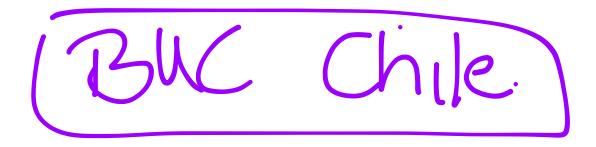
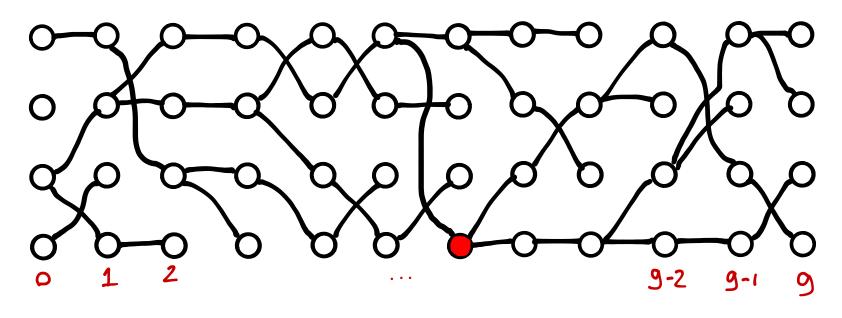


Adrián González Casanova Inst: Tute of Mathematics National Autonomous University of Mexico UNAM



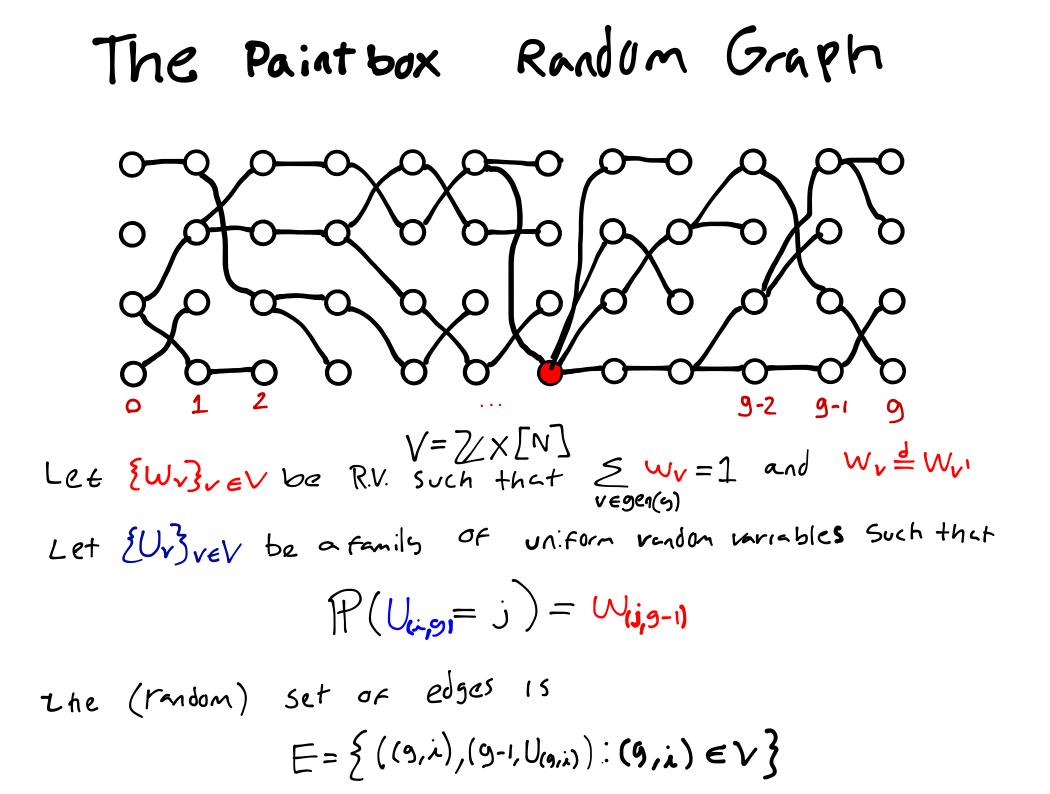
The Wright Fisher Random Graph

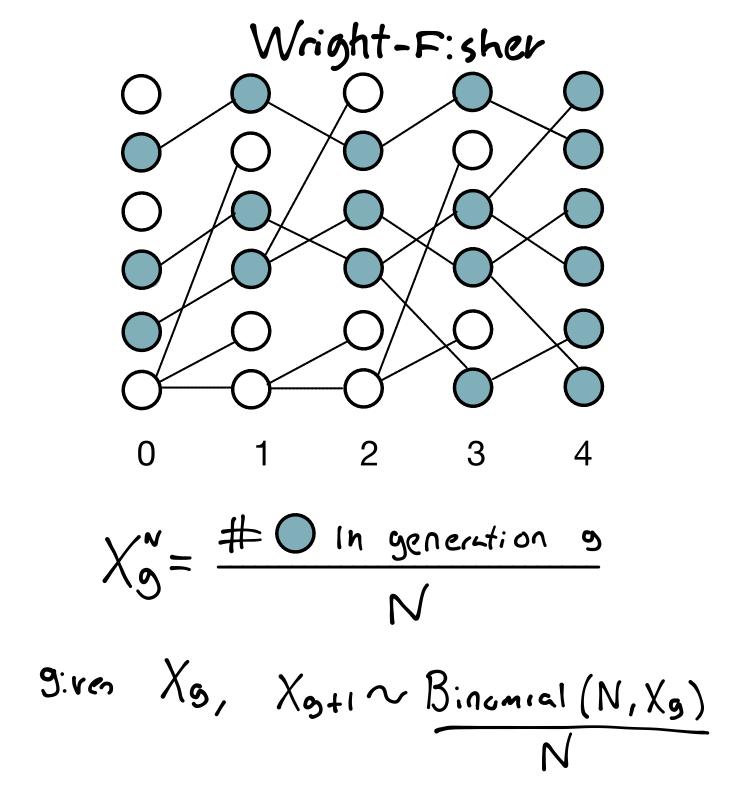


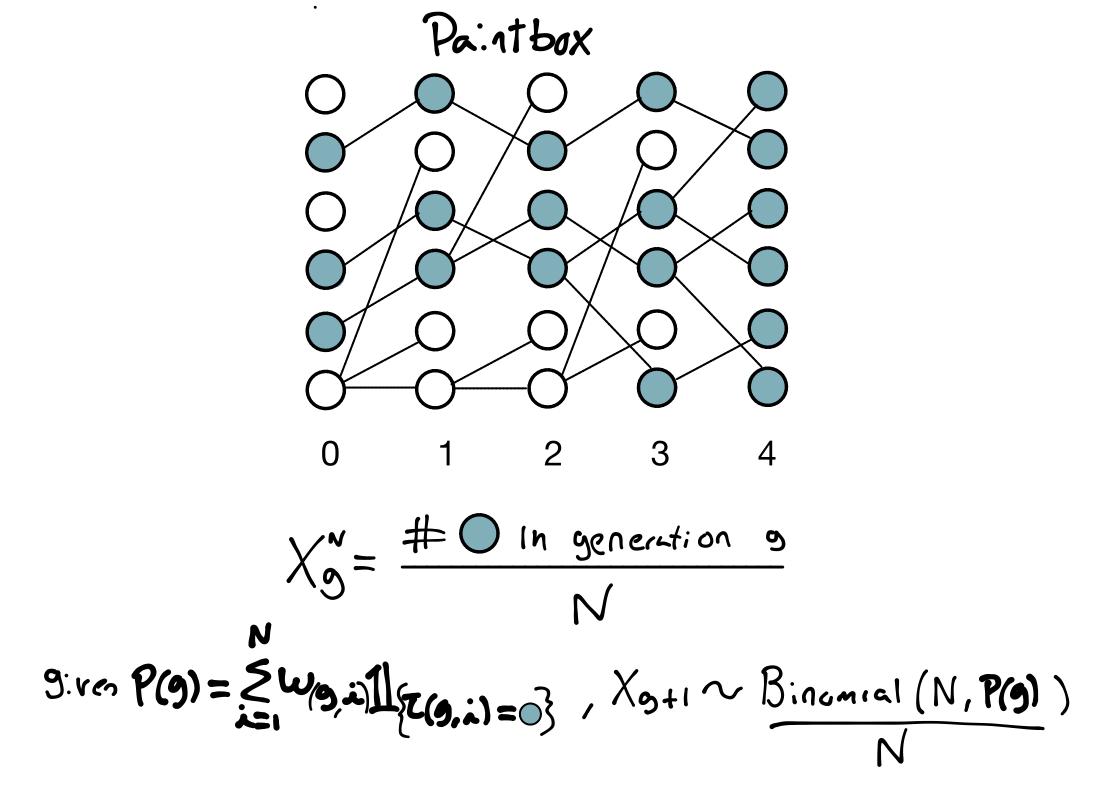
V=ZX[N]

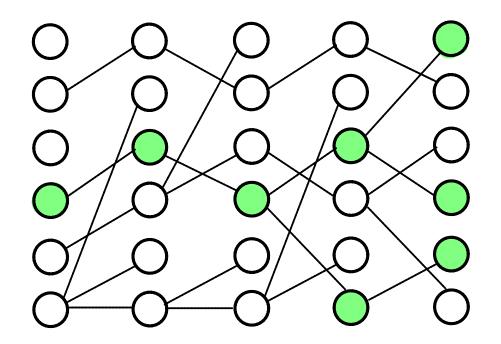
Let {Ur}ver be a family of IID uniform random variables The (random) set of edges is

$$E = \left\{ \left((9, \lambda) \right) (9 - 1, U_{(9, \lambda)}) : (9, \lambda) \in V \right\}$$



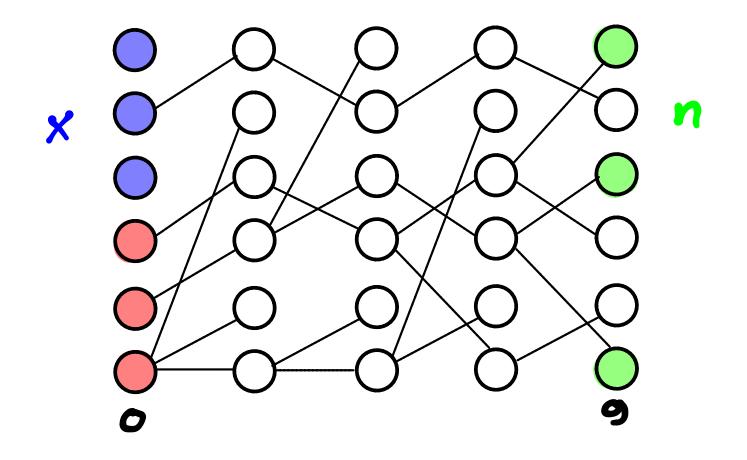




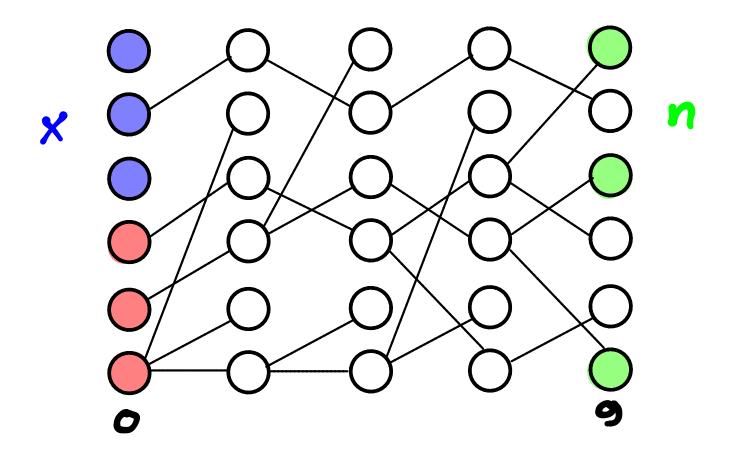


 $A_g^N = \# \bigcirc \text{ in gen. } 9$

What is the Probability that all o are (P)

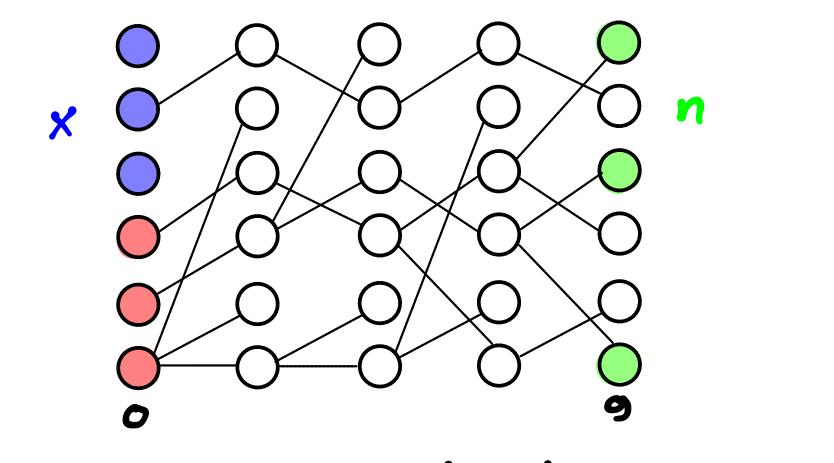


What is the Probability that all or are o? (P)



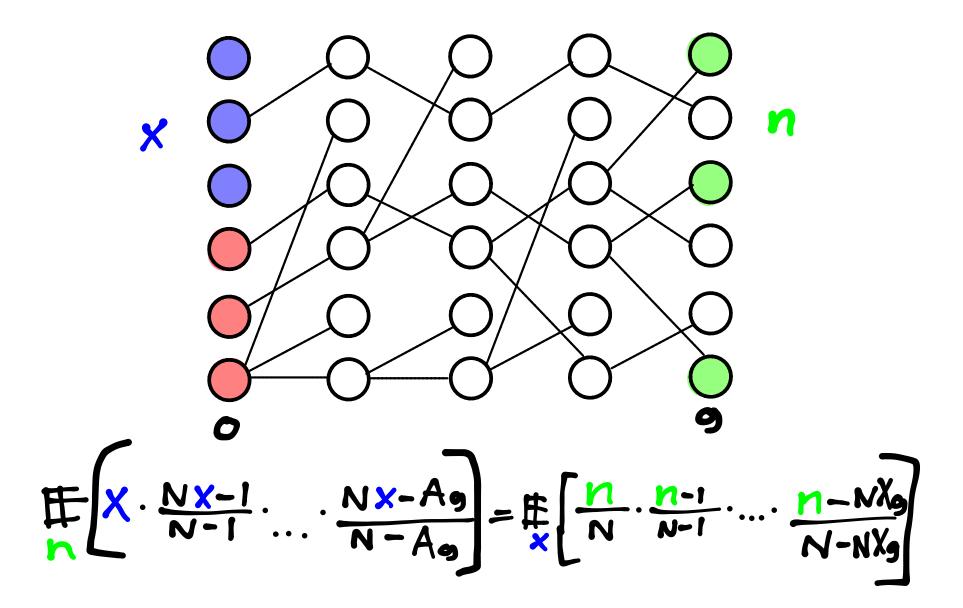
• Given $NX_{g} = 9$, $P = \frac{n}{N} \cdot \frac{n-1}{N-1} \cdots \cdot \frac{n-9}{N-9}$

What is the Probability that all or are o? (P)



•• Given $A_g=m$, $P=X \cdot \frac{NX-1}{N-1} \dots \frac{NX-m}{X-m}$

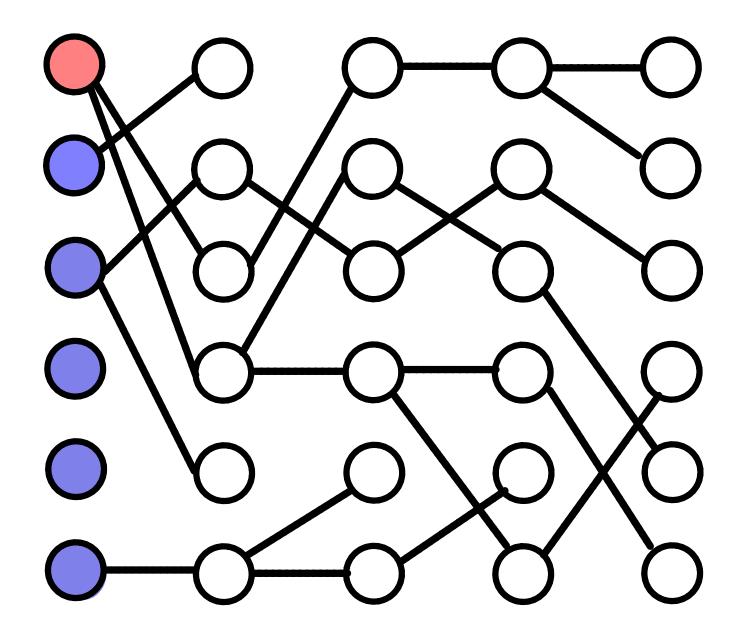
What is the Probability that all or are o? (P)

