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NEUTRON FLUX

> Neutron flux is a measure of the intensity of neutron radiation, determined by the
rate of flow of neutrons; measured in (# neutrons)/cm? /s.

> We want to describe neutron flux as a function of spatial position and time in
complex domains:

U(r,v,t), reDCRLvEV:={veR: vniy < |v] < vnax},

for 0 < vnin < Upax < 00.
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NEUTRON FISSION
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NEUTRON SCATTERING
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NEUTRON TRANSPORT EQUATION

Neutron flux is thus identified as ¥, : D x V — [0, 00), which solves the
integro-differential equation

oWy

W(t, r,v) + v - VU(t1,v) + o (r,v)We(t,r,v)

:Q(r,v,t)+A‘Ilg(r,v’,t)as(r,v')ﬂs(r,v’,v)dv'+/V‘llg(r,v’,t)af(r,v’)wf(r,v',v)dv

where the different components are measurable in their dependency on (7, v) and are
explained as follows:

os(r,v’) : the rate at which scattering occurs from incoming velocity v/,

o¢(r,v) : the rate at which fission occurs from incoming velocity v’,
o(r,v):

ws(r,v’,v)dv’ : the scattering yield at velocity v from incoming velocity v,

the sum of the rates o+ + o5 and is known as the cross section,

satisfying s (r,v, V) = 1, and
me(r,v’,v)dv’ : the neutron yield at velocity v from fission with incoming velocity v’,
satisfying 7« (r, v, V) < oo and

Q(r,v, ) : non-negative source term. (Immediately remove the source term Q = 0)

We will assume that all quantities are uniformly bounded away from zero and infinity.

/
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BOUNDARY CONDITIONS

> Boundary conditions which represent ‘fission containment”
Ve (0,r,v) = g(r,v) forr € D,v € V, (initial condition)
Vo(t,r,v) =g(r,v) =0 forr € D if v-n, <0, (neutron annihilation)

> n, is the outward facing normal of D atr € 8D

> ¢:DxV — [0,00) is a bounded, measurable function which we will later assume
has some additional properties.
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DON’T PANIC!
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YOUR NUCLEAR FUTURE
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NEUTRON TRANSPORT EQUATION

ov
a—tg(t7 r,v) + v VU(t,1,0) + o(r,v)We(t, 7, v)

= / W (r, 0, Hos (r,0")ms (1,0, v)dv’ + / W (r, 0, Hos(r,0")me (r, 0", v)du,
v v
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NEUTRON TRANSPORT EQUATION

ov
Tf (t7 7, U) +uv- V\I’g(ta 7, U) + 0'(1’7 ’U)\I,g(tv r, U)

= / W(r, v Hos(r, v ) s (r, v v)do” + / W (r, v oe(r, v ) e (r, 0 v)do
1% v

> With some rearrangements, the components of NTE separate into transport,
scattering and fission. Specifically,

Tg(r,v) = —v-Vg(r,v) —o(r,v)g(r,v) (forwards transport)
sg(r,v) = [, 8(r,v")os(r,v")ms (1,0, v)dv’  (forwards scattering)
Fg(r,v) = [, 8(r,v")oq(r, v )mg(r, v, v)dv’  (forwards fission)

> More natural to look for solutions as time-varying in L?(D x V) so that, for
feLl?(DxV),

Wl = (TS + ()

Abstract Cauchy problem - taking the problem into the domain of ¢y-semigroups
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ABSTRACT CAUCHY PROBLEM

> Written more simply with everything in understood in the L?>(D x V) space

7]

a\Ifg(t, ) =(T+S+F)W(t,-,-)
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ABSTRACT CAUCHY PROBLEM

» Written more simply with everything in understood in the L2(D x V) space
ply ything P

1o}
a‘l’g(tv N ) = (T + S+ F)\Ijg(tv % )

> cp-semigroup allows us to see the solution to this problem as the orbit in L? space:
We(t,r,v) = e(THs+0) (1 v), >0,

where e(TH5+HE)f = $700 (T 4 5 4 )R /K
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ABSTRACT CAUCHY PROBLEM

> Written more simply with everything in understood in the L?>(D x V) space
2]
a\pg(tv Y ) = (T +S+ F)\Ijg(tv ) )

> cp-semigroup allows us to see the solution to this problem as the orbit in L? space:
W (t,r,0) = TS le(r 0), >0,

where e(TH5+HE)f = $700 (T 4 5 4 )R /K
> More generally can replace L?(D x V) by LP(D x V) for p € (1,00).

