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The neutron transport equation (NTE) describes the flux of neutrons
across a planar cross-section in an inhomogeneous fissile medium when the
process of nuclear fission is active. Classical work on the NTE emerges
from the applied mathematics literature in the 1950s through the work of
R. Dautray and collaborators (Méthodes Probabilistes Pour les équations de
la Physique (1989) Eyrolles; Mathematical Analysis and Numerical Methods
for Science and Technology. Vol. 6: Evolution Problems. II (1993) Springer;
Mathematical Topics in Neutron Transport Theory: New Aspects (1997)
World Scientific). The NTE also has a probabilistic representation through the
semigroup of the underlying physical process when envisaged as a stochastic
process (cf. Méthodes Probabilistes pour les équations de la Physique (1989)
Eyrolles; Introduction to Monte-Carlo Methods for Transport and Diffusion
Equations (2003) Oxford Univ. Press; IMA J. Numer. Anal. 26 (2006) 657—
685; Publ. Res. Inst. Math. Sci. 7 (1971/72) 153-179). More recently, Cox
et al. (J. Stat. Phys. 176 (2019) 425-455) and Cox et al. (2019) have con-
tinued the probabilistic analysis of the NTE, introducing more recent ideas
from the theory of spatial branching processes and quasi-stationary distribu-
tions. In this paper, we continue in the same vein and look at a fundamental
description of stochastic growth in the supercritical regime. Our main result
provides a significant improvement on the last known contribution to growth
properties of the physical process in (Publ. Res. Inst. Math. Sci. 7 (1971/72)
153-179), bringing neutron transport theory in line with modern branching
process theory such as (Ann. Probab. 44 (2016) 235-275; Ann. Probab. 43
(2015) 2545-2610). An important aspect of the proofs focuses on the use of a
skeletal path decomposition, which we derive for general branching particle
systems in the new context of nonlocal branching generators.

1. Introduction. In this article we continue our previous work in [18] and look in more
detail at the stochastic analysis of the Markov process that lies behind the neutron transport
equation (NTE). We recall that the latter describes the flux, W;, at time ¢ > 0, of neutrons
across a planar cross-section in an inhomogeneous fissile medium (measured in number of
neutrons per cm? per second). Neutron flux is described in terms of the configuration vari-
ables (r,v) € D x V, where D C R3 is (in general) a nonempty, smooth, open, bounded and
convex domain such that d D has zero Lebesgue measure, and V is the velocity space, which
isgivenby V={v e R3: Upin < |U]| < Unax}, Where 0 < Upin < Upax < 00.
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In its backwards form, the NTE is introduced as an integro-differential equation of the
form

d
Ewt(’", U):U’Vll’t(’”’ U)_U(rv U)wl(rv U)
(1.1) + os(r, v)j Ve (r, U/)rts (r,v, v’) dv’
Vv

+o¢(r, U)/ Vi (r, V)me(r, v, v') dV,
%

where the five fundamental quantities og, 7s, 0, T¢ and o (known as cross-sections in the
physics literature) are all uniformly bounded and measurable with the following interpreta-
tion:

os(r,v): the rate at which scattering occurs from incoming velocity v at position r,
o¢(r, v): the rate at which fission occurs from incoming velocity v at position r,
o (r, v): the sum of the rates o + o5 and is known as the total cross section,
7s(r, v, V'): probability density that an incoming velocity v at position r scatters to an
outgoing velocity, with probability v’ satisfying [}, 7s(r, v, v)dv’ =1, and
me(r, v, V') density of expected neutron yield at velocity v from fission with incoming
velocity v satisfying [}, 7¢ (r, v, v') dv’ < o0.

It is also usual to assume the additional boundary conditions

Yo(r,v)=g(r,v) forreD,veV,

1.2
(12) Y (r,v) =0 fort >0andr € 0D, if v-n, > 0,

where n, is the outward facing normal of D atr e 9D and g: D x V — [0, 00) is a bounded,
measurable function which we will later assume has some additional properties. Roughly
speaking, this means that neutrons at the boundary which are travelling in the direction of the
exterior of the domain are lost to the system.

We will also work with some of (but not necessarily all of) the following assumptions in
our results:

(H1) Cross-sections o5, 0f, g and 7 ¢ are uniformly bounded away from infinity.

