to writing (X , Px)). For any x = (x1, . . . , xd) ∈ Rd , such that x1 > 0,
we have V(x) = {(z1, . . . , zd) ∈ Rd : z1 > 0} for the open half-space containing x and denote its boundary
∂V(x) = {(z1, . . . , zd) ∈ Rd : z1 = 0}. For any Borel set A ⊂ Rd , we write σA = inf{t > 0 : Xt ̸∈ A}.
We will typically use in place of A the set V(x) as well as B(x, 1) = {z ∈ Rd : |z − x| < 1}, the unit ball
centred at x ∈ Rd . Finally write i = (1, 0, . . . , 0) ∈ Rd .

Lemma 4.3 Without loss of generality (by appealing to the spatial homogeneity of X, which allows
us to appropriately choose our coordinate system) suppose that x = |x| i ∈ D is such that ∂V(x) is a
tangent hyperplane to both D and B1. Then, X (x)

σB1
is equal in distribution to |x| X (i)

σB(i,1)
and X (x)

σV(x)
is equal

in distribution to |x| X (i)
σV(i)

.

Proof. The scaling property of X ensures that we can write

X (x)
s = |x|X̂ (i)

|x|−αs, s ≥ 0, (4.3)

where X̂ (x) is equal in law to X (x). Note that

σB1 = inf
{
t > 0 : X (x)(t) ̸∈ B(x, |x|)

}

= |x|α inf
{
|x|−αt > 0 : |x|X̂ (i)(|x|−αt) ̸∈ B(x, |x|)

}

= |x|α inf
{

u > 0 : X̂ (i)(u) ̸∈ B(i, 1)
}

=: |x|α σ̂B(i,1). (4.4)

It follows that

X (x)
σB1

= |x|X̂ (i)
|x|−α |x|ασ̂B(i,1)

d= |x|X (i)
σB(i,1)

, (4.5)

as required. The proof of the second claim follows the same steps and is omitted for the sake of brevity.
!
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An important consequence of the previous result is the comparison between the first exit from the
largest sphere in D centred at x and the first exit from the tangent hyperplane to the latter sphere. Recall
that Bn = {z ∈ Rd : |z − ρn−1| < rn} denotes the nth sphere.

Corollary 4.4 Suppose that x ∈ D is such that ∂V(x) is a tangent hyperplane to both D and B1. Define
under Px the indicator random variables

ID = 1{XσB1
̸∈D} and IV = 1{XσB1

̸∈V(x)}.

Then, Px(ID ≥ IV ) = 1 and, independently of x ∈ D, Px(IV = 1) = p(α, d), where

p(α, d) := Pi(XσB(i,1)
̸∈ V(i))

= Γ (d/2)

π (d+2)/2
sin(πα/2)

∫

x1<−1

∣∣1 − |x|2
∣∣−α/2 |x|−d dx,

which is a number in (0, 1).

Proof. The inequality follows from the inclusion D ⊂ V(x). The formula for p(α, d) uses the coordinate
system and scaling property of stable processes in Lemma 4.3 as well as the identity for the first exit from
a sphere given by Theorem 3.1. !

We are now ready to prove our main result.

Proof of Theorem 4.1. Suppose we condition on the previous positions of the walk-on-spheres,
ρ0, . . . , ρk−1 as well as on the event {N > k − 1}. Thanks to the stationary and independent incre-
ments as well as isotropy in the law of a stable process, we can always choose a coordinate system, or
equivalently reorient D in such a way that ρk = |ρk|i. This has the implication that, with the aforesaid
conditioning, the random variable 1{N=k} is independent of ρ0, . . . , ρk−1 and equal in law to ID(ρk−1),
where we have abused our original notation to indicate the initial position of X in the definition of ID.
Similarly, with the same abuse of notation, the event IV (ρk−1) is independent of ρ0, . . . , ρk−1 and equal in
law to a Bernoulli random variable with a probability of success p = p(α, d). In particular, the sequence
IV (ρk), k ≥ 0 is a sequence of Bernoulli trials. That is to say, if we define

Γ = min{k ≥ 1: IV (ρk) = 1},

then it is geometrically distributed with parameter p. Thanks to Corollary 4.4, we also have that Px(ID ≥
IV )|x=ρk = 1, k < N , that is to say, {IV (ρk) = 1} a.s. implies {ID(ρk) = 1}, for k < N , and hence

min{n ≥ 1: ID(ρk) = 1} ≤ min{n ≥ 1: IV (ρk) = 1}

a.s. In other words, we have N ≤ Γ , a.s., as required. !
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Fig. 4. A domain that satisfies the regularized uniform exterior-cone condition.

5. Nonconvex domains

The key element in the proof of Theorem 4.1 is the comparison of the event that the next step of the
walk-on-spheres exits the domain D with the event that the next step of the walk-on-spheres exits a larger,
more regular domain. More precisely, the aforesaid regular domain is taken to be the half-space that
contains D with boundary hyperplane that is tangent to both the current maximal sphere and D. It is the
use of a half-space that allows us to work with unbounded domains, but that forces the assumption that
D is convex. With a little more care, we can remove the need for convexity without disturbing the main
idea of the proof. However, this will come at the cost of insisting that D is bounded. It does, however,
open the possibility that D is not a connected domain. We give two results in this respect.

