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Abstract

We correct the statements of the non-critical convergence theorems in [2], principally
correcting the recursive constants that appear in the limits.
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1 Summary of corrections
In this short note, we remark that there were erroneous limits used in the non-critical cases
for the moment convergence and occupation moments in [2]. The source of the error was a
misuse of the sense in which uniformity held in various convergence arguments. This affects
the nature of the constants that appear in the limits. The results for the critical cases, which
were the principal results, are correct with one minor adjustment in the statement which is
that supt≥0 ∆

(`)
t <∞ should read supt≥c ∆

(`)
t <∞, for any c > 0.

In what follows we assume the notation and hypotheses of [2] and provide the correct
statements and brief corrections of the proofs for the non-critical setting. The theorem
numbers correspond to the same theorem numbers in [2].

Theorem 2 (Supercritical, λ > 0). Suppose that (H1) holds along with (H2) for some k ≥ 2
and λ > 0. Redefine

∆
(`)
t = sup

x∈E,f∈B+
1 (E)

∣∣∣e−`λtϕ(x)−1T
(`)
t [f ](x)− `!〈f, ϕ̃〉`L`(x)

∣∣∣ ,
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where L1(x) = 1 and we define iteratively for k ≥ 2

Lk(x) =

∫ ∞
0

e−λksϕ(x)−1Ts

[
βE·
[ ∑

[k1,...,kN ]2k

N∏
j=1
j:kj>0

ϕ(xj)Lkj(xj)

]]
(x)ds,

with [k1, . . . , kN ]2k is the set of all non-negative N-tuples (k1, . . . , kN) such that
∑N

i=1 ki = k
and at least two of the ki are strictly positive1 if (X,P) is a branching Markov process.
Alternatively, if (X,P) is a superprocess, define iteratively for k ≥ 2 with L1(x) = 1 and
I2(x) = 1

2
ϕ−1(x)

∫∞
0

e−2λsTs [V [ϕ]] (x)ds

Lk(x) = Rk(x) + Ik(x),

where

(1) Rk(x) =
∑

{m1,...,mk−1}k

1

m1! . . .mk−1!
(m1+. . .+mk−1−1)!ϕ(x)m1+...+mk−1−1

k−1∏
j=1

(−Lj(x))mj

and

Ik(x)

=

∫ ∞
0

e−λktϕ−1(x)Ts

 ∑
{m1,...,mk−1}k

1

m1! . . .mk−1!

(
ψ(m1+...+mk−1)(·, 0+)(−ϕ(·))m1

k−1∏
j=2

(−ϕ(·)Ij(·))mj+

β(·)
∫
M(E)◦

〈ϕ, ν〉m1

k−1∏
j=2

〈ϕIj, ν〉mj Γ(·, dν)

)]
(x)ds.

Here the sums run over the set {m1, . . . ,mk−1}k of positive integers such that m1 + 2m2 +
. . .+ (k − 1)mk−1 = k. Then, for all ` ≤ k

(2) sup
t≥0

∆
(`)
t <∞ and lim

t→∞
∆

(`)
t = 0.

Theorem 3 (Subcritical, λ < 0). Suppose that (H1) holds along with (H2) for some k ≥ 2
and λ < 0. Redefine

∆
(k)
t = sup

x∈E,f∈B+
1 (E)

∣∣∣ϕ−1e−λtT(k)t [f ](x)− Lk
∣∣∣ ,

where we define iteratively L1 = 〈f, ϕ̃〉 and for k ≥ 2,

Lk =〈fk, ϕ̃〉+

∫ ∞
0

e−λs

〈
βE·
[ ∑

[k1,...,kN ]2k

(
k

k1, . . . , km

) N∏
j=1
j:kj>0

T(kj)s [f ](xj)

]
, ϕ̃

〉
ds.

1Recall that we interpret
∑

∅ = 0 and
∏

∅ = 1
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if (X,P) is a branching Markov process. Alternatively, if (X,P) is a superprocess,

Lk =

∫ ∞
0

e−λs 〈Vk [f ] , ϕ̃〉 ds

for k ≥ 2, with

Vk[f ](x) =
∑

{m1,...,mk−1}k

k!

m1! . . .mk−1!