(H2) We have osms+orme>00n D xV x V.

(H3) Thereis an open ball B compactly embedded in D suchthatorms>00on BxV x V.
(H4) Fission offspring are bounded in number by the constant npax > 1.

We note that these assumptions are sufficient but not necessary, and refer the reader to
Remark 2.1 in [18] for a discussion of their implications.

1.1. Rigorous interpretation of the NTE. As explained in the companion paper [18], the
NTE (1.1) is not a meaningful equation in the pointwise sense. Whereas previously (1.1) has
been interpreted as an abstract Cauchy process on the Lo(D x V) space, for probabilistic
purposes, the NTE can be better understood in its mild form; see the review discussion in [6].
In particular, the NTE is henceforth understood as the unique bounded solution on bounded
intervals of time which satisfy (1.2) and the so-called mild equation

t
(1.3)  ¥ulgl(r, v) =TUslg](r, v) +f0 Us[(S + F)Yi—[gl](r,v)ds, t>0,reD,veV,

for g € L;FO(D x V), the space of nonnegative functions in Lo (D x V). In (1.3), the advec-
tion semigroup is given by

(1.4) Uilgl(r,v) =g(r +vt, V)l p ), 120,
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D
rv

where k-, :=inf{t > 0 :r + vt ¢ D}, the scattering operator is given by

(1.5) Sg(r,v) =0os(r, v) /V g(r,V)ms(r, v, V') dv' — os(r, v)g(r, v),

and the fission operator is given by
(1.6) Fg(r,v) =ox(r, v)/ g(r, v)me(r, v, V') dv' — o5 (r, v)g (1, V),
v

forre D,veVandge LI (D xV).

The papers [18] and [6] discuss in further detail how the mild representation relates to the
other classical representation of the NTE via an abstract Cauchy problem which has been
treated in, for example, [8, 9, 24]. See also [22, 23]. To understand better why the mild
equation (1.3) is indeed a suitable representation fo the NTE, we need to understand the
probabilistic model of the physical process of nuclear fission.

1.2. Neutron branching process. Let us recall from [18], the neutron branching pro-
cess (NBP), whose expectation semigroup provides the solution to (1.3). It is modelled as a
branching process, which at time ¢ > 0 is represented by a configuration of particles which are
specified via their physical location and velocity in D x V, say {(r; (¢),vi(t)) :i =1, ..., Nt},
where N; is the number of particles alive at time ¢ > 0. In order to describe the process, we
will represent it as a process in the space of finite atomic measures

Ny
(1.7) X((A) =) 8¢ityun(A), AeB(DxV),1>0,

i=1
where § is the Dirac measure, defined on B(D x V), the Borel subsets of D x V. The evo-
lution of (X;,t > 0) is a stochastic process valued in the space of measures M (D x V) :=
3" 8¢y ineN, (ri,v;)) e Dx V,i=1,...,n} which evolves randomly as follows.

A particle positioned at » with velocity v will continue to move along the trajectory r + vt,

until one of the following things happen.

(1) The particle leaves the physical domain D, in which case it is instantaneously killed.

(i) Independently of all other neutrons, a scattering event occurs when a neutron comes
in close proximity to an atomic nucleus and, accordingly, makes an instantaneous change of
velocity. For a neutron in the system with position and velocity (r, v), if we write Ty for
the random time that scattering may occur, then providing r + vt € D, independently of the
action of fission, Pr(Ts > t) = exp{— fé os(r + vs, v)ds}, for r > 0.

When scattering occurs at space-velocity (7, v), the new velocity is selected in V indepen-
dently with probability 75 (r, v, V") dv’.

(iii) Independently of all other neutrons, a fission event occurs when a neutron smashes
into an atomic nucleus. For a neutron in the system with initial position and velocity (r, v),
if we write T¢ for the random time that fission may occur, then, providing r + vt € D, inde-
pendently scattering, Pr(Ts > t) = exp{— fé os(r +vs,v)ds}, forr > 0.