For the first one, we introduce the following definition, which has previously been used in the potential
analysis of stable processes; (see, for example, Chen & Song, 1998).

Definition 5.1 A domain D in Rd is said to satisfy the uniform exterior-cone condition (UECC), if there
exist constants η > 0, r > 0 and a cone

Cone(η) = {x = (x1, . . . , xd) ∈ Rd : |x| < ηx1},

such that, for every z ∈ ∂D, there is a cone Cz with vertex z, isometric to Cone(η) satisfying
Cz ∩ B(z, r) ⊂ Dc.

It is well known that, for example, bounded C1,1 domains satisfy (UECC). We need a slightly more
restrictive class of domains than those respecting UECC. See Fig. 4.

Definition 5.2 We say that D satisfies the regularized uniform exterior-cone condition (RUECC), if it
is UECC, and the following additional condition holds: for each x ∈ D, suppose that ∂(x) is the closest
point on the boundary of D to x. Then, the isometric cone that qualifies D as UECC can be placed with
its vertex at ∂(x) and symmetrically oriented around the line that passes through x and ∂(x).

Theorem 5.3 Suppose that D is open and bounded (but not necessarily connected) and satisfies RUECC.
Then, for each x ∈ D, there exists a random variable Γ̂ such that N ≤ Γ̂ a.s. and

P(Γ̂ = k) = (1 − q̂)k−1q̂, k ∈ N,

for some q̂ = q̂(α, D).
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Proof. Reviewing the proof of Theorem 4.1, we note that it suffices to prove that, in the context of
Corollary 4.4, for each x ∈ D, there exists a Bernoulli random variable Ĵx with parameter q̂ (independent
of x), such that Px(ID ≥ Ĵx) = 1. To this end, we recall that, without loss of generality, we may choose
our coordinate system such that x = |x|i ∈ D is such that ∂(x) = 0. The assumption that D is bounded
implies that there exists an η such that |x| ≤ η. From the definition of RUECC, we know that there exists
an r > 0 and a cone, C0, with vertex at 0, the closest point on ∂D to x, which is symmetrically oriented
around the line passing through x and 0, such that C0,r := C0 ∩ B(0, r) ⊂ Dc. We have

Px(XσB1
∈ C0,r) = Pi(XσB(i,1)

∈ C0,r/|x|)

≥ Pi(XσB(i,1)
∈ C0,r/η)

= Γ (d/2)

π (d+2)/2
sin(πα/2)

∫

C−i,(r/η)

∣∣1 − |y|2
∣∣−α/2 |y|−d dy

=: q̂,

where Cz,u := [C0 ∩ B(0, u)] − {z}, for z ∈ Rd and u > 0. Note that q̂ is necessarily strictly positive.
Taking account of scaling, we have Px, a.s. that

ID ≥ 1{|x|−1X(x)
σB1

∈C0,r/|x|}
≥ 1{|x|−1X(x)

σB1
∈C0,r/η} =: Ĵ ,

where Ĵ is a Bernoulli random variable with parameter q̂. Stochastic dominance, N ≤ Γ̂ a.s., follows by
the same line of reasoning as in the proof of Theorem 4.1. !

For the second result, we completely relax the geometrical requirements on D at the expense of
efficiency. With an abuse of our earlier notation, we introduce

N(ε) = min
{

n ≥ 0 : ρn ̸∈ D or inf
z∈∂D

|ρn − z| < ε
}

.

Intuitively, N(ε) is the step that exits the inner ε-thickened boundary of D.

Theorem 5.4 Suppose that D is open and bounded (but not necessarily connected). Then, for all x ∈ D,
there exists a constant qε = qε(α, D) > 0 (independent of x) and a random variable Γ ε such that N ≤ Γ ε

a.s., where

Px(Γ
ε = k) = (1 − qε)

k−1qε, k ∈ N.

Moreover, qε = O(εα) as ε ↓ 0. In particular

Ex[N(ε)] = O(ε−α), as ε ↓ 0. (5.1)

Proof. Define

δ := inf {r > 0 : D ⊂ B(x, r) for all x ∈ D},
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so that any sphere of radius δ centred at x ∈ D contains D. Once again, we recall that, without loss of
generality, we may choose our coordinate system such that x = |x| i ∈ D is such that ∂V(x) is a tangent
hyperplane to B1 and such that 0 ∈ ∂B1 ∩ ∂V(x) ∩ ∂D. Then, taking account of scaling and that, for all
x ∈ D such that inf z∈∂D |x−z| ≥ ε, with the particular choice of coordinates described above, δ/|x| ≤ δ/ε,
we have

1{N(ε)=1} ≥ 1{X(x)
σB1

̸∈B(x,δ)} = 1{|x|−1X(x)
σB1

̸∈B(i,δ/|x|)} ≥ 1{|x|−1X(x)
σB1

̸∈B(i,δ/ε)}.