×

[
ψ(m1+...+mk−1)(x, 0+)(−Ts [f ] (x))m1

k−1∏
j=2

(
1

j!

(
−T(j) [f ] (x) + (−1)j+1Rj(x, s)

))mj

+β(x)

∫
M(E)◦

〈Ts [f ] , ν〉m1

k−1∏
j=2

(
1

j!

〈
T(j)s [f ] + (−1)jRj(·, s), ν

〉)mj

Γ(x, dν)

]
.

Here the sums run over the set {m1, . . . ,mk−1}k of non-negative integers such that m1 +
2m2 + . . .+ (k − 1)mk−1 = k. Then, for all ` ≤ k

(3) sup
t≥0

∆
(`)
t <∞ and lim

t→∞
∆

(`)
t = 0.

Theorem 5 (Supercritical, λ > 0). Let (X,P) be either a branching Markov process or a
superprocess. Suppose that (H1) holds along with (H2) for some k ≥ 2 and λ > 0. Redefine

∆
(`)
t = sup

x∈E,f∈B+
1 (E)

∣∣∣e−`λtϕ(x)−1M
(`)
t [g](x)− `!〈g, ϕ̃〉`L`(x)

∣∣∣ ,
where Lk(x) was defined in Theorem 2 (both for branching Markov processes and superpro-
cesses), albeit that L1(x) = 1/λ. Then, for all ` ≤ k

(4) sup
t≥0

∆
(`)
t <∞ and lim

t→∞
∆

(`)
t = 0.

Theorem 6 (Subcritical, λ < 0). Suppose that (H1) holds along with (H2) for some k ≥ 2
and λ < 0. Redefine

∆
(`)
t = sup

x∈E,f∈B+
1 (E)

∣∣∣ϕ(x)−1M
(`)
t [g](x)− L`(x)

∣∣∣ ,
where L1(x) =

∫∞
0
ϕ(x)−1Ts[g](x)ds and for k ≥ 2, the Lk(x) are defined recursively via

Lk(x) =

∫ ∞
0

ϕ(x)−1Ts

[
βE·

[ ∑
[k1,...,kN ]2k

(
k

k1, . . . , kN

) N∏
j=1
j:kj>0

ϕ(xj)Lkj(xj)

]]
(x) ds

− k
∫ ∞
0

ϕ(x)−1Ts

[
gϕLk−1

]
(x) ds,
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if X is a branching Markov process. Alternatively, if X is a superprocess,

Lk(x) =(−1)k+1Rk(x) + (−1)k
∫ ∞
0

ϕ(x)−1Ts [Uk] (x)ds

− k
∫ ∞
0

ϕ(x)−1Ts
[
gϕ
(
Lk−1 + (−1)k−1Rk−1

)]
(x)ds,

where

Rk(x) = ϕ(x)−1
∑

{m1,...,mk−1}k

k!

m1! . . .mk−1!
(−1)m1+...+mk−1−1

(m1 + . . .+mk−1 − 1)!
k−1∏
j=1

(
(−1)jϕ(x)Lj(x)

j!

)mj

,

and

Uk(x) =
∑

{m1,...,mk−1}k

k!

m1! . . .mk−1![
ψ(m1+...+mk−1)(x, 0+) (ϕ(x)L1(x))m1

k−1∏
j=2

(
(−1)j+1ϕ(x)Lj(x)− ϕ(x)Rj(x)

j!

)mj

+ β(x)

∫
M(E)◦

(−1)m1+...+mk−1 〈ϕL1, ν〉m1

k−1∏
j=2

(
〈(−1)j+1ϕLj − ϕRj, ν〉

j!

)mj

Γ(x, dν)

]
.

Then, for all ` ≤ k

(5) sup
t≥0

∆
(`)
t <∞ and lim

t→∞
∆

(`)
t = 0.

