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NEUTRON FLUX

>
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Neutron flux is a measure of the intensity of neutron radiation, determined by the
rate of flow of neutrons.

The neutron flux value is calculated as:

neutron density (1) X neutron velocity (v)
where 7 is measured in (# neutrons)/cm?® and v is measured in distance cm/s
Consequently, neutron flux (nv) is measured in (# neutrons) /cm?/s.

We want to describe neutron flux as a function of spatial position and time in
complex domains:

Yo(r,v,t), €Dy CRY v EV = [Unin, Unax] X Sa,
for 0 < vnin < Unax < 00.

Sometimes neutron flux is also taken as a function of energy E, but in many
settings, this is related to velocity via the relation

2E
‘U| = U}
m

More generally the flux of any radioactive particle can be seen in the same way:
a, 3, radiation.

where m is neutron.
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NEUTRON TRANSPORT EQUATION

Neutron flux is thus identified as ¥, : D x V — [0, o), which solves the
integro-differential equation

o,
ot

:Q(r,v,t)+/ \I/g(r,v’,t)os(r,v')ws(r,v',v)dv’+/ Vo (1,0, oe(r, o )me (1, o', v)do
%4 14

(t,r,v) +v-VU(t,r,v) + a(r,v)We(t, r,v)

where the different components are measurable in their dependency on (r,v) and are
explained as follows:
os(r,v’) : the rate at which scattering occurs from incoming velocity v/,
o¢(r,v’) : the rate at which fission occurs from incoming velocity v/,
o(r,v) : the sum of the rates o + o5 and is known as the cross section,
7s(r,v’,v)dv’ : the scattering yield at velocity v from incoming velocity v,
satisfying ms (r,v, V) =1,
me(r, v, v)do’ ¢ the average neutron yield at velocity v from fission with
incoming velocity v’, satisfying 7z (r,v, V) < co

Q(r,v,t) : non-negative source term. (Immediately remove the source term Q = 0)

We will assume that all quantities are uniformly bounded away from zero and infinity. 327



BOUNDARY CONDITIONS

> Boundary conditions which represent ‘fission containment’
Ve (0,r,v) = g(r,v) forr € D,v € V, (initial condition)
Wo(t,r,v) =g(r,v) =0 forr € dDif v-n, <0, (neutron annihilation)

> n, is the outward facing normal of D atr € 9D

» ¢:DxV — [0,00) is a bounded, measurable function which we will later assume
has some additional properties.
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(FORWARD —BACKWARDS) NEUTRON TRANSPORT EQUATION
> Hence, with similar computations, this tells us that, for f,g € L?>(D x V),

,(T+s+F)g) =T +S+F)f.8),
where

Tf(r,v) =uv-Vf(r,v) (backwards transport)
Sf(r,v)  =os(r,v) [, f(r,v)ws(r,v,0")dv" — os(r,v)f(r,v)  (backwards scattering)

Ff(r,v)  =os(r,v) [, f(r,0")me(r,v,0")dv" — oz (r,v)f (r,v)  (backwards fission)
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(FORWARD —BACKWARDS) NEUTRON TRANSPORT EQUATION
> Hence, with similar computations, this tells us that, for f,g € L?>(D x V),
i (T+s+1)g) = (T +S+F)f.3),
where
Tf(r,v) =uv-Vf(r,v) (backwards transport)
Sf(r,v) = os(r,v) [, f(r,0")ms(r,v,0")dv" — os(r,v)f (r,v)  (backwards scattering)

Ff(r,v)  =os(r,v) [, f(r,0")me(r,v,0")dv" — oz (r,v)f (r,v)  (backwards fission)

> This leads us to the so called backwards neutron transport equation (which is also
known as the adjoint neutron transport equation) given by the Abstract Cauchy
Problem on L?(D x V),

0

with additional boundary conditions
{ Ye(0,r,0) = g(r,v) forreD,v eV,

Ye(t,r,v) =0 forr € 9D if v - n, > 0. S



UNDERLYING STOCHASTICS (LEADING TO MONTE-CARLO)
> Backwards equation lends itself well to stochastic representation in the L, sense,

%(t, ) = v Vig(tr,v) — o(rv)dg(tr,v)