> Problems occur for the transport operator if one is to look at L' (D x V) or
L (D x V): A shame as this is normally where we do probability theory!
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STEADY-STATE REACTORS

» What constitutes a nuclear reactor?
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STEADY-STATE REACTORS

» What constitutes a nuclear reactor?

> Heuristically we want to find an eigenvalue A € R, positive eigenfunction pair
h:D xV —[0,00) and h on D x V such that, ideally with A = 0

Forwards : Ahfy = (h,(T+ s +F)f) and A(g,h) = (g, (T + S + F)h)
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STEADY-STATE REACTORS

> The eigenfunction / is called an importance map and gives the first order neutron
flux (radioactivity) profile
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STEADY-STATE REACTORS

> The eigenfunction / is called an importance map and gives the first order neutron
flux (radioactivity) profile

> Roughly speaking, now as an Abstract Cauchy Problem on L?(D x V),

%:(T-’-S-‘,—F)"L’h; Y, =hatt=0and ¢, =0forr € OD,v-n, >0
the solution can be thought of as
k
Ut r,0) = G o) = 3 L (24 5 4 e, )
k>0 kt
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9

= (T+ S+ F)y, Y, =hatt=0and ¢, =0forr € OD,v-n, >0
ot

the solution can be thought of as

Ut r0) = eTHFI(r ) 1= 3 ; (T + S + F)*h(r, v)
k>0

> Hence for f € L2(D x V),

<fa¢h(t7> Zk'v,(T'i‘S'i‘Fkh Zkl)\kqh —e>\t<f h)

k>0 k>0
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STEADY-STATE REACTORS

> The eigenfunction / is called an importance map and gives the first order neutron
flux (radioactivity) profile

> Roughly speaking, now as an Abstract Cauchy Problem on L?(D x V),

9

= (T+ S+ F)y, Y, =hatt=0and ¢, =0forr € OD,v-n, >0
ot

the solution can be thought of as

Ut r0) = eTHFI(r ) 1= 3 ; (T + S + F)*h(r, v)
k>0

> Hence for f € L2(D x V),

<fa¢h(t7> Zk'v,(T'i‘S'i‘Fkh Zkl)\kqh —e>\t<f h)

k>0 k>0

> Said another way
Un(tr,0) = eMh(r,v)
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PERRON-FROBENIUS
> T is a nasty (unbounded) operator making it harder than usual to find

eigenfunctions, s and F are nice (bounded) operators whose spectral analysis is
easier to handle.
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PERRON-FROBENIUS

> T is a nasty (unbounded) operator making it harder than usual to find
eigenfunctions, S and F are nice (bounded) operators whose spectral analysis is
easier to handle.

> Inlooking for A, i as a lead eigen pair we need

(T+S4+P)h=M = (T-A)"YS+F)h=h

> Fix p, use either operator perturbation methods or Krein-Rutman Theorem to
deduce that (as a linear operator on an 12 space),
(T— D)~ (s+7)

has a spectral radius r,, and positive eigenfunction ,,
> Verify that r,, varies continuously with . on a range (0, r*), where r* > 1.

» Now vary i and find A, such that ry, = 1. The accompanying eigenfunction is
and together they solve

(T—AD)"Ys+P)h=h = (T+s+F)h=X\h

» Comes hand-in-hand with a left-eigen function h. 13/ 35



PERRON-FROBENIUS

Projecting onto the lead eigenvalue, 3¢ > 0:

e Mo (b, r,v) ~ h(r,v) (I, g) + O(e™5h)
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PERRON-FROBENIUS

Projecting onto the lead eigenvalue, 3¢ > 0:

e Mo (t,1,0) ~ (1, v) (1, g) + O(e ™)

Theorem
Let D be convex. Assume that o «(r, v)we(r,v,v0") and os(r,v)ws(r, v, v") are piece-wise
continuous and uniformly bounded from above and below on D x V x V. Then,

(i) the neutron transport operator (T + S + F) has a leading eigenvalue A« € R, which is
simple and isolated and which has a corresponding positive right and left eigenfunctions
in Ly(D x V), h and h respectively, and

(ii) there exists an € > 0 such that, as t — oo,
lle™ g (t, -, ) = (1, )hl[2 = O(e™), &)
forallg € Ly(D x V).
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PERRON-FROBENIUS

Projecting onto the lead eigenvalue, 3¢ > 0:

e Mg (t,r,0) ~ h(r,v) (R, g) + O(e™™)

Theorem
Let D be convex. Assume that o «(r, v)we(r,v,v0") and os(r,v)ws(r, v, v") are piece-wise
continuous and uniformly bounded from above and below on D x V x V. Then,

(i) the neutron transport operator (T 4 S + F) has a leading eigenvalue X« € R, which is
simple and isolated and which has a corresponding positive right and left eigenfunctions
in Ly(D x V), h and h respectively, and

(ii) there exists an € > 0 such that, as t — oo,
lle™ g t,,-) — (h,g)hll2 = O(e™"), M
forallg € Ly(D x V).

