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Abstract

Previous authors have considered optimal stopping problems driven by the running maximum of
spectrally negative Lévy process as well as of a one-dimensional diffusion; see e.g. Kyprianou and
tt (2014); Ott (2014); Ott (2013); Alvarez and Matomäki (2014); Guo and Shepp (2001); Pedersen

2000); Gapeev (2007). Many of the aforementioned results are either implicitly or explicitly dependent
n Peskir’s maximality principle, cf. (Peskir, 1998). In this article, we are interested in understanding
ow some of the main ideas from these previous works can be brought into the setting of problems
riven by the maximum of a class of Markov additive processes (more precisely Markov modulated
évy processes). Similarly to Ott (2013); Kyprianou and Ott (2014); Ott (2014), the optimal stopping
oundary is characterised by a system of ordinary first-order differential equations, one for each state of
he modulating component of the Markov additive process. Moreover, whereas scale functions played
n important role in the previously mentioned work, we work instead with scale matrices for Markov
dditive processes here; as introduced by Kyprianou and Palmowski (2008); Ivanovs and Palmowski
2012). We exemplify our calculations in the setting of the Shepp–Shiryaev optimal stopping problem
Shepp and Shiryaev, 1993; Shepp and Shiryaev, 1995), as well as a family of capped maximum optimal
topping problems.
c 2021 Elsevier B.V. All rights reserved.
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1. Introduction

We are interested in a family of optimal stopping problems driven by a class of Markov
dditive processes (MAPs) that have frequently appeared in the applied probability literature.
he aforesaid optimal stopping problems are based around maximum functionals of such
APs. In order to make precise the setting in which we want to work, we will start by defining

he class of Markov additive processes that we are interested in.
Let E be a finite state space and, hence, without loss of generality, we can write it in the form

{1, . . . , N }. A càdlàg process (X, J ) in R× E with probabilities P(x,i) = P(· | X0 = x, J0 = i),
x ∈ R, i ∈ E , is called a Markov additive process (MAP) if for any i ∈ E , s, t ≥ 0 and
bounded and measurable f , on the event {Jt = j}

Ex,i [ f (X t+s − X t , Jt+s)|Gt ] = E0, j [ f (Xs, Js)] (1)

where (Gt , t ≥ 0) is the filtration generated by (X, J ). The process J is thus a Markov chain
on E and is called the modulator of X , whereas the latter is called the ordinator.

Below, we will briefly discuss some relevant aspects of the theory of MAPs for our purposes.
The reader is principally referred to [5] and [4, §XI.2a] for further details. Older literature
includes [12,13,3,7]. We will mainly appeal to the setup and notation of [20], where it was
principally assumed that X is spectrally negative (only negative jumps).

It turns out that the pair (X, J ) is a Markov additive process if and only if, for each i, j ∈ E ,
there exist a sequence of iid Lévy processes (X i,(n), n ≥ 0) and a sequence of iid random
variables (U n

i, j , n ≥ 0), independent of the chain J , such that if σ0 = 0 and (σn, n ≥ 1) are the
jump times of J , the process X has the representation

X t = 1(n>0)(Xσn− + U n
Jσn−,Jσn

) + X Jσn,(n)
t−σn , for t ∈ [σn, σn+1), n ≥ 0.

For each i ∈ E , it will be convenient to define X i as a Lévy process whose law is that of the
X i,(n) processes in the above representation; and similarly, for each i, j ∈ E , define Ui, j to be a
random variable having the common law of the U n

i, j variables. From the above representation
one may deduce that MAPs are strong Markov processes. Indeed, they satisfy the slightly
stronger property that (1) holds with t replaced by a stopping time, albeit on the event that the
stopping time is finite.

Henceforth, we confine ourselves to irreducible (and hence ergodic) Markov chains J . Let
the state space E be the finite set {1, . . . , N }, for some N ∈ N. Moreover, we will additionally
assume that each of the processes X i are spectrally negative Lévy processes, allowing for the
possibility that some of them have monotone increasing paths (but disallowing the possibility
that any of them have purely non-increasing paths1), so long as the MAP may experience both
upwards and downwards movements. Similarly, we will also assume that Ui, j ≤ 0 for each
, j ∈ E . As such, the process (X, J ) is said to be a spectrally negative MAP. Note that this

assumption ensures that (X, J ), when issued from X0 = 0 and J0 = i ∈ E , must have the
property that 0 is regular for (0,∞). What is less clear is whether 0 is regular for (−∞, 0) as
well. This depends on the state i ∈ E . If X i is of unbounded variation, then 0 is regular for
(−∞, 0) for X when X0 = 0, J0 = i , otherwise, when there is bounded variation, there is an
almost surely strictly positive time before X enters (−∞, 0), that is, 0 is irregular for (−∞, 0)
for X [25, pg.232].

1 As noted in e.g. [23], we can incorporate the case that some, but not all, of the X i have non-increasing paths
y performing a time change and compressing each section of path that is non-increasing into a single negative
ump.
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Denote the transition rate matrix of the chain J by Q = (qi, j )i, j∈E . For each i ∈ E , the
Laplace exponent of the Lévy process X i will be written ψi . For each pair of i, j ∈ E , define
the Laplace transform G i, j (z) = E(ezUi, j ) of the distribution of the jump Ui, j , where this exists.

rite G(z) for the N×N matrix whose (i, j)th element is G i, j (z). We will adopt the convention
hat Ui, j = 0 if qi, j = 0, i ̸= j , and also set Ui,i = 0 for each i ∈ E .

The multidimensional analogue of the Laplace exponent of a Lévy process is provided by
he matrix-valued function

Ψ (z) = diag(ψ1(z), . . . , ψN (z)) + Q ◦ G(z), (2)

or all z ∈ C where the elements on the right are defined, where ◦ indicates elementwise
ultiplication. It is known that

E(0,i)[ezX t ; Jt = j] =
(
eΨ (z)t)

i, j , for i, j ∈ E, t ≥ 0, (3)

or all z ∈ C where one side of the equality is defined [4, Prop.XI.2.2]. For this reason, Ψ
s called the matrix exponent of the MAP (X, J ). Note that Ψ (z) is well defined and finite at
east for Re(z) ≥ 0.

For z such that Ψ (z) is well defined, there exists a leading real-valued eigenvalue of the
atrix Ψ (z), also called the Perron–Frobenius eigenvalue; see [4, §XI.2c] and [20, Proposition

.12]. If we denote this eigenvalue by κ(z), then it turns out that it is larger than the real part
f all its other eigenvalues. Furthermore, the corresponding right-eigenvector v(z) has strictly
ositive entries, and can be normalised such that π · v(z) = 1, where we recall that π is the
tationary distribution of the underlying chain J .

The eigenvalue κ (θ) is a convex function on (0,∞) such that κ (0) = 0 and the derivative
′(0+) exists in [−∞,∞). A trichotomy similar in spirit to the one that describes the long term
ehaviour of Lévy processes exists, which states that either limt→∞ X t = ∞, limt→∞ X t =

∞ or lim supt→∞ X t = − lim inft→∞ X t = ∞ accordingly as κ ′(0+) > 0, κ ′(0+) < 0 or
κ ′(0+) = 0, respectively. For the right inverse of κ we shall write Φ. That is, for all q ≥ 0,

Φ(q) = sup{θ ≥ 0 : κ(θ ) = q}. (4)

The properties of κ imply that Φ(q) > 0 for q > 0 and Φ(0) = 0 if and only if κ ′(0+) ≥ 0,
otherwise Φ(0) > 0.

The eigenvalue κ also affords us the opportunity to introduce the natural analogue of the
Esscher transform for MAPs. Specifically, for t ≥ 0,

dPγ(x,i)
dP(x,i)

⏐⏐⏐⏐⏐
Gt

:= eγ (X(t)−x)−κ(γ )t vJ (t) (γ )

vi (γ )
, (5)

or γ such that κ(γ ) < ∞. (The most common use of (5) in this article will be when we take
he value γ = Φ(q), for q ≥ 0.) The process (X,P) is again a spectrally negative MAP whose

intensity matrix Ψ γ (θ) is well defined and finite for θ ≥ −γ . If Ψ γ (θ) has largest eigenvalue
γ (θ) and associated right eigenvector vγ (θ), the triple

(
Ψ γ (θ) , κγ (θ) , vγ (θ)

)
is related to

the original triple (Ψ (θ) , κ (θ) , v (θ)) via

Ψ γ (θ) = ∆v (γ )
−1 Ψ (θ + γ )∆v (γ )− κ (γ ) I and κγ (θ) = κ (θ + γ )− κ (γ ) ,

(6)

where I is the N × N identity matrix and

∆ γ := diag v γ , . . . , v γ .
v ( ) ( 1 ( ) N ( ))
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Note in particular, for the choice γ = Φ(q), it is easy to verify that κ ′

Φ(q)(0+) > 0 and hence
X,PΦ(q)) drifts to +∞.

These details and more concerning the basic characterisation of MAPs can be found in
[4, Chp.XI]. See also [23,20].

Define X t = sups≤t Xs , t ≥ 0 and let G t = sup{s ≤ t : Xs = X t }, from which we can
define J̄t = JGt , t ≥ 0. The quadruple (X, X , J, J̄ ) is also a strong Markov process with
espect to (Gt , t ≥ 0), which is an important fact that will drive the analysis in this paper. To
ee this, we can write the process (X, X , J, J̄ ) with additional indices, as (X (x), X

(s)
, J (i), J̄ ( j))

ndicating its point of issue as the state (x, s, i, j) where x ≤ s and i, j ∈ E . For any Gt -
stopping time τ , on {τ < ∞}, we have for bounded, measurable F : R2

× E2
→ [0,∞),

E
[

F(X (x)
τ+t , X

(s)
τ+t , J (i)

τ+t , J̄ ( j)
τ+t )

⏐⏐⏐Gτ] is equal to

E(0,i ′)
[
F

(
x ′

+ X t , s ′
∨ (x ′

+ X̄ t ), Jt , j ′1(s′≥(x ′+X̄ t )) + JGt 1(s′<(x ′+X̄ t ))
)]
,

where (x ′, s ′, i ′, j ′) = (X (x)
τ , X

(s)
τ , J (i)

τ , J̄ ( j)
τ ).

Henceforth, we refer to the quadruple (X, X , J, J̄ ) as the Markov additive maximality
rocess (MAMP). As such, we abuse our earlier notation and write P(x,s,i, j) to denote the
aw conditional on (X0, X0, J0, J̄0) = (x, s, i, j), for x ∈ R, s ≥ x , i, j ∈ E . The reader will

note the deliberate abuse of notation, albeit being consistent with P(x,i), for x ∈ R and i ∈ E .
Writing P = (P(x,s,i, j), x ≤ s, i, j ∈ E), we will refer to the underlying MAP as ((X, J ),P).