When fission occurs, the smashing of the atomic nucleus produces lower mass isotopes
and releases a random number of neutrons, say N > 0, which are ejected from the point of
impact with randomly distributed, and possibly correlated, velocities, say {v; :i =1, ..., N}.
The outgoing velocities are described by the atomic random measure

N
(1.8) Z(A) = 8, (A), AeB).
i=1
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When fission occurs at location r € R? from a particle with incoming velocity v € V, we
denote by P, the law of Z. The probabilities P, are such that, for v’ € V, for bounded
and measurable g : V — [0, 00),

(19) /V g(u/)nf(r,v,U/)du/zg(,,u)[ /V g(v’)Z(dv/):| — Eom[(e: 2],

where £, ,,) denotes expectation with respect to Py, .. Note, the possibility that Pr(N = 0) >
0, which will be tantamount to neutron capture (i.e., where a neutron slams into a nucleus but
no fission results and the neutron is absorbed into the nucleus).

Write P, for the the law of X when issued from an initial configuration u € M(D x V).
Coming back to how the physical process relates to the NTE, it was shown in [6, 8, 9, 18]
that, under the assumptions (H1) and (H2), the unique solution, which is bounded on bounded
intervals of time, to (1.3) is given by

(1.10) Uilgl(r,v) :==Es,, [(g. X1)], t=0,r€ D,veV,

for g € LI,(D x V). The NBP is thus parameterised by the quantities os, s, of and
the family of measures P = (P ), € D,v € V) and accordingly we refer to it as a
(0, s, 08, P)-NBP. It is associated to the NTE via the relation (1.10), but this associa-
tion does not uniquely identify the NBP. Nonetheless for a given quadruple (og, s, 0f, 7£),
it was shown in [18] that under the assumptions (H1) and (H3), at least one NBP always
exists that can be associated to it via (1.10). Figure 1 gives an indication of the level of spatial
inhomogeneity that is typical for the NTE when modelling nuclear reactor cores.

There is, however, a second equation similar to (1.3), which describes the nonlinear semi-
group of the neutron branching process and which does uniquely identify the (os, 7s, 0, P)-
NBP. Write the branching generator associated with the physical process by!

N
(1.11) GIgl(r,v) =05 (r, V)E,v) {1_[ g(r,vj) —g(r, U)}

j=1
forre D,veV and g€ LI (D x V) and define

N;
(1.12) wlg1(r,v) :=Es,, [1‘[ g(ri(), v <r>)}, £>0.

i=1
Formally speaking, by extending the domain in which particles live to include a cemetery
state |, corresponding to neutron capture or neutrons going to the boundary 0D, we will
always work with the convention (cf. [19-21]) that functions appearing in additive functionals
are valued as zero on {f}, whereas in multiplicative functionals, they are valued as one on
{t}. One may think of this as requiring that empty sums are valued as zero where as empty
products are valued as one.

As shown in Section 8 of [18], we can break the expectation over the event of scattering

or fission in (1.12) and, appealing to standard manipulations (cf. [6, 18]) we see that, for
g € L1 (D x V), which is uniformly bounded by unity,

t
(1.13) u:[g]=0slg] +/O Us[Su;—s[g]+ Glu—s[g]]ds, >0,
where
(1.14) Gilglr,v) = g(r +v(t AkP), v).

Here and elsewhere, an empty product is always understood to be unity.
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FIG. 1. The geometry of a nuclear reactor core representing a physical domain D, on to which the different
cross-sectional values of og, 0¢, g, ¢ are mapped as numerical values.

Under the assumptions (H1), (H2) and (H4), it was also shown in [18] that (1.13) has a unique
solution in the space of nonnegative functions, which are bounded over bounded intervals of
time.

Before moving on to the asymptotics of (Y, t > 0), let us make an important note regard-
ing alternative representations of equations (1.3) and (1.13) for later use. In order to do so, let
us momentarily introduce what we mean by a neutron random walk (NRW); cf. [18]. A NRW
on D, is defined by its scatter rates, a(r, v), r € D, v € V, and scatter probability densities
w(r,v, V'), r € D,v,v" €V where [, m(r,v,v")dv =1 forall r € D, v € V. When issued
from r € D with a velocity v, the NRW will propagate linearly with that velocity until ei-
ther it exits the domain D, in which case it is killed, or at the random time Ty a scattering
occurs, where Pr(7Ty > t) = exp{— fé a(r + vs, v)ds}, for + > 0. When the scattering event
occurs in position-velocity configuration (r, v), a new velocity v’ is selected with probability
7(r, v, v') dv’. We refer more specifically to the latter as an ot -NRW.