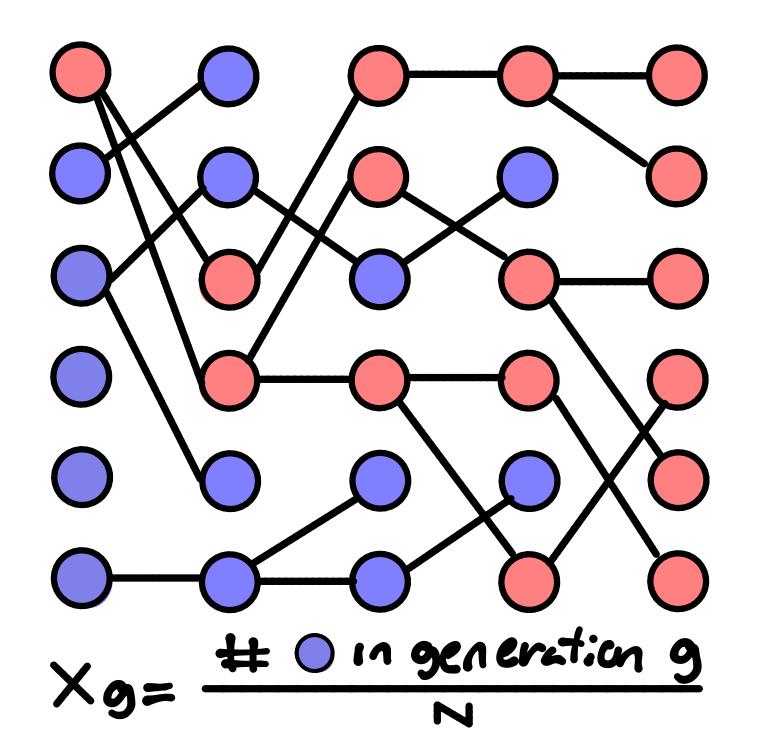


In the Wright Fisher model Let S < 1 1 🔵 \bigcirc 100 $7-5_N$ (?) 1- S \bigcap 1-5_N () 1- S_N

In the Wright Fisher model $\sim N_{\star}$ Ν (1-X)N $1-S_{N} \bigcirc \bigcirc 1P(\bigcirc = \bigcirc) = \frac{x(1-S_{N})}{x(1-S_{N})+1-x}$ $1 - 5_{N}$ 1- SN

In the Paintbox model **> xN** \mathcal{W}_{o1} Ν (1-X)N W_{oz} $(W_{03})(7-5_{N})$ $(W_{04})(7-5_{N})$ (?) $P(\mathbf{P}(\mathbf{P} = \mathbf{O}) = \frac{\sum_{i=1}^{N} W_{0i} (1-S_{N})}{\sum_{i=1}^{N} W_{0i} - S_{N} \sum_{i=1}^{N} W_{0i}}$ $(W_{os})(1-S_{N})$ $(W_{05})(1-S_{p})$





Now take
$$X_0 = xN$$

for some $x \in [0, T]$
and $S \in [0, 1]$
If $SN = S$ $(X_0) = Y(X_0)$ where

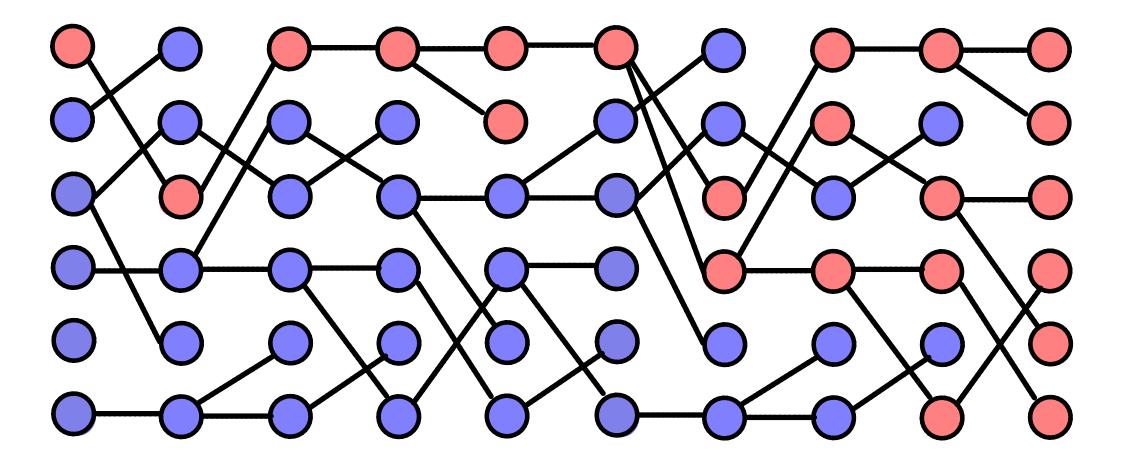
$$X_{g} = \frac{(1-S)X_{g}}{(1-S)X_{g} + 1-X_{g}}$$

Now take Xo=xN for some $X \in [0, \overline{1}]$ and SE[0,1) • If $SN = \frac{S}{N^{\beta}}$, $\beta \in (0, 1)$ $\left(\chi_{LN}^{N}\mathcal{P}_{t}\right) = \left(\chi(t)\right)$ $\frac{\delta X(t)}{1+} = -5 X(t) (1-X(t))$

Now take
$$X_0 = xN$$

For some $X \in [0, T]$
and $S \in [0, 1)$
... If $SN = \frac{S}{N} (X_{LENJ}^{N}) \Longrightarrow (X_{E})$

$$dX_t = -SX_t(I-X_t)dt + X_t(I-X_t)Bt$$



Heldane n 27 $S_N = 5$

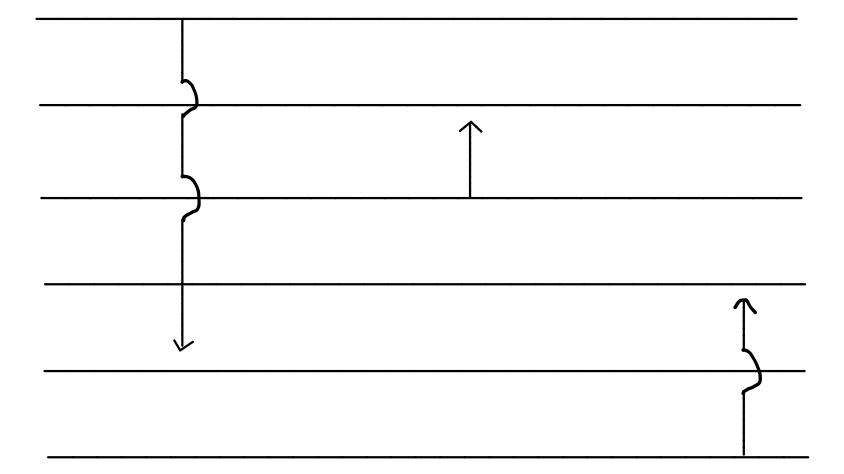
 $P_{V_{M}}(F_{X}) = 25 + o(N^{-1})$

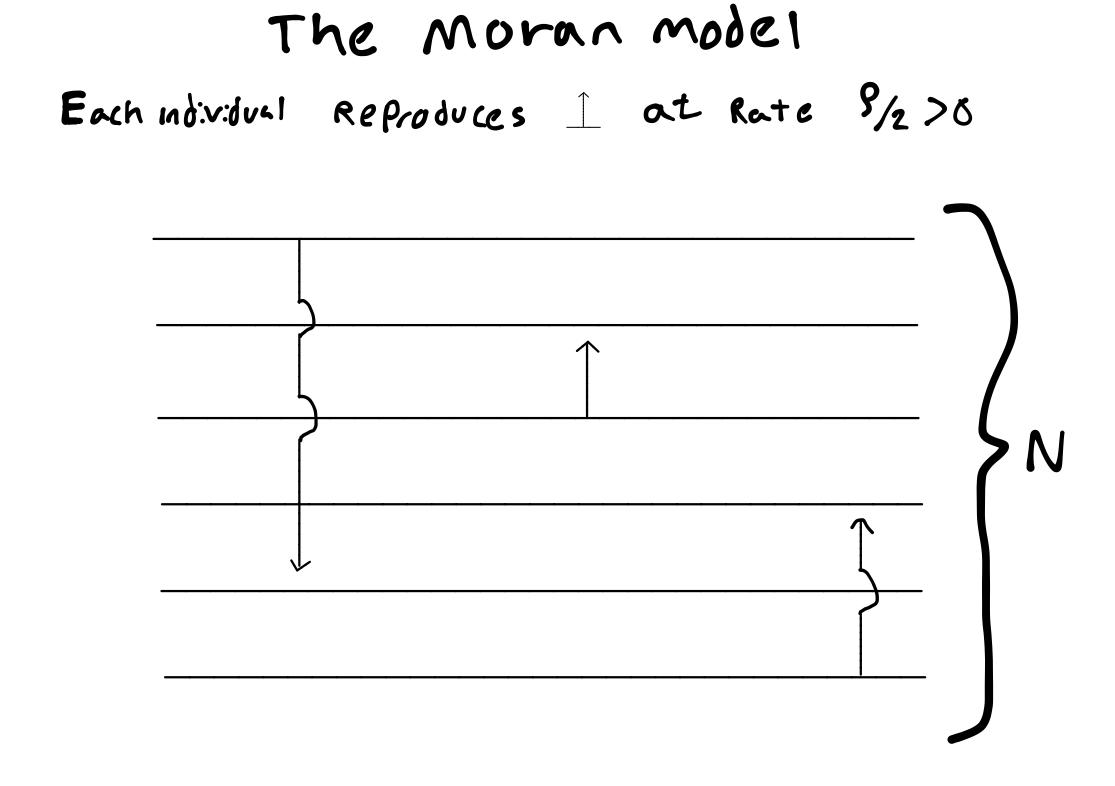
Kimuran 62

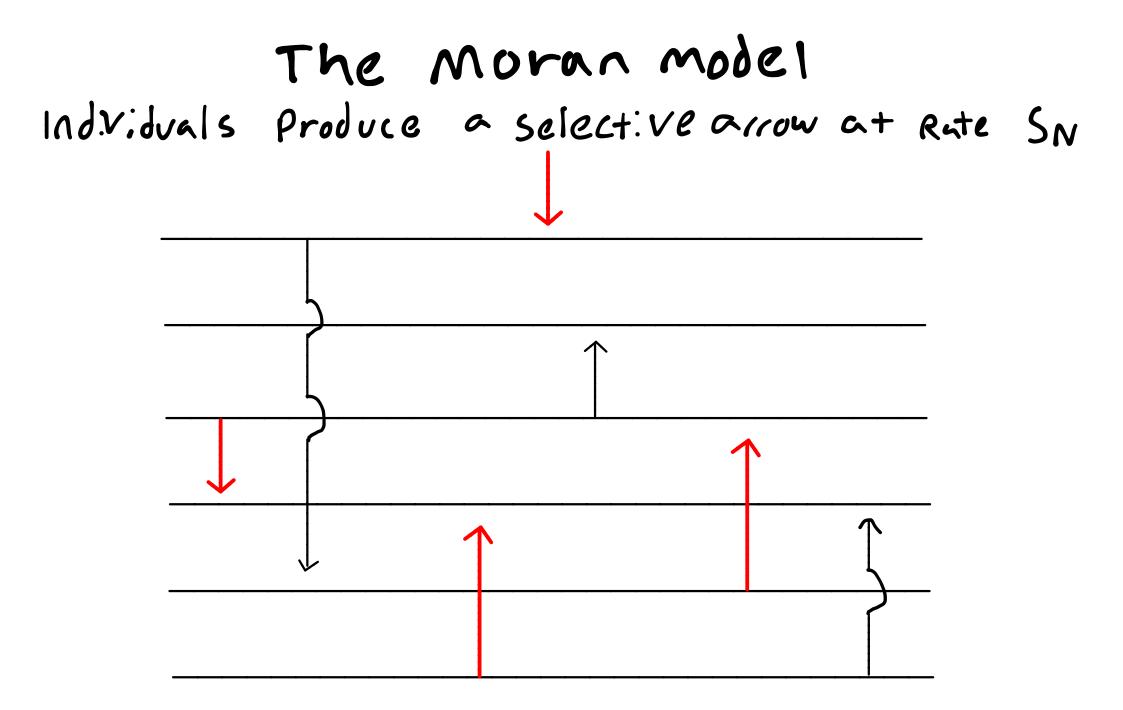
$S_{N}=S/N$ $\hat{P}_{V_{N}}^{N}(F_{X}) = \frac{25}{1-e^{-2}s} + o(1)$

See also Gillespie 74

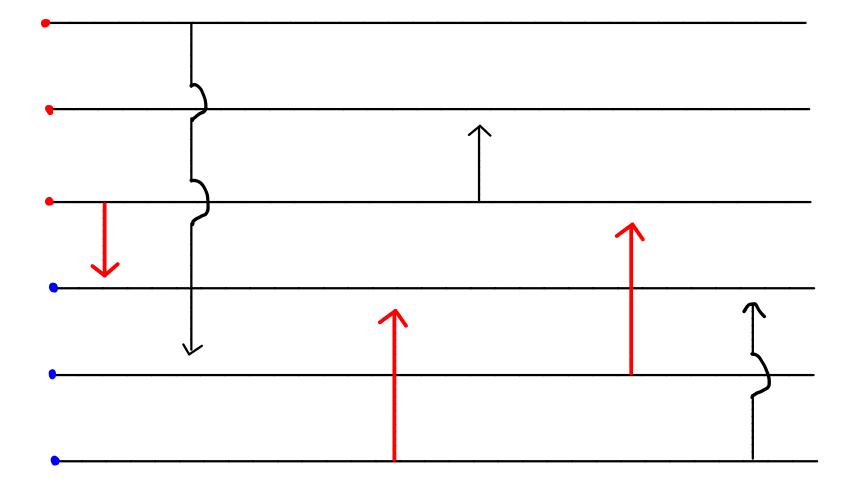
The Moran model



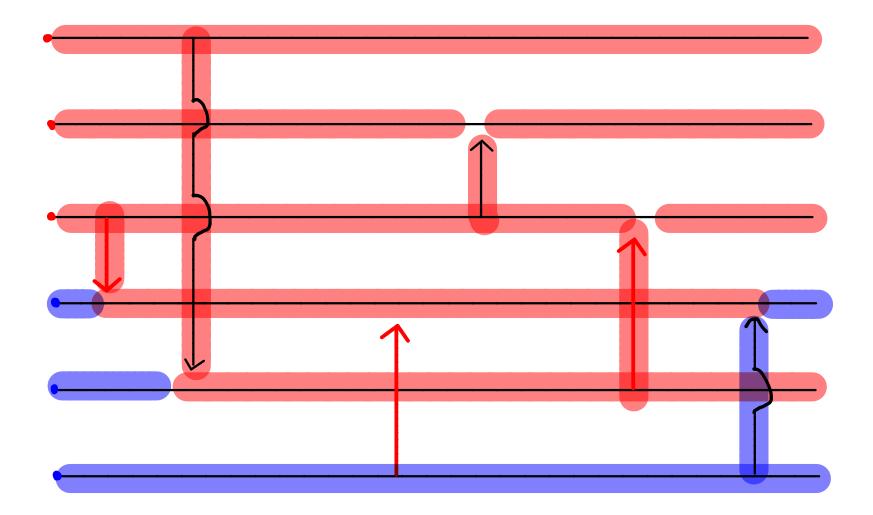




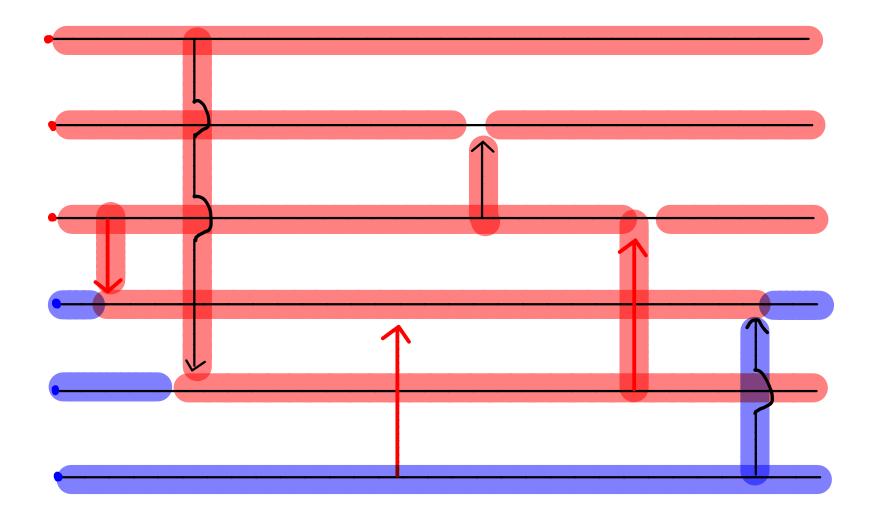
The Moran model



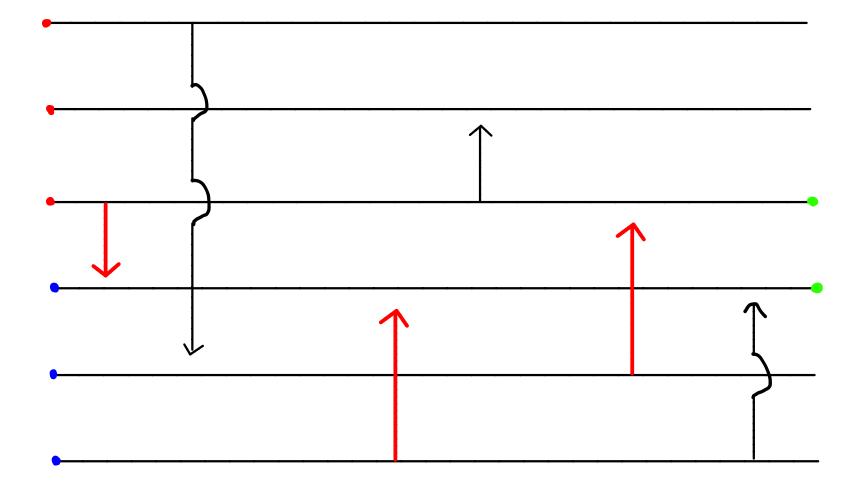
The Moran model



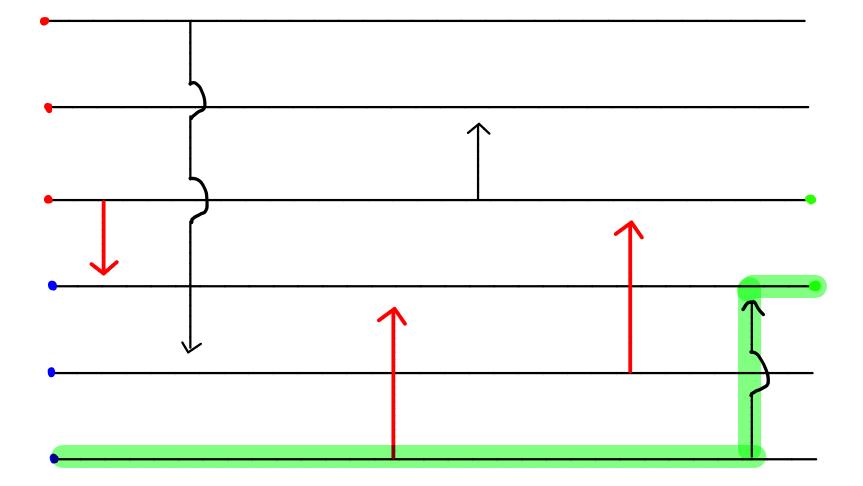
The Moran model $Y_{t} = \# \circ$ at time t