Let us return to the family of optimal stopping problems that we are interested in.
Fundamentally, we want to consider problems driven by the MAMP that take the form

V (x, s, i, j) = sup
τ

E(x,s,i, j)[e−qτ f (X τ , J̄τ )], s ≥ x, i, j ∈ E, (7)

here the supremum is taken over the class of almost surely finite Gt -stopping times, q ≥ 0
nd f : R × E → (0,∞) is a measurable function.

Previous authors have considered optimal stopping problems driven by the running max-
mum of a spectrally negative Lévy process X , as well as in setting of a general diffusion;
ee e.g. [26,31,30,2,19,32,17]. Many of the aforementioned results are either implicitly or
xplicitly dependent on Peskir’s maximality principle, cf. [33]. In this article, we are interested
n understanding how some of the main ideas from these previous works can be brought into
he setting described above, albeit using a heuristic developed in Peskir [33] and in the PhD
hesis of C. Ott [29].

Whereas there are several works concerning optimal stopping problems with regime switch-
ng, see e.g. [18,14], we believe this is the first such work which considers the current setting
f MAPs. What is also new in the current setting is that we make use in our analysis of the
o-called scale matrices, introduced in [27,23]. Furthermore, we introduce an alternative second

scale matrix in this paper. These are matrix-valued functions which play a similar role of scale
functions in the theory of spectrally negative Lévy processes (a well known tool in the setting
of a number of classical applied probability models, cf. [24,25]), albeit in the setting of the
family of MAPs described above.

The rest of this paper is organised as follows. In the next section we consider the formal
definition of a scale matrix and look at some of its analytical properties. In Section 3, we
describe the solution to (7) and highlight the strategy that we will take, which is based on what
we call Peskir–Ott heuristic. Moreover, we pass through a number of technical results which
allows us to prove our main result based on a standard verification technique. In Section 4,
we exemplify our calculations using the Shepp–Shiryaev optimal stopping problem. Finally,
1112
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Section 5 concludes the paper and sets an outlook on a family of capped maximum optimal
stopping problems.

2. Scale matrices

Theorem 3 of [27] (see also Theorem 1 of [23]) introduces a family of N×N matrix function
W (q)

: R → M(R), the space of N × N matrices with real-valued entries, for q ≥ 0, such that
W (q)(x) = 0 (the zero matrix) for x < 0 and otherwise is an almost-everywhere differentiable,
on-decreasing function which is defined via the Laplace transform∫

∞

0
e−βx W (q)(x)dx = (Ψ (β) − q I)−1

or β > max{Re(z) : z ∈ C, det(Ψ (z)) = q}. An important feature of the scale matrix is that it
lays a fundamental role in several key fluctuation identities, very much in the spirit of scale
unctions in the setting of spectrally negative Lévy processes (cf. Chapter 8 of [25] and [24]).
his was first discussed in detail in [27].

A second scale function was introduced in [27], M (q), and this function was presented as
he natural analogue of the second scale function that appears also in the theory of spectrally
egative Lévy processes. In this section, we introduce an alternative second scale matrix (of
ourse closely related to M (q)), which mirrors more clearly the situation for the second scale
unction in the theory of spectrally negative Lévy processes; see Chapter 8 of [25] or [24] for
omparison. We define the N × N matrix functions Z(q) on R, for q ≥ 0, by

Z(q)(x) = I +

∫ x

0
W (q)(y)dy (q I − Q), x ∈ R. (8)

et 1 denote the vector (1, . . . , 1)T
∈ RN . Note that

[Z(q)(x)1]i = 1 + q
∫ x

0
[W (q)(y)1]i dy, x ∈ R, i ∈ E . (9)

his definition is consistent with the usage of the notation Zq in [21, pg.1165] and coincides
ith (3) in [23] for α = 0 and q = 0.
Let us define τ+

a = inf{t > 0 : X t > a} and τ−

0 = inf{t > 0 : X t < 0}. Considering (5)
ith γ = Φ(q), for q ≥ 0, we denote by Λ(q) the intensity matrix of the modulator of the

scending ladder MAP under PΦ(q) (cf. Section 3 of [27]). That is, PΦ(q)
0,i (Jτ+

a
= j) = [eaΛ(q)]i, j .

ote that ((X, J ),PΦ(q)) is a process for which the ordinate drifts to infinity and hence Λ(q)
s the intensity matrix of a conservative Markov chain (the alternative being that the chain
an be killed and sent to a cemetery state at a rate that depends on the current state). The
ollowing result gives existing identities that can be found in the literature, from [21,23,27]
precise references in its proof). In particular, the approach in [21,23] allows for the slightly
ore general setting that discounting rate q is replaced by one that is state dependent.

roposition 1. We have for x ≤ a, i, j ∈ E and q ≥ 0, the three identities

E(x,i)[e−qτ+
a ; τ+

a < ∞, Jτ+
a

= j] = [∆v (Φ(q)) e(a−x)β+(q)∆v (Φ(q))−1]i, j , (10)

E(x,i)[e−qτ+
a ; τ+

a < τ−

0 , Jτ+
a

= j] = [W (q)(x)W (q)(a)−1]i, j , (11)

E(x,i)[e−qτ−

0 ; τ−

0 < τ+

a , Jτ−

0
= j] = [Z(q)(x) − W (q)(x)W (q)(a)−1 Z(q)(a)]i, j , (12)

here β+(q) := Λ(q) − Φ(q)I is the matrix exponent of the ascending ladder MAP.
1113
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Remark 1. It is worth noting that as the MAP (X, J ) is spectrally negative, the ascending
ladder MAP consists of a pure drift of unit speed, which is (possibly) killed at a rate which
depends on its modulating chain (corresponding to the ability of the MAP (X, J ) to drift to

∞).

roof (of Proposition 1). The first identity is taken from of Theorem 1 of [27]. Identity (11)
s lifted from Theorem 3 (iv) of [27] and appears in [21, pg.1164]. For the third identity, we
lso recall from Theorem 3 that there exists matrix function M (q)(x), defined by I for x ≤ 0
nd otherwise, for x > 0, via its Laplace transform, given by2∫

(0,∞)
e−βx M (q)(dx) = (Ψ (β) − q I)−1(I − β D̂(q)T )(q I − Q) (13)

uch that

E(x,i)[e−qτ−

0 ; τ−

0 < τ+

a , Jτ−

0
= j] = [M (q)(x) − W (q)(x)W (q)(a)−1 M (q)(a)]i, j . (14)

olds for x ∈ R. The precise meaning of D̂(q) will turn out to be unimportant for our proof
ere; however, the reader can refer to Section 4 of [27] otherwise.

Using the Laplace transform of W (q) given by∫
[0,∞)

e−βx W (q)(x)dx = (Ψ (β) − q I)−1 ,

nd integration by parts yields, for x ≥ 0,

M (q)(x) − I =

∫ x

0
W (q)(y)dy (q I − Q) − W (q)(x) D̂(q)T (q I − Q),

nd hence, substituting this expression for M (q) into (14), we recover

(E(x,i)[e−qτ−

0 ; τ−

0 < τ+

a , Jτ−

0
= j])i, j∈E

= Z(q)(x) − W (q)(x)W (q)(a)−1 Z(q)(a)

− [W (q)(x) − W (q)(x)W (q)(a)−1W (q)(a)] D̂(q)T (q I − Q)

= Z(q)(x) − W (q)(x)W (q)(a)−1 Z(q)(a),

s required. The special case of (12) for q = 0 can also be obtained by taking α = 0 in
23, Corollary 3]. □

As a small remark following the above proof, we also point to the work of Breuer [11],
ho also addresses results containing special case of Proposition 1 by appealing to generator

quations.
The identities in Proposition 1 will prove to be useful, but we will also need to know

ome basic facts about the smoothness properties of the scale matrices W (q) and Z(q). Next,
heorem 1 gathers what we will need to know later on in this paper. Its proof is somewhat

echnical and therefore deferred to the Appendix. The reader may also consult [23] for related
esults. Let us denote the states of the modulator for which the ordinate moves as a bounded
ariation Lévy process by Ebv. Then, Eubv

:= E\Ebv corresponds to the states for which we
ave an unbounded variation Lévy process.

2 There is a typo in the statement of Theorem 3 of [27], the Laplace transform of the measure M(q)(dx) should
e taken over (0,∞).
1114
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Theorem 1. Fix q ≥ 0.

(i) For all a > 0, [W (q)(0+)W (q)(a)−1]i, j > 0, for all j ∈ E, if and only if i ∈ Ebv,
otherwise, when i ∈ Eubv, we have [W (q)(0+)W (q)(a)−1]i, j = 0 for all j ∈ E.
Moreover, W (q)(0+) = diag(W (q)

1 (0+), . . . ,W (q)
N (0+)), where W (q)

i is the scale function
corresponding to Lévy process X i , i ∈ E.

(ii) The scale matrix W (q)(x) is almost everywhere differentiable. Moreover, for all 0 ≤ x ≤

a, the almost everywhere derivative of W (q)(x)W (q)(a)−1 has an (elementwise) strictly
positive and right-continuous derivative on R;

(iii) For i ∈ Eubv, W (q)′
i i (0+) = W (q+qi )′

i (0+), where W (q+qi )
i is the scale function correspond-

ing to Lévy process X i , i ∈ E, and qi =
∑

j ̸=i qi, j .
(iv) Z(q) is continuously differentiable, except possibly at 0 and otherwise is almost everywhere

twice differentiable with a right-continuous second derivative.

orollary 1. For each i ∈ E, there exists a(i) ∈ (0,∞] such that [Z(q)(x)1]i is not smaller
han unity for 0 ≤ x ≤ a(i).

roof. By Theorem 1(i), [W (q)(0+)1]i = W (q)
i (0+) for i ∈ E and, from Theorem 1(iii), we

ave [W (q)′(0+)1]i = W (q+qi )′
i (0+) for i ∈ Eubv. Since W (q)

i (0+) > 0 for i ∈ Ebv and
W (q+qi )′

i (0+) > 0 for i ∈ Eubv by [24, Lem.3.1,Lem.3.2], W (q)
i (x) is strictly positive in a

neighbourhood of 0 in R+ for all i ∈ E . More precisely, for all q ≥ 0, W (q)′
i (0+) equals 2/σ 2

i
or +∞ when σi = 0 by [24, Lem.3.2] when i ∈ Eubv. Then, the result follows as Z(q)(x) is a
continuous function of x ∈ R and [Z(q)(0)1]i = 1. □

3. Optimal stopping problem solution

The following result gives us a relatively complete solution to (7).