+as(r,v)/wg(nv',t)ws(r,v,vl)dv'+af(r,v)/¢g(r,v’,t)7rf(r,v,v')dv"
v %

6/27



UNDERLYING STOCHASTICS (LEADING TO MONTE-CARLO)
> Backwards equation lends itself well to stochastic representation in the L, sense,

%(tm v) = v Vig(t,r,0) — o(r,v)dg(t 1, 0)

+os(1’,v)/wg(r,v',t)rrs(r,v,vl)dv'+crf(r,v)/¢g(r,v/,t)7rf(r,v,v')dv"
v %

> The physical process of fission is a Markov-additive branching process (neutron
branching process).
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branching process).

> Represented by a configuration of physical location and velocity of particles in
D x V,say {(ri(t),vi(t)) : i = 1,...,N;}, where N; is the number of particles alive
attime t > 0.

> Represent as a process in the space of the atomic measures
Nt
Xi(A) =D S, (A),  AEBDXV), t>0,
i=1

where § is the Dirac measure, define on B(D x V), the Borel subsets of D.
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> Backwards equation lends itself well to stochastic representation in the L, sense,

%(t,r7 v) = v - Vipg(t, r,v) — a(r,v)g(t,r,v)
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v v

> The physical process of fission is a Markov-additive branching process (neutron
branching process).

> Represented by a configuration of physical location and velocity of particles in
D x V,say {(ri(t),vi(t)) : i = 1,...,N;}, where N; is the number of particles alive
attime t > 0.

> Represent as a process in the space of the atomic measures

Nt
Xi(A) =D S, (A),  AEBDXV), t>0,

i=1
where § is the Dirac measure, define on B(D x V), the Borel subsets of D.
> Then the stochastic representation of the backwards NTE is nothing more than

N¢
oil8l(r,v) = Es, 18, X0)] =E5, ,,, [Zg(ﬁ'(f)vvi(f))} , t=0.
i=1

6/27



NEUTRON BRANCHING PROCESS

> A particle position at 7 with velocity v (configruration (r,v)) will continue to
move along the trajectory r + vt, until one of the following things happens.
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A particle position at r with velocity v (configruration (r, v)) will continue to
move along the trajectory r + vt, until one of the following things happens.
The particles that leave the physical domain D are killed.

For a neutron with configuration (r, v), if Ts is the random time that scattering
may occur, then

Pr(Ts > t) = exp{—/ot %(V—i—vt,v))ds}.

When scattering occurs at space-velocity (7, v), the new velocity is selected
independently with probability 7 (r, v, v’)dv’.

For a neutron with configuration (7, v), if T is the random time that scattering
may occur, then independently of any other physical event that may affect the
neutron,
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A particle position at r with velocity v (configruration (r, v)) will continue to
move along the trajectory r + vt, until one of the following things happens.
The particles that leave the physical domain D are killed.

For a neutron with configuration (r, v), if Ts is the random time that scattering
may occur, then

Pr(Ts > t) = exp{—/ot %(V—i—vt,v))ds}.

When scattering occurs at space-velocity (7, v), the new velocity is selected
independently with probability 7 (r, v, v’)dv’.

For a neutron with configuration (7, v), if T is the random time that scattering
may occur, then independently of any other physical event that may affect the
neutron,

Pr(T: > t) = exp {f /Ot o (r+ vt,v))ds} .

When fission occurs at location r € R? from a particle with incoming velocity
v € V, the quantity 7¢ (r, v, v")dv’ describes the average number of particles
released from nuclear fission with outgoing velocity in the infinitesimal
neighbourhood of v’.
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A particle position at r with velocity v (configruration (r, v)) will continue to
move along the trajectory r + vt, until one of the following things happens.
The particles that leave the physical domain D are killed.

For a neutron with configuration (r, v), if Ts is the random time that scattering
may occur, then

Pr(Ts > t) = exp{—/ot %(V—&-vt,v))ds}.

When scattering occurs at space-velocity (7, v), the new velocity is selected
independently with probability 7 (r, v, v’)dv’.

For a neutron with configuration (7, v), if T is the random time that scattering
may occur, then independently of any other physical event that may affect the
neutron,

Pr(T: > t) = exp {f /Ot o (r+ vt,v))ds} .