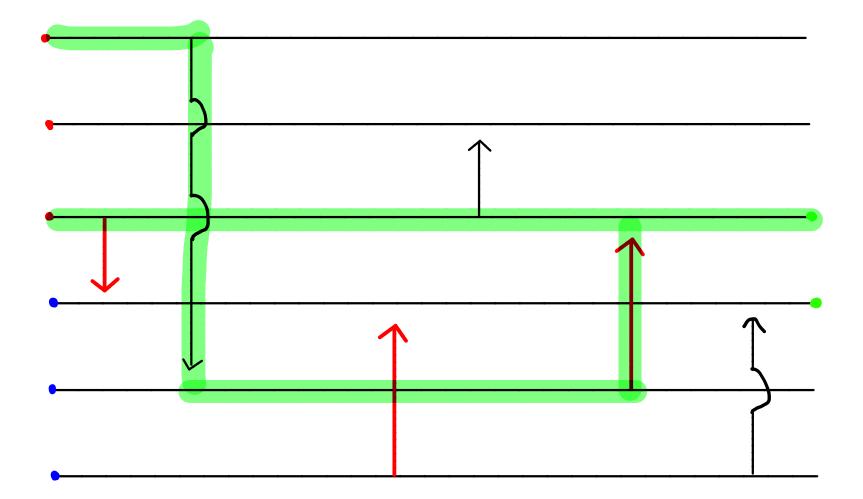
The Ancestral selection Graph (Krone, neuhauser)



The Ancestral selection graph

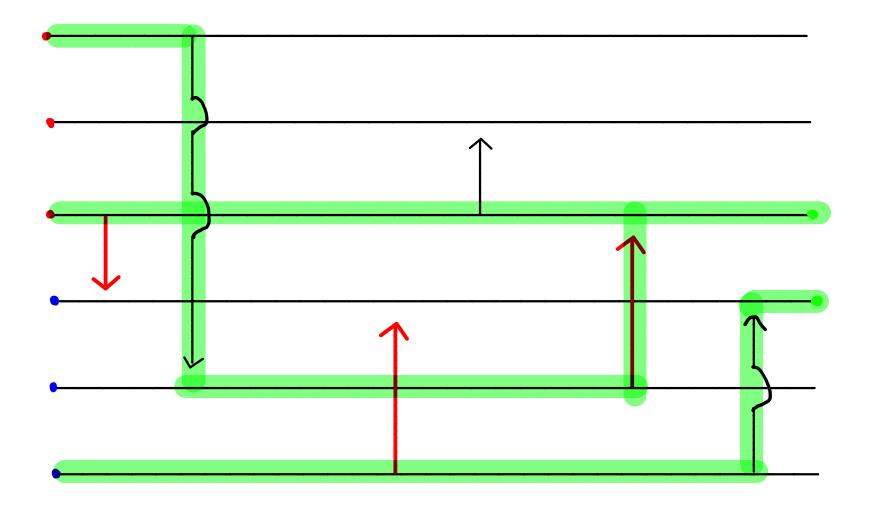


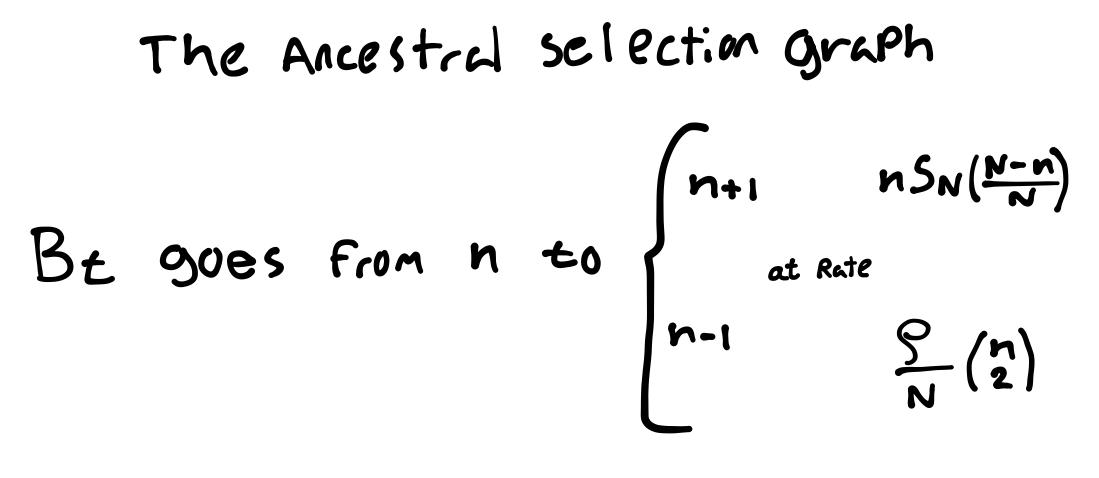
The Ancestral selection graph

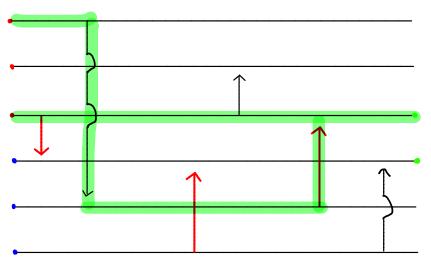


The Ancestral selection Graph

Bt= # • ot +: me t

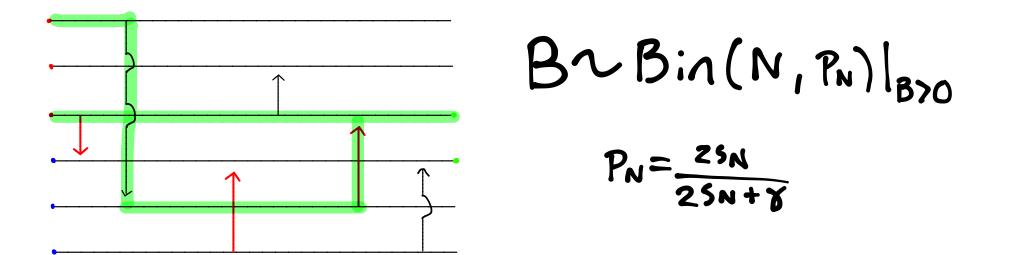




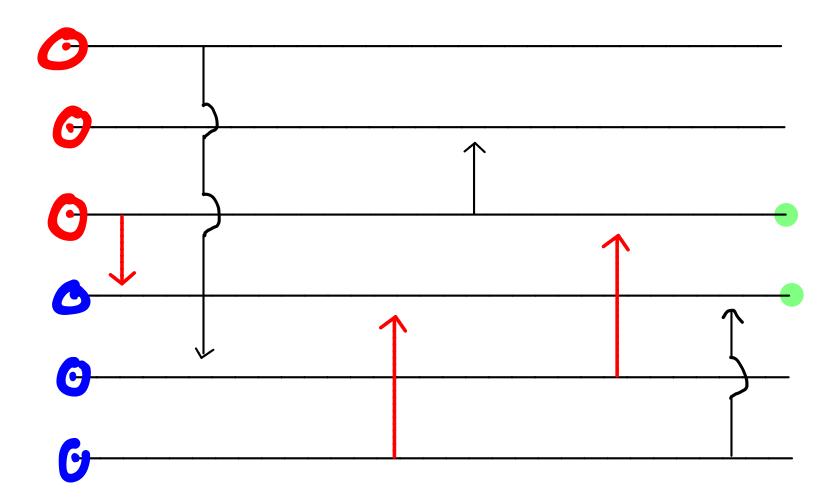


Stationary distribution (Möhle, Cordero)

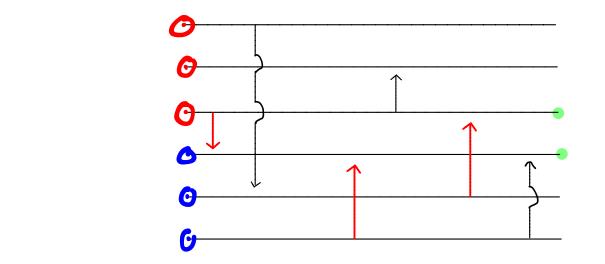
Bt Drop B Where Bis a Binomial Random Variable Conditioned to be positive

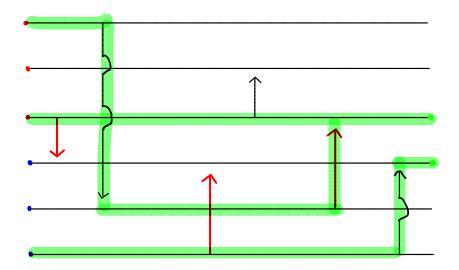


Hypergeometric duality (Hummel)

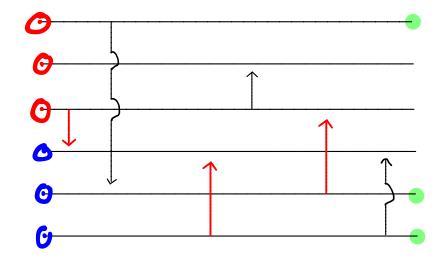


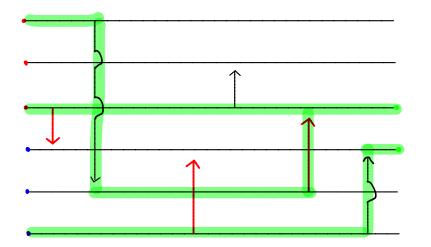
Hypergeometric duality

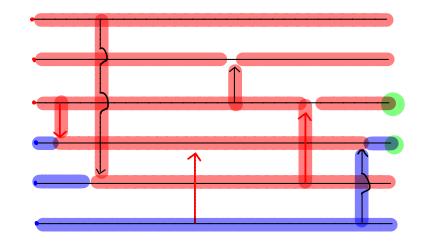




Hypergeometric duality

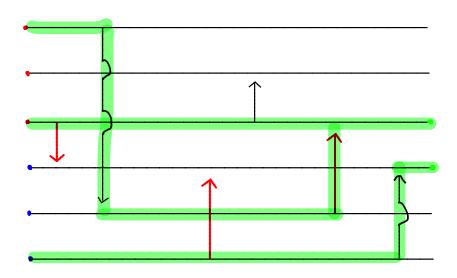


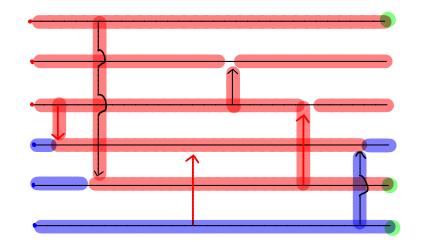




Hypergeometric duality

 $= \left[\sum_{N=1}^{Y_{t}} \sum_{N=1}^{Y_{t}} \cdots \sum_{N=1}^{Y_{t}} \sum_{N=1}^{Y_{t}} \cdots \sum_{N=1}^{Y_{t}} \sum_$



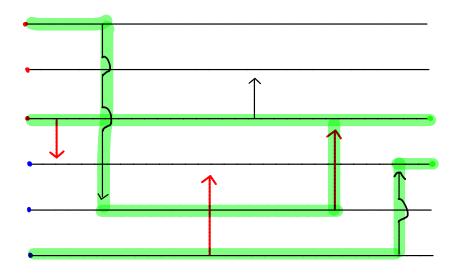


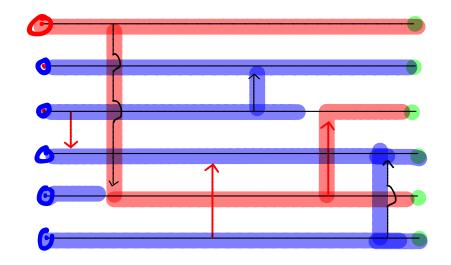
Haldane-Kinvrn Formula

$$f_{S}\left[\frac{y_{t}}{N}\cdot\frac{y_{t}^{n}-1}{N}\cdots\frac{y_{t}^{n}-(n-1)}{N}\right] = f_{n}\left[\frac{k(k-1)}{N}\cdots\frac{k-(B_{t}^{N}-1)}{N-(B_{t}^{N}-1)}\right]$$

$$K=N-1, n=N$$

$$f_{N-1}\left[\frac{y_{t}}{N}\right] = f_{N}\left[\frac{N-B_{t}}{N}\right]$$

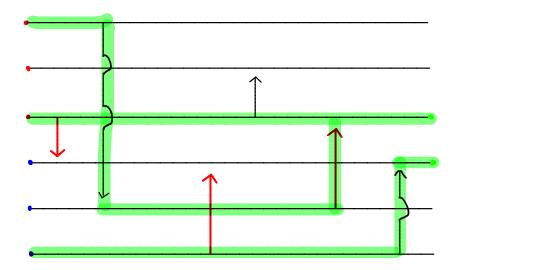


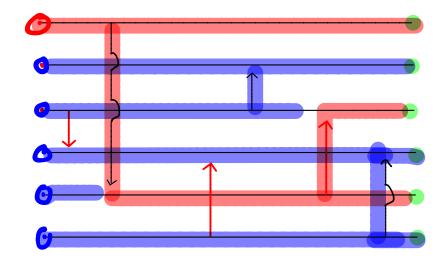


Haldane-Kinvrn Formula

$$\mathbb{E}\left[\frac{Y_{t}}{N}\right] = \mathbb{E}\left[\frac{N-B_{t}}{N}\right]$$