The linear mild equation (1.3) and its accompanying nonlinear mild form (1.13), although
consistent with existing literature (cf. [5-7, 18]) can be equally identified as the unique (in
the same sense as mentioned in the previous paragraph) solution to the equations

t
(1.15)  Yulgl(r,v) = Qlgl(r, v) +/0 Os[Fi—slgl](r,v)ds, t>0,reD,veV,

and

t
(116)  ulgl=0ulg1n v>+/0 0,[G[ur—s[gl](rv)ds, 120,reD,veV,
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respectively, where for g € LY (D x V),

Or[g1(r, v) =Er0)[8 (R, Y1) 1, .1y ],

and

@t[g](’”» v) =Ev) [g(Rz/\rD’ Tz/\rD)]’

are the expectation semigroups associated with the os7s-NRW and t2 = inf{t > 0: R; ¢ D}.

1.3. Lead order asymptotics of the expectation semigroup. In the accompanying prede-
cessor to this article, [18], a Perron—Frobenius type asymptotic was developed for (¢, t > 0).
In order to state it we need to introduce another assumption, which is slightly stronger than
(H2). To this end, define

a(r,v)m(r, v, V)

(1.17)
=os(r,v)s(r,v, V) + os(r,v)7e(r,v, V') reD,v, v eV.

Our new condition is:

(H2)* We have inf,cp y.vey a(r, v)m(r, v, V") > 0.

THEOREM 1.1. Suppose that (H1) and (H2)* hold. Then, for semigroup (¢, t > 0) iden-
tified by (1.3), there exists a Ay € R, a positive® right eigenfunction ¢ € LY (D xV)anda
left eigenmeasure which is absolutely continuous with respect to Lebesgue measure on D x V
with density ¢ € L1 (D x V), both having associated eigenvalue e*!, and such that ¢ (resp.
@) is uniformly (resp. a.e. uniformly) bounded away from zero on each compactly embedded
subset of D x V. In particular for all g € L}, (D x V)

(1.18) @ vilgl)=e""(@.8)  (resp. vnlpl =e™'p) 120
Moreover, there exists ¢ > 0 such that, for all g € LY, (D x V),
(1.19) le ™o gl — (@, &), = O(e™) ast— +oo.

In light of Theorem 1.1, we can categorise the physical process according to the value of
M« In particular, when A, > 0 we say the process is supercritical, when A, = 0, the process
is critical and when X, < 0, the process is subcritical.

1.4. Strong law of large numbers at supercriticality. The main aim of this article as a
continuation of [18] is to understand the almost sure behaviour of the (o, s, o¢, P)-NBP
in relation to what is, in effect, a statement of mean growth in Theorem 1.1, in the setting that
Ay > 0. In the aforesaid article, it was noted that

X
(1.20) W, et 02X g

(0, )’
is a unit mean martingale under IP,, u© € M(D x V) and, moreover its convergence was
studied. In particular, since the martingale is nonnegative, we automatically know that it must
converge to a limiting random variable, that is, W; — W, PP;,-almost surely, where we can
take W, := liminf,_,o W; for definiteness. Before stating the result regarding the latter, we
require one more assumption on the NBP:

2To be precise, by a positive eigenfunction, we mean a mapping from D x V — (0, 0o). This does not prevent
it being valued zero on 9D, as D is an open bounded, convex domain.
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(H3)* There exists a ball B compactly embedded in D such that

inf o (r,v)we(r, v, V) > 0.
reB,v,v’'eV

The following result was derived in [18].

THEOREM 1.2. For the (0g, s, 0¢, P)-NBP satisfying the assumptions (H1), (H2)*,
(H3)* and (H4), the martingale (W;, t > 0) converges to W P-almost surely and in L,(IP)
if and only if . > 0, otherwise Wy, = 0 P-almost surely.