Recall, however, from (4.5) that |x|−1X (x)
σB1

d=X (i)
σB(i,1)

. It therefore follows that, Px, a.s.,

1{N(ε)=1} ≥ 1{X(i)
σB(i,1)

̸∈B(i,δ/ε)} =: Jε,

where Jε is a Bernoulli random variable with parameter

qε(α, D) = Pi(XσB(i,1)
/∈ B(i, δ/ε)) = Γ (d/2)

π (d+2)/2
sin(πα/2)

∫

|y|≥δ/ε

∣∣1 − |y|2
∣∣−α/2 |y|−d dy.

Reverting to generalized spherical polar coordinates, in particular recalling that the Jacobian with respect
to Cartesian coordinates is no larger than |x|d−1 (see Blumenson (1960)), we can estimate

qε(α, D) ≤ Γ (d/2)

π (d+2)/2
sin(πα/2)

∫ ∞

δ/ε

r−(α+1) dr = O(εα).

Reviewing the line of reasoning in the proof of Theorem 4.1, we see that this comparison of events on
the first step can be repeated at each surviving step of the algorithm to deduce the claimed result. !

The O(ε−α) bound in (5.1) can be compared with the bounds achieved by Binder & Braverman (2012)
for the classical walk-on-spheres with Brownian motion for domains with more general geometries than
convex. The worst case in Binder & Braverman (2012) is O(ε2−4/a) for a parameter a > 0 (describing the
domain’s thickness or fractal boundary). Notably in the limit α → 2 (X converges to Brownian motion)
and a → ∞ (the domain loses regularity), the two agree with an O(ε−2) bound.

6. Fractional Poisson problem

We are now interested in using the walk-on-spheres process to find the solution to the inhomogeneous
version of (1.7), namely

−(−∆)α/2u(x) = −f (x), x ∈ D,

u(x) = g(x), x ∈ Dc,
(6.1)

for suitably regular functions f : D → R and g : Dc → R. We want to identify a Feynman–Kac repre-
sentation for solutions to (6.1) for suitable assumptions on g, f and D. Throughout this section, we adopt
the setting of the following theorem.
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Theorem 6.1 Let d ≥ 2 and assume that D is a bounded domain in Rd . Suppose that g is a continuous
function that belongs to L1

α(D
c). Moreover, suppose that f is a function in Cα+ε(D) for some ε > 0. Then,

there exists a unique continuous solution to (6.1) in L1
α(Rd), which is given by

u(x) = Ex[g(XσD)] + Ex

[∫ σD

0
f (Xs) ds

]
, x ∈ D, (6.2)

where σD = inf{t > 0 : Xt ̸∈ D}.

The combinations of Theorem 2.10 and 3.2 in Bucur (2016) treat the case that D is a ball. In the more
general setting, among others, Bogdan & Byczkowski (1999), Ros-Oton & Serra (2014) and Ros-Oton
(2016) (see also citations therein) offer results in this direction, albeit from a more analytical perspective.
We give a new probabilistic proof of Theorem 6.1 in the appendix using a method that combines the
idea of walk-on-spheres with the version of Theorem 6.1 when D is a ball. It is for this reason that the
(otherwise unclear) need for the assumption that f ∈ Cα+ε(D) enters. Note in particular that Theorem
1.3 follows as a corollary.

We can develop the expression in (6.2) in terms of the walk-on-spheres (ρn, n ≤ N), providing the
basis for a Monte Carlo simulation. What will work to our advantage here is another explicit identity that
appears in Blumenthal et al. (1961). Define

Vr(x, dy) :=
∫ ∞

0
Px(Xt ∈ dy, t < σB(x,r)) dt, x ∈ Rd , |y| < 1, r > 0.

Theorem 6.2 (Blumenthal et al., 1961) The expected occupation measure of the stable process prior to
exiting a unit ball centred at the origin is given, for |y| < 1, by

V1(0, dy) = 2−α π−d/2 Γ (d/2)

Γ (α/2)2
|y|α−d

(∫ |y|−2−1

0
(u + 1)−d/2uα/2−1du

)

dy. (6.3)

Although the above identity is presented in a probabilistic context, it has a much older history in the
analysis literature. Known as Boggio’s formula, the original derivation in the setting of potential theory
dates back to Boggio (1905). See the discussion in Delaurentis & Romero (1990) and Bucur (2016).

In the next result, we will write as a slight abuse of notation Vr(x, f (·)) =
∫

|y−x|<r f (y) Vr(x, dy) for
bounded measurable f .

Lemma 6.3 For x ∈ D, g ∈ L1
α(D

c) and f ∈ Cα+ε(D), we have the representation

u(x) = Ex[g(ρN)] + Ex

[
N−1∑

n=0

rα
n V1(0, f (ρn + rn·))

]

.