K=N-1, n=N and $t\to\infty$ $P_{i,N}(F:X) = \frac{\mathbb{E}[B]}{N}$

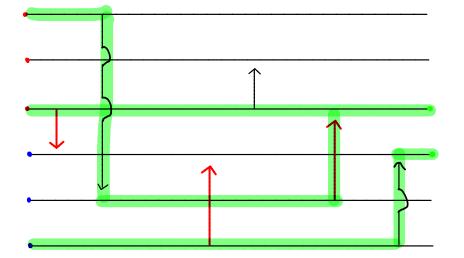


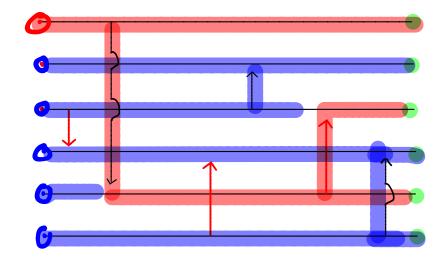


Haldane-Kinvrn Formula Boenkost, GC, Pokayvuk, Wakolbinger

$$P_{i_{N}}(F;X) = \underbrace{\mathbb{E}[B]}_{N} = \underbrace{P_{N}}_{I-(I-P_{N})^{N}}$$

$$P_N = \frac{2SN}{2SN+P^2}$$



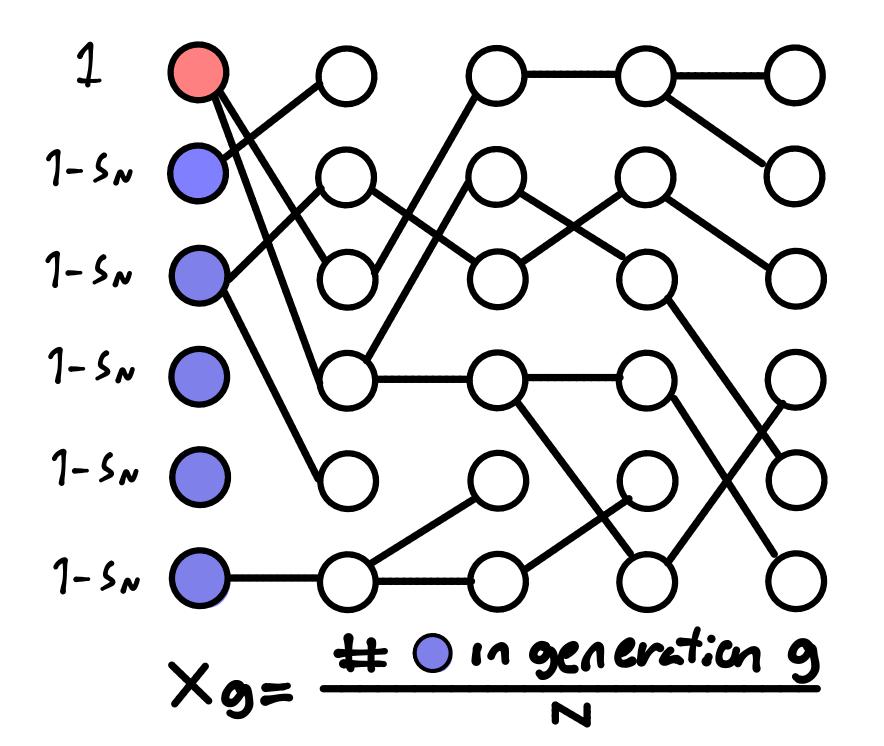


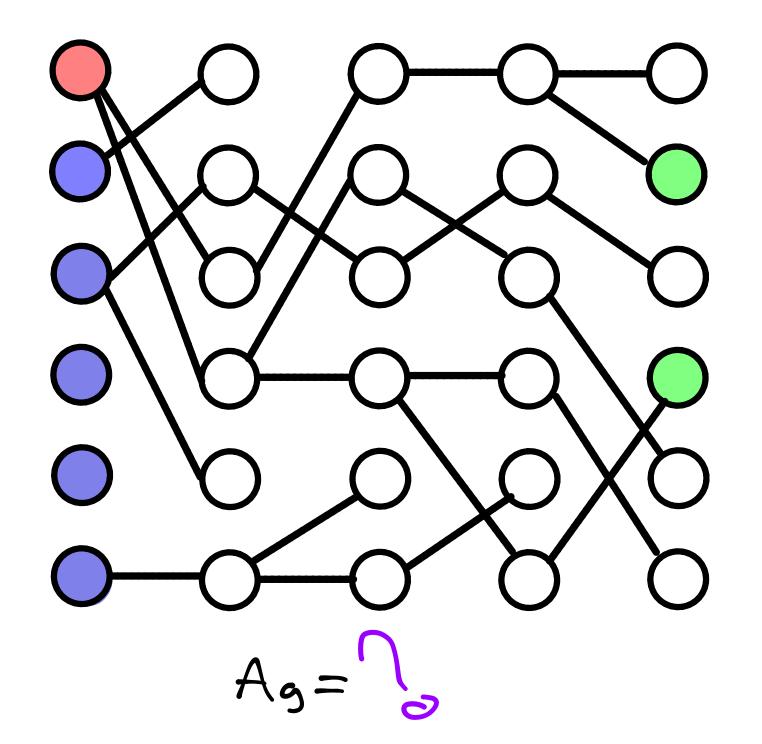
$$P_{V_N}(F;X) = \underbrace{\mathbb{H}[B]}_{N} = \underbrace{P_N}_{I-(I-P_N)^N}$$
$$P_N = \underbrace{2SN}_{2SN+P^2}$$

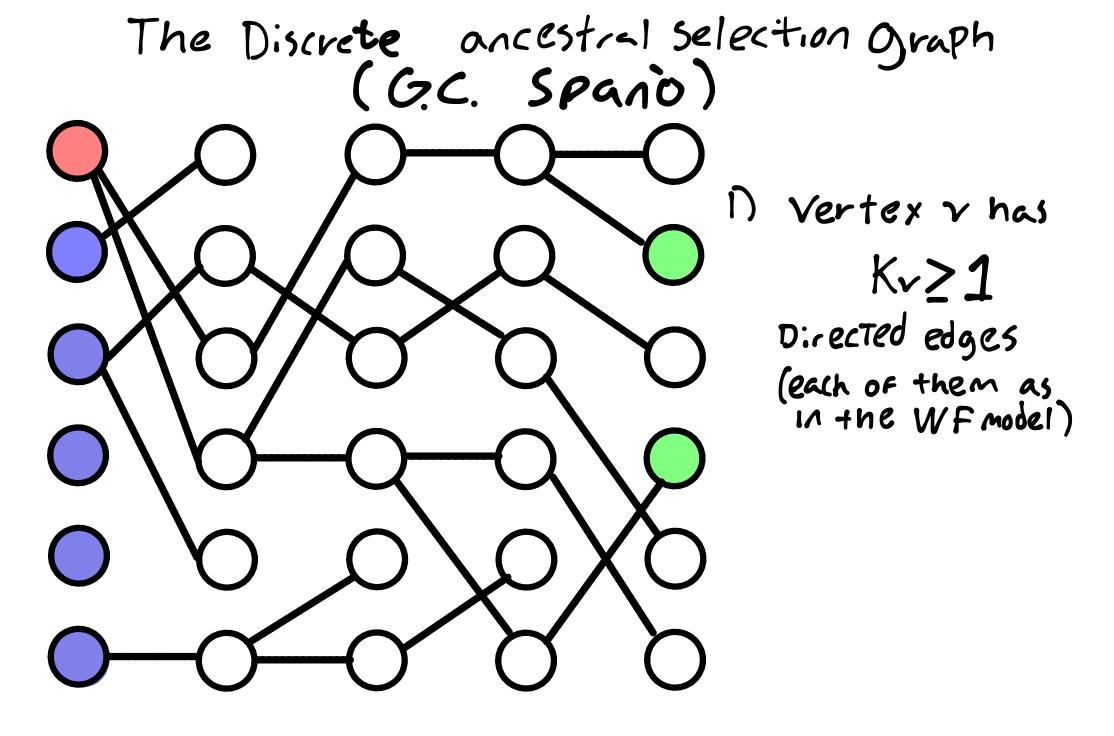
Heldane ~ 27
$$P_{V_N}^{N}(F_{X}.) = 25 + o(N^{-1})$$

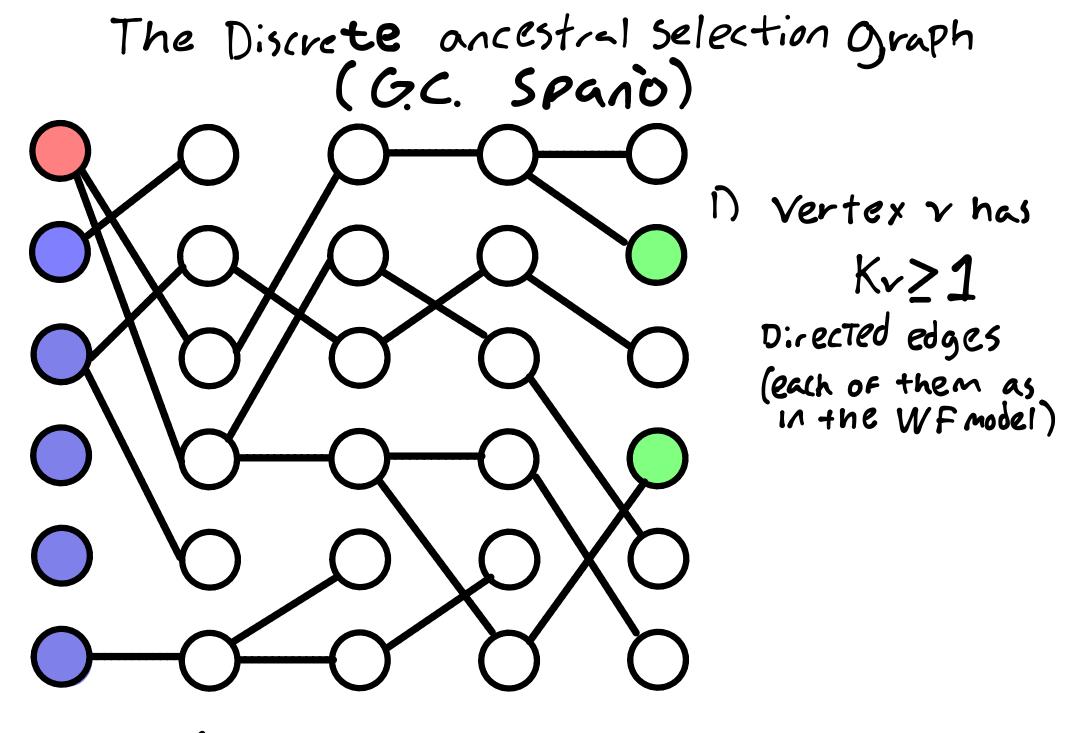
Kimuran 62

 $\mathbb{P}_{V_{M}}^{N}(F_{X}) = \frac{25}{1-e^{-2}5} + 0(1)$ SN-S/N



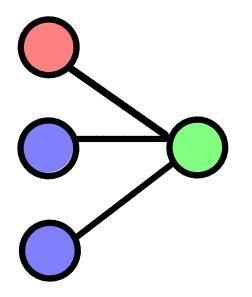




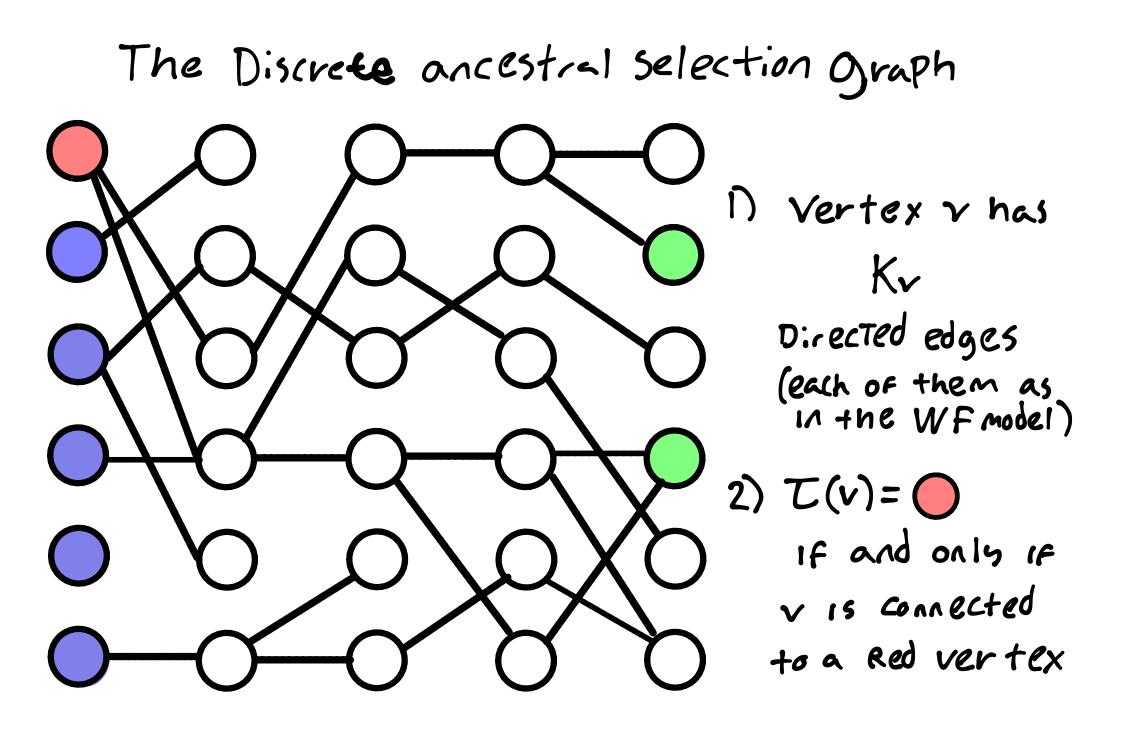


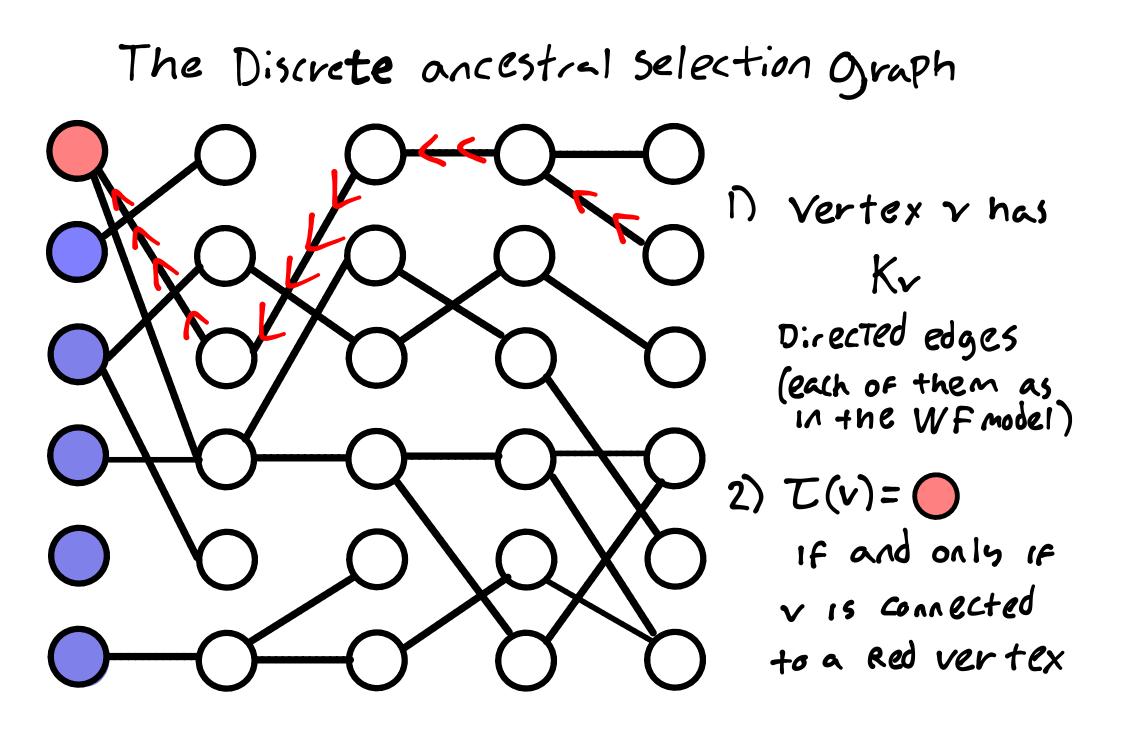
See also G.C. Spanio and Wilke Berenguer