Theorem 2. Suppose that q > 0 and f : R× E → (0,∞) is a measurable function. For each
measurable g : R × E → [0,∞) define

τg = inf{u > 0 : Xu − Xu > g(Xu, J̄u)}, (15)

where g is defined as a non-negative solution to the first order differential equation

g′(s, j) = 1 −
f ′(s, j)
f (s, j)

[Z(q)(g(s, j))1] j

[Z(q)′(g(s, j))1] j
, j ∈ E, s ∈ R. (16)

atisfying g(s, j) ≤ a( j), where a( j) = inf{x > 0 : [Z(q)(x)1] j ≤ 1}, j ∈ E. Assume the
ollowing:

(i) at least one solution to (16) exists;
(ii) the stopping time τg is almost surely finite for ((X, J ),P);

(iii) the function f (s, j) is continuously differentiable for each j ∈ E;
(iv) for all t ≥ 0 and i, j ∈ E,

E(x,i)

[∫ t

0
f (Xu, J̄u)eΦ(q)Xu du

]
+ E(x,i)

[∫ t

0
f (Xu, J̄u)2e2Φ(q)Xu du

]
< ∞. (17)

hen the optimal stopping problem (7) is solved with optimal strategy τg and value function

V (x, s, i, j) = f (s, j)[Z(q)(x − s + g(s, j))1]i x ≤ s, i, j ∈ E . (18)
1115
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Remark 2. Our insistence that q > 0 is not necessary and, in principle, one may also consider
the case q = 0. Additionally, one may also consider the case that discounting at rate qt is
replaced by discounting at rate

∫ t
0 ηJs ds, where (ηi , i ∈ E) are different rates of discounting

depending on the modulating state. The latter is also equivalent to setting q = 0 and including
in the definition of (X, J ) the possibility that J is non-conservative. It is likely that this slightly
more general structure nonetheless preserves the identities in e.g. Proposition 1 as well as the
subsequent analytical properties, albeit a careful audit of existing literature being needed. In
this respect, we claim that our approach will also work suitably well for optimal stopping
problems of the form

V (x, s, i, j)

= sup
τ

{
E(x,s,i, j)[e−

∫ τ
0 ηJs ds f (X τ , J̄τ )] − E(x,s,i, j)

[∫ τ

0
e−

∫ s
0 ηJu duc(Xu, J̄u)du

]}
,

for s ≥ x , i, j ∈ E , and a suitable choice of c, e.g. uniformly bounded and continuous.
Moreover, again with appropriate assumptions, we claim that the methods we present will also
allow one to handle the functions f and c depending on the full Markov process (X, X , J, J̄ ).

.1. Peskir–Ott heuristic

We will prove Theorem 2 by appealing to a series of lemmas. However, before dealing
ith those, let us first introduce some basic reasoning which will heuristically explain the core

ngredients of the proof of Theorem 2. We refer to this as the Peskir–Ott heuristic following
he introduction in his PhD thesis [29], in which he outlines similar reasoning for the solution
o a large family of optimal stopping problems driven by the maximum of a spectrally negative
évy process, which are analogous to those we consider here in the MAP setting. In turn his

easoning was stimulated by the arguments in Peskir [33].
The point of interest in the current context is that reasoning of [29] is equally applicable, on

ccount of the fact that we have identified (X, X , J, J̄ ) as the natural driving Markov process
o (7). To this end, let us guess a solution of the form

τg = inf{u > 0 : Xu − Xu > g(Xu, J̄u)}, (19)

where measurable g : R × E → [0,∞) is to be determined. On account of the fact that
f (s, j) = 0 for s < s∗, it is natural to set g(s, j) = +∞, for s < s∗ and j ∈ E .

The value function associated with strategy τg , given by

Vg(x, s, i, j) = E(x,s,i, j)[e−qτg f (X τg , J̄τg )]. (20)

ote that τg < τ+
s if and only if Xu < s for all u ≤ τg . Moreover, we have

τg = inf{u > 0 : s − Xu > g(s, j)} = inf{u > 0 : Xu < s − g(s, j)} = τ−

s−g(s, j),

nd hence τg > τ+
s if and only if τ−

s−g(s, j) > τ+
s .

Conditioning on the minimum of τ+
s and τg , and applying Markov property, we find

Vg(x, s, i, j) = E(x,s,i, j)

[
e−qτ−

s−g(s, j) f (s, j); τ−

s−g(s, j) < τ+

s

]
+E(x,s,i, j)

[
e−qτ+

s Vg(s, s, J̄τ+
s
, J̄τ+

s
); τ+

s < τ−

s−g(s, j)

]
. (21)

he first term in (21) is otherwise written as

f (s, j)
∑

E(x,s,i, j)[e
−qτ−

s−g(s, j); τ−

s−g(s, j) < τ+

s , Jτ−

s−g(s, j)
= k] . (22)
k
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The second term in (21) can also be written as∑
k

E(x,s,i, j)[e−qτ+
s Vg(s, s, k, k); τ+

s < τ−

s−g(s, j), Jτ+
s

= k] . (23)

oth expectations in (22) and (23) can be identified from Proposition 1. More precisely,

Vg(x, s, i, j)

= f (s, j)
∑

k

[Z(q)(x − s + g(s, j))

− W (q)(x − s + g(s, j))W (q)(g(s, j))−1 Z(q)(g(s, j))]i,k

+

∑
k

[W (q)(x − s + g(s, j))W (q)(g(s, j))−1]i,k Vg(s, s, k, k)

= f (s, j)[Z(q)(x − s + g(s, j))1 − W (q)(x − s + g(s, j))W (q)(g(s, j))−1 Z(q)(g(s, j))1]i

+
[
[W (q)(x − s + g(s, j))W (q)(g(s, j))−1Vg(s, s, ·, ·)]

]
i . (24)

ith this general form of Vg , it is customary (cf. [34,35,7,29,26,30]) to optimise over the
ossible choices by invoking one condition at the point of reflection of X − X and one of two
ossible conditions that best describe the pasting of the value function onto the gain function.

We start with the pasting principle. In [6] and then more generally in [1], it was noted
hat, for optimal stopping problems driven by Lévy processes, the formulation of the pasting
rinciple was dictated by the regularity of the stopping region for the underlying Lévy process
hen issued on its boundary. Quite simply, if the stopping region is irregular in this respect,

hen a principle of continuous pasting is needed. In the case of regularity, a principle of smooth
t is needed.

In the current setting, we need to take account of the two different types of path variation
hich can occur in the ordinate among the different modulator states. In the notation of (2),
e will work with a principle of continuous fit for those i ∈ E for which ψi corresponds to a
ounded variation Lévy process, i.e., i ∈ Ebv, and a principle of smooth fit for i ∈ Eubv, those
tates of the modulator for which the ordinate moves as an unbounded variation Lévy process.
hat is to say, we will insist on

lim
x↓s−g(s, j)

Vg(x, s, i, j) = f (s, j) for i ∈ Ebv, s ∈ R,

nd

lim
x↓s−g(s, j)

∂Vg

∂x
(x, s, i, j) =

∂

∂x
f (s, j) = 0 for i ∈ Eubvs ∈ R. (25)

hanks to parts (ii) and (iii) of Theorem 1, we can now easily verify that for i ∈ Ebv, j ∈ E
nd s ∈ R,

lim
x↓s−g(s, j)

Vg(x, s, i, j)

= f (s, j)[1− W (q)(0+)W (q)(g(s, j))−1 Z(q)(g(s, j))1]i

+
[
W (q)(0+)W (q)(g(s, j))−1Vg(s, s, ·, ·)

]
i

= f (s, j)

−

∑
k∈E

[W (q)(0+)W (q)(g(s, j))−1]i,k
[

f (s, j)[Z(q)(g(s, j))1]k − Vg(s, s, k, k)
]
. (26)
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Hence, in order to respect the continuous pasting principle for i ∈ Ebv, providing card(Ebv) >
, it would be sufficient to enforce the requirement that

f (s, j)[Z(q)(g(s, j))1]k = Vg(s, s, k, k), k ∈ E, s ∈ R. (27)

n the other hand, if card(Eubv) > 0, we need to be sure that for i ∈ Eubv that smooth pasting
is possible under the assumption (27). To this end, note that, for i ∈ Eubv, j ∈ E and s ∈ R,

lim
x↓s−g(s, j)

∂Vg

∂x
(x, s, i, j)

= f (s, j)[W (q)(0+)(q I − Q)1]i − f (s, j)[W (q)′(0+)W (q)(g(s, j))−1 Z(q)(g(s, j))1]i

+ [W (q)′(0+)W (q)(g(s, j))−1][Vg(s, s, ·, ·)]i

= q f (s, j)
∑

k∈Ebv

[W (q)(0+)]i,k

−

∑
k∈E

[W (q)′(0+)W (q)(g(s, j))−1]i,k
[

f (s, j)[Z(q)(g(s, j))1]k − Vg(s, s, k, k)
]
.

hanks to Theorem 1, once assumption (27) is enforced, we also see that smooth pasting holds
f and only if i ∈ Eubv.

Now that it is clear that (27) is a naturally occurring condition to satisfy the folklore of
ontinuous and smooth pasting principles, we can substitute it into (24) and get

Vg(x, s, i, j) = f (s, j)[Z(q)(x − s + g(s, j))1]i , i ∈ E, x ≤ s. (28)

ur heuristic reasoning has now produced a candidate value function which satisfies (19), (20)
s well as (27).

Again referring to the historical treatment [34,35,7,29,26,30], another important feature of
he Peskir–Ott heuristic for this family of optimal stopping problems (at least in the spectrally
egative setting) is that a Neumann condition must hold corresponding the process of reflection
f the ordinate in its running maximum. More precisely, now working with the assumption (27)
o that Vg respects (28) it would be typical to assume that

∂

∂s
Vg(x, s, i, i)

⏐⏐⏐⏐
x↑s

= 0, i ∈ E, s ∈ R. (29)

simple differentiation yields

∂

∂s
Vg(x, s, i, i)

⏐⏐⏐⏐
x↑s

= f ′(s, j)[Z(q)(g(s, j))1]i

+ f (s, j)(g′(s, j) − 1)[Z(q)′(g(s, j))1]i , (30)

or i ∈ E , providing f (s, j) is continuously differentiable for j ∈ E .
Thus insisting on (29) yields in (30) that the unknown barrier g(s, j), s ∈ R and j ∈ E ,

atisfies the differential equation

g′(s, j) = 1 −
f ′(s, j)
f (s, j)

[Z(q)(g(s, j))1] j

[Z(q)′(g(s, j))1] j

= 1 −
f ′(s, j)
f (s, j)

[Z(q)(g(s, j))1] j

[W (q)(g(s, j)) (q I − Q)1] j

= 1 −
f ′(s, j) [Z(q)(g(s, j))1] j

(q) j ∈ E, s ∈ R. (31)

f (s, j) [qW (g(s, j))1] j
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In conclusion, rehearsing the Peskir–Ott heuristic in the current context means that we need
to assume the classical assumptions of smooth and continuous pasting, depending on the
modulator, which yields the simple proposed form of the optimal solution (28), as well as
the classical enforcement of the Neumann condition, which pins down the unknown optimal
threshold curve g in the form of the system of ODEs (31). As is now classical in the theory

f optimal stopping, we proceed to take this informed guess for the analytic structure for the
olution and verify directly the proposed solution is indeed correct; in other words, we use the
ethod of guess and verify.