Proof. Given the walk-on-spheres (ρn, n ≤ N) with ρ0 = x ∈ D, define σn jointly with ρn so that, given
ρn−1, (ρn, σn) is equal in law to (XσBn

, σBn) under Pρn−1 . We can now represent the second expectation on
the right-hand side of (6.2) in the form

Ex

[
∑

n≥0

1{ρn∈D}

∫ σn+1

0
f
(
ρn + X (n+1)

s

)
ds

]

, x ∈ D, (6.4)
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where X (n) are independent copies of (X , P0). Applying Fubini’s theorem, then conditioning each
expectation on Fn := σ (ρk : k ≤ n) followed by Fubini’s theorem again, we have

Ex

[∫ σD

0
f (Xs) ds

]
=
∑

n≥0

Ex

[

1{ρn∈D} Ey

[∫ σB(y,r)

0
f (Xs) ds

]∣∣∣∣
y=ρn ,r=rn

]

=
∑

n≥0

Ex

[
1{ρn∈D}Vrn(ρn, f (·))

]

= Ex

[
N−1∑

n=0

Vrn(ρn, f (·))
]

.

The proof is completed once we show that Vr(x, g) = rαV1(0, f (x + r·)), for r > 0, x ∈ Rd and bounded
measurable f . To this end, we appeal to spatial homogeneity and the, now, familiar computations using
the scaling property of stable processes:

Vr(x, f (·)) = Ex

[∫ σB(x,r)

0
f (Xt) dt

]

= E0

[∫ σB(0,r)

0
f (x + Xt) dt

]

= E0

[∫ σB(0,1)

0
rα f (x + r Xs) ds

]

=
∫

|y|<1
rαf (x + r y) V1(0, dy)

= rα V1(0, f (x + r ·)). (6.5)

The proof is now complete. !

Lemma 6.3 now informs a Monte Carlo procedure based on simulating the quantity

χ := g(ρN) +
N−1∑

n=0

rα
n V1(0, f (ρn + rn·)), x ∈ D,

which is again justified by an obvious strong law of large numbers and the central limit theorem in the
spirit of Corollary 4.2.

Corollary 6.4 When D is bounded and convex, g is continuous and in L1
α(D

c) and f is a function in
Cα+ε(D) for some ε > 0, then

lim
n→∞

1
n

n∑

i=1

χ i = Ex

[

g(ρN) +
N−1∑

n=0

rα
n V1(0, f (ρn + rn·))

]

= u(x), (6.6)
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a.s., where χ i, i ≥ 1 are i.i.d. copies of χ and u(x) is the solution to (6.1). Moreover, when

∫

Dc

g(x)2

1 + |x|α+d
dx < ∞. (6.7)

Then, Var(χ) < ∞ and, in the sense of weak convergence,

lim
n→∞

n1/2

(
1
n

n∑

i=1

χ i − u(x)

)

= Normal(0, Var(χ)).

Proof. Theorem 6.1 and Lemma 6.3 ensure that the strong law of large numbers may be invoked.
For the central limit theorem, we need Ex[χ 2] < ∞. Taking account of the fact that χ is the
sum of two terms, the Cauchy–Schwarz inequality ensures that Ex[χ 2] is finite if Ex

[
g(ρN)2

]
and

Ex

[(∑N−1
n=0 rα

n V1(0, f (ρn + rn·))
)2
]

are finite. Recall that Ex

[
g(ρN)2

]
= Ex[g(XσD)2] and, from

Corollary 4.2, that (6.7) is sufficient to ensure that this expectation is bounded.
Now note that, on account of the fact that f is bounded, there exists a constant κ ∈ (0, 1), such that,

for each n ≤ N , appealing to (6.5), we have rα
n V1(0, f (ρn + rn·)) ≤ κσn, where σn is the time it takes for

the walk-on-spheres to exit the nth sphere. Thus,
∑N−1

n=0 rα
n V1(0, f (ρn + rn·)) ≤ κ

∑N−1
n=0 σn = κ σD. We

thus have that

Ex

⎡

⎣
(

N−1∑

n=0

rα
n V1(0, f (ρn + rn·))

)2
⎤

⎦ ≤ κ2Ex[σ 2
D].

However, the latter expectation can be bounded by Ex[σ 2
B∗ ], where B∗ = B(x, R) for some suitably large

R, such that D is compactly embedded in B∗. Moreover, appealing to Getoor (1961), we know that Ex[σ 2
B∗ ]

is bounded. !

7. Numerical experiments

In the following section, all of the routines associated with the simulations are publicly available at the
following repository: https://bitbucket.org/wos_paper/wos_repo.

For the Monte Carlo procedure, independent copies of the walk-on-spheres (ρn, n ≤ N) need to
be simulated whereby, by the Markov property, every new point in the sequence can be expressed as
ρn+1 = ρn + X ′

σ ′
B(0,rn)

, where X ′ is an independent version of X and

σ ′
B(0,rn) = inf{t > 0 : X ′

t ̸∈ B(0, rn)}.