The sign of \. dictates the criticality of the system:
> )\, < 0: subcritical and fission dies out
> X\, = 0: critical, i.e. a nuclear reactor

> X« > 0: supercritical (not quite a bomb, that would be non-existence of \.)
14/35



OVER WHAT DOMAINS DO WE NEED EIGENFUNCTIONS OF THE NTE?
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(FORWARD —BACKWARDS) NEUTRON TRANSPORT EQUATION

> Note that, for f, g € L2(D x V), with f respecting the boundary condition
g(r,v) =0forr € D if v - n, < 0, we can verify with a simple integration by
parts that

{frv-Vg) = /{mxv(v‘v')f(n v)g(r,v")drdv’ — (v Vf,g) = —(v- Vf,g)

providing we insist that f respects the boundary f(r,v) = 0 forr € 9D if v - n, > 0.
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> Note that, for f, g € L2(D x V), with f respecting the boundary condition
g(r,v) =0forr € D if v - n, < 0, we can verify with a simple integration by
parts that

{frv-Vg) = /{)va(v‘v')f(n v)g(r,v")drdv’ — (v Vf,g) = —(v- Vf,g)

providing we insist that f respects the boundary f(r,v) = 0 forr € 9D if v - n, > 0.
> Moreover, Fubini’s theorem also tells us that, for example, with f, g € 12(D x V),

. /V 3(, 0" )6 () ( 0/, YAy = (o5 (-, ) /V FCr0)ms (- 0)dv, g
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(FORWARD —BACKWARDS) NEUTRON TRANSPORT EQUATION

> Hence, with similar computations, this tells us that, for f, g € LZ(D x V),
f(T+s+E)g =T +S+F)f,.8),
where

Tf(r,v) =wv-Vf(r,v) (backwards transport)
Sf(r,v) = os(r,v) [, f(r,v")ms(r,v,0")dv" — os(r,v)f (r,v)  (backwards scattering)

Ff(r,v)

oz (r,v) [, fr,0")me (r,0,0")dv" — oz (r,v)f(r,v)  (backwards fission)
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(FORWARD —BACKWARDS) NEUTRON TRANSPORT EQUATION
> Hence, with similar computations, this tells us that, for f, g € 12 (DxV),
,(T+s+F)g) =T +S+F)f.3),
where
Tf(r,v) =wv-Vf(r,v) (backwards transport)
Sf(r,v) = os(r,v) [, f(r,v")ms(r,v,0")dv" — os(r,v)f (r,v)  (backwards scattering)

Ff(r,v) =o:(r,v) [, f(r,0")me(r,0,0")dv" — oz (r,v)f (r,v)  (backwards fission)

> This leads us to the so called backwards neutron transport equation (which is also
known as the adjoint neutron transport equation) given by the Abstract Cauchy
Problem on L2(D x V),

%f(t, ) = (T +S+ F)ult,-,-)

with additional boundary conditions
{ »(0,r,v) = g(r,v) forreD,v €V,

Y(t,r,v) =0 forr € oD ifv-n, > 0.
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UNDERLYING STOCHASTICS (LEADING TO MONTE-CARLO)
> Backwards equation lends itself well to stochastic representation in the L, sense,
%0 (1,r,0) = v Vil 1, ) — o, 0)(0,7,0)
+ou(rv) / D, o, s (0,0 + o (1, 0) / Y(r, o, e (r, 0,0 )
14 1%
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> The physical process of fission is a Markov-additive branching process (neutron
branching process).
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UNDERLYING STOCHASTICS (LEADING TO MONTE-CARLO)
> Backwards equation lends itself well to stochastic representation in the L, sense,

%(ta r7U) =v- V"/’(t r,v) - 0'(7', U)w(t’ I’,U)

+ou(r,v) / B0, e (0,0 )V + ot (1, 0) / W0 e (ry v, 0 )du,
\%4 \%4

> The physical process of fission is a Markov-additive branching process (neutron
branching process).