Note that when A, < 0, since lim;_,o W; = 0 almost surely, it follows that, for each Q2
compactly embedded in D x V, lim;_, o X;(€2) = 0. It therefore remains to describe the
growth of X;(€2), ¢ > 0, for A, > 0. This is the main result of this paper, given below. In order
to state it, we must introduce the notion of a directionally continuous function on D x V. Such
functions are defined as having the property that, forallr € D,v eV,

limg(r + vt, v) = g(r, v).
10

THEOREM 1.3. Suppose the assumptions of Theorem 1.2 hold. For all measurable and
directionally continuous nonnegative g on D x V such that, up to a multiplicative constant,
g < @, then for any initial configuration u € M(D x V),

i (8 X1)
(o, 1)
P,.-almost surely and in Lo(IP), as t — oo.

— (8. 9)Weo

To the best of our knowledge no such results can be found in the existing neutron transport
literature. The closest known results are found in the final section of [25] and are significantly
weaker than Theorem 1.3.

We can think of Theorem 1.3 as stating a stochastic analogue of (1.19), noting, for exam-
ple, that the former implies

thS(r,U)[(gv Xl)] ~

(1.21) lim e~ =(g.9)

t—00 ¢(F, V)

forallr € D, v € V, which is a version of the latter (albeit without the speed of convergence).

The proof of Theorem 1.3 relies on a fundamental path decomposition, often referred to
in the theory of spatial and nonspatial branching processes as a skeletal decomposition, see,
for example, [2, 10, 13, 15, 26]. The skeletal decomposition is essential in that it identifies
an embedded NBP within the original one for which there is no neutron-absorption (neither
at D nor into nuclei at collision). This “thinned down tree” is significantly easier to analyse
for technical reasons, but nonetheless provides all the mass in the limit (1.21).

2. Skeletal decomposition. Inspired by [15], we dedicate this section to the proof of a
so-called skeletal decomposition, which necessarily requires us to have A, > 0. In very rough
terms, for the NBP, we can speak of genealogical lines of descent, meaning neutrons that
came from a fission event of a neutron that came from a fission event of a neutron ... and so
on, back to one of the initial neutrons a time ¢ = 0. If we focus on an individual genealogical
line of descent embedded in the NBP, it has a space-velocity trajectory which takes the form
of a NRW whose spatial component may or may not hit the boundary of D. Indeed, when the
NBP survives for all time (requiring A, > 0), there must necessarily be some genealogical
lines of descent whose spatial trajectories remain in D forever.
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The basic idea of the skeletal decomposition is to consider the collection of all surviving
genealogical lines of descent and understand their space-velocity dynamics collectively as
a process (the skeleton). It turns out that the skeleton forms another NBP but with different
scatter and fission statistics from the underlying NBP, due to the fact that we are considering
genealogical lines of descent which are biased, since they remain in D for all time. For
the remaining neutron trajectories that go to the boundary of D or end in neutron capture,
the skeletal decomposition identifies them as immigrants that are thrown off the path of the
skeleton.

Below, we develop the statement of the skeletal decomposition. It was brought to our at-
tention by a referee that the proof is robust enough to work in the relatively general setting
of a Markov branching process (MBP) with nonlocal branching and hence we first set up the
notation of a general branching process. It is worthy of note that the motivation for this switch
to a general setting is that, for branching particle systems, nothing is known of skeletal de-
compositions for nonlocal branching generators; although some results have been identified
in the more continuous setting of superprocesses, cf [26], they do not apply to particle sys-
tems. Our proof is inspired by the martingale arguments found in [15] which gives a skeletal
decomposition for branching Brownian motion in a strip with local branching.

2.1. The general branching Markov setup. Until the end of this section (Section 2), un-
less otherwise mentioned, we will work in the setting of a general MBP, which we will shortly
define in more detail. The reader will note that we necessarily choose to overlap our notation
for this general setting with that of the NBP. As such, the reader is encouraged to keep in
mind the application to the NBP at all times. Additionally, we provide some remarks at the
end of this section to illustrate how the general case takes a specific form in the case of the
NBP.

Henceforth, X = (X;, t > 0) will be a (P, G)-Markov branching process on a nonempty,
open Euclidian domain® E C R?, where P = (P, t > 0) is a Markov semigroup on E and G is
the associated branching generator. More precisely, X is an atomic measure-valued stochastic
process (in a similar sense to (1.7)) in which particles move independently according to a copy
of the Markov process associated to P such that, when a particle is positioned at x € E, at the
instantaneous spatial rate ¢(x), the process will branch and a random number of offspring,
say N, are thrown out in positions, say xi, ..., xy in E, according to some law P,. (Note,
we always consider of (xq, ..., xy) as an ordered set of points.)