When fission occurs at location r € R? from a particle with incoming velocity

v € V, the quantity 7¢ (r, v, v")dv’ describes the average number of particles
released from nuclear fission with outgoing velocity in the infinitesimal
neighbourhood of v’.

Note, the possibility that Pr(N = 0) > 0is possible, which will be tantamount to a
fission taking place in which no neutrons are released. Experiments show that this
is a possible outcome during a fission event.
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MILD EQUATION
> Define for g € LY, (D x V), the (physical process) expectation semigroup

otlgl(r,v) == Eé(w) (g, X1)], t>0,reD,veV,
and the advection semigroup
Ut [g](r, v) :g(7+vt7v)1{t<n‘9u}7 t>0.

where kP, := inf{t > 0:r+ vt ¢ D}.
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> Define for g € LY, (D x V), the (physical process) expectation semigroup

oulg)(r,v) == Bs,  [(@. X)), t>0reDueV,
and the advection semigroup
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where kP, := inf{t > 0:r+ vt ¢ D}.
Lemma

When g € L, (D x V), the space of non-negative functions in LI, (D x V), the expectation
semigroup (¢¢(g],t > 0) is the unique bounded solution to the mild equation

(8] = Urlg] + /Ot Us[(S + F)or—s[gllds, t>0.

8/27



MILD EQUATION
> Define for g € LY, (D x V), the (physical process) expectation semigroup

¢elgl(r,v) :==Bs, ) [(&Xn)], t=0,reDveV,
and the advection semigroup
Ut [g](r, v) :g(7+vtvv)1{t<n‘2u}7 t>0.
where kP, := inf{t > 0:r+ vt ¢ D}.

Lemma

When g € L, (D x V), the space of non-negative functions in LI, (D x V), the expectation
semigroup (¢¢(g],t > 0) is the unique bounded solution to the mild equation

(8] = Urlg] + /0[ Us[(S + F)or—s[gllds, t>0.

Lemma
The mild solution (¢r,t > 0), is equal on Ly(D x V) to (g(t, -, -),t > 0) and dual to
(Wg(t,-,-),t > 0)onLy(D x V), ie.

<f ¢t[g] (f wg ) 7)> = <\ij(t7'7')vg>
forallf,g € Ly(D x V). 8/27



A-EIGENVALUE PROBLEM

> So far
(f? ¢t[g]> = <\ij(t7"')7g>
forallf,g € Ly(D x V)
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9/27



A-EIGENVALUE PROBLEM

> So far
(f? ¢t[g]> = <\Ilf(t7 R )7g>
forallf,g € Ly(D x V)

> We want to play with the eigenfunction ¢ € Ly(D x V), e.g.

(fv ¢f[¢]> = <\ij(t7 *y ')v ¢> = eAt(fv ¢>
suggesting (at least in the L, (D x V) sense)

#@l(r,v) = Es, (8, X0)] := eM@(r, v)
= points us towards Monte-Carlo methods - especially when A = 0

> Problem! No good unless ¢ € LI, (D x V), but we only know ¢ € L;L (DxV)
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PERRON-FROBENIUS

Theorem (Horton, K., Villemonais, 2018)
Suppose that
> D is non-empty and convex;
> Cross-sections os, oz, ws and 7 ¢ are uniformly bounded away from infinity;
> infoep o orev (0s(r,v)ms(r,v,0") + os(r,v)me(r,v,0")) >0
Then, for the semigroup (¢, t > 0), there exists a A € R, a positive' right eigenfunction
@ € L& (D x V) and a left eigenmeasuire which is absolutely continuous with respect to

Lebesgue measure on D x V with density ¢ € L&, (D x V), both having associated eigenvalue
e, and such that ¢ (resp. p) is uniformly (resp. a.e. uniformly) bounded away from zero on
each compactly embedded subset of D x V. In particular, for all ¢ € LI, (D x V),

(@, 0[]y = e (B,8) (resp. dul] = e**'p) +>0.