> Represented by a configuration of physical location and velocity of particles in
D x V,say {(ri(t),vi(t)) : i = 1,...,N;}, where N; is the number of particles alive
attime t > 0.

> Represent as a process in the space of the atomic measures

N
Xi(A) =D S,y A),  AEBDXV), t>0,
i=1

where § is the Dirac measure, define on 3(D x V), the Borel subsets of D.
> Then the stochastic representation of the backwards NTE is nothing more than

Nt
aulgl(r,v) = Es,, [(8, X)) = Es ) [ng(t),vi(t))} >0
i=1
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NEUTRON BRANCHING PROCESS

> A particle position at r with velocity v (configruration (7, v)) will continue to
move along the trajectory » + vt, until one of the following things happens.
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When fission occurs at location r € R? from a particle with incoming velocity
v € V, the quantity 7¢(r, v, v’)dv’ describes the average number of particles
released from nuclear fission with outgoing velocity in the infinitesimal
neighbourhood of v’.
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A particle position at » with velocity v (configruration (r, v)) will continue to
move along the trajectory » + vt, until one of the following things happens.
The particles that leave the physical domain D are killed.

For a neutron with configuration (r, v), if Ts is the random time that scattering
may occur, then

Pr(Ts > t) = exp {f /Ot os(r+ vt,v))ds} .

When scattering occurs at space-velocity (, v), the new velocity is selected
independently with probability 7 (r, v, v’)dv’.

For a neutron with configuration (r, v), if T is the random time that scattering
may occur, then independently of any other physical event that may affect the
neutron,

Pr(T: > t) = exp {—/Ot os(r+ vt,v))ds}.

When fission occurs at location r € R? from a particle with incoming velocity

v € V, the quantity 7¢(r, v, v’)dv’ describes the average number of particles
released from nuclear fission with outgoing velocity in the infinitesimal
neighbourhood of v’.

Note, the possibility that Pr(N = 0) > 0 is possible, which will be tantamount to a
fission taking place in which no neutrons are released. Experiments show that this

is a possible outcome during a fission event. 19/



MILD EQUATION

> Define for g € LL, (D x V), the (physical process) expectation semigroup
olgl(rv) =5, [g. X)), t20reDuweV,
and the advection semigroup
Ut [g](r, v) :g(r+vt7v)1{f<'€€u}’ t>0.

where kP, := inf{t > 0:r+ vt ¢ D}.
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> Define for g € LL, (D x V), the (physical process) expectation semigroup
olgl(rv) =5, [g. X)), t20reDuweV,
and the advection semigroup
Ut [g](r, v) :g(r—i—vt,v)l{KNEv}, t>0.
where kP, := inf{t > 0:r+ vt ¢ D}.
Lemma

When g € L, (D x V), the space of non-negative functions in L, (D x V), the expectation
semigroup (¢¢[g], t > 0) is the unique bounded solution to the mild equation

o8] = Urlg] + /Ot Us[(S + F)or—s[gllds, t>0.
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MILD EQUATION
> Define for g € LL, (D x V), the (physical process) expectation semigroup
olgl(rv) =5, [g. X)), t20reDuweV,
and the advection semigroup
Ut [g](r, v) :g(r—i—vt,v)l{KNEv}, t>0.
where kP, := inf{t > 0:r+ vt ¢ D}.

Lemma
When g € L, (D x V), the space of non-negative functions in L, (D x V), the expectation
semigroup (¢¢[g], t > 0) is the unique bounded solution to the mild equation

o8] = Urlg] + /Ot Us[(S + F)or—s[gllds, t>0.

Lemma
The mild solution (¢¢,t > 0), is dual to (¢(t,-,-),t > 0) on Ly(D x V), i.e.

(f? d’t[g]) = <'¢)f(t7 ) )7g>
forallf,g € Ly(D x V) 20/ 35



EIGENFUNCTIONS OF THE EXPECTATION SEMI-GROUP?

> So far
(f, ¢t[g]> = <wf(t’ ) )7g>
forallf,g € Ly(D x V)
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EIGENFUNCTIONS OF THE EXPECTATION SEMI-GROUP?

> So far
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EIGENFUNCTIONS OF THE EXPECTATION SEMI-GROUP?

> So far
(f, ¢t[g]> <1/1f ) 1')7 )
forallf,g € Ly(D x V)

> We want to play with the eigenfunction i € L,(D x V), e.g.