In other words, ρn+1 is an exit point from a ball B(0, rn) under P0 translated by ρn. A consequence of
Lemma 3.1 is that the exit distribution of X ′

t from B(0, rn), rn > 0, can be, via a change of variable
y = ỹ/rn, written as

P0(XσB(0,rn)
∈ dỹ) = π−(d/2+1)Γ (d/2) sin(πα/2)

∣∣r2
n − |ỹ|2

∣∣−α/2 |ỹ|−drα
n dỹ, |ỹ| > rn. (7.1)
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For d = 2, it is more convenient to work with polar coordinates (r, θ) to separate variables in (7.1).
Indeed, recalling that dỹ = r dr dθ , we have

P0(XσB(0,rn)
∈ dỹ) = 2

π
sin(πα/2)

(
r2 − r2

n

)−α/2
rα

n

dr
r

× dθ

2π
, r > rn. (7.2)

From (7.2), we see that the angle θ is sampled uniformly on [0, 2π ], whereas we can sample the radius
r via the inverse transform sampling method. To this end, noting that sin(πα/2)B(α/2, 1 − α/2) = π ,
the first factor on the right-hand side of (7.2) is the density of a distribution with cumulative distribution
function F. The inverse of F can be identified as follows: For x ∈ [0, 1],

F−1(x) = rn

(
I−1(1 − x; α/2, 1 − α/2)

)−1/2
,

where I−1(x; z, w) is the inverse of the incomplete beta function

I(x; z, w) := 1
B(z, w)

∫ x

0
uz−1(1 − u)w−1 du, x ∈ [0, 1],

and B(z, w) :=
∫ 1

0 uz−1(1 − u)w−1 du is the beta function.
The homogeneous part of the solution to (6.1) is somewhat easier to compute than the inhomogeneous

part, which additionally involves numerical computation of the integral rα
n V1(0, f (ρn + rn·)) in (6.6). To

develop this expression, we use the substitution u = (1 − t)/t for the integral in (6.3) and hence, when
d = 2, for |y| < 1,

V1(0, dy) = c2,αB(1 − α/2, α/2)|y|α−2(1 − I(|y|2; 1 − α/2, α/2)), (7.3)

with c2,α = 2−απ−1Γ (α/2)−2. Moreover, by converting to polar coordinates (r, θ), the simulated quantity
at step n becomes

rα
n V1(0, f (ρn + rn·))

= rα
n c2,αB(1 − α/2, α/2)

∫

|y|<1
f (ρn + rny)|y|α−2

(
1 − I(|y|2; 1 − α/2, α/2)

)
dy

= rα
n c2,αB(1 − α/2, α/2)2πα−1

∫ 1

0

∫ π

−π

f (ρn + rnr(cos θ , sin θ))

×
(
1 − I(r2; 1 − α/2, α/2)

) dθ

2π
× αrα−1 dr.

We used the Monte Carlo approach for evaluating this integral. Consider independent random variables
Θ ∼ U(−π , π) and R = X1/α , such that X ∼ U(0, 1). Then, R has the probability density function
fR(r) = αrα−1 and we want to evaluate

rα
n V1(0, f (ρn + rn·)) = a2,αrα

n E
[(

1 − I(R2; 1 − α/2, α/2)
)

f (ρn + rnR(cos Θ , sin Θ))
]
, (7.4)

with a2,α = α−12−α+1Γ (α/2)−2B(1 − α/2, α/2). We simulate nR,Θ samples of pairs (R, Θ) and compute
the sample mean of the quantity in (7.4). The quantity is evaluated more efficiently by writing

f (ρn + rnR(cos Θ , sin Θ)) = f (ρn) + [f (ρn + rnR(cos Θ , sin Θ)) − f (ρn)]. (7.5)
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Fig. 5. Example simulation for (1.7) with exterior data g(x) = G(x, y) with y = (2, 0) on the domain given by the unit ball centred
at the origin, based on 106 samples. The left-hand plot shows the relative error and the right-hand plot shows the sample variance.
The sample variance is larger for small α as the process stops further away from the boundary and can see the singularity at (2, 0)

in the exterior data. Accordingly, the relative error is higher as we are using a fixed number of samples.

This gives two terms: one can be evaluated directly (by storing E[1 − I(R2; 1 − α/2, α/2)]) and the
second can be evaluated using a Monte Carlo method, but with smaller variance (as the quantity in square
brackets in (7.5) is O (rn)). It is worth noting that a similar mixed approach using the trapezoidal rule
over θ and randomizing r as earlier for evaluating the left-hand side of (7.4) was also tested. However,
the results showed that the pure Monte Carlo approach is, in comparison with the mixed one, superior
with regard to accuracy and computational cost. With this view, we decided to focus on the first one.

Accuracy of this algorithm and its feasibility of implementation were checked with model solutions
to problems of the type (6.1) and they are presented below in order.