.2. Verification of optimality

In developing the proof on the basis of the guess and verify method, we need the following
emma (which is analogous to Lemma 11.1 in [25]) that gives us simple criteria to verify.

emma 1. Suppose that the conditions of Theorem 2 hold. Then the pair (τg, Vg) attains the
ptimal value of the optimal stopping problem (7), if the following three conditions hold:

(i) For all x ≤ s and i, j ∈ E,

Vg(x, s, i, j) = E(x,s,i, j)[e−qτg f (X τg , J̄τg )];

(ii) For all x ≤ s and i, j ∈ E,

Vg(x, s, i, j) ≥ f (s, j);

(iii) The process

e−qt Vg(X t , X t , Jt , J̄t ), t ≥ 0

is a right-continuous supermartingale.

roof. Assumption (i) implies that

Vg(x, s, i, j) = E(x,s,i, j)[e−qτg f (X τg , J̄τg )] ≤ sup
τ

E(x,s,i, j)[e−qτ f (X τ , J̄τ )]. (32)

Assumption (iii), Doob’s Optional Sampling Theorem and then assumption (ii) implies that

Vg(x, s, i, j) ≥ E(x,s,i, j)
[
e−q(t∧τ )Vg(X t∧τ , X t∧τ , Jt∧τ , J̄t∧τ )

]
≥ E(x,s,i, j)[e−q(t∧τ ) f (X t∧τ , J̄t∧τ )], (33)

or all τ in the desired class of stopping times. Now taking limits as t ↑ ∞ in (33) and using
atou’s Lemma, we obtain the opposite inequality to (32) and the lemma is thus proved. □

emark 3. The ODE (16) need not have a unique solution and the above proof hints at why
he sufficient conditions in Theorem 2 will force us to single out a specific one. Roughly
peaking, properties (i) and (ii), although stated as sufficient conditions, they are known to be
ecessary conditions for the existence of an optimal solution to (7), in which case, inequality
33) indicates that

inf
g

Vg(x, s, i, j) ≥ E(x,s,i, j)[e−qτ f (X τ , J̄τ )]

ust hold. As such, if there are many solutions to (16), we will be forced to work with the
ne that produces the minimisation above. This is equivalent to what Peskir [33] refers to as
aximality principle.
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In order to address criterion (iii) in our use of Lemma 1, we need to prove two intermediary
esults. Below, WΦ(q) denotes the matrix that plays the role of W (0) under PΦ(q) defined in (5).
lso, let Fi, j be the respective distributions of the random variables Ui, j .

emma 2. The process

m t (X, J )

:=

∫ t

0
[Z(q)′ (Xu−)1]JuσJu dBu

+

∑
0<u≤t

1(Ju−=Ju )
(
[(Z(q)(Xu) − Z(q)(Xu−))1]Ju − 1(∆Xu≥−1)∆Xu[Z(q)′ (Xu−)1]Ju

)
−

∫ t

0

∫
(−∞,0)

(
[Z(q) (Xu− + y) 1]Ju

− [Z(q) (Xu−)1]Ju − y1{y≥−1}[Z(q)′(Xu−)1]Ju

)
νJu (dy)du

+

∑
0<u≤t

1(Ju− ̸=Ju )
(
[Z(q)(Xu)1]Ju − [Z(q)(Xu−)1]Ju−

)
−

∫ t

0

N∑
k=1

∫
(−∞,0)

(
[Z(q) (Xu− + y) 1]k − [Z(q) (Xu−)1]Ju−

)
qJu−,k FJu−,k(dy)du, (34)

or t ≥ 0, is a martingale.

roof. Note that the jump component of m(X, J ) centred by its compensator and thus, the part
f m(X, J ) that is not a Brownian integral is automatically a martingale as soon as we can
how that, for all x ∈ R, i ∈ E and t ≥ 0, the L1-isometry conditions

E(x,i)

[∫ t

0

∫
(−∞,0)

⏐⏐⏐⏐[Z(q) (Xu− + y)1]Ju − [Z(q) (Xu−) 1]Ju

− y1{y≥−1}[Z(q)′(Xu−)1]Ju

⏐⏐⏐⏐νJu (dy)du
]
< ∞ (35)

nd

E(x,i)

[∫ t

0

N∑
k=1

∫
(−∞,0)

⏐⏐[Z(q) (Xu− + y)1]k − [Z(q) (Xu−)1]Ju−

⏐⏐ qJu−,k FJu−,k(dy)du
]

< ∞

(36)

old. For the second of these two verifications, note that we can use the elementwise
onotonicity of Z(q) to otherwise write the left-hand side of (36) as bounded above by

2∥ Q∥E(x,i)

[∫ t

0
e−qu

⏐⏐1T Z(q) (Xu)1
⏐⏐du

]
, (37)

here ∥Q∥ = supi, j∈E,i ̸= j qi, j . From the definition of Z(q) in (8), we also note that

1T Z(q) (Xu)1 = 1 + q
∫ Xu

(1T W (q) (y)1)dy.

0
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Moreover, recall from equations (16) and (19) in [27], we can write

W (q)(x) = eΦ(q)x∆v (Φ(q))WΦ(q)(x)∆v (Φ(q))−1 , (38)

here Φ(q) was defined in (4). Note, we can also see from below3 equation (16) in [27], on
ccount of the fact that ((X, J ),PΦ(q)) drifts to +∞, there exist a family of sub-stochastic
ntensity matrices (Λ∗

q (y), y ≥ 0) such that

WΦ(q)(x) = exp
(∫

∞

x
Λ∗

q (y)dy
)

WΦ(q)(∞) x ≥ 0. (39)

he matrix exponential on the right-hand side of (39) is a transition semigroup (of a time-
nhomogeneous Markov chain), which means that its entries are all non-negative. Then, note
hat the sign of the entries of WΦ(q)(x) may be positive or negative as dictated by WΦ(q)(∞).
ecalling that the eigenvector v(Φ(q)) is element-wise strictly bounded away from 0 and ∞,
e can use (38) together with (39) to deduce that

|1T Z(q) (Xu)1| ≤ 1 + C1

∫ Xu

0
eΦ(q)ydy ≤ C2eΦ(q)Xu

or (unimportant) constants C1,C2 > 0. Returning to (37), it is now easy to see that (36) holds
y making use of the exponential change of measure (5).

For the sake of brevity we leave the proof of (35) as an exercise for the reader, noting that
ts proof goes along similar lines.

In order to justify that
∫ t

0 [Z(q)′ (Xu−) 1]JuσJu dB Ju
u , t ≥ 0, is a martingale, it suffices to check

hat its mean quadratic variation is finite; that is to say, the necessary L2-isometry condition
olds. Using (38) and (3), the aforementioned is verified via

E(x,i)

[∫ t

0
[Z(q)′ (Xu−)1]2

Ju
σ 2

Ju
du

]
= E(x,i)

[∫ t

0
[qW (q) (Xu−) 1]2

Ju
σ 2

Ju
du

]
≤ q2σ̄ 2 v̄

v
∥WΦ(q)∥

2 E(x,i)

[∫ t

0
1(X t ≥0)e2Φ(q)Xu du

]
≤ q2σ̄ 2 v̄

v
∥WΦ(q)∥

2
∫ t

0
E(x,i)

[
e2Φ(q)Xu

]
du

= q2σ̄ 2 v̄

v
∥WΦ(q)∥

2
∫ t

0
[eΨ (2Φ(q))u1]i du < ∞,

where ∥WΦ(q)∥ = supi, j∈E |[WΦ(q)(x)]i, j |, σ̄ 2
= maxi∈E σ

2
i , v̄ = maxi∈E vi (Φ(q)) and

= min j∈E v j (Φ(q)), and the final inequality follows again from the martingale on the right-
hand side of (5). To see why supi, j∈E |WΦ(q)(x)|i, j < ∞, we recall from the change of measure
5) that the process (PΦ(q), X ) drifts to +∞. Hence, recalling (11),

0 < PΦ(q)
(x,i) (τ−

0 = ∞, Jτ+
a

= j)

= lim
a→∞

PΦ(q)
(x,i) (τ+

a < τ−

0 , Jτ+
a

= j)

= lim
a→∞

[WΦ(q)(x)WΦ(q)(a)−1]i, j

≤ 1,

hich forces supi, j∈E |WΦ(q)(x)|i, j < ∞. □

3 Note that there is a typo in the sign of the exponent in [27].
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We need to define some infinitesimal generators of some of the processes that make up the
nderlying MAP. To this end, in the case that i ∈ Ebv, for convenience, we will write

ψi (λ) = aiλ+

∫
(−∞,0)

(eλx
− 1)νi (dx), λ ≥ 0,

here ai > 0 and
∫

(−∞,0)(|x | ∧ 1)νi (dx) < ∞, which is always possible for spectrally negative
évy processes, cf. equation (8.3) in [25]. When i ∈ Eubv, we will instead need to identify the
aplace exponent

ψi (λ) = aiλ+
1
2
σ 2

i λ
2
+

∫
(−∞,0)

(eλx
− 1 − x1(|x |<1))νi (dx), λ ≥ 0,

here ai ∈ R, σ 2
i ≥ 0 and

∫
(−∞,0)(|x |

2
∧ 1)νi (dx) < ∞. Accordingly, we identify the two

ssociated infinitesimal generators. The first is

Ai f (x) = ai f ′(x+) +

∫
(−∞,0)

( f (x + y) − f (x)) νi (dy), i ∈ Ebv, x ∈ R,

or f ∈ C1,+
0 (R), the set of functions which have a right-continuous derivative and which

anish at −∞. The second is

Ai f (x) = ai f ′(x) +
σ 2

i

2
f ′′(x+) +

∫
(−∞,0)

(
f (x + y) − f (x) − y f ′(x)1(|x |<1)

)
νi (dx),

or i ∈ Eubv, x ∈ R and f ∈ C2,+
0 (R), the space of functions which are continuously

ifferentiable with right-continuous second derivative and which vanish at −∞ ( f (x) → 0
s x → −∞).