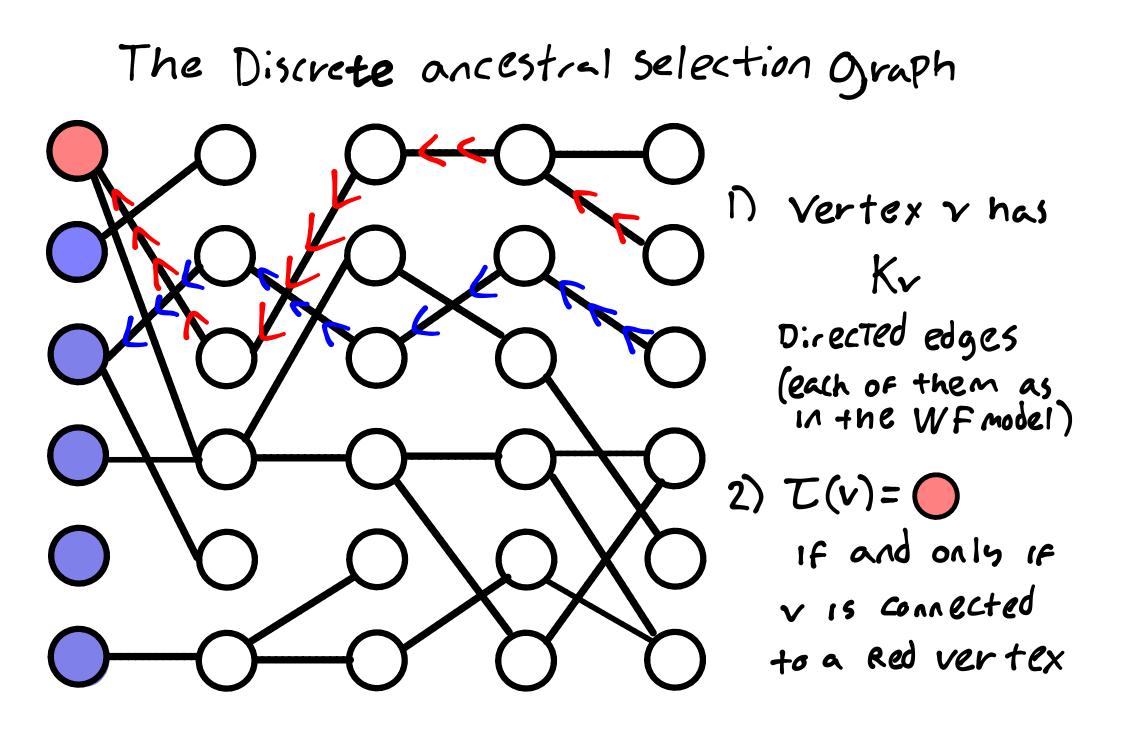
The Discrete ancestral selection Graph

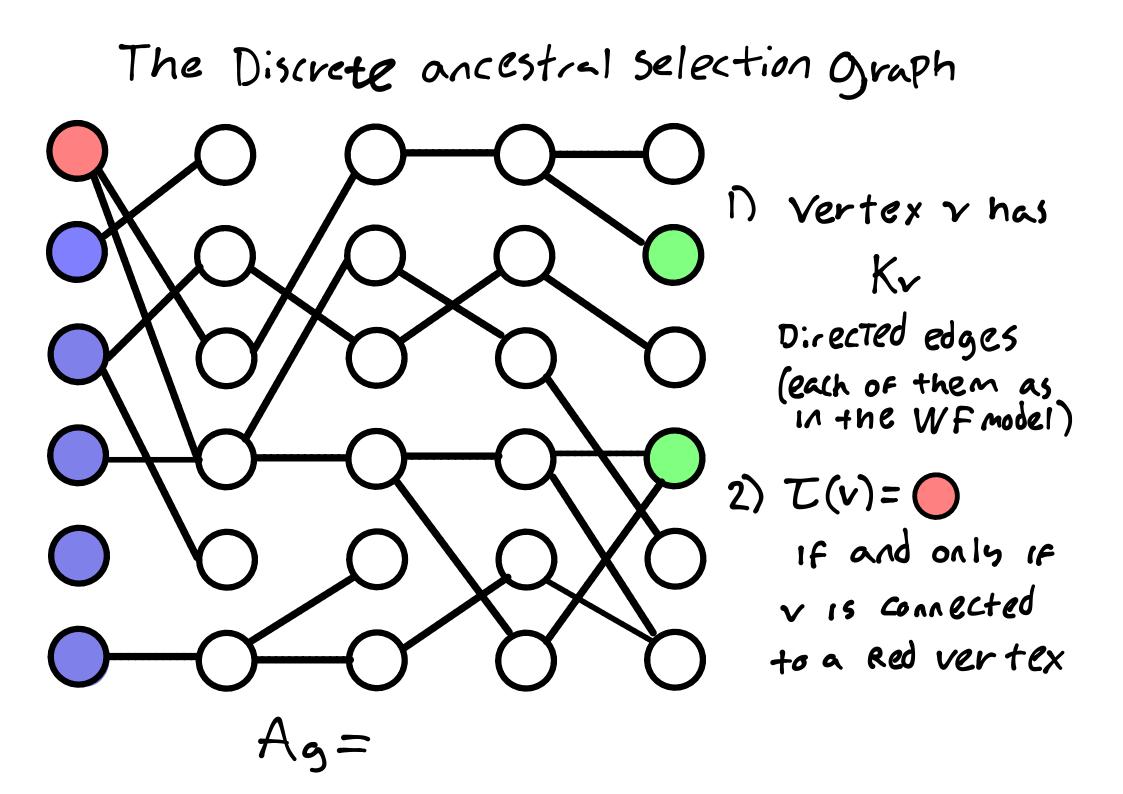


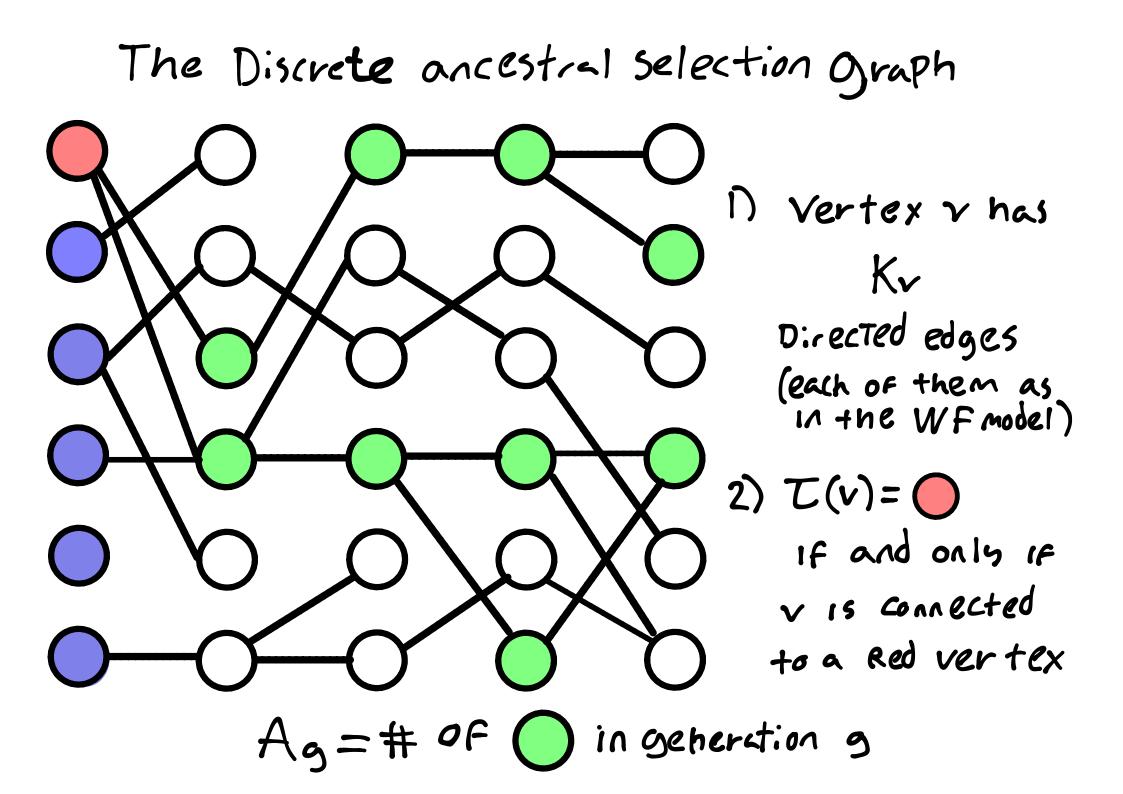
O IS Red IF and Only IF it has a Red Parent

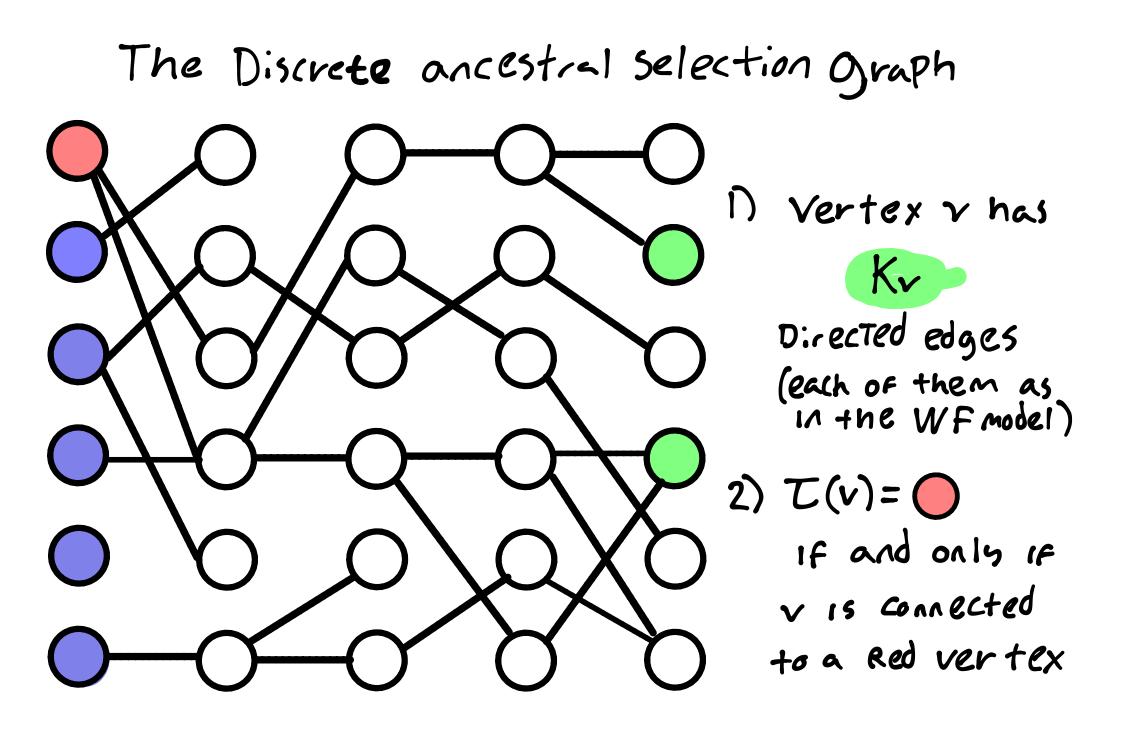


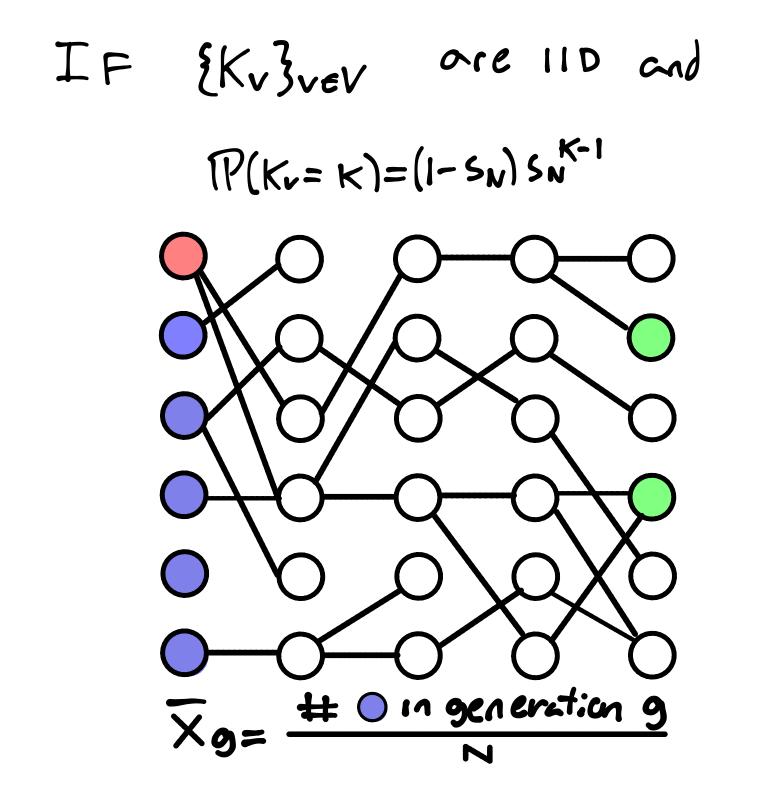


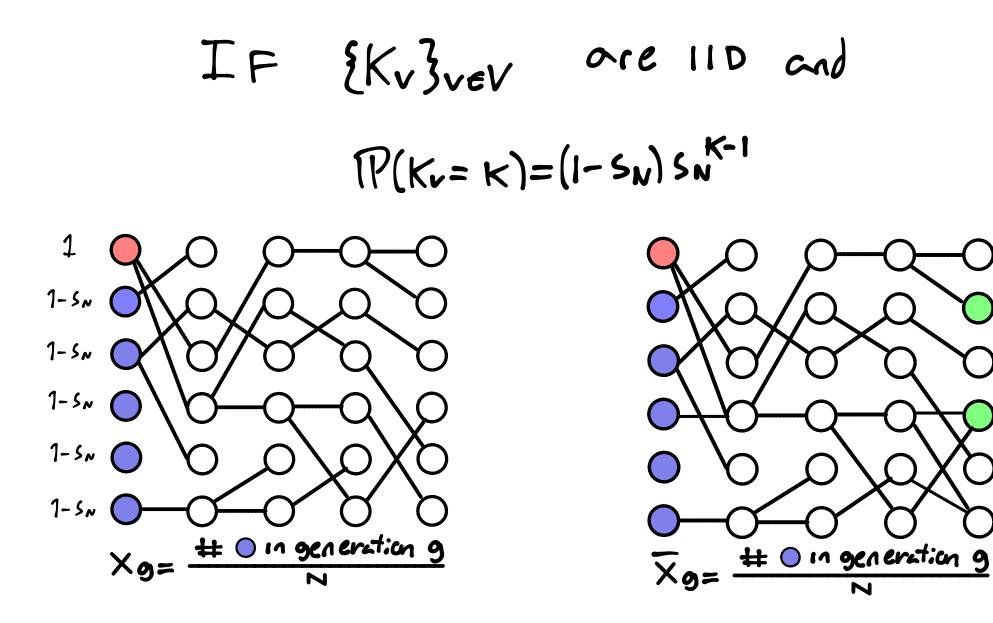












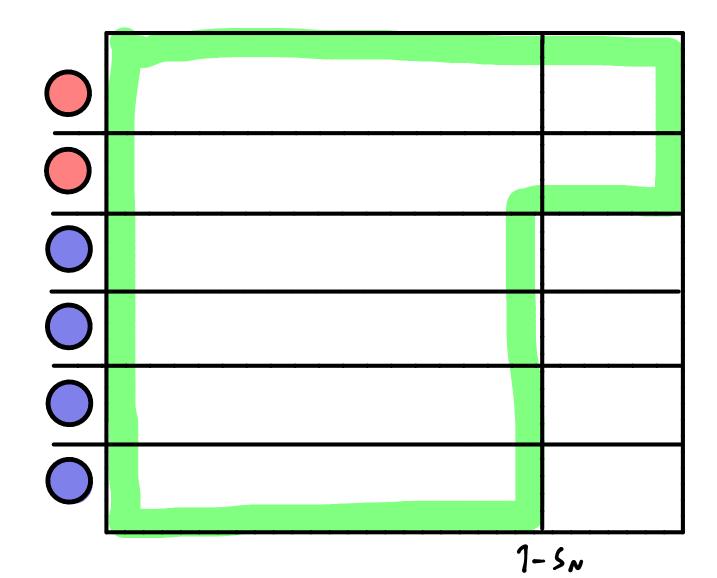
IF {Kv3vev are 110 and $\Pi(K_{\nu}=\kappa)=(I-S_{N})S_{N}^{K-1}$ 1 1-5N 1-5~ C 1-5N (1-5N 1-5~ C $Xg = \frac{\# 0 \text{ in generation } g}{2}$ $\overline{X}g = \frac{\# 0 \text{ in generation } g}{2}$ N

 $(X_{G}) \stackrel{d}{=} (\overline{X_{G}})$

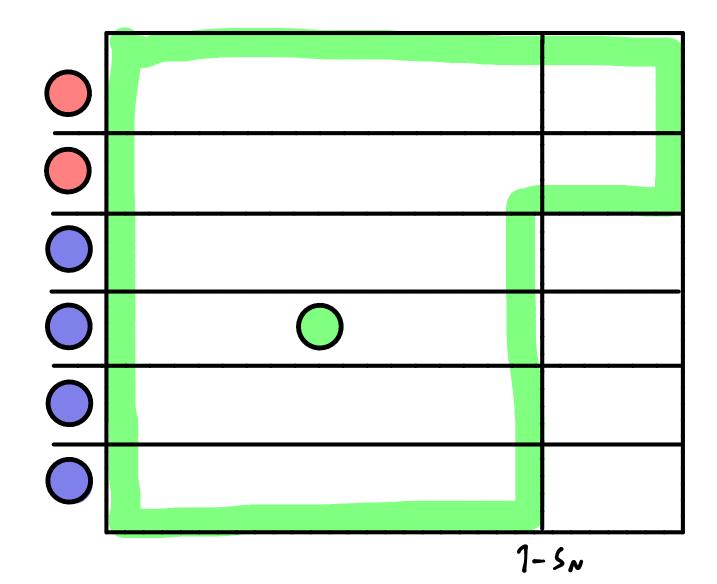
Why geometric?