Moreover, there exists € > 0 such that

sup He_)‘*ttp_l@[g] - <<,5,g)H =0(e~)ast — oco.
8ELL (DxV):|g]| 0 <1 *°

To be precise, by a positive eigenfunction, we mean a mapping from D X V — (0, o0). This does not prevent it
being valued zero on 9D, as D is an open bounded, convex domain.
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STOCHASTIC PERRON-FROBENIUS

If the neutron branching process (physical process) begins from a configuration
w=>1"4 6, then
Wi = e’A*tLO’Xt) ) t>0,
(s 1)

is a martingale.

Theorem (Horton, K. Villemonais)
Suppose that
> D is non-empty and convex;
> Cross-sections os, o ¢, Ts and ¢ are uniformly bounded away from infinity;
> Wehave ocsmws +osms >00nD XV X V;
> There is an open ball B compactly embedded in D such that
infrED,'u,'u’EV o—f(r,v,v’)wf(rv v, U,) > 0.

Forall g € LI, (D x V) such that, up to a multiplicative constant, § < , under the
assumptions as the previous Theorem,

lim e™ (g, X;) = (g, §) Woo.
t—o0
almost surely, where W is the martingale limit. Moreover, W is positive with positive

probability if and only if X\« > 0, otherwise Woe = 0.
11727



A-EIGENVALUE AND MC LOGIC

> Suppose now we can efficiently simulate the Neutron branching process, recalling
that
¢t[g](r’ ’U) = Eé(r,u) [<g7Xi)]’ t>0,reDveV,
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A-EIGENVALUE AND MC LOGIC

> Suppose now we can efficiently simulate the Neutron branching process, recalling
that
¢t[g](rav) = E&(,YU) [<g7Xi>]’ t>0,reDveV,

L1 L1
Ax = t1—1>n;olo ? log (bng](r: U) - tl—1>n;olo ? IOgE(;(’yv) [<g7 Xt)]: t>0,reD,veV.
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A-EIGENVALUE AND MC LOGIC

> Suppose now we can efficiently simulate the Neutron branching process, recalling

that
(rbt[g](ra ’U) = Eé(,yv) [<g7 Xt)]’ t>0,reDveV,
>
A= lim L1 1(r,v) = li LiogE [(g, X1)] t>0,reDveV
» = lim = og ¢r[g](r,v = lim - logEs, , (g, X1, >0,reD,veV.

> andeg. fixre D,v eV,

(B.8) _ j SI0) o Bo (8 X0)
(@, 1) o aill](rv) e Be, (1, X0)]

where g is a test function in L, (D x V).
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MONTE-CARLO, IMPORTANCE MAP ¢

13/27



MONTE-CARLO, IMPORTANCE MAP ¢
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MANY-TO-ONE AND MONTE-CARLO PARALLELISATION
> Recall semigroup operators

Tf(r,v) =wv-Vf(r,v) (backwards transport)
Sf(r,v) = os(r,v) [, (f(r,v") —f(r,v))ms(r, v, 0" )dv’ (backwards scattering)

Ff(r,v) = os(r,v) [, f(r,0")me (r,0,0")dv" — o¢(r,0)f(r,v)  (backwards fission)
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> Recall semigroup operators
Tf(r,v) =wv-Vf(r,v) (backwards transport)
Sf(r,v) = os(r,v) [, (f(r,v") —f(r,v))ms(r, v, 0" )dv’ (backwards scattering)
Ff(r,v) = os(r,v) [, f(r,0")me (r,0,0")dv" — o¢(r,0)f(r,v)  (backwards fission)
> Basic algebra gives
THS+F = v V(.0 +a(0) | (0 (0, 0) (0,0 ) 450, 0)f (r,0)
where
(1) = () + 7e(r) [ m(rov, )
m(r,0,0)dv’ = a(r, )7 [os(r,v)7s (1,0, 0 AV + o (1, V)T (r, v, 07 )d']

B(r,v) = a(r,v) — os(r,v) — oe(r,v) = o (r,v) </V me(r,v,0")dv" — 1) .
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MANY-TO-ONE AND MONTE-CARLO PARALLELISATION
> The representation 7 + S + F = L + 3, where
Lf(r,v) = v - Vf(r,v,t) + a(r,v)/ (f(r, 0", ) = f(r,u, ) m(r,v,0")dv'.
v
This is the Markov generator of a neutron random walk (NRW) (R, T) (scatters at

rate o and chooses new velocity with distribution 7) with probabilities
(P(r0), 7 € D,v € V). We have a new representation in terms of (R, 1),

t
¢t[g](rv U) = ]E(S(,,v) [<gr Xfﬂ = E(r,'u) [ef[) B(Ru’Tu)dug(Rh Tf)l(t<-,-D>:| B

fort > 0,7 € D,v € V, where
P =inf{t >0:R; ¢ D}.