We also need to introduce the generator that codes the rate at which the Markov chain jumps
nd causes an additional discontinuity in the ordinate. Define

B f (x, i) =

N∑
k=1

qik

∫
(−∞,0)

( f (x + y, k) − f (x, i))Fi,k(dy), i ∈ E, x ∈ R,

here, for i, j ∈ E we recall that qi,k are the entries of the matrix Q and Fi, j are the respective
istributions of the random variables Ui, j .

roposition 2. For all i ∈ E, we have

Hi (x) := Ai ([Z(q)(·)1]i )(x) + B([Z(q)(·)1]·)(x, i) − q[Z(q)(x)1]i = 0

or x ≥ 0, and Hi (x) < 0 for x < 0.

roof. We start by proving the claim that

u(x, i) := E(x,i)

[
e−qτ−

0 [W (q)(Xτ−

0
)W (q)(a)−11]J

τ
−

0
; Xτ−

0
= 0, τ−

0 < τ+

a

]
= 0, (40)

or all x ≥ 0. To this end, we break the expectation on the right-hand side of (40) according to
he exhaustive disjoint union of events

⋃
n≥0{τ

−

0 ∈ [σn, σn+1)}, where σ0 = 0 and σn is the nth
ump time of the modulator J , for n ≥ 1. This, together with the Markov property gives us

u(x, i)

= E(x,i)

[
e−qτ−

0 [W (q)(0+)W (q)(a)−11]J
τ
−
; Xτ− = 0, τ−

0 < τ+

a ∧ σ1

]

0 0
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+

∑
n≥1

E(x,i)

[
e−qσn 1(σn<τ

−

0 ∧τ+
a )E(Xσn ,Jσn )

×

[
[W (q)(0+)W (q)(a)−11]J

τ
−

0
; Xτ−

0
= 0, τ−

0 < τ+

a ∧ σ1

]]
= E(x,i)

[
e−qτ−

0 [W (q)(0+)W (q)(a)−11]i ; Xτ−

0
= 0, τ−

0 < τ+

a ∧ σ1

]
+

∑
n≥1

E(x,i)

[
e−qσn 1(σn<τ

−

0 ∧τ+
a )E(Xσn , j)

×

[
[W (q)(0+)W (q)(a)−11] j ; Xτ−

0
= 0, τ−

0 < τ+

a ∧ σ1

]
Jσn = j

]
,

here we have used the fact that, if J0 = i , then Jτ−

0
= i on the event τ−

0 < σ1.
Next note that for an expectation of the form

E(x, j)

[
[W (q)(0+)W (q)(a)−11] j ; Xτ−

0
= 0, τ−

0 < τ+

a ∧ σ1

]
, (41)

f j ∈ Eubv, then [W (q)(0+)W (q)(a)−11] j = 0 thanks to Theorem 1, or, otherwise, if j ∈ Ebv,
hen {Xτ−

0
= 0, τ−

0 < σ1} is almost surely the empty set. Either way, the expectation (41) is
ero and, hence, u(x, i) = 0 for all x ∈ R and i ∈ E , as claimed in (40).

With (40) in hand, we now note that either

[W (q)(Xτ−

0
)W (q)(a)−11]J

τ
−

0
= 0 or 1(X

τ
−

0
=0) = 0

lmost surely on the event {τ−

0 < τ+
a }. Noting that [W (q)(Xτ+

a
)W (q)(a)−11]J

τ
+
a

= 1 almost

urely, it follows that, with τ0,a := τ+
a ∧ τ−

0 ,

e−qτ+
a 1

{τ+
a <τ

−

0 }
= e−qτ0,a [W (q)(Xτ0,a )W (q)(a)−11]Jτ0,a

.

aking expectations, this gives us, for x ∈ R, i ∈ E .

E(x,i)

[
e−qτ+

a 1
{τ+

a <τ
−

0 }

]
= E(x,i)

[
e−qτ0,a [W (q)(Xτ0,a )W (q)(a)−11]Jτ0,a

]
.

his and Markov property imply

E(x,i)

[
e−qτ0,a [W (q) (Xτ0,a

)
W (q)(a)−11]Jτ0,a

|Gt

]
= 1(t≤τ0,a )e−qtEX t ,Jt

[
e−qτ0,a [W (q) (Xτ0,a

)
W (q)(a)−11]Jτ0,a

]
+ 1(t>τ0,a )e−qτ0,a [W (q) (Xτ0,a

)
W (q)(a)−11]Jτ0,a

= 1(t≤τ0,a )e−qt [W (q) (X t )W (q)(a)−11]Jt + 1(t>τ0,a )e−qτ [W (q) (Xτ0,a

)
W (q)(a)−11]Jτ0,a

= e−q(t∧τ0,a )[W (q) (X t∧τ0,a

)
W (q)(a)−11]Jt∧τ0,a

.

n other words, we have that

e−q(t∧τ0,a )[W (q) (X t∧τ0,a

)
W (q)(a)−11]Jt∧τ0,a

, t ≥ 0,

s a martingale. In a similar spirit, noting from Theorem 1 that Z(q)(x) = I for x ≤ 0, we can
educe with the help of (12) in Proposition 1, that

e−q(t∧τ0,a )[Z(q)(X )1] − e−q(t∧τ0,a )[W (q)(X )W (q)(a)−1 Z(q)(a)1]
t∧τ0,a Jt∧τ0,a t∧τ0,a Jt∧τ0,a
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is a martingale as well. As linear combinations of martingales are still martingales, we thus
have that

e−q(t∧τ0,a )[Z(q)(X t∧τ0,a )1]Jt∧τ0,a
(42)

s also a martingale.
Recall from Theorem 1(iv) that Z(q) is continuously differentiable, except possibly at 0 and

therwise is almost everywhere twice differentiable with a right-continuous second derivative
n R (which is thus locally bounded). Along the intervals of time between jumps of the
AP modulator, i.e. [σn, σn+1), for n ≥ 0, we can apply piecewise the version of Itô’s

formula in Theorem 3 of [16], together with the conclusion of Lemma 7 (ii) in the same
paper (which permits us to write Itô’s formula in the same way as usual despite the slightly
weaker smoothness assumptions), and get, on {t ≤ τ0,a},

d(e−qt [Z(q)(X t )1]Jt ) = e−qtAJt− ([Z(q)(·)1]Jt− )(X t−) dt + e−qtB([Z(q)(·)1]·)(X t−, Jt−) dt

− qe−qt [Z(q)(X t−)1]Jt− dt + e−qt dm t (X, J ), t ≥ 0. (43)

here, from Lemma 2 (m t (X, J ), t ≥ 0) is an R-valued martingale.
Since both (42) and (m t∧τ0,a (X, J ), t ≥ 0) are martingales, the drift term in (43) must be

ero. Sampling the two aforesaid martingales at the stopping time σ1 ∧ τ0,a (recall σ1 is the
rst jump time of J ) gives us, for all i ∈ E , 0 < x < a and t ≥ 0,

0 = E(x,i)

[∫ σ1∧τ0,a

0
e−qs

(
AJs− ([Z(q)(·)1]Js− )(Xs−) (44)

+ B([Z(q)(·)1]·)(Xs−, Js−) − q[Z(q)(Xs−)1]Js−

)
ds

]
= Ei

x

[∫ τ i
0,a

0
e−(q+|qi,i |)s Hi (X i

s−)ds
]
, (45)

here (X i
t , t ≥ 0), with probabilities (Pi

x , x ∈ R), is an independent copy of the spectrally
egative Lévy process with Laplace exponent ψi and τ i

0,a = inf{t > 0 : X i
t ̸∈ [0, a]} from

hich the statement of the theorem follows for x > 0. From Section 8.4 of [25], we know that
he (q + |qi,i |)-potential measure of X i killed on exiting [0, a] has a density with respect to
ebesgue measure, say u

(q+|qi,i |)
i (a, x, y), which is continuous in q ≥ 0, x, y ≥ 0, and strictly

ositive. The identity (45) thus reads∫ a

0
Hi (y)u(q+|qi,i |)

i (a, x, y) dy = 0, x ∈ [0, a], a > 0, q > 0, i ∈ E,

nd standard arguments allow us to deduce that Hi (x) = 0 for Lebesgue almost every x > 0.
t is easy to verify from its definition that Hi (x) is right continuous and hence Hi (x) = 0 for

x ≥ 0.
To deal with the case x < 0, it suffices to note that Z(q)(x) = I and one can verify by hand

hat

Ai ([Z(q)(·)1]i )(x) + B([Z(q)(·)1]·)(x, i) − q[Z(q)(x)1]i = −q < 0,

s required. □

roof (of Theorem 2). The essence of our proof is to verify the three conditions of Lemma 1,
y appealing to the assumptions of Theorem 2. As noted below (28), by guessing the strategy
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τg and insisting on the smooth and continuous pasting properties as described in Section 3.1,
art (i) of Lemma 1 is verified for s ≥ s∗.

To verify part (ii) of Lemma 1, given that

Vg(x, s, i, j) = f (s, j)[Z(q)(x − s + g(s, j))1]i

= f (s, j)
[

1 +

∫ x−s+g(s, j)

0
[W (q)(y)(q I − Q)1]i dy

]
= f (s, j)

[
1 + q

∫ x−s+g(s, j)

0
[W (q)(y)1]i dy

]
or x ≤ s, i, j ∈ E , since W (q)(y) = 0 for y ≤ 0, it is easy to see that, for s − x ≥ g(s, j),

Vg(x, s, i, j) = f (s, j).

ext note that, for s − x ≤ g(s, j), we have

Vg(x, s, i, j) ≥ f (s, j).

s [Z(q)(y)1] j ≥ 1 under the assumption that g(s, j) ≤ a( j) for all j ∈ E , where a( j) ∈ (0,∞]
y Corollary 1.