7.1 Free-space Green’s function

The free-space Green’s function for the fractional Laplacian (−∆)α/2 is

G(x, y) = cd,α
1

|x − y|α−d
,

for a constant cd,α for d > 1 and α ∈ (0, 2) (see Bucur, 2016). If the point y is chosen outside a domain
D, then we can construct G as an exact solution to the homogeneous version of the fractional Dirichlet
problem in (1.7); that is, u(x) = G(x, y) for x ∈ D and g(x) = G(x, y) for x ̸∈ D. Figure 5 shows the
results of applying the walk-on-spheres algorithm to evaluate u(0.6, 0.6) with 106 samples, where D is
a unit ball in R2 centred at the origin and y = (2, 0). We observe that the samples g(ρN) have larger
variance when α is small and a larger error results from the same number of samples.

7.2 Gaussian data

For the Poisson problem (6.1), we take D to be the unit ball in R2, exterior data

g(x) = exp(−|x − y|2), x ∈ Dc,
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Fig. 6. Example simulation with the walk-on-spheres algorithm for (1.7) based on desired tolerance of 10−4. From top left to bottom
right, we see the standard deviation of the estimator, the sample variance, the absolute error (using a quadrature approximation for
(7.6) for the reference value) and the amount work (number of samples × mean number of steps).

for a given y ∈ R2 and zero source term f = 0. We can represent the solution to (1.7) in D by

u(x) = π−2 sin(πα/2)

∫

Dc

(
1 − |x|2
|y|2 − 1

)α/2 1
|y − x|2 exp(−|x − y|2) dy, x ∈ D. (7.6)

This integral can be computed numerically via a quadrature approximation. Here, instead of a fixed
number of samples, the number of samples is taken adaptively based on a tolerance ε for the computed
sample standard deviation. Figure 6 shows the results with y = (2, 0) and tolerance ε = 10−4 for the
evaluation of u(0.6, 0.6) as previously. The estimator standard deviation and absolute error exhibit no
obvious trend, whereas the sample variance peaks at about α = 0.6. Also, at this value, the largest number
of samples is needed to satisfy the tolerance. Despite the sample variance decreasing after α = 0.6, there
is an increasing trend in the amount of work required. This implies that the increase in the number of
steps with α (see Fig. 10) dominates, and therefore a solution point of accuracy 10−4 is computationally
more costly for larger values of α.

7.3 Nonconstant source term

Suppose that, again in the context of (6.1), we again take D to be equal to the unit ball and the source
term equal to

f (x) = 2αΓ (2 + α/2)Γ (1 + α/2)(1 − (1 + α/2)∥x∥2), x ∈ D,
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Fig. 7. Example simulation with the walk-on-spheres algorithm for (6.1) based on desired tolerance of 10−3 and nR,Θ = 1000.
From top left to bottom right, we see the standard deviation of the estimator, the sample variance, the absolute error and the amount
work (number of samples × mean number of steps).

and zero exterior data g = 0. This has the exact solution u(x) = max{0, 1 − ∥x∥2}1+α/2 (cf. Dyda, 2012).
The behaviour of the algorithm is shown in Fig. 7. As expected, we again observe no obvious trend in
estimator standard deviation and absolute error. The sample variance of sums of Monte Carlo-generated
integrals increases with α, as does the number of samples accordingly. Work required grows with α as in
Fig. 6, but with a slightly steeper trend. Notice that accuracy of 10−4 for the inhomogeneous part of the
solution would demand a lot more work than the homogeneous part in Fig. 6.

7.4 Distribution of the number of steps in convex and nonconvex domains

In previous sections, a large focus was put on deriving upper bounds and limiting distributions for N .
Here, we provide numerical support for these theoretical results. The walk-on-spheres algorithm was
simulated inside a unit-ball domain centred at the origin as well as inside a domain of a hundred touching
unit balls centred at points (i, j), i, j = −10, . . . , 10, the so-called ‘Swiss cheese’ domain as shown in
Figure 8. The first represents a convex domain, whereas the latter a nonconvex one. The algorithm was
started at a point x = (

√
0.29, −

√
0.7) which lies very close to the boundary in both domains. This
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Fig. 8. ‘Swiss cheese’ domain (interior of balls).

Fig. 9. Histogram of the proportion of runs of the walk-on-spheres algorithm with α = 1, for which N > n for the unit-ball domain
(left) and the Swiss cheese domain (right). The dotted curve shows the tail of Geom(p(1, 2)), this is (1 − p(1, 2))n, as in Remark 2
of Theorem 4.1.

point was chosen, as numerical simulations in a unit-ball domain revealed that the mean number of steps
decreases with increasing distance from the boundary of the starting point. Theorem 4.1 states that N is
stochastically dominated by a geometric distribution with parameter p(α, d). In two dimensions, we are
able to numerically compute p(α, 2), because it is the solution to (1.7) with D = B(0, 1), g(x) = 1{x1<−1}(x)
and zero source term f = 0 as deduced from Corollary 4.4. We computed values of p(α, 2) for different
α to accuracy 10−4.