2 Summary of proofs
We give a brief proof of Theorems 2 and 3 to give a sense of the corrected reasoning. The
proofs of Theorems 5 and 6 are left out given that the corrected reasoning uses the same
logic. The reader is referblack to [1] for more details.

Proof of Theorem 2. Suppose for induction that the result is true for all `-th integer moments
with 1 ≤ ` ≤ k − 1. From the evolution equation in Proposition 1 of [2], noting that∑N

j=1 kj = k, when the limit exists, we have

lim
t→∞

e−λkt
∫ t

0

ϕ(x)−1Ts

βE·
 ∑

[k1,...,kN ]2k

(
k

k1, . . . , kN

) N∏
j=1

T
(kj)
t−s [f ](xj)

 (x)ds

= lim
t→∞

t

∫ 1

0

e−λ(k−1)ute−λutϕ(x)−1Tut

[
H[f ](x, u, t)

]
(x)du,(6)

4



where

H[f ](x, u, t) := β(x)Ex

 ∑
[k1,...,kN ]2k

(
k

k1, . . . , kN

) N∏
j=1

e−λkjt(1−u)T
(kj)

t(1−u)[f ](xj)

 .
It is easy to see that, pointwise in x ∈ E and u ∈ [0, 1], using the induction hypothesis and
(H2),

H[f ](x) := lim
t→∞

H[f ](x, u, t) = k!〈f, ϕ̃〉kβ(x)Ex

 ∑
[k1,...,kN ]2k

N∏
j=1
j:kj>0

ϕ(xj)Lkj(xj)

 ,
where we have again used the fact that the kjs sum to k to extract the 〈f, ϕ̃〉k term.

Using the expressions for H[f ](x, u, t) and H[f ](x) together with the definition of Lk(x),
we have, for any ε > 0, as t→∞,

sup
x∈E,f∈B+

1 (E)

|e−kλtϕ−1T(k)t [f ]− k!〈f, ϕ̃〉kLk|

≤ t

∫ 1

0

e−λ(k−1)ut sup
x∈E,f∈B+

1 (E)

∣∣e−λutϕ−1Tut [H[f ](·, u, t)−H[f ]]
∣∣ du+ ε,(7)

where ε is an upper estimate for

(8) sup
x∈E,f∈B+

1 (E)

k!〈f, ϕ̃〉k
∫ ∞
t

e−λksϕ(x)−1Ts

[
βE·
[ ∑

[k1,...,kN ]2k

N∏
j=1
j:kj>0

ϕ(xj)Lkj(xj)

]]
(x)ds.

Note, convergence to zero as t → ∞ in (8) follows thanks to the induction hypothesis
(ensuring that Lkj(x) is uniformly bounded), (H2) and the uniform boundedness of β.

The induction hypothesis, (H2) and dominated convergence again ensure that

(9) lim
t→∞

sup
x∈E,f∈B+

1 (E),u∈[0,ε]
|H[f ](·, u, t)−H[f ]| = 0.

As such, in (7), we can split the integral on the right-hand side over [0, ε] and (ε, 1], for
ε ∈ (0, 1). Using (9), we can ensure that, for any arbitrarily small ε′ > 0, making use of the
boundedness in (H1), there is a global constant C > 0 such that, for all t sufficiently large,

t

∫ ε

0

e−λ(k−1)ut sup
x∈E,f∈B+

1 (E)

∣∣e−λutϕ−1Tut [H[f ](·, u, t)−H[f ]]
∣∣ du

≤ ε′Ct

∫ ε

0

e−λ(k−1)utdu

=
ε′C

λ(k − 1)
(1− e−λ(k−1)εt).(10)
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On the other hand, we can also control the integral over (ε, 1], again appealing to (H1) and
(H2) to ensure that

sup
x∈E,f∈B+

1 (E),u∈(ε,1]

∣∣e−λutϕ−1Tut [H[f ](·, u, t)−H[f ]]
∣∣ <∞.