We do not need P to have the Feller property, and we assume nothing of the boundary
conditions on E, in particular, P need not be conservative. That said, it will prove to be more
convenient to introduce a (possible) cemetery state T appended to E, which is to be treated
as an absorbing state, and regard P as conservative. As such,

(2.1) P f1(x) =Ex[fE)] =Ex[fEDly<)], x€E, feLL(E),

where the process &, with probabilities (P, x € E), is the Markov process on E U {f} with
lifetime k = inf{r > 0: & € {}}, LI (E) is the space of bounded, measurable functions on
E and, in this context, we always take f(f):=0.

As such, in a similar spirit to (1.11), we can think of the branching generator, G, as having
definition

N
2.2 G[f](X)=§(X)5x[H f(xj')—f(X)}, x €E,

j=1

3The arguments presented here are robust enough to work with more abstract domains; see, for example, the set
up in [1].
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for f € LgLo’l(E ), the space of nonnegative measurable functions on £ bounded by unity. As
previously, we always define the empty product as equal to unity.

We use P for the law of X issued from a single particle positioned at x € E. In a similar
spirit to (1.12), we can introduce the nonlinear semigroup of the branching process,

Ny
(2.3) ur[gl(x) :=Es, [1‘[ g(xi (r))}, t>0,xeE ge L (E),

i=1

where X; = Zf\il 8x;(1)» t = 0. As before, we define the empty product to be unity, and for
consistency, functions, g, appearing in such functionals can be valued on E U {7} and forced
to take the value g(f) = 1.

Similarly to the derivation of (1.13) and (1.16), it is straightforward to show that, for such
functions, u;[g] solves the nonlinear mild equation

t
2.4) uilg] = Blgl(x) + /O B, [Glus_s[gl](x)ds, 1>0,xcE,

where we need to adjust P to P to accommodate for the fact that empty products are valued
as one, as follows:

(2.5) Brlgl(x) =E [g(&nr)], x€E.
Now, define
(2.6) ¢ :=inf{r>0:(1, X;) =0},

the time of extinction, and let
2.7 w(x) :=Ps (£ < 00).
We will also frequently use with

px):=1—w(x), xekE.

Recalling that we need to take as a definition w({) = 1, by conditioning on F; = o (X;, s <t),
fort >0,

Ny
(2.8) w(x) =Es, []‘[ w(x; (t)):|.

i=1

Taking (2.8), (2.4) and (2.5) into account, it is easy to deduce that w also solves
t
(2.9) w(x) = B, [w](x) +/ P,[Glw]](x)ds, 7r>0,x€E.
0
We will assume:
M1) infyep w(x) >0and w(x) <1 forx € E.
Beyond this, we assume relatively little about P and G other than:
(M2) The branching rate ¢ is uniformly bounded from above.
Re-writing (2.9) in the form

tAk G .
w(x) = Ex[w(E 0] + Ex [ /0 L () ds},

w(&s)
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and noting that sup,.r G[w](x)/w(x) < oo, we can appeal to the method of exchanging
exponential potential for additive potential* in, for example, [11], Lemma 1.2, Chapter 4,
Part 1, which yields

Nk Glw](&s)
w(és)

This identity will turn out to be extremely useful in our analysis, in particular, the equality
(2.10) together with the Markov property of & implies that the object in the expectation on
the right-hand side of (2.10) is a martingale.

In Theorem 2.1 below we give the skeletal decomposition in the form of a theorem. In
order to state this result, we first need to develop two notions of conditioning. As there is
rather a lot of notation, we include a table in the Appendix which the reader may refer to as
needed.

The basic pretext of the skeletal decomposition is that we want to split genealogical lines
of descent into those that survive forever and those that reach a dead end. To this end, let ¢; (¢)
denote the label of a particle i € {1, ..., N;}. We label a particle “prolific”, denoted ¢, (¢) =1,
if it has an infinite genealogical line of descent, and c;(t) =, if its line of descent dies out
(i.e., “nonprolific”). Ultimately, we want to describe how the spatial genealogical tree of the
MBP can be split into a spatial genealogical sub-tree, consisting of 1-labelled particles (the
skeleton), which is dressed with trees of | -labelled particles.