The left-hand histogram in Fig. 9 confirms the stochastic dominance of Γ and an exponentially
decaying tail as stated in Remark 2 of Theorem 4.1. However, the right-hand histogram shows that this
statement fails in the particular example of the Swiss cheese domain. Moreover, the plot of the mean
number of steps against α in Fig. 10 shows the observed value of Ex[N] is bounded above by 1/p(α, 2)

for the unit-ball domain. On the other hand, this is not the case for the Swiss cheese domain, where the
observed value of Ex[N] exceeds 1/p(α, 2) for α in the range (0.3, 1.6).
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Fig. 10. Mean number of steps for the walk-on-spheres algorithm started at x = (
√

0.29, −
√

0.7) inside the circle domain (left)
and inside the Swiss cheese domain (right). The dashed curve on both plots is 1/p(α, 2) as in Corollary 4.4.

An explanation for why this is happening might be as follows. At larger values of α, the path of X starts
resembling that of a Brownian motion (albeit with a countable infinity of arbitrarily small discontinuities).
The process X is started inside a ball in the Swiss cheese. When it exits this ball, its exit position is relatively
close to the boundary with high probability. Therefore, the exit point of the ball containing the point of
issue is more likely to be in the ‘cheese’ (which would cause an end to the algorithm) and less likely to
be inside another vacuous ball. Accordingly, Ex[N] does not deviate largely from the example of a single
ball. However, for small values of α, exit points from the sphere containing the point of issue have a
higher probability to be far from the boundary, landing inside another vacuous ball, thereby requiring the
algorithm to continue. In that case, the comparison with the case of exiting a single sphere breaks down.
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Appendix. Proof of Theorem 6.1

Our proof of Theorem 6.1 uses heavily the joint conclusion of Theorems 2.10 and 3.2 in Bucur (2016),
namely that the Theorem 6.1 is true in the case that D is a ball. Our proof is otherwise constructive proving
existence and uniqueness separately.

Existence: On account of the fact that D is bounded, we can define a ball of sufficiently large radius R > 0,
say B∗ = B(X0, R), centred at X0, such that D is a subset of B∗ and hence σD ≤ σB∗ a.s., irrespective of the
initial position of X, where σB∗ = inf{t > 0 : Xt ̸∈ B∗}. In particular, thanks to stationary and independent
increments, this upper bound for σD does not depend on X0 in law and supx∈D Ex[σD] ≤ E0[σB∗ ] < ∞.

Define for convenience υ(x) = g(x) for x ∈ Dc and

υ(x) = Ex[g(XσD)] + Ex

[∫ σD

0
f (Xs) ds

]
, x ∈ D, (A.1)

where g and f satisfy the assumptions of the theorem. We want to prove that υ is bounded and continuous
on D. For the boundedness of υ, we prove the boundedness of the two expectations in its definition.
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First note that, for all x ∈ D,

Ex

[
|g(XσD)|

]
= Ex

[∣∣g(XσD)
∣∣ 1(σD=σB∗ )

]
+ Ex

[∣∣g(XσD)
∣∣ 1(σD<σB∗ )

]

≤ Ex

[∣∣g(XσB∗ )
∣∣]+ sup

x∈B∗\D
|g(x)|

= E0

[
|g(x + B∗XσB(0,1)

)|
]

+ sup
x∈B∗\D

|g(x)|

= π−(d/2+1) Γ (d/2) sin(πα/2)

∫

|y|>1

|g(x + B∗y)|
∣∣1 − |y|2

∣∣α/2 |y|d
dy + sup

x∈B∗\D
|g(x)|

= C
∫

Rd

|g(z)|
1 + |z|d+α

dy + sup
x∈B∗\D

|g(x)| < ∞, (A.2)

for some constant C ∈ (0, ∞) that does not depend on x (this is ensured, thanks to the boundedness
of D). In the inequality, we have used the fact that, on {σD < σB∗}, we have XσD ∈ B∗\D; moreover,
that, as a continuous function on Rd , g is bounded in B∗\D. In the second equality, we have used spatial
homogeneity and the scaling property of stable processes. In the third equality, we have used Theorem 3.1.
The fourth equality follows by changing variables to z = x + B∗y in the integral appropriately estimating
the denominator and the assumption that g is continuous and in L1

α(D
c).

The boundedness of f on D and the uniform finite mean of σD ensures that the second expectation
in the definition of υ is bounded on D. We claim that υ is continuous in Rd and belongs to L1

α(Rd).
Continuity of υ follows, thanks to the path regularity of X, the continuity of g, the openness of D and
the fact that ω 6→ XσD(ω) and ω 6→

∫ σD(ω)

0 f (Xs(ω)) ds are continuous in the Skorohod topology (for
which it is important that ω 6→ σD(ω) is finite). Continuity is also a consequence of the classical potential
analytic point of view, seeing the identity for υ in (A.1) in terms of Riesz potentials (see, for example,
the classical texts of Landkof, 1972; Bliedtner & Hansen, 1986).