Finally for part (iii) of Lemma 1, we need to apply again an appropriate form of Itô’s
ormula. To this end, note that

Vg(X t , X t , Jt , J̄t ) = f (X t , J̄t )[Z(q)(X t − X t + g(X t , J̄t ))1]Jt , t ≥ 0.

et

Yt = X t − X t + g(X t , J̄t ), t ≥ 0. (46)

ixing the integration by parts formula with the earlier indicated calculus from [16], we have,
or t ≥ 0,

d[e−qt Vg(X t , X t , Jt , J̄t )]

= e−qt f ′(X t−, J̄t−)[Z(q)(Yt−)1]Jt− dX t

+ e−qt f (X t , J̄t ) d([Z(q)(Yt )1]Jt ) − qe−qt f (X t , J̄t )[Z(q)(Yt )1]Jt dt.

sing that Yt = g(X t , J̄t ) and Jt = J̄t for all t in the support of dX t , together with the help
f (43) and (34), we can develop the calculus further to get

d[e−qt Vg(X t , X t , Jt , J̄t )]

= e−qt
(

f ′(X t−, J̄t−)[Z(q)(g(X t−, J̄t−))1] J̄t−

+ f (X t−, J̄t−)(g′(X t−, J̄t−) − 1)[Z(q)′(g(X t−, J̄t−))1] J̄t−

)
dX t

+ e−qt f (X t , J̄t )
(
AJt− ([Z(q)(·)1]Jt− )(Yt−) + B([Z(q)(·)1]·)(Yt−, Jt−) − q[Z(q)(Yt )1]Jt

)
dt

+ e−qt f (X t , J̄t ) dm t (Y ), t ≥ 0. (47)

For the integral with respect to dX t in (47), the assumption that g solves (16) implies that
ts integrand is zero. For the integral with respect to dt in (47), noting from the piecewise

construction of the MAP from spectrally negative Lévy processes that X spends zero Lebesgue
time at 0, we can use Proposition 2 to deduce that its integrand is strictly negative when Yt < 0.

We are thus left with

d[e−qt V (X , X , J , J̄ )] = e−qt f (X , J̄ ) dm (Y ) − q1 dt, (48)
g t t t t t t t (Yt<0)
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for t ≥ 0, s ≥ s∗. We know, however that (m t (Y ), t ≥ 0) has martingale increments and thus∫ t
0 e−qs f (X s, J̄s) dms(Y ) is a local martingale. To verify it is a martingale, we leave the bulk
f the details to the reader, however, in the spirit of the verification of (35) and (36), it suffices
o check that the necessary L1- and L2-isometries hold, for which it is sufficient that, for all
≥ 0,

E(x,i)

[∫ t

0
e−qu f (Xu, J̄u)eΦ(q)Xu du

]
+ E(x,i)

[∫ t

0
e−2qu f (Xu, J̄u)2e2Φ(q)Xu du

]
< ∞.

his is automatically satisfied once (17) is fulfilled.
The supermartingale property in part (iii) of Lemma 1 is thus satisfied. Note in particular,

E(x,s,i, j)
[
e−qt Vg(X t , X t , Jt , J̄t )

]
≤ Vg(x, s, i, j), t ≥ 0, x ≤ s, i, j ∈ E . (49)

nequality (49), together with the Markov property, is sufficient to deduce the required
upermartingale property required in (iii) of Lemma 1. The proof is now complete. □

emark 4. If we look closer at the above proof, we note that the requirement that g solves
16) emerges in the need for (47) to be a supermartingale. It is noticeable in this respect that
weaker condition for the latter is simply that

g′(s, j) ≤ 1 −
f ′(s, j)[Z(q)(g(s, j))1] j

f (s, J̄t )[Z(q)′(g(s, j))1] j
, j ∈ E, s ∈ R. (50)

. Shepp–Shiryaev optimal stopping problem

In [9], pricing of the Russian option is considered for the spectrally negative Lévy case,
here it had earlier been introduced in the Black–Scholes setting in [34,35]. Setting aside the
nancial connection, let us investigate here the natural analogue of this problem in the MAP
etting. This is tantamount to considering the gain function in (7) taking the form

f (s, j) = esh j , s ∈ R, j ∈ E,

here h j ∈ R+. Theorem 2 guides us to checking a number of conditions, the principal one
eeding us to find a solution to (16). In the current setting (16) takes the form

g′(s, j) = 1 −
[Z(q)(g(s, j))1] j

[qW (q)(g(s, j))1] j
, s ∈ R, j ∈ E . (51)

Note that (51) presents us with N independent differential equations, rather than a more
complicated coupled system. Indeed, this is true in general for (16).

Taking inspiration from [9], which solves the analogue of (51) for spectrally negative Lévy
processes, we look for solutions taking the form g(s, j) = c j for each j . In theory, (16) suggests
we look for roots of the equation

[Z(q)(x)1] j − q[W (q)(x)1] j = 0,

for x ≥ 0. However, noting from [9] that roots of the analogous equation (written in that
context with the scale function Z (q)) do not always exist, we look instead towards the suggested
alternative condition to Theorem 2(i) alluded to in Remark 4. Bearing in mind the observation
in Remark 3, we seek a choice of constant values g(s, j) = c j , j ∈ E , that satisfy (50), which
s equivalent to seeking minimal solutions to

(q) (q)
u j (x) := [Z 1] j (x) − q[W 1] j (x) ≤ 0, x ≥ 0.
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In summary, we will prove the following result. Recall the definition

a( j) = inf{x > 0 : [Z(q)(x)1] j ≤ 1}

from Theorem 2.

Theorem 3. Assume that q > 0 ∨ κ(1), f (s, j) = esh j > 0, s ∈ R, j ∈ E, and let

c j = inf{x ≥ 0 : u j (x) ≤ 0}.

(i) When [W (q)1] j (0+) ∈ [q−1,∞) for j ∈ E, then c j = 0.
(ii) When [W (q)1] j (0+) ∈ [0, q−1) for j ∈ E, assume that limx→∞[W (q)1] j (x) = +∞. Then,

c j ∈ (0,∞).

f, moreover c j ≤ a( j) for all j ∈ E, then the solution of the optimal stopping problem (7) is
given by

V (x, s, i, j) = h j es[Z(q)(x − s + c j )1]i , x ≤ s, i, j ∈ E,

nd the optimal strategy is given by

τc = inf{t ≥ 0 : X t − X t ≥ c J̄t }.

n order to prove Theorem 3, we need some intermediary results, which we deal with first.

emma 3. The condition (17) holds for all q > 0.

roof. For (17) it is sufficient to show that∫ t

0
E(x,i)

[
e2Φ(q)Xu+2Xu

]
du < ∞, (52)

or all t ≥ 0. To this end, noting that X is increasing, it would thus be sufficient to show that
E(x,i)

[
e2(1+Φ(q))X t

]
< ∞.

In order to show the latter, we claim that, for p > 0 sufficiently large, we have

E(x,i)

[
e2(1+Φ(q))Xep

]
< ∞. (53)

here ep is an independent and exponentially distributed random variable with rate p. Note
rom (10)

P(x,i)(X ep > t) = P(x,i)(τ+

t < ep)

= E(0,i)[e−pτ+
t−x ]

= [∆v (Φ(p)) e(t−x)(Λ(p)−Φ(p)I)∆v (Φ(p))−1 1]i .

Noting that Φ is an increasing function, we can choose p sufficiently large such that 2(1 +

Φ(q)) < Φ(p), in which case, (53) holds. With (53) in hand, writing it in the form

p
∫

∞

0
e−ptE(x,i)

[
e2(1+Φ(q))X t

]
dt < ∞,

e are led to the conclusion that E(x,i)[e2(1+Φ(q))X t ] < ∞ for Lebesgue almost every t > 0.
he finiteness of these expectations can be deduced for all t > 0 by observing that they form
monotone increasing sequence in t . □
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The following proposition resembles the Lévy process counterpart in Lemma 1 of [9]. It is
also related to its matrix analogue given in Lemma 1 in [21].

Proposition 3. For q > 0, we have

lim
x→∞

[Z(q)1] j (x)
[W (q)1] j (x)

=
q

Φ(q)
.

Proof. From (8), recall that

[Z(q)1] j (x) = 1 + q
∫ x

0
[W (q)1] j (y)dy, x ≥ 0.

By (38) and integration by parts, we get

[Z(q)1] j (x) = 1 +
q

Φ(q)
([W (q)1] j (x) − [W (q)1] j (0+))

−
q

Φ(q)

∫ x

0
eΦ(q)y[∆v (Φ(q))W ′

Φ(q)(y+)∆v (Φ(q))−1 1] j dy .

hen, the result follows once we show that

lim
x→∞

∫ x
0 eΦ(q)(y−x)[∆v (Φ(q))W ′

Φ(q)(y+)∆v (Φ(q))−1 1] j dy

[∆v (Φ(q))WΦ(q)(x)∆v (Φ(q))−1 1] j
= 0 , (54)

here (38) is used for [W (q)1] j . Now, in view of (39), we have

lim
x→∞

∥WΦ(q)(x)∥ < ∞

nd hence the denominator in (54) has a finite limit as x → ∞ as well as

∥WΦ(q)(∞)1∥ =

∫
∞

0
W ′

Φ(q)(y)1 dy
 < ∞. (55)

ote from (39), for x ≥ 0,

exp
(∫

∞

x
Λ∗

q (u)du
)

s a semigroup, i.e. it has entries which are probabilities, Moreover its limit as x → ∞ is the
dentity matrix. Hence∫

∞

0
|[W ′

Φ(q)(y+)1] j | dy = lim
x→∞

∫ x

0
|[W ′

Φ(q)(y+)1] j | dy

≤ lim
x→∞

∫ x

0

[
d

dy

(
exp

(∫
∞

y
Λ∗

q (u)du
))

1
]

j

dy ∥WΦ(q)(∞)1∥

= lim
x→∞

[
exp

(∫
∞

x
Λ∗

q (u)du
)
1
]

j
∥WΦ(q)(∞)1∥

= ∥WΦ(q)(∞)1∥ < ∞ . (56)

y (55). On the other hand, the absolute value of the numerator of (54) is bounded by∫
∞

1[0,x](y) eΦ(q)(y−x)
⏐⏐⏐[∆v (Φ(q))W ′

Φ(q)(y+)∆v (Φ(q))−1 1
] ⏐⏐⏐ dy (57)
0
j
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Thanks to the fact that ∆v (Φ(q)) and ∆v (Φ(q))−1 are diagonal with bounded positive entries,
up to a multiplicative constant, the integrand in (57) can be bounded by the integrand on the
left hand side of (56). The limit (54) now holds by dominated convergence theorem in view
of (56). □

Proof (of Theorem 3). By Lemma 3 and Remark 5 in the Appendix, we see that conditions
(ii) and (iv) of Theorem 2 hold. Conditions (iii) and (v) are moot. Following the remarks
preceding the statement of Theorem 3, taking note of Remark 4, we are thus left with verifying
the replacement of condition (i) of Theorem 2, in the form (50), which requires that

g′(s, j) ≤ 1 −
[Z(q)(g(s, j))1] j

[Z(q)′(g(s, j))1] j
, j ∈ E (58)

lso keeping in mind that

g(s, j) ≤ a( j), j ∈ E (59)

where a( j) was defined in Corollary 1. In fact, we are going to abandon checking condition (i)
of Theorem 2 and verify instead the weaker condition (58), that is implied by that condition
in the proof of Theorem 2.