(f. ol = (Wy(t,-, ), ) = e(f h)

suggesting (at least in the Ly(D x V) sense)
&ilf)(r,v) = Es,, , [(h X0)] i= eMh(r,v)
= points us towards Monte-Carlo methods - especially when A = 0

» Problem! No good unless i1 € LI, (D x V), but we only know /1 € L;’ (DxV)
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PERRON-FROBENIUS AGAIN

Recent work of Champagnat and Villemonais on quasi-stationary distributions for
Markov semigroups (in the spirit of Tweedie’s R-theory) allows us to conclude the
following

Theorem
Suppose that D is non-empty and convex,

B:= inf Vaf(r,v) (/ me(r,v,0")dv’ — 1) > 0.
- v

reD,ve

Then there exists a \« € R, a positive right eigenfunction o € L, (D x V) and a left
eigenmeasure which is absolutely continuous with respect to Lebesgue measure on D x V with

density ¢ € LI, (D x V), both having associated eigenvalue e*e!, and such that ¢ (resp. ) is
uniformly (resp. a.e. uniformly) bounded away from zero on each compactly embedded subset of
D x V. In particular for all g € L, (D x V)

(@ 0elg]) = e™Hg) (resp. gulie] = ™) £ >0,
Moreover, there exists € > 0 such that, for all g € L (DxV),

e enlsl — (@.8)]|_ = O(e™) as t = +oo.
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STOCHASTIC PERRON-FROBENIUS

Theorem
Forallg € LY (D x V) such that, up to a multiplicative constant, g < , under the
assumptions as the previous Theorem,

Jim e™!(g, X;) = (g, 3) Woo.

almost surely, where W is a special random variable (in fact a martingale limit). Moreover,
W is positive with positive probability if and only if X« > 0, otherwise Woo = 0.
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WE ARE NOW MONTE-CARLO-READY

> Suppose now we can efficiently simulate the Neutron branching process, recalling
that
d’t[g](r, U) = Eé(,yv) [<g7Xt)]’ t>0,reDveV,
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> Suppose now we can efficiently simulate the Neutron branching process, recalling
that
¢t[g](r, U) = Eti(,yu) [<g7Xt)]’ t>0,reDveV,

1 1
: — i > S c V.
A = thm ; log ¢¢[g](r,v) = thm ; logE(;(m)) g, Xn)], t>0,reD,veV
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WE ARE NOW MONTE-CARLO-READY

> Suppose now we can efficiently simulate the Neutron branching process, recalling

that
¢t[g](ra U) = Eti(,yu) [<g7 Xf)]7 t>0,reDveV,
| 4
A = lim L1 |(r,0) = lim ~ log X, t>0,reDveV
» = lim = og drlg r,v)—t_lggo; ogEs, ,[(8: X1, >0,reD,veV.
> ande.g

——— = lIm =
@(ro,vo)  t=o0 Gifgl(ro,vo) oo B, (8, X))
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MONTE-CARLO, IMPORTANCE MAP AND SUPERCOMPUTERS
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MONTE-CARLO, IMPORTANCE MAP AND SUPERCOMPUTERS

L 0D 0 0 B oM o0 0 10
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Ooprs...
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PROBLEM!
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PROBLEM!

> Needs a massive supercomputer to deal with an industrial scale simulation
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PROBLEM!

> Needs a massive supercomputer to deal with an industrial scale simulation

> Simulating (inhomogeneous) branching trees is no joke: cannot be parallelised.
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MANY-TO-ONE AND MONTE-CARLO PARALLELISATION

> Recall semigroup operators

Tf(r,v) =wv-Vf(r,v) (backwards transport)
Sf(r,v) = os(r,v) [, (f(r,v") —f(r,v)ms(r, v, 0" )dv’ (backwards scattering)

Ff(r,v) = os(r,v) [, f(r,0")me (r,0,0")dv" — o¢(r,0)f(r,v)  (backwards fission)
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> Recall semigroup operators

Tf(r,v) =wv-Vf(r,v) (backwards transport)
Sf(r,v) = os(r,v) [, (f(r,v") —f(r,v)ms(r, v, 0" )dv’ (backwards scattering)
Ff(r,v) = os(r,v) [, f(r,0")me (r,0,0")dv" — o¢(r,0)f(r,v)  (backwards fission)