To check that υ ∈ L1
α(Rd), we need some estimates. For x ∈ Dc, υ(x) = g(x) and hence, as

g ∈ L1
α(D

c), it suffices to check that
∫

D |υ(x)|/(1 + |x|α+d) dx < ∞. However, this is trivial on account
of the boundedness and continuity of υ on D.

Now fix x′ ∈ D and let B(x′) be the largest ball centred at x′ that is contained in D. A simple application
of the strong Markov property tells us that

υ(x) = Ex

[

E
[

g(XσD) +
∫ σB(x′)

0
f (Xs) ds +

∫ σD

σB(x′)
f (Xs) ds

∣∣∣∣∣FσB(x′)

]]

= Ex

[
υ(XσB(x′) ) +

∫ σB(x′)

0
f (Xs) ds

]
, x ∈ D, (A.3)

where (Ft , t ≥ 0) is the natural filtration generated by X. Thanks to the fact that Theorem 6.1 is valid on
balls, we see immediately that the right-hand side of (A.3) is the unique solution to

−(−∆u)α/2u(x) = −f (x), x ∈ B(x′),

u(x) = υ(x), x ∈ B(x′)c.
(A.4)
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That is to say, υ solves (A.4). Note that it is at this point in the argument that we are using the condition
f ∈ Cα+ε(D). Since the solution to (A.4) is defined on B(x′) and x′ is chosen arbitrarily in D, we conclude
that υ solves

−(−∆u)α/2u(x) = −f (x), x ∈ D,

u(x) = υ(x), x ∈ Dc.
(A.5)

On account of the fact that Px(σD = 0) = 1 for all x ∈ Dc, it follows that υ = g on Dc and hence (A.5)
is identical to (6.1).

Uniqueness: Suppose that û solves (6.1), then, in particular, for any x′ ∈ D, it must solve

−(−∆u)α/2u(x) = −f (x), x ∈ B(x′),

u(x) = û(x), x ∈ B(x′)c.

As we know the Feynman–Kac representation of the solution to the above fractional Poisson problem,
thanks to Theorem 3.2 in Bucur (2016) for domains that are balls, we are forced to conclude that

û(x) = Ex

[
û(XσB(x′) ) +

∫ σB(x′)

0
f (Xs) ds

]
, x ∈ B(x′), x′ ∈ D. (A.6)

Here again, we are implicitly using that f ∈ Cα+ε(D) in the application of Theorem 3.2 of Bucur (2016).
Let us now appeal to the same notation we have used for the walk-on-spheres. Specifically, recall the
sequential exit times from maximally sized balls σBk for the walk-on-spheres that were defined in Section
4. We claim that

Mk =: û(XσBk
∧σD) +

∫ σBk
∧σD

0
f (Xs) ds, k ≥ 0,

is a martingale. To see why, note that, by the strong Markov property and then by (A.6),

E [Mk+1|Gk] = 1{k<N}

{
Ex

[
û(XσB(x) ) +

∫ σB(x)

0
f (Xs) ds

]∣∣∣∣
x=XσBk

+
∫ σBk

0
f (Xs) ds

}

+ 1{k≥N}

{
û(XσD) +

∫ σD

0
f (Xs) ds

}

= 1{k<N}

{
û(XσBk

) +
∫ σBk

0
f (Xs) ds

}
+ 1{k≥N}

{
û(XσD) +

∫ σD

0
f (Xs) ds

}

= û(XσBk
∧σD) +

∫ σBk
∧σD

0
f (Xs) ds

= Mk , k ≥ 1,

where Gk = FσBk
∧σD , k ≥ 1. For consistency, we may define M0 = Ex[Mk] = û(x), thanks to (A.6).
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Next, we appeal to the definition of B∗ and, in particular, that σD ≤ σB∗ , as well as the continuity of
û to deduce that, for all k ≥ 0,

∣∣∣∣û(XσBk
∧σD) +

∫ σBk
∧σD

0
f (Xs) ds

∣∣∣∣

≤
∣∣û(XσB∗ )

∣∣ 1{σBk
∧σD=σB∗ } + sup

y∈B∗

∣∣û(y)
∣∣ 1{σBk

∧σD<σB∗ } + sup
y∈D

|f (y)| σD

≤
∣∣g(XσB∗ )

∣∣+ c1 + c2σB∗ ,

where c1, c2 are constants. We know that for each fixed x ∈ D, Ex[σB∗ ] < ∞ and, moreover, from Theorem
3.1, after scaling (see, for example, (7.1)), Ex[|g(XσB∗ )|] < ∞ as g ∈ L1

α(D
c). Dominated convergence

allows us to deduce that (Mk , k ≥ 0) is a uniformly integrable martingale, such that, for each fixed x ∈ D,

û(x) = lim
k→∞

Ex[Mk]

= Ex[ lim
k→∞

Mk]

= Ex

[
û(XσD) +

∫ σD

0
f (Xs) ds

]

= Ex

[
g(XσD) +

∫ σD

0
f (Xs) ds

]
,

where in the final equality we have used that û = g on Dc. Uniqueness now follows. !