We can again work with a (different) global constant C > 0 such that

t

∫ 1

ε

e−λ(k−1)ut sup
x∈E,f∈B+

1 (E)

∣∣e−λutϕ−1Tut [H[f ](·, u, t)−H[f ]]
∣∣ du

≤ Ct

∫ 1

ε

e−λ(k−1)utdu

=
C

λ(k − 1)
(e−λ(k−1)εt − e−λ(k−1)t).(11)

In conclusion, using (10) and (11), we can take limits as t→∞ in (7) and the statement
of the theorem follows for branching Markov processes.

The proof in the superprocess setting starts the same way as in [2] up to equation (90)
therein, noting that the term Rk(x, t) in the moment evolution equation

(12) T
(k)
t [f ] (x) = (−1)k+1Rk(x, t) + (−1)k

∫ t

0

Ts [Uk(·, t− s)] (x)ds,

from equation (77) of [2] can be compensated in the limit using Rk(x, t) defined in (1) above.
The remainder of the proof deals with the compensation of the integral term in (12).

We have

lim
t→∞

e−λkt(−1)k
∫ t

0

ϕ(x)−1Ts [Uk(·, t− s)] (x)ds

= lim
t→∞

t

∫ 1

0

e−λ(k−1)ute−λutϕ(x)−1Tut

[
H[f ](x, u, t)

]
(x)du,

where H [f ] (x, u, t) as

H [f ] (x, u, t) = (−1)ke−λkt(1−u)Uk(x, t(1− u)),

that is,

H [f ] (x, u, t) :=
∑

{m1,...,mk−1}

k!

m1! . . .mk−1!

[
ψ(m1+...+mk−1)(x, 0+)(−e−λt(1−u)Tt(1−u) [f ] (x))m1

k−1∏
j=2

(
−e−λjt(1−u)

j!

(
T
(j)
t(1−u) [f ] (x) + (−1)jRj(x, t(1− u))

))mj

+β(x)

∫
M(E)◦

〈
e−λt(1−u)Tt(1−u) [f ] , ν

〉m1

k−1∏
j=2

〈
e−λjt(1−u)

j!
(T

(j)
t(1−u) [f ] + (−1)jRj(·, t(1− u))), ν

〉mj

Γ(x, dν)

]
.
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The induction hypothesis and (H1) allow us to get

H [f ] (x)

:= lim
t→∞

H(x, u, t)

=
∑

{m1,...,mk−1}k

1

m1! . . .mk−1!

(
ψ(m1+...+mk−1)(x, 0+)(−ϕ(x))m1

k−1∏
j=2

(−ϕ(x)Ij(x))mj

+β(x)

∫
M(E)◦

〈ϕ, ν〉m1

k−1∏
j=2

〈ϕIj, ν〉mj Γ(x, dν)

)
.

Using the same arguments used above from (10) onwards, we get the desiblack result.

Proof of Theorem 3. First note that since we only compensate by e−λt, the term Tt[f
k](x)

that appears in equation (41) of [2] does not vanish after the normalisation. Due to assump-
tion (H1), we have

lim
t→∞

ϕ−1(x)e−λtTt[f
k](x) = 〈fk, ϕ̃〉.

Next we turn to the integral term in (41) of [2]. Define [k1, . . . , kN ]
(n)
k , for 2 ≤ n ≤ k to

be the set of tuples (k1, . . . , kN) with exactly n positive terms and whose sum is equal to k.
Similar calculations to those given above yield

e−λt

ϕ(x)

∫ t

0

Ts

βEx
 ∑

[k1,...,kN ]2k

(
k

k1, . . . , kN

) N∏
j=1

T
(kj)
t−s [f ](xj)

 (x)ds

= t

∫ 1

0

k∑
n=2

eλ(n−1)ut
e−λ(1−u)t

ϕ(x)

× T(1−u)t

[
βE·

[ ∑
[k1,...,kN ]

(n)
k

(
k

k1, . . . , kN

) N∏
j=1

e−λutT
(kj)
ut [f ](xj)

]]
(x)du.(13)

Now suppose for induction that the result holds for all `-th integer moments with 1 ≤
` ≤ k − 1. Roughly speaking the argument can be completed by noting that the integral in
the definition of Lk can be written as