> This affords new parallelisable opportunities to Monte-Carlo solve numerically
for h:

025

050

075

100

I R B can be replaced by " ¢

? N © ° © 16/ 27




GENERATIONAL EVOLUTION AND k(ﬁ

> In place of (X;,t > 0), we consider the process (X, n > 0), where, for n > 1, X, is
M(D x V)-valued and can be written

Nu
Xy = 21: 5(71_01) ,Ui(n) )
i=

where {(rl.(") R Ui(n) ),i=1,--- N} are the position-velocity configurations of the
N, particles that are n-th in their genealogies to be the result of a fission event.

> AXp is consistent with X and is the initial configuration of neutron positions and
velocities.

> Forn > 1 we can think of X, as the n-th generation of the system and we refer to
them as the neutron generational process (NGP).
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GENERATIONAL SEMIGROUP

> Appealing to the obvious meaning of (g, Xy), define the expectation semigroup
(Py,n > 0) bY

Dy [g](r,v) = ]E(;(r’v) g, X)), n>0,reDveV,

with ¥o[g] := g € LL (D x V).
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GENERATIONAL SEMIGROUP

> Appealing to the obvious meaning of (g, X;), define the expectation semigroup
(Py,n > 0) bY

@u8](r,v) = Es,, ) (8, Xn)], n>0,reD,veV,
with ¥o[g] := g € LL (D x V).
> Associated eigen problem: finding a pair x > 0 and i € L, (D x V) such that,

pointwise,
®1[1](r,v) = sh(r,v), reDwEV.

> By splitting on the first fission event, ®;, solves the following mild equation
Balg](r,v) = / 0. [F @, 1[gl] (rv)ds,  reD,veV,geLL(DxV),
0

where

Q:lg](r,v) =5, [e— J§ o (Ru T)dug Ts)1<s<TD>] ’
and (Rs, Ts)s>0 is the os7s-NRW.
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GENERATIONAL SEMIGROUP

> Appealing to the obvious meaning of (g, X;), define the expectation semigroup
(Py,n > 0) bY

Bug)(r,v) = Es, ,, [(5. %)), n>0reDveV,

with ¥o[g] := g € LL (D x V).

> Associated eigen problem: finding a pair x > 0 and i € L, (D x V) such that,
pointwise,
1 [H](r,v) = kh(r,v), reD,vEV.

> By splitting on the first fission event, ®;, solves the following mild equation
Balg](r,v) = / 0. [F @, 1[gl] (rv)ds,  reD,veV,geLL(DxV),
0

where

Qs [g] (r, U) = ]E(;(LU) [e— f(i Uf(RmTu)dug(Rs7 TS)I(S<TD):| .

and (Rs, Ts)s>0 is the os7s-NRW.
> If the pair (k, 1) solves (18), the strong Markov property along with an iteration

implies that
K"h(r,v) =y [I’l](i’,’l}), re D»U ev. 18/27



Theorem (Cox, Horton, K., Villemonais 2019)
Suppose that
> D is non-empty and convex;
> Cross-sections s, o ¢, s and 7 ¢ are uniformly bounded away from infinity;
> infiep o, orey o (1, 0)TE(r, 0, 07) > 0.
Then for the semigroup (®u,n > 0), there exist kg € R, a positive right eigenfunction
h € LI (D x V) and a left eigenmeasure, h, on D x V, both having associated eigenvalue k" o
Moreover, ko is the leading eigenvalue in the sense that, for all g € LL(D x V),

(h, ®u[g]) = K, (h,g} (resp. @y [h] =k, ) n >0,
and there exists v > 1 such that, for all g € L;"O(D x V),

sup
SELL (DX V):][g]|oo <1

S eulg) = (9| =00 asn— +oc.
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GENERATIONAL MAY-TO-ONE

> Let

m(r,v):/rrf(r,v,vl)dv',
v

denote the mean number of offspring generated by a fission event at (r, v)
> Recall the amr-neutron random walk (R, Y) where we define the rate « and the
scatter kernel 7 so that
a(r,v)r(r,v,v") = o5 (r,0)ws (r,v,0") + o (r, V)T (r,v,0")  reD,v,V €V
ie.
oz(r, ’U) =0s (7, U) + ot (77 U)m(rv U)

> Recall that we can build an am-NRW (R, T) that scatters at rate o and choses its
new velocity with 7.