1 0 0 1 🔘 🔘 1-5N O $1-S_N \bigcirc \bigcirc$ $1-S_N \bigcirc \bigcirc$ 1-5~ 🔿 \bigcirc

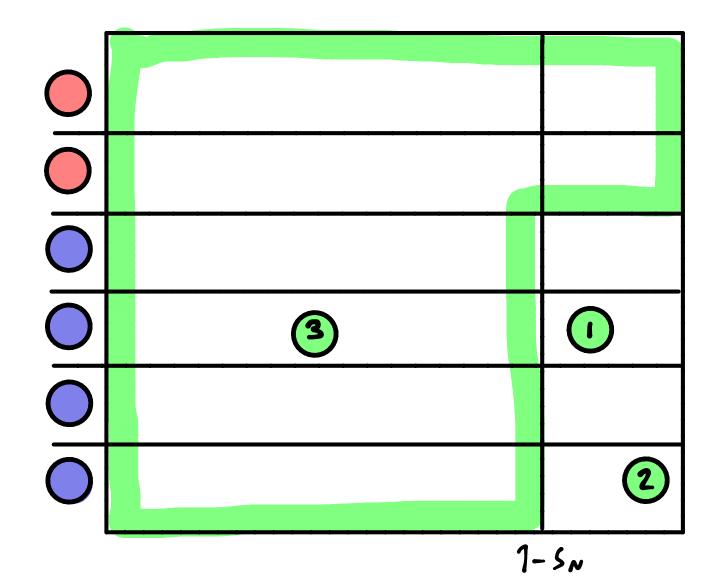
Why geometric?



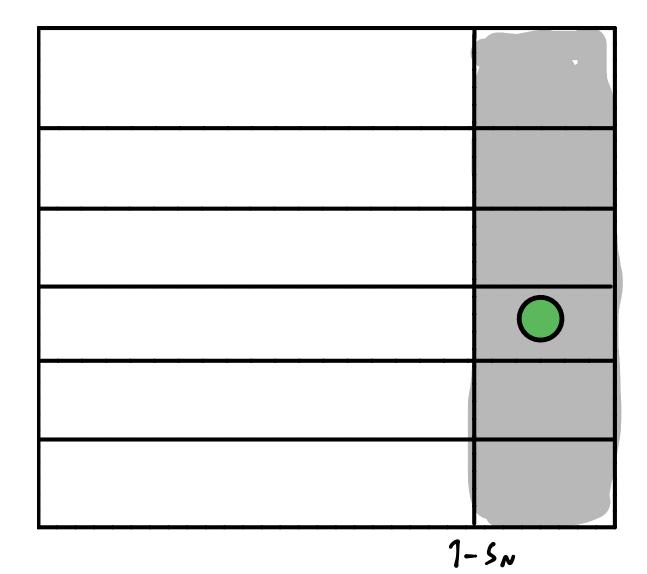
Why geometric?



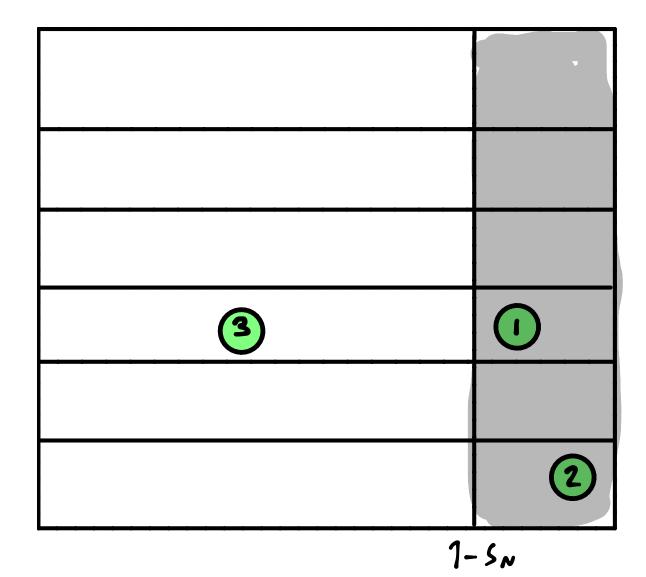
Why geometric?



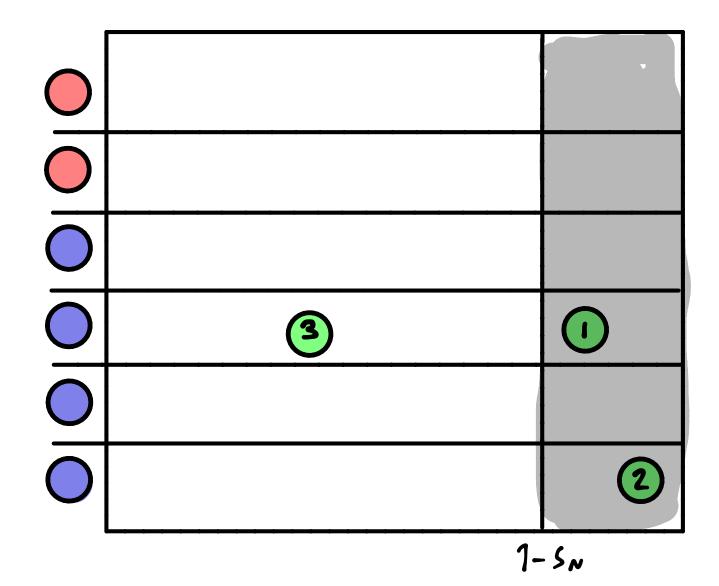
Why geometric?



Why geometric?

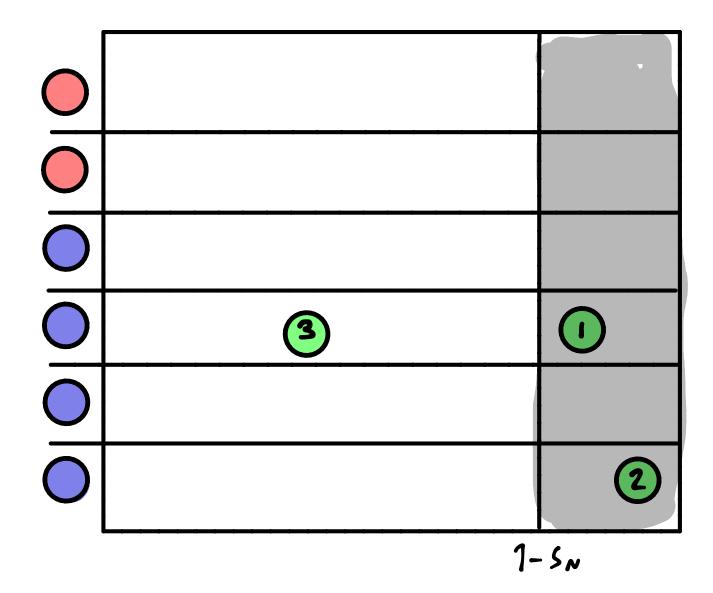


Why geometric?



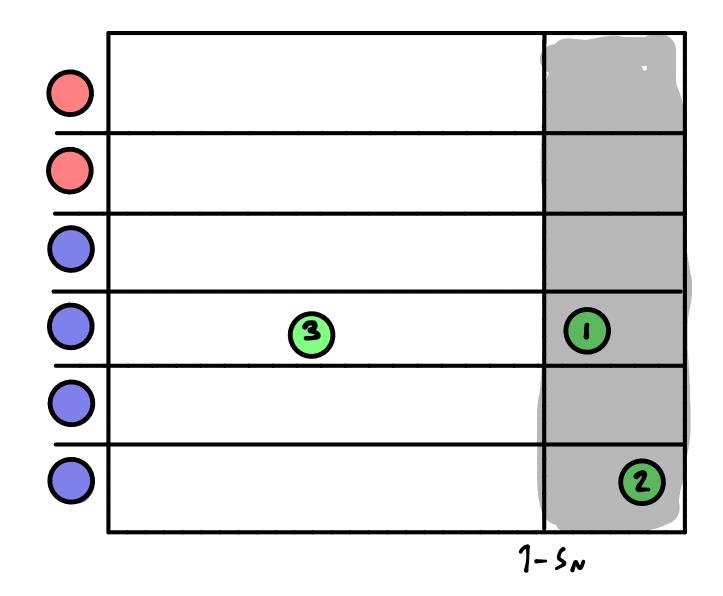
Why geometric?

Picks ~ Seo(I-SN)



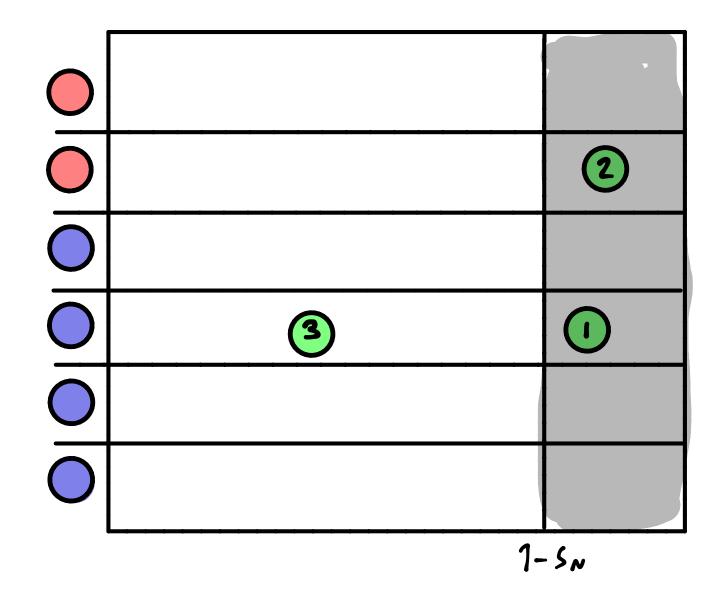
Why geometric?

○= ○ if and only if all Picks are ○

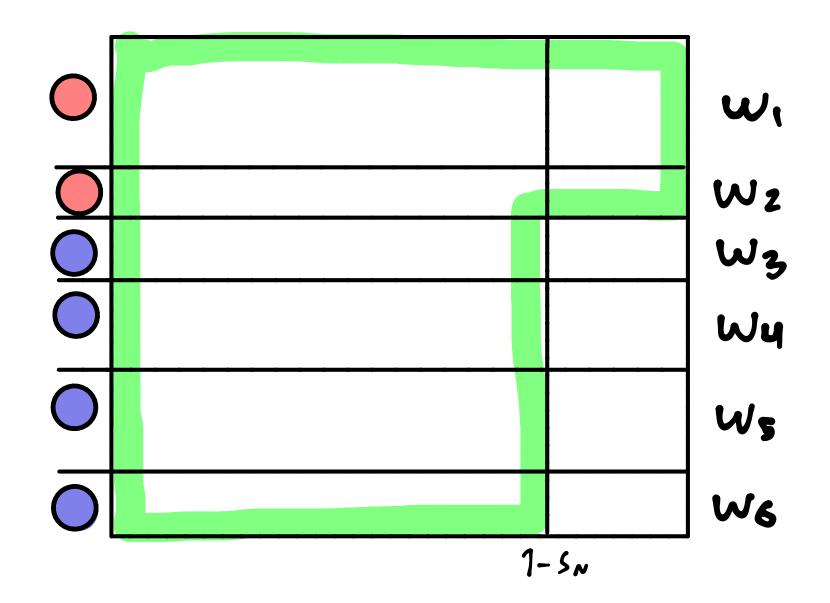


Why geometric?

○= ○ if and only if all Picks are ○



Paint box



Theorem: Coming-Paintbox models

(Boenkost, GC, Pokaryuk, Wakolbinger)

Theorem: Conning-Paintbox models

Let
$$(W_{1,9}, ..., W_{N,9})_{9 \in \mathbb{Z}}$$
 be iid RV Such that
 $\sum_{k=1}^{N} W_{k9} = 1$ for all $g \in \mathbb{Z}_{p} \in [W_{v}^{2}] = \frac{p^{2}}{N^{2}}$ and $\mathbb{E}[W_{v}^{2}] = O(N^{3})$,

Theorem: Conning-Paintbox models

Let
$$(W_{1,9}, ..., W_{N,9})_{9 \in \mathbb{Z}}$$
 be iid RV Such that
 $\sum_{k=1}^{N} W_{1,9} = 1$ for all $g \in \mathbb{Z}$ $E[W_{v}^{2}] = \frac{p^{2}}{N^{2}}$ and $\#[W_{v}^{2}] = O(N^{3})$

 $S_{N} = N^{-b}$ for bf(2/3, 1]

Theorem: Conning-Paintbox models

Let $(W_{1,9}, ..., W_{N,9})_{9 \in \mathbb{Z}}$ be iid RV Such that $\sum_{k=1}^{N} W_{1,9} = 1$ for all $9 \in \mathbb{Z}$ $E[W_{v}^{2}] = \frac{p^{2}}{N^{2}}$ and $E[W_{v}^{2}] = 0(u^{3})$ $S_{N} = N^{-b}$ for $b \in (2/3, 1]$

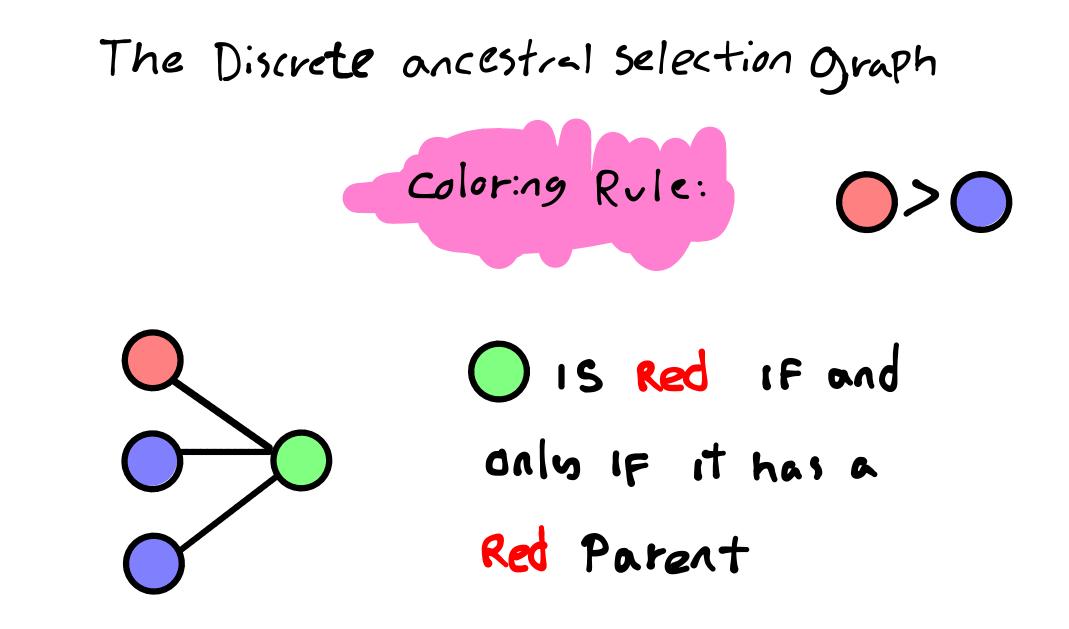
Let (Xg) be the frequency Process of the Paint box model with parameters SN and (Wr)

$$\Pi_{VN}(F:X) = \frac{SN}{(P/2)} + o(SN)$$

Proof:

1) Hypergeometric Duality

2) Couple the DASG with the ASG

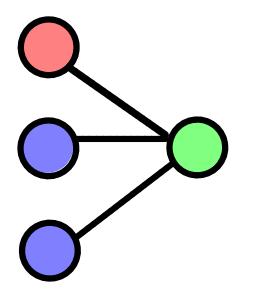


Voting Schemes in Sarah's talk

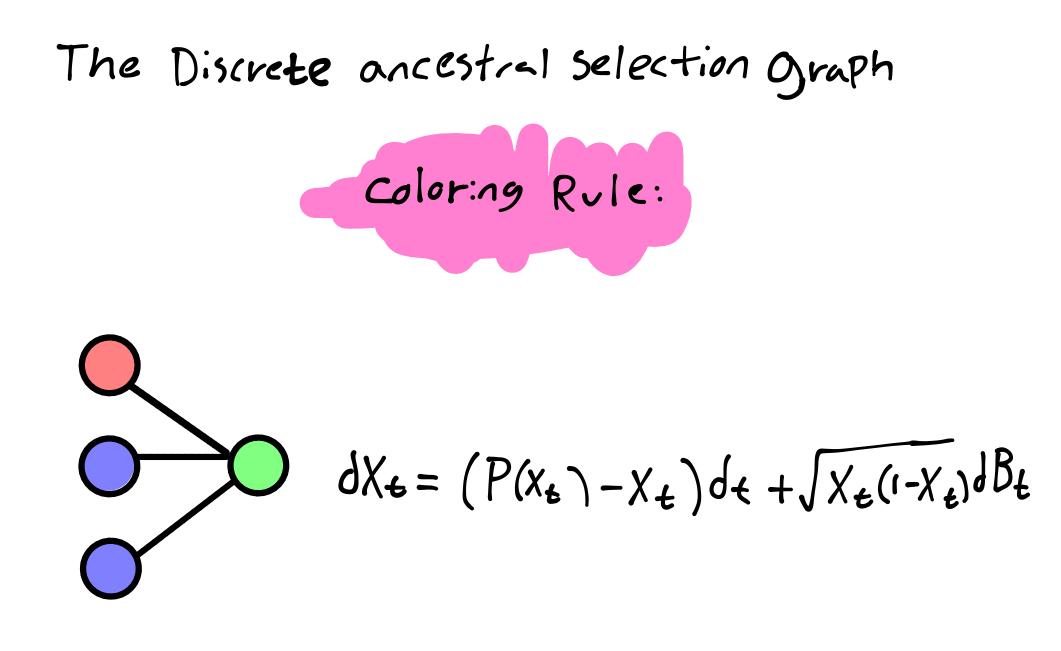
The Discrete ancestral selection Graph

Coloring Rule: Majority

Rule

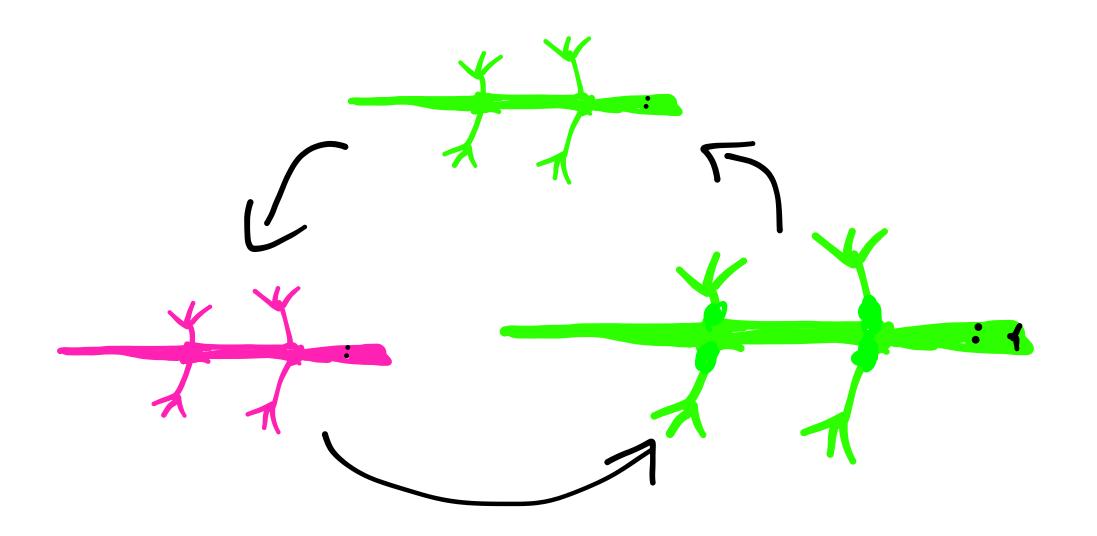


) IS Red IF and only if it has more Red Parent than blue Parents

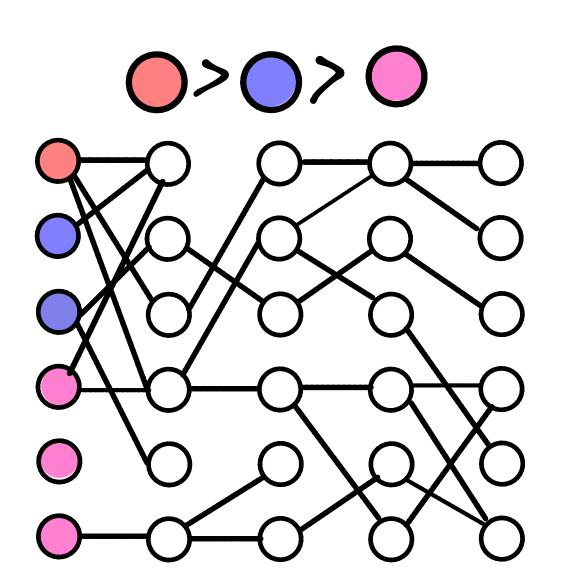


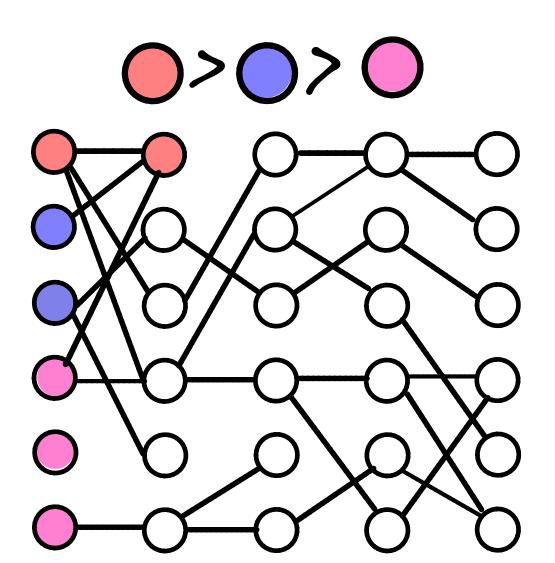
see Cordero, Hummel, Schertzer and G.C. Smadi

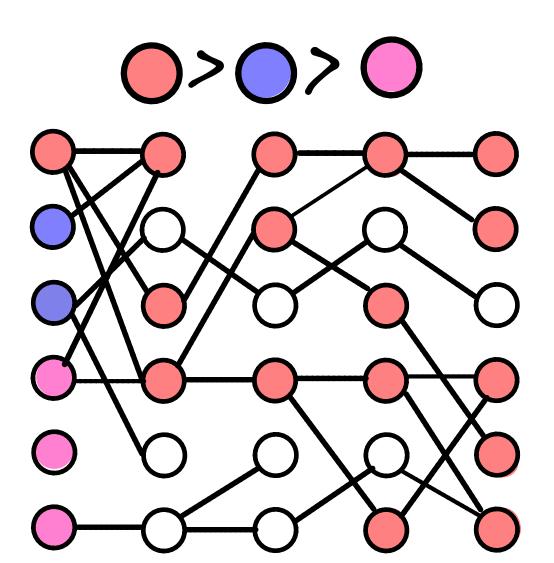
Multgtype Complex interaction G.C. Smadi

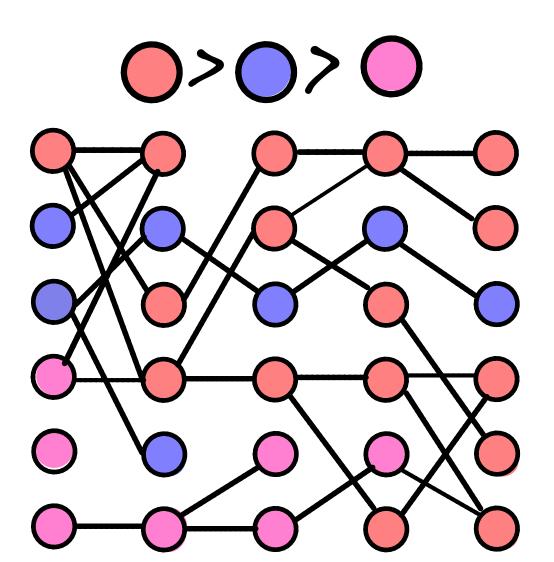


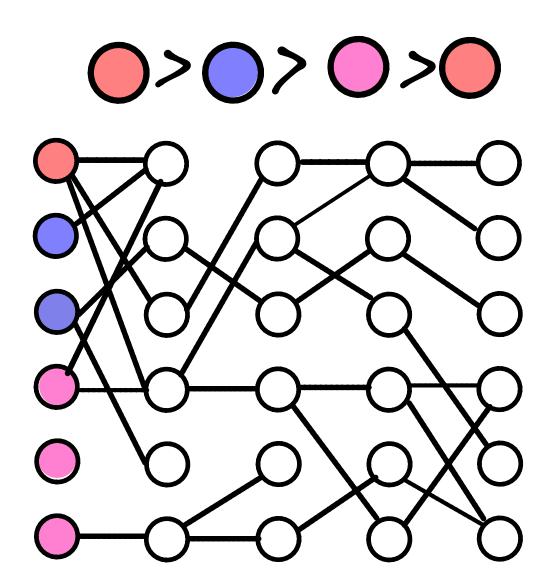
Multgtype Complex interaction (G.C. Smadi)