(14)
∫ ∞
0

k∑
n=2

eλ(n−1)s

〈
βE·

[ ∑
[k1,...,kN ]

(n)
k

(
k

k1, . . . , kN

) N∏
j=1

e−λsT(kj)s [f ](xj), ϕ̃

〉
ds,

which is convergent by appealing to (H2), the fact that β ∈ B+(E) and the induction
hypothesis. As a convergent integral, it can be truncated at t > 0 and the residual of the
integral over (t,∞) can be made arbitrarily small by taking t sufficiently large. By changing
variables in (14) when the integral is truncated at arbitrarily large t, so it is of a similar form
to that of (13), we can subtract it from (13) to get

t

∫ 1

0

k∑
n=2

eλ(n−1)ut
(

e−λ(1−u)t

ϕ(x)
T(1−u)t[H

(n)
ut ]− 〈H(n)

ut , ϕ̃〉
)

du,
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where

H
(n)
ut (x) = βEx

[ ∑
[k1,...,kN ]

(n)
k

(
k

k1, . . . , kN

) N∏
j=1

e−λutT
(kj)
ut [f ](xj)

]
.

One proceeds to split the integral of the difference over [0, 1] into two integrals, one over
[0, 1− ε] and one over (1− ε, 1]. For the aforesaid integral over [0, 1− ε], we can control the
behaviour of ϕ−1e−λ(1−u)tT(1−u)t[H

(n)
ut ]− 〈H(n)

ut , ϕ̃〉 as t → ∞, making it arbitrarily small, by
appealing to uniform dominated control of its argument in square brackets thanks to (H1).
The integral over [0, 1− ε] can thus be bounded, as t→∞, by t(1− eλ(n−1)(1−ε))/|λ|(n− 1).

For the integral over (1−ε, 1], we can appeal to the uniformity in (H1) and (H2) to control
the entire term e−λ(1−u)tT(1−u)t[H

(n)
ut ] (over time and its argument in the square brackets) by

a global constant. Up to a multiplicative constant, the magnitude of the integral is thus of
order

t

∫ 1

1−ε
eλ(n−1)utdu =

1

|λ|(n− 1)
(eλ(n−1)(1−ε)t − eλ(n−1)t),

which tends to zero as t→∞.

In the superprocess setting, as in the original proof, the exponential scaling kills the term
Rk(x, t) in (12). For the integral term in (12), define H(m1,...,mk−1)

ut by

H
(m1,...,mk−1)
ut (x) :=

ψ(m1+...+mk−1)(x, 0+)(−e−λutTut [f ] (x))m1

k−1∏
j=2

(
−e−λut

j!

(
T
(j)
ut [f ] (x) + (−1)jRj(x, ut)

))mj

+ β(x)

∫
M(E)◦

〈
e−λutTut [f ] , ν

〉m1

k−1∏
j=2

〈
e−λut

j!
(T

(j)
ut [f ] + (−1)jRj(·, ut)), ν

〉mj

Γ(x, dν)

and noting that Lk can be written as

(15)
∫ ∞
0

∑
{m1,...,mk−1}k

k!

m1! . . .mk−1!
eλ(m1+...+mk−1−1)s

〈
H(m1,...,mk−1)
s [f ] , ϕ̃

〉
ds,

which is also convergent by appealing to (H2). The rest of the proof follows similar arguments
to that of the particle system. That is, one splits the integral (15) at t and uses the integral
over [0, t] to compensate the integral component of (12), changing variable so that it becomes
an integral over [0, 1] and handling things as with the particle system. The remaining integral
from (t,∞) can be argued away as arbitrarily small because of the convergence of (15).

3 Concluding remarks
Fundamentally, the corrected results offer the same rates of convergence and simply the
constants take a different iterative structure. In Theorems 5 and 6, the uniformity in the
convergence no longer accommodates for dividing by ϕ in the statement of the results.
Finally, the corrections also remove the discrepancy between when there is dependency on x
or not in the constants in the case of branching Markov processes and superprocesses.
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