20/ 27



GENERATIONAL MAY-TO-ONE

> We can simulate its paths with the following subroutine:
P (R, T) scatters for the k-th time at (r, v) with rate a(r, v);
P A coin is tossed, Ix(r,v) = 1 with probability o« (r, v)m(r, v)/a(r, v), a new velocity,
O (r,v), is chosen with probability 7 (r, v, v") /m(r, v);

> On the other hand, with probability density o< (7, v)/a(r, v) the random variable
Ix(r, v) = 0, a new velocity, ©f (r, v), is chosen with probability density 7, (r, v, v").

> As such, the velocity immediately after the k-th scatter of the NRW, given that the
position-velocity configuration immediately before is (r, v), is coded by the
random variable

i (r,0)OF (r,v) + (1 = T (r,v))OF (1, v).
> We thus can identify sequentially, Tp = 0 and, forn > 1,
T, = 1nf{t > Tn—l Ty 75 T and Ikt(RhTt—) = 1},

where (k¢, t > 0) is the process counting the number of scattering events of the
NRW up to time ¢.
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GENERATIONAL MAY-TO-ONE

Lemma
Suppose that

> The cross-sections s, o ¢, ws and ¢ are uniformly bounded away from infinity;

> Wehave ocsmws +osms >00nD XV X V;

> There is an open ball B compactly embedded in D such that o sme > 0on B x V X V.
Then the solution to

®ulg](r,v) = /Ooo 0, [Furlgl] (rv)ds, reDveV,geli(DxV),

among the class of expectation semigroups is unique for g € LI (D x V) and the semigroup
(®n,n > 0) may alternatively be represented as

n
Pulgl(r,v) = E(r,) [H m(Rr;, Y1, )8R, Y1,) (1, <0y |,  rEDwVEV,n>1,
i=1

(with ®g[g] = g), where (Rt, Yt)¢>q is the am-NRW, and

xP = inf{t > 0: R ¢ D}.
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kefr-EIGENVALUE PROBLEM AND MC LOGIC

> there exists v > 1 such that, “uniformly" for all g € LI (D x V),
@ug](r,v) ~ Kigh(r,v) (h,g) + O(y ") as n — +o0,

suggesting an estimate over several “generations” of NRW
> But also

w - v)h(r,v v =Kkt
(fl7g> B <il,g> /vaq)”[g](ra )h(r, )drd 7keff
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ke ~-EIGENVALUE PROBLEM AND MC LOGIC

> there exists v > 1 such that, “uniformly" for all g € LI (D x V),
@ug](r,v) ~ Kigh(r,v) (h,g) + O(y ") as n — +o0,

suggesting an estimate over several “generations” of NRW

> But also ~
D 1 -
S ®ulgh 1 / P4 fg)(r, )i(r, v)drdv = Ky
(hag> <hag> Dxv
> In particular, this suggests an estimate over a single iteration by looking for
stability:
(h7 q>1 [g]> —k
7 = Neff
(h. &)

23/27



IMPORTANCE SAMPLING

> Note that we are wasting a lot of simulations to numerically develop the
expectation

1[8](r, v) = By [m(Rey, Tr, )g(Rey, T1) gy comy], rE€DwE V21,

the indicator means we score zero for many runs of the MC.