Taking inspiration from the solution to the Shepp–Shiryaev optimal stopping problem when
driven by a spectrally negative Lévy process, see e.g. [34,35,9], we look for a solution to
the system (58) which takes the form g(s, j) = c j , where c j are constants in [0,∞], for each
j ∈ E , and compare c j with a( j). In that case, (58) tells us that we are looking for x satisfying

u j (x) = [Z(q)1] j (x) − q[W (q)1] j (x) ≤ 0, x ≤ 0. (60)

Remark 3 indicates that we should necessarily seek a minimal solution to (58) and hence
we should seek the smallest solution of (60). As such, c j would then satisfy the definition
c j = inf{x ≥ 0 : u j (x) ≤ 0} as long as it also satisfies (59).

We will proceed with our analysis in the settings given in the statement of the theorem. For
the three cases (a)–(c), we have that Φ(q) > 1 (equiv. q > κ(1)). Then, by Proposition 3, we
get

lim
x→∞

u j (x)
q[W (q)1] j (x)

=
1

Φ(q)
− 1 < 0 . (61)

s such, one way to verify that a root in the sense of (60) exists is to consider the value of
j (0+) and the sign of limx→∞[W (q)1] j (x).

First, consider the case 0 ≤ [W (q)1] j (0+) < q−1. When j ∈ Eubv , then [W (q)1] j (0+) = 0
and we have u j (0+) = 1. On the other hand, when j ∈ Ebv and [W (q)1] j (0+) < q−1,
then also on account of the fact that [Z(q)1] j (0+) = 1, it follows that u j (0+) > 0. Also,
limx→∞ u j (x) = −∞ by the assumption limx→∞[W (q)1] j (x) = +∞ and (61). This ensures
that there is at least one root c j in (0,∞) and τc is the optimal stopping time under the
assumption that c j ≤ a( j). When [W (q)1] j (0+) ≥ q−1, we note that it is automatically the case
that u j (0+) ≤ 0. In that case, (58) is satisfied by taking c j = 0 and it is optimal as a( j) > 0
and c j < a( j) holds trivially. □

Proposition 4. When 0 < q ≤ κ(1), the right-hand side of (7) is unbounded, which cannot be
attained in an almost surely finite time.
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Proof. When Φ(q) ≤ 1, for all almost surely finite stopping times τ , we can work with the
stimate

E(x,s,i, j)[e−qτ eXτ h J̄τ ] ≥ h
v(1)
v(1)

E(x,s,i, j)

[
e−κ(1)τ eXτ eXτ−Xτ vJτ (1)

vi (1)
e−(q−κ(1))τ

]
≥ h

v(1)
v(1)

E1
(x,s,i, j)

[
eXτ−Xτ

]
, t ≥ 0, (62)

where h = mini hi , v(1) = mini vi (1) and v(1) = vi (1). On account of the fact that
κ(1) ≥ q > 0, the process (X, J ) under P1 is such that the ordinate drifts to +∞, and hence
the point 0 is recurrent for (X − X ). Now consider stopping time τ = inf{t > 0 : X t − X t > k}

or any k, which, from Remark 5 in the Appendix, shows that τ is a P-almost surely finite
stopping time. In (62) we see that

E(x,s,i, j)[e−qτ eXτ h J̄τ ] ≥ h
v(1)
v(1)

ek

nd hence, since k can be taken arbitrarily large, it follows that

sup
τ

E(x,s,i, j)[e−qτ eXτ h J̄τ ] = ∞,

where the supremum is taken over all P-almost surely finite stopping times, and the supremum
is attained by never stopping. □

Finally, we consider two examples that have appeared in related work. In [27, Sec.7], the
scale matrix is identified for a MAP consisting of Wiener processes and an independent Markov
chain with no intermediate jumps as

W (q)(x) = Hdiag (sinh(x
√

2(q − λ1) ), . . . , sinh(x
√

2(q − λN ) ) ) H−1 ,

here H is the matrix of eigenvectors of Q and λi are the corresponding eigenvalues. Hence,
Q = Hdiag(λi )H−1. For N = 2, we simply write q1,2 = q1, q2,1 = q2 and observe that λ1 = 0
and λ2 = −(q1 +q2) with eigenvectors (1, 1) and (q1,−q2), respectively. Then, the scale matrix
is given by

W (q)(x) =
1

q1 + q2

[
1 q1
1 −q2

] [
sinh(x

√
2q) 0

0 sinh(x
√

2(q + q1 + q2))

]
×

[
q2 q1
1 −1

]

=

⎡⎣ q2 sinh(x
√

2q)+q1 sinh(x
√

2(q+q1+q2))
q1+q2

q1 sinh(x
√

2q)−q1 sinh(x
√

2(q+q1+q2))
q1+q2

q2 sinh(x
√

2q)−q2 sinh(x
√

2(q+q1+q2))
q1+q2

q1 sinh(x
√

2q)+q2 sinh(x
√

2(q+q1+q2))
q1+q2

⎤⎦ .
n this case, the row sums of the scale matrix is positive, that is, [W (q)1](x) > 0, whereas
he individual entries can be negative for some x > 0. Moreover, limx→∞[W (q)1] j (x) = +∞.
hen, by Theorem 3, the optimal stopping problem has a solution with c j ≥ 0, j = 1, 2, as
iven there since a(1) = a(2) = ∞.

Another example is a two-dimensional spectrally negative MAP considered in [22], where
X1 is taken as a Brownian motion with variance 1 and drift −1, X2 as a compound Poisson
rocess with arrival rate 1, exponential jumps of rate 3, and deterministic drift 2, U1,2 = 0,

has an Erlang distribution with 2 phases and rate 2, and the transition rates are q = 3,
2,1 1,2
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Fig. 1. For q = 1.5, (a) [W (q)1]1(x), (b) u1(x) = [Z(q)1]1(x) − q[W (q)1]1(x).

2,1 = 1. The matrix Ψ of (2) is given by

Ψ (β) =

[
−3 − β +

β2

2
12

(2+β)2

1 −2 + 2β +
3

3+β

]
.

ote that by Theorem 1, [W (q)1]1(0+) = W (q)
1 (0+) = 0 and [W (q)1]2(0+) = W (q)

2 (0+) = 1/2
in view of [24, Lem.3.1]. For q = 1.5, we have plotted [W (q)1] j (x) and u j (x) in Figs. 1 and

for j = 1 and j = 2, respectively. Note that for both j = 1, 2, [W (q)1] j (0+) ∈ [0, q−1)
holds as in case (ii) of Theorem 3. Since [W (q)1]1(x) is increasing and positive, we predict
that a(1) = ∞ and we find that c1 = 0.26. On the other hand, [W (q)1]2(x) becomes negative
or x > 0.87, which implies that 0.87 < a(2) < ∞. Although [W (q)1]2(x) may not tend to

, if u2(x) = 0 for some x > 0, we could identify c2 ∈ (0,∞) and argue about optimality
s in the Proof of Theorem 3. However, we cannot conclude about the solution of the optimal
topping problem (7) since it seems that c2 = ∞ from Fig. 2(b).

When q = 1.8, again [W (q)1] j (0+) ∈ [0, q−1), j = 1, 2, holds and the behaviour of
W (q)1]1(x) is similar to q = 1.5 with a(1) = ∞ and c1 = 0.23. Moreover, the graph of
W (q)1]2(x) and u2(x) given in Fig. 3 show that 0.88 < a(2) < ∞ and c2 = 0.17 < a(2).
herefore, the optimal stopping problem (7) has a solution with τc = inf{t ≥ 0 : X t −X t ≥ c J̄t },

similarly to Theorem 3, where a sufficient condition for the existence of a root c j ∈ (0,∞) is
provided in case (ii).

For q = 5, the relevant functions are plotted in Figs. 4 and 5. In this case, (ii) and (i) of
Theorem 3 are applicable to j = 1 and j = 2, respectively. It seems that a(1) = ∞ in this
case as well and 1.2 < a(2) < ∞. We find that c1 = 0.1 and c2 = 0. It follows that there is a
solution to the optimal stopping problem.

5. Conclusion

In [29] and [26], an optimal stopping problem with gain function of the form (es∧ϵ
− K )+

and discounting was considered for spectrally negative Lévy processes. There, the authors
developed the optimal solution in the form of a non-trivial threshold strategy. In the current
setting, the natural analogue of the gain function takes the form

s∧ϵ +
f (s, j) = (e − K ) h j , s ∈ R, j ∈ E, ϵ > log(K ).
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a
v

Fig. 2. For q = 1.5, (a) [W (q)1]2(x), (b) u2(x) = [Z(q)1]2(x) − q[W (q)1]2(x).

Fig. 3. For q = 1.8, (a) [W (q)1]2(x), (b) u2(x) = [Z(q)1]2(x) − q[W (q)1]2(x).

Fig. 4. For q = 5, (a) [W (q)1]1(x), (b) u1(x) = [Z(q)1]1(x) − q[W (q)1]1(x).

ote that we may effectively take s∗
:= log(K ). To find a solution in the spirit of the

forementioned results for Lévy processes, amongst other things, Theorem 2 requires us to
erify the existence of a solution to

g′(s, j) = 1 −
es∧ϵ[Z(q)(g(s, j))1] j

s∧ϵ (q) , s ≥ log(K ). (63)

(e − K )[qW (g(s, j))1] j
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Fig. 5. For q = 5, (a) [W (q)1]2(x), (b) u2(x) = [Z(q)1]2(x) − q[W (q)1]2(x).

hilst we offer no details here, given the technical exploration of the Shepp–Shiryaev optimal
topping problem given in this article, we claim that the interested reader will find the analysis
n [26] is robust enough to carry over to the current setting with a number of straightforward
echnical modifications. Indeed, the fact that the curves g(s, j), for each j ∈ E , can be phrased
hrough autonomously differential equations (involving only dependency on state j) allows
ne to treat them within the same framework of isocline analysis as in [26]. The same can in
rinciple be said of the optimal stopping problems considered in [30].

As such, the conclusion to this paper is that, modulo some technical adaptation, the analysis
hat has led to a relatively wealthy base of results on optimal stopping problems, stochastic
ames and stochastic control problems driven by spectrally negative Lévy processes, can now
e adapted to handle analogous problems driven by spectrally negative MAPs. See [8] which
ummarises a number of identities in this spirit which have the potential to be brought forward
nto the Markov additive setting.
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ppendix. Proof of Theorem 1

(i) From (11), we note that

E(0,i)[e−qτ+
a ; τ+

a < τ−

0 , Jτ+
a

= j] = [W (q)(0+)W (q)(a)−1]i, j . (64)

n the setting that i ∈ Eubv, the expectation on the left-hand side of (64) is necessarily 0, as
he MAP initially behaves as an independent copy of a Lévy process with Laplace exponent

i .
When i ∈ Ebv in (64), with positive probability, the modulator chain J will remain in

´
tate i for long enough that the Levy process with Laplace exponent ψi will reach a/2 before
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(necessarily) jumping below the origin, (see the discussion in Chapter 8 of [25] for further
details on the path properties of spectrally negative Lévy processes). Once the ordinate hits
/2, thanks to the non-negativity of W (q)(x) for x > 0, see part (i), and the identity (11), there

s a positive probability that the process exits into (−∞, 0) before (a,∞) with the modulator
in state j ∈ E . It thus follows that the left-hand side of (64) is strictly positive for i ∈ Ebv and
j ∈ E .