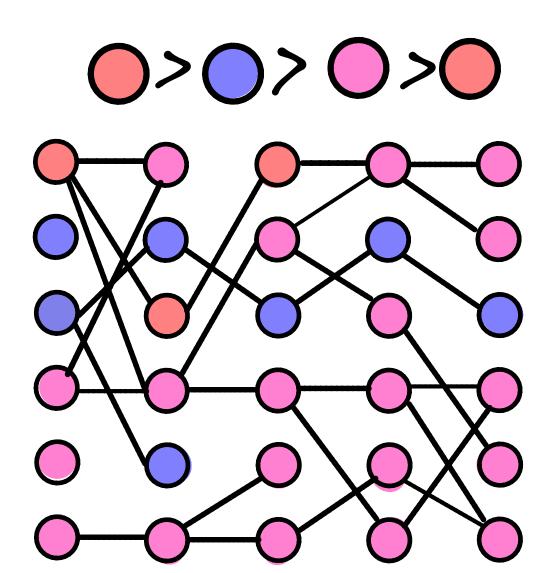


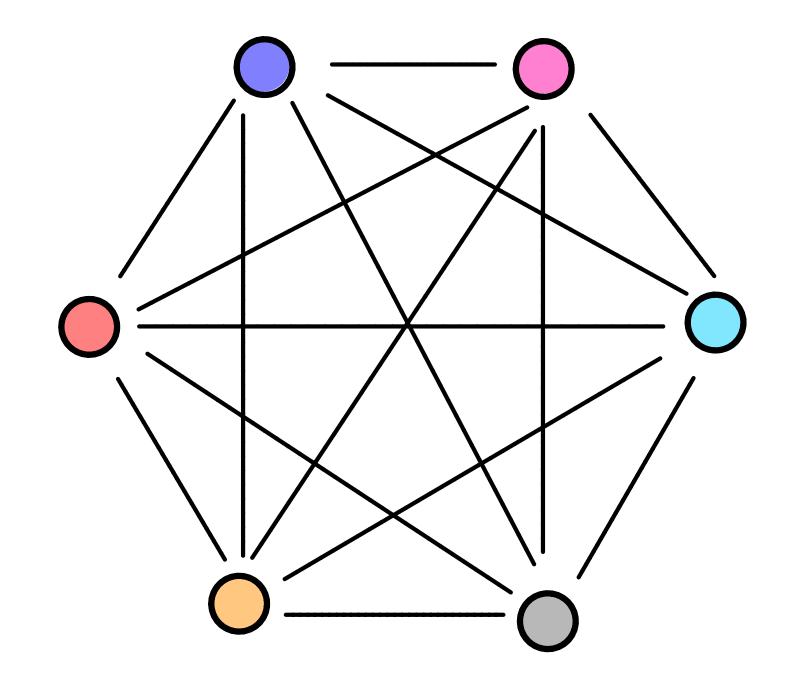


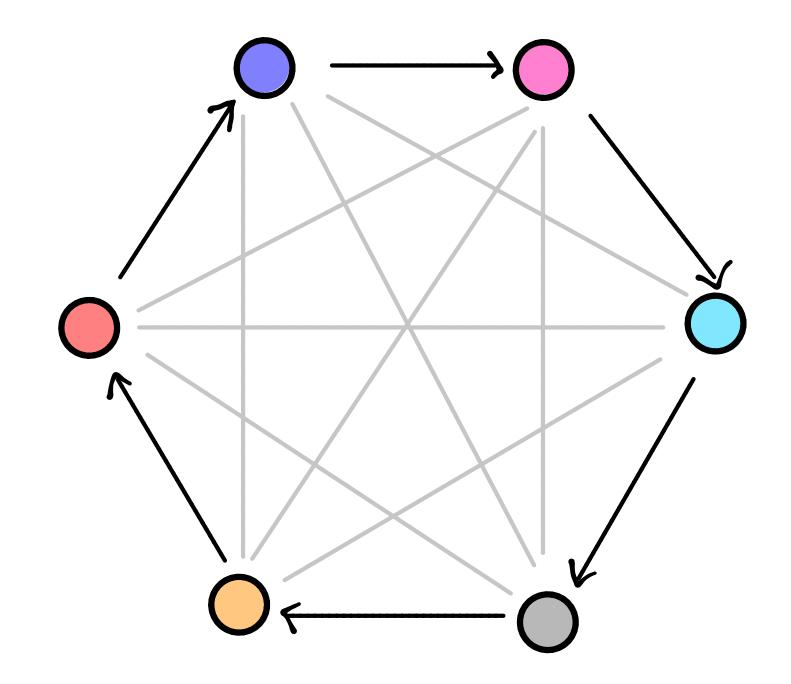


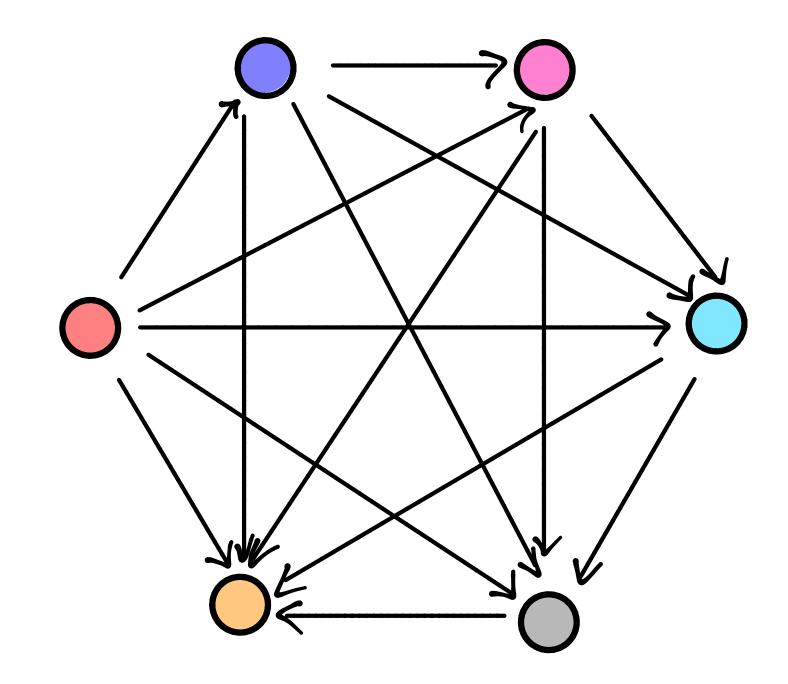




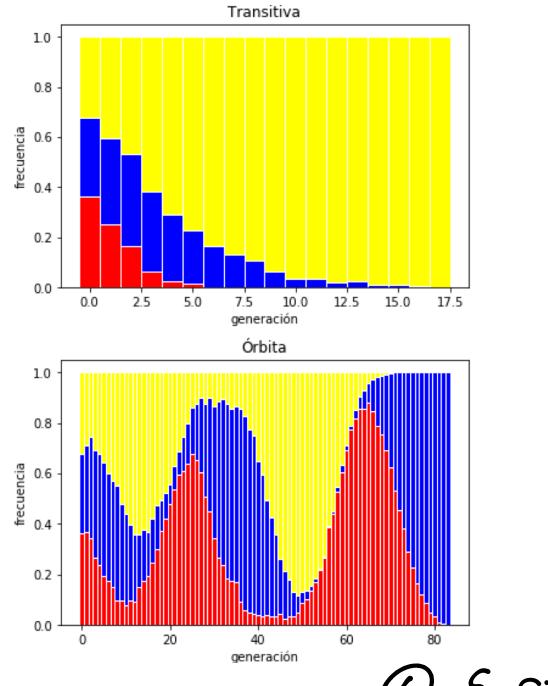






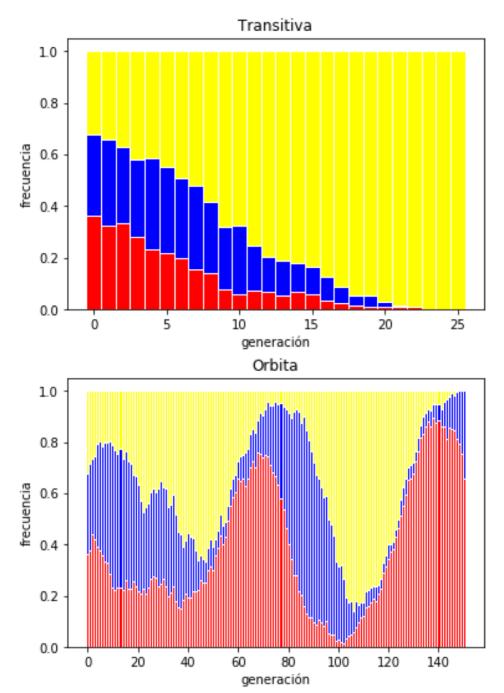


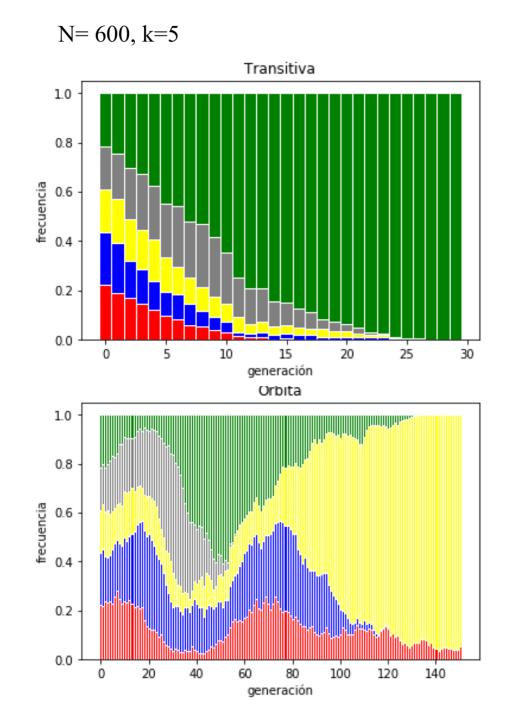
N = 300

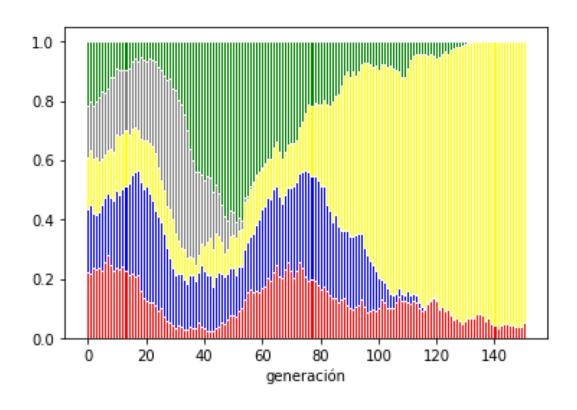


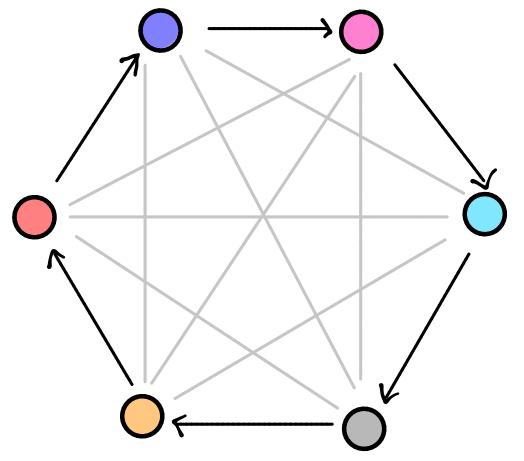
@ Sofia Rozanes

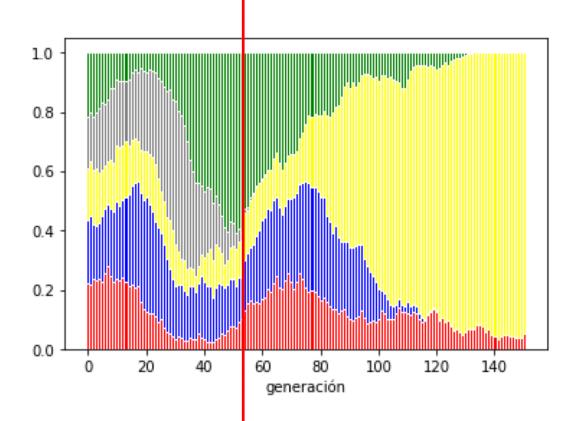
N= 300

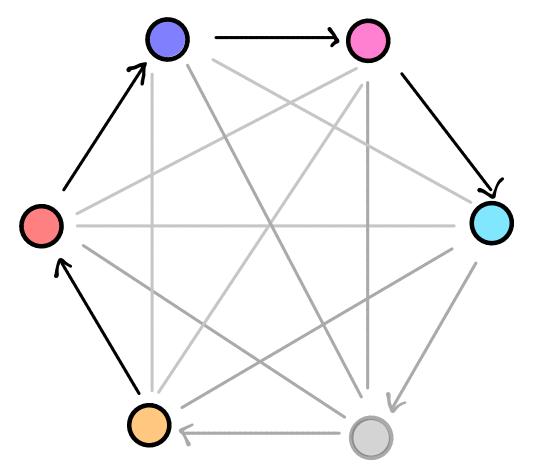


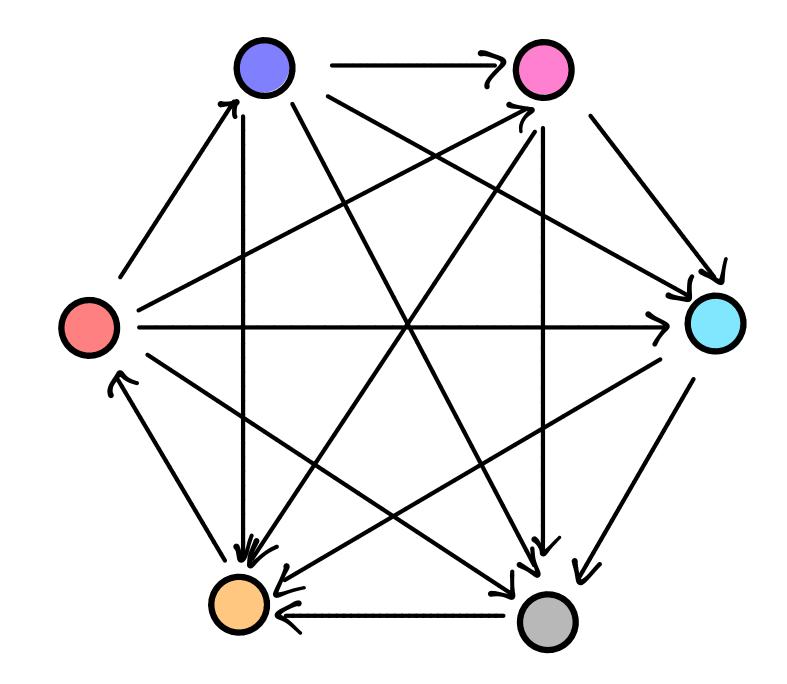


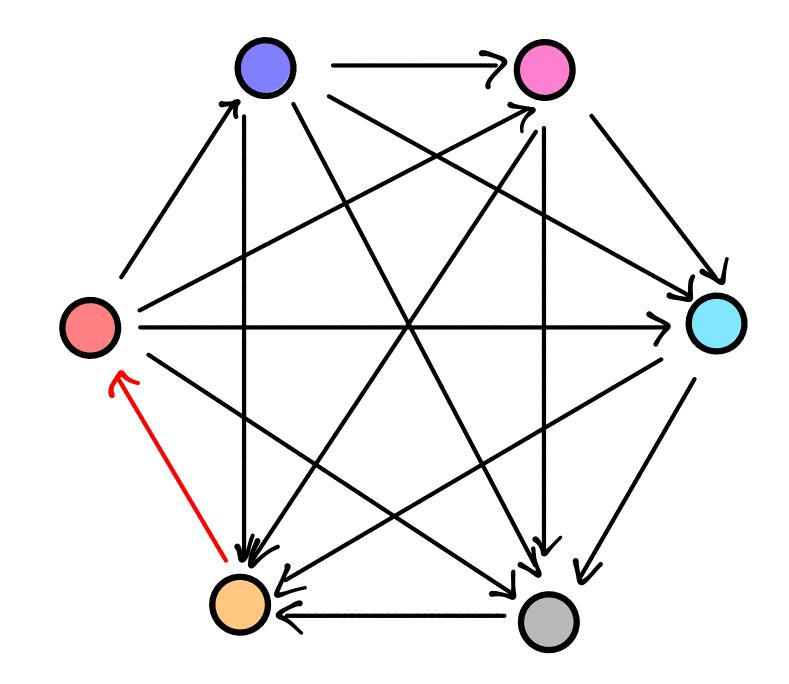


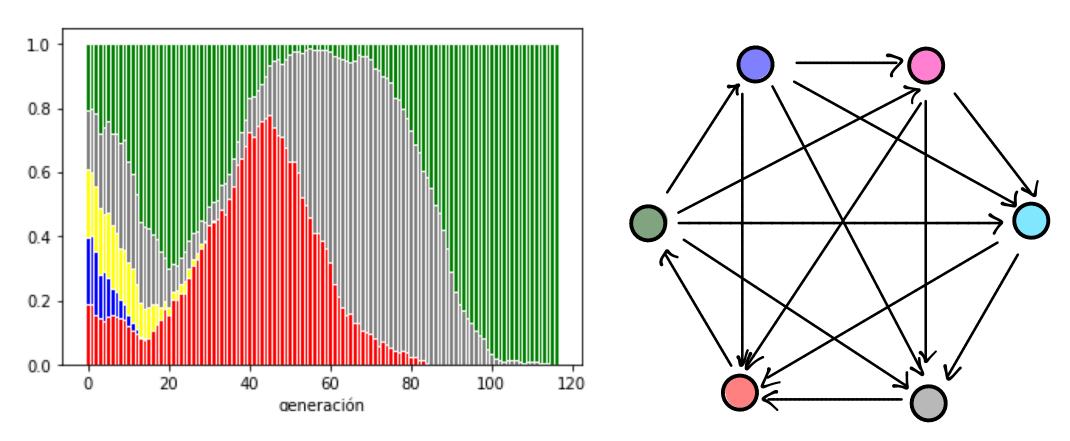


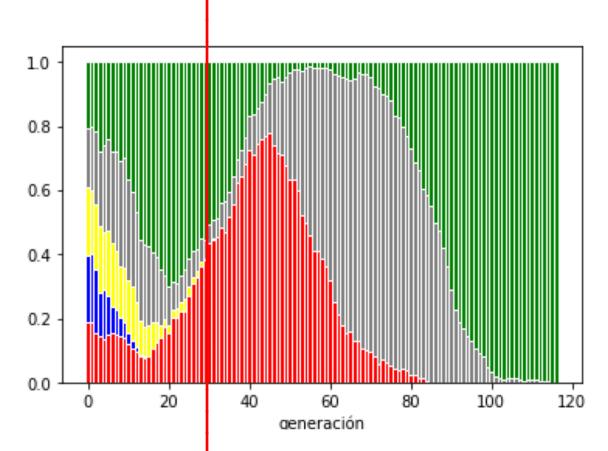


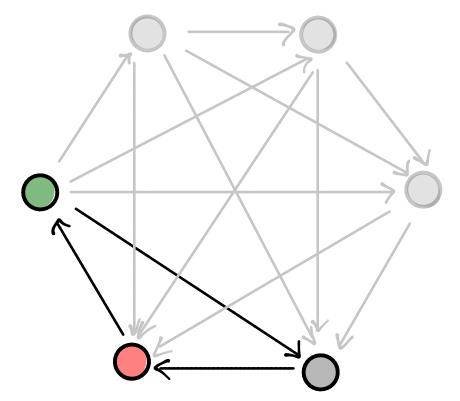




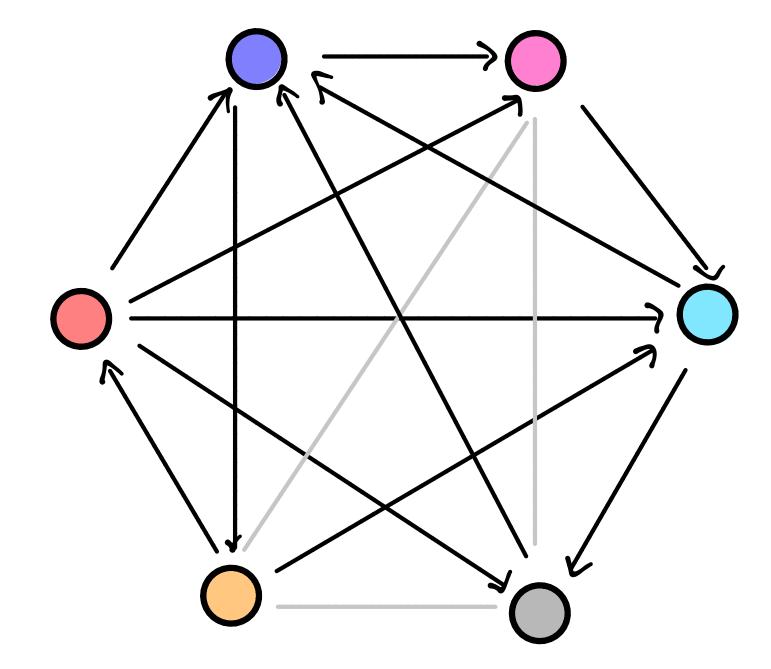




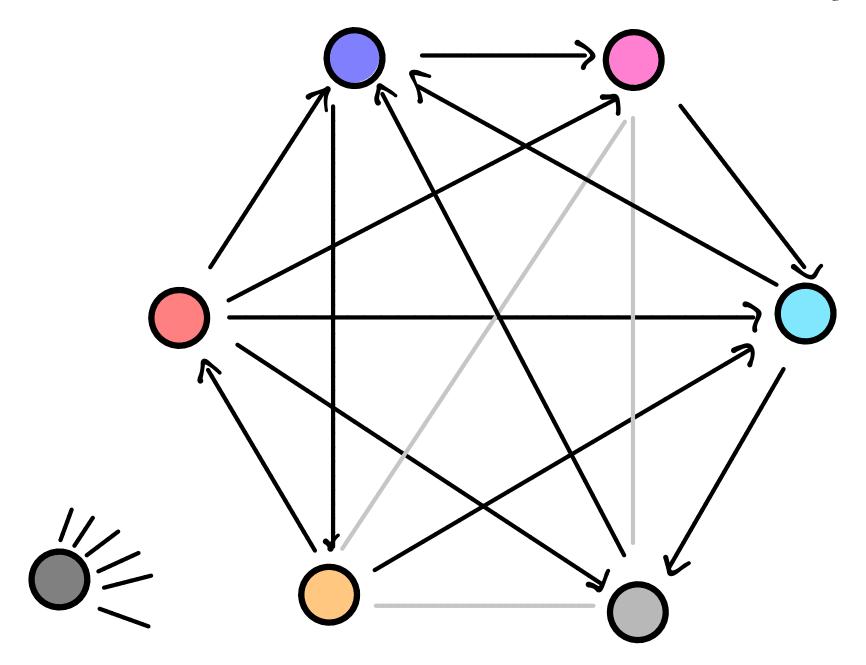


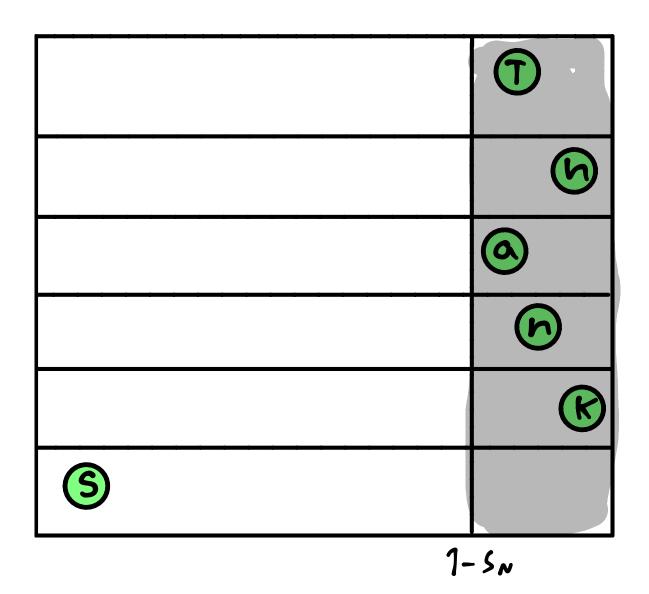


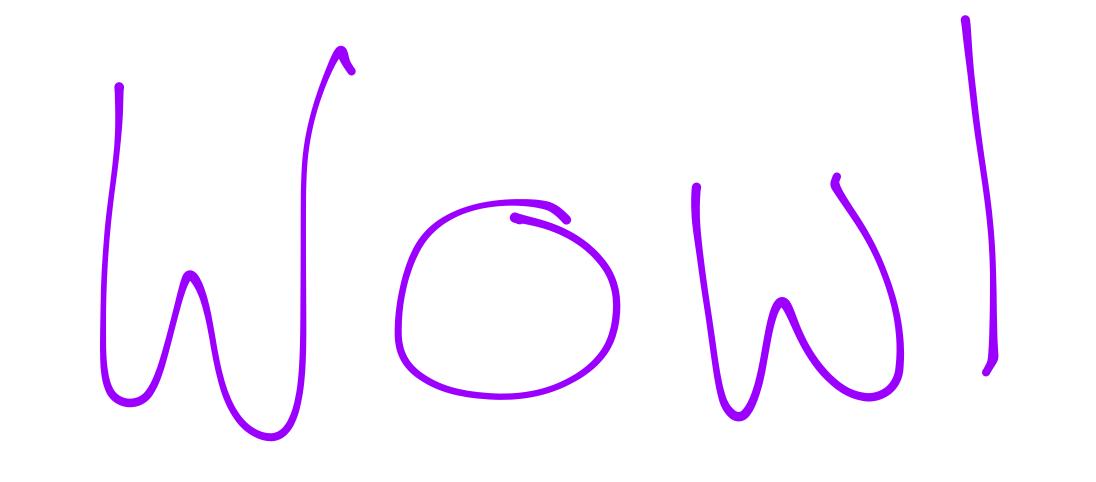
What is the most stable configuration?



Distribution of the Number of types







•