> We can use a trick of Doob h-transforming (also known as importance sampling),
which means we bias the characteristics of the NRW but average a different path
function and arrange things so the averaging is still equal to ®1[g](r, v).
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IMPORTANCE SAMPLING
> Suppose that H(r, v) is a “good guess" of 1. Then there exists a I'(r, v) such that

T
1= E('v'U) e~ Jo ! F(RSaTS)dSM} , reD,veV,

H(r,v)
In fact, I(r,v) = H=!(r,v)LH(r,v), where

Lf(r,v) = v - Vf(r,v,t) + a(r,v) /V (F(r, v 8) = f(r,v, 1) (r, v, 0" )do'.
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IMPORTANCE SAMPLING
> Suppose that H(r, v) is a “good guess" of 1. Then there exists a I'(r, v) such that

T
1= E('v'“) e~ Jo ! F(RSaTS)dSM} , reD,veV,

H(r,v)
In fact, I(r,v) = H=!(r,v)LH(r,v), where

Lf(r,v) = v - Vf(r,v,t) + a(r,v) /V (F(r, v 8) = f(r,v, 1) (r, v, 0" )do'.

> We “change measure"

H
dPi o) e S DR, Ts)ds H(Rr,, Yry)

dP(r,v) H(}’, U)
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IMPORTANCE SAMPLING
> Suppose that H(r, v) is a “good guess" of 1. Then there exists a I'(r, v) such that

T
1= E(hv) e~ Jo ! F(RSaTS)dSM} , reD,veV,

H(r,v)
In fact, I(r,v) = H=!(r,v)LH(r,v), where

Lf(r,v) = v - Vf(r,u,t) + ar,v) /V (F(r, v 8) = f(r,v, 1) (r, v, 0" )do'.

> We “change measure"

H
Pow) _ o g rwe s H R, )

dP(r,v) H(}’, U)
» Then write ®; in terms of P,

g(RTl ’ TTl )

Ty
@ — H(r. v)E Jo TR Y)ds oSBT T
1lgl(r,v) (r,v)E¢ ¢ m(Rry, Ty )H(RTNTH)

r,v)
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IMPORTANCE SAMPLING
> Suppose that H(r, v) is a “good guess" of 1. Then there exists a I'(r, v) such that

T
1= E(’v'“) e~ fol F(RSaTS)dSM} , reD,veV,

H(r,v)
In fact, T'(r,v) = H~'(r,v)LH(r,v), where

Lf(r,v) = v - Vf(r,u,t) + ar,v) /V (F(r, v 8) = f(r,v, 1) (r, v, 0" )do'.

> We “change measure"

H
P0) _ oo i o ras R Try)
dP(;.0) H(r,v)
» Then write ®; in terms of P,
g(RTl ’ TTl )

Ty
® =H(r,v)ElL | |elo’ TRY)dsyy(Ry oy ) S 10
1[g](7’,’U) (I’,U) (r,v) |:€ 0 m( Ty LTy )H(RT17TT1)

> Under PH the characteristics of the NRW can be described via the generator

/
H(r, V) w(r,v,0")do’.
H(r,v) 25/27

LHf(r,0) :U-Vf(r,v,t)-i—a(nv)/ (f(r, ), 5) =f(r,v, 1))
v



IMPORTANCE SAMPLING

> We can now build our MC sampling around a NRW (R, T) under P".
> Thatis

q:'l [g] (1’, U) = E(r,'u) [m(Rﬂ ’ TTl - )g(RTl ’ TTl )1(T1<ND):| ’
versus

Ty g(RT 7TT )
P —H EH Jo ! T(Rs,Ys)ds R Yo 1 1
1 [g] (7, U) (7, U) (r,v) |:e 0 m( Ty +Th )H(RTl ; TTl)

> Hence

> no simulating trees
> no simulating NRW paths that leave the domain of the reactor (i.e. every NRW path
counts).
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IMPORTANCE SAMPLING

> We can now build our MC sampling around a NRW (R, T) under P".
> Thatis

P1[8](r,v) = Er0) [m(RTI,Trl—)g(RTpTTl)l(quD)] ;
versus

g(RT1 ) TTl )

Ty
P = H(r,v)El Jo! PRT)ds Ry Yy )L
l[g](rvv) (7,’(}) (r,v) |:e ( Ty» +Tq )H(RT17TT1)

> Hence
> no simulating trees
> no simulating NRW paths that leave the domain of the reactor (i.e. every NRW path
counts).
> BUT the last expression for ®; introduces a problem with variance ....... which
Alex will talk about.....
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Thank you!
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