Recall that

Ψ (β) = diag(ψ1(β) · · ·ψN (β)) + Q ◦ G(β),

nd ∫
∞

0
e−βx W (q)(x)dx = (Ψ (β) − q I)−1

or β > max{Re(z) : z ∈ C, det(Ψ (z)) = q}. By a property of Laplace transform, we have

W (q)(0+) = lim
β→∞

β(Ψ (β) − q I)−1. (65)

e start with finding

lim
β→∞

1
β

(Ψ (β) − q I)

and invert this limit to get (65). The diagonal entries of the matrix Ψ (β) − q I are in the form
i (β) − qi − q, where qi =

∑
j ̸=i qi, j , and the off-diagonal entries are given by qi, jE(eβ Ui, j ).

or the diagonal entries, we have

lim
β→∞

1
β

(ψi (β) − qi − q) = lim
β→∞

1
β
ψi (β) =

1

W (q)
i (0+)

hich is finite when i ∈ Ebv, and infinite for i ∈ Eubv, as W (q)
i (0+) = 0 in that case. On

the other hand, the limit is 0 for the off-diagonal entries because limβ→∞ E(eβ Ui, j )/β = 0 as
i j < 0 a.s. Then, the result follows from (65).
(ii) We recall the observation from (39) that WΦ(q)(∞) may have negative entries. Hence,

hanks to (38) and the non-negativity of v(Φ(q)), the matrix W (q)(x) may have negative entries.
n the other hand, we can also see from (39) and (38)

W (q)(x)W (q)(a)−1
= eΦ(q)(x−a)∆v (Φ(q))WΦ(q)(x)WΦ(q)(a)−1∆v (Φ(q))−1

= eΦ(q)(x−a)∆v (Φ(q)) exp
(∫ a

x
Λ∗

q (y)dy
)
∆v (Φ(q))−1 ,

hich gives almost everywhere differentiability of W (q)(x)W (q)(a)−1.
To show the strict positivity of the almost everywhere derivative of W (x)W (a)−1, for
≤ x ≤ a < ∞, we need to delve into excursion theory. It is a straightforward exercise

o show that (X − X, J ) is a reflected MAP. We define M̄ := {t ≥ 0 : X t − X t = 0} and M̄cl its
losure in [0,∞). Obviously the set [0,∞)\M̄cl is an open set and can be written as a union
f intervals. We use Ḡ and D̄, respectively, to denote the sets of left and right end points of
uch intervals. Define R̄ := inf{t > 0 : t ∈ M̄cl

}. Upwards regularity implies that every point
in E is regular for M̄ in the sense that P0,θ

(
R̄ = 0

)
= 1 for all θ ∈ E . Thus by [28, Theorem

4.1)] there exists a continuous additive functional t ↦→ ℓt of (X − X, J ) which is carried by
0} × E and a family of kernels (Ni , i ∈ E) on U, the space of càdlàg mappings from R to
0,∞) × E with lifetime ζ and terminal position at ζ which is negative (written canonically
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as a co-ordinate sequence ((ϵ(s),Θ(s)), s ≤ ζ )), satisfying Ni (ζ = 0) = Ni (Θ(0) ̸= i) = 0 and
i (1 − e−ζ ) ≤ 1, for i ∈ E , such that we have the exit system

E(0,i)

⎡⎣∑
s∈Ḡ

Ξs f ◦ θs

⎤⎦ = E(0,i)

[∫
∞

0
Ξs NJs ( f )dℓs

]
(66)

or any non-negative predictable process Ξ and any non-negative function f which is measur-
ble with respect to the natural filtration on U. Moreover, by [28, Theorem (5.1)], under Ni ,

the process ((ϵ(s),Θ(s)), s ≤ ζ ) has the strong Markov property.
The exit system ((Ni , i ∈ E), ℓ) is not unique. A different choice of ℓ will result in a different

choice of (Ni , i ∈ E). A convenient choice of ℓ that we will work with is ℓ = X .
With this excursion theory in hand, we can identify (in the spirit of the representation of

he scale function for Lévy processes found in Chapter VII of [10]), for x ≤ a,

[W (x)W (a)−1]i, j = P(x,i)(τ+

a < τ−

0 ; Jτ+
a

= j)

= E(x,i)

[
exp

(
−

∫ a

x
NJ+

s
(ϵ̄ > s)ds

)
; J+

a = j
]
, i, j ∈ E, (67)

here ϵ̄ = sups<ζ ϵ(s) and (J+
s , s ≥ 0) is the modulator of the ascending ladder MAP such that

J+
s = Jτ+

s
, s ≥ 0 (cf. the Appendix of [15]). Taking account of the fact that s ↦→ NJ+

s
(ϵ̄ > s)

s right continuous, we now see by dominated convergence that [W (x)W (a)−1]i, j is almost
verywhere differentiable and that its derivative is right-continuous.

For strict positivity of the aforesaid right-continuous derivative, let us introduce the random
ariable Na, j,k which is the number of times X − X exceeds level k in an excursion which
egins in state j , before X exceeds a. From (66) we have that, for any a, k > 0,

E(0,i)[Na,i,k] = E(0,i)

⎡⎣∑
s∈Ḡ

1(s<τ+
a )1(ϵ(0)=i, ϵ̄ >k) ◦ θs

⎤⎦
= E(0,i)

[∫
∞

0
1(s<τ+

a )1(Js=i) Ni (ϵ̄ > k)dℓs

]
= E(0,i)

[∫ a

0
1(J+

s =i)ds
]
Ni (ϵ̄ > k) , (68)

where we have used our choice ℓ = X . On the other hand, we can lower bound E(0,i)[Na,i,k]
y restricting the probability space to the event that {σ1 > τ+

a } (recall σ1 is the first time that
J jumps). As such, we have

E(0,i)[Na,i,k] ≥ Ei
0

⎡⎣e−|qi,i |τ
i,+
a

∑
s<τ i,+

a

1
(X i

s−X i
s>k)

⎤⎦
= e−φi (|qi,i |)a

i E
φi (|qi,i |)
0

⎡⎣ ∑
s<τ i,+

a

1
(X i

s−X i
s>k)

⎤⎦
= ae−φi (|qi,i |)a × ani (ϵ̄ > k) > 0, (69)

where we recall that (X i
t , t ≥ 0) with probabilities (Pi

x , x ∈ R) is the Lévy process with Laplace
exponent ψ , with φ as its the right inverse; Pi ,φi (|qi,i |) is the result of the Esscher change of
i i 0
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measure based on the martingale exp(|qi,i |X i
t −φ(|qi,i |)t), t ≥ 0, ni is the excursion measure for

he Poisson point process of excursions of X
i
−X i away from 0 and τ i,+

a = inf{t > 0 : X i
t > a}.

Now comparing (68) and (69), we see that Ni (ϵ̄ > k) > 0 for all i ∈ E and k > 0. Referring
ack to (67), we can also see that the right-continuous derivative of [W (x)W (a)−1]i, j is strictly
ositive. Statement (ii) is thus proved for W (x)W (a)−1.

As was mentioned in (19) of [27] (cf. (38)), we can identify, for 0 ≤ x ≤ a,

W (q)(x)W (q)(a)−1
= ∆v (Φ(q)) eΦ(q)x WΦ(q)(x)WΦ(q)(a)−1∆v (Φ(q))−1 ,

here Φ(q) was defined in (4) and WΦ(q) plays the role of W (0) under (PΦ(q)
(x,i) , x ∈ R, i ∈ E), as

efined in (5). This observation thus allows us to pass the conclusion of the previous paragraph
o the more general setting of W (q)(x)W (q)(a)−1.

(iii) Recall the entries of the matrix Ψ (β) −q I from the proof of (i) above. As W (q)′ exists
.e. by (ii), we can use its Laplace transform given by β(Ψ (β) − q I)−1

− W (q)(0+), to obtain
W (q)′(0+) as

W (q)′(0+) = lim
β→∞

(
β2(Ψ (β) − q I)−1

− βW (q)(0+)
)
. (70)

ow consider
1
β2 (Ψ (β) − q I). (71)

s β → ∞, the limit is 0 for the off-diagonal entries of (71) because limβ→∞ E(eβ Ui, j )/β2
= 0

n view of the fact that Ui j < 0 a.s. Moreover, the diagonal entries limit to the Gaussian
oefficient of the individual Laplace exponents ψi , i ∈ E , (which may be zero for some entries).
t follows from (70) that W (q)′(0+) is a diagonal matrix because W (q)(0+) is diagonal, by (i),
nd

lim
β→∞

β2(Ψ (β) − q I)−1, (72)

s also diagonal thanks to the limit (71).
We will consider the limit of a diagonal entry i in (70) only for i ∈ Eubv, in which case,

this entry is equal to the diagonal entry i in (72) as W (q)
i,i (0+) = 0. The latter can be found as

he reciprocal of the diagonal entry of the limit of (71), which is given by

lim
β→∞

1
β2 (ψi (β) − qi − q) =

1

W (q+qi )′
i (0+)

since W (q+qi )
i (0+) = 0 for i ∈ Eubv.

(iv) From the definition of Z(q), it is clear that Z(q)′(x) = W (q)(x)(q I − Q)1(x≥0), and hence
Z(q) is continuously differentiable, except at 0 where there is the possibility of W (q)(0+) ̸= 0.
Similarly Z(q)′′(x) = W (q)′(x)(q I − Q)1(x>0) for almost every x > 0, and right-continuity of
Z(q)′′(x) is an immediate consequence of part (ii). □

Remark 5. The introduced excursion theory above also gives rise to a simple proof that the
stopping time τc = inf{t ≥ 0 : X t − X t ≥ c J̄t } is P-almost surely finite when c j ∈ (0,∞) for
t least one j ∈ E . Indeed, note that, for all x ≤ s and i, j ∈ E ,

P(x,s,i, j)(τc = ∞) = E(x,s,i, j)

[
exp

(
−

∫
∞

0
N j (ϵ̄ > c j )| j=J+

s
ds

)]
= 0.
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