> Basic algebra gives

T+S+F = v-Vf(r,v, )+a(r,v) /V (F(r, 0’ ) =f (1,0, )7 (r, v, 0" )dv' +B(r, v)f (1, v)

where

a(r,v) == os(r,v) + o=(r,v) / e (r, 0,0 )do,
1%

w(r,v,0")dv’ = a” (1, v) (s (r,v)ms (r, 0,0 ) AV + o2 (r, v)Te (r, v, 0 )do']
B(r,v) == a(r,v) —os(r,v) —oe(r,v).
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MANY-TO-ONE AND MONTE-CARLO PARALLELISATION

> The representation 7 + S + F = L + 3, where

LF(rv) = v V(0,8 + a(r,v)/ (F(r, 0", 8) — £ 0, ) (0, 0 )0
1%

implies

t
Bilg)(rv) = Es, ) [(8,X0)] = By [ef8 PR TRy 1)1, o]

fort > 0,7 € D,v € V, where
TD:inf{t>02Rt ¢ D}.

and ((R¢, Yt),t > 0) with probabilities P, ,,), 7 € V,v € D, is the L-neutron

random walk.

> This affords new parallelisable opportunities to Monte-Carlo solve numerically

for h:

S RS can be replaced by

100

075

050

0z

000

025

050

075

100
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IMPORTANCE SAMPLING

> Pick a ‘first guess’ of ¢, denoted here by 7, that satisfies n(r, v) = 0 for r € 9D if
v-ny > 0.
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IMPORTANCE SAMPLING
> Pick a ‘first guess’ of ¢, denoted here by 7, that satisfies n(r, v) = 0 for r € 9D if

v-ny > 0.
> Perform the Doob 7n-transform
ClP’7 t e g
(r,v) = exp (_/ ‘677(R57 S)ds) n(Rtv t) (1<)
dP(r,'u) 0 77(R57 TS) 77(”7 U)

o ((Rs,Ys),s<t)
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IMPORTANCE SAMPLING
> Pick a ‘first guess’ of ¢, denoted here by 7, that satisfies n(r, v) = 0 for r € 9D if

v-ny > 0.
> Perform the Doob 7n-transform
’l’]
dP(r,'u) — exp (_ /f ,C’W(Rs» Ts)ds) (R, ) o
o) o (10020 0 1R Xs) n(rw) 5T
> Gives new neutron random walk characterised by
/ n(r,v") ’ /
Lyf(r,v) = v - Vf(r,v) +a(rv) [ (8(r0) —g(rv)) ——=x(r,v,0")dv’.
\%4 77(”a U)
Lemma
Moreover,
" ( En(Rs,Ts)
vl =BG [exp {/ ( R S
Nt
n(Rr, Y1, )
—————— (R, Ty)1
R
where

?(n(r,v) = a(r,v)/Vn(r,vl)rr(r,v,vl)dv/.
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IMPORTANCE SAMPLING

Want to choose 7 so that the Neutron Random Walk £, remains trapped in D
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IMPORTANCE SAMPLING

Want to choose 7 so that the Neutron Random Walk £,, remains trapped in D

Theorem
A sufficient condition on 7 for (R, ) under P to be conservative is that

v 0
rEBD u n, >0 |U 77(7‘ U)‘ -
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IMPORTANCE SAMPLING: INTERVAL REACTOR

0.06

002

000

—0.02

—0.04

-0.06

-0.08

-0.10

Estimate of lambda over time

—— Linear Many-to-one
~—— Simple branching system

MSE of simulations over time (log-log scale)

—— Linear Many-to-one
—— Simple branching system

—— Simple Many-to-one —— Simple Many-to-one
--- Lambda
WAV -
107
© 5 E) = 0 EEE 10 2x100 I Ax1p
MSE of simulations over time (true scale) 200 Estimate of the leading eigenfunction
—— Linear Many-to-one . —— Theoretic values of the eigenfunction
—— Simple branching system 175 * ® Simple branching
—— Simple many-to-one ®  Linear Many-to-one
—— Many-to-one outlier influence 150
125
100
(35
050
[¥1
000 T T T

-075 -050 -025 000 025 050 075



ONGOING WORK

> Complexity analysis of rates of convergence of Monte-Carlo schemes
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ONGOING WORK

v

Complexity analysis of rates of convergence of Monte-Carlo schemes
Hybrid constrained neutron branching / random walk methods

Stochastic growth methods at criticality e.g. conditionally on survival,

) 1 d
tlingoLaw (?(f,Xt) (1,Xt)) ~fe

where e is an exponential distribution.
Fleming-Viot methods (resampling / bootstrapping)
Scalable for industry?
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Thank you!
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