Let P¥ = (ng,x € E) denote the probabilities of the two-labelled process described

above. Then for t > 0 and x € E we have the following relationship between P¥ and P

(2.10) wx) =E, [w(émk) exp(/(; ds)}, xeE, t>0.

¢ Ni
2.11 it 1 ! 1
2.11) dPs, |7, _E]( @@=+ Lan=p) =1,

where Foo = 0 (U;>0 F7)- Projecting onto ¥, for > 0, we have

dP} N
1 =E 1= ()= Fi
By |y = (Ef o=+ Law=1) | z)
(2.12) = Y JIPs(ccoo=t1F) ] Psla@)=F)
IC{l,...,N,Yiel ie{l,..N;\I
= Y Jlrx®) ] wkxko),
IC{l,...,N,Yiel ie{l,...,N;\I
where we understand the sum to be taken over all subsets of {1, ..., N;}, each of which is

denoted by /.

The decomposition in (2.12) indicates the beginning point of how we break up the law
of the (P, G)-MBP according to subtrees that are categorised as | (with probability w) and
subtrees that are categorised as 1 with | dressing (with probability p), the so-called skeletal
decomposition.

In the next two sections we will examine the notion of our MBP conditioned to die out
and conditioned to survive, respectively. Thereafter we will use the characterisation of these
conditioned trees to formalise our skeletal decomposition.

4We will use this trick throughout this paper and consistently refer to it as the “transfer of the exponential
potential to the additive potential” and vice versa in the other direction.
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2.2. }-Trees. Following [15], let us start by characterising the law of genealogical trees
populated by the marks |. Thanks to the branching property, it suffices to consider trees
which are issued with a single particle with mark |. By definition of the mark c4(0) =,
where & is the initial ancestral particle, this is the same as understanding the law of (X, P)
conditioned to become extinct. Indeed, for A € F;,

Py (A) =P} (A|ca(0) =1)

ng(A; ¢ =|,foreachi=1,...,N;)
@.13) - P} (co(0) =1)

B (1A TTY wii ()]
B w(x) '

We are now in a position to characterise the MBP trees which are conditioned to become
extinct (equivalently, with genealogical lines of descent which are marked entirely with |).
Heuristically speaking, the next proposition shows that the conditioning creates a branching
particle process in which particles are prone to die out (whether that be due to being killed
at the boundary under P, or suppressing offspring). Our proof is partly inspired by Proposi-
tion 11 of [15].

PROPOSITION 2.1 (| Trees). For initial configurations of the form v = Y_"_, 8,, for

neNandxy,...,x, € E, define the measure Pi via (2.13),
n
=@,
i=1
that is, starting independent processes at positions x; each under ]P’gxi ,fori=1,...,n.Then

under Pi, X isa (PY, GY)-MBP with motions semigroup PV and branching generator GV de-
fined as follows. The motion semigroup PV is that of the Markov process & with probabilities
(Pi, x € E), where

V) A
ap} ) ([ )
dP, o (&,s<t) w(x) 0 w(&y)

Forx e Eand f € Lg'o’l(E), the branching generator is given by

(2.14)

1
(2.15) G'fl= —[GLfwl = fGlwl],

which may otherwise be identified as

N
G'[fl= g%x)ej[]'[ [ — f(x)},

j=1
where
Glwl(x) ¢ . [&

Vi) — _ .
(2.16) s =g+ = T = s L]:[l w(xj)] x€E,
and

| N ) N
2.17) dPy _ Hi;lw(xl) _ iS‘()C) Hw(xi)-

dPx o(N,x1,..., XN) gx[l_[jzl w(xj)] S (x)w(x) i=1
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PROOF OF PROPOSITION 2.1. First let us show that the change of measure results in a
particle process that respects the Markov branching property. In a more general sense, for v
as in the statement of this proposition, (2.13) takes the form

dPy| T win )
dp, Fr H?:] w(x;) .
It is clear from the conditioning that every particle in the resulting process under the new

measure IP),% must carry the mark |, that is, be nonprolific, by construction.
Let us define, for g € LT;1(E),

N;
(2.18) uf [g](x) =Ef, [1’[ g(xi (1) | co(0) =¢} = ——u,[wg](x),
i=1

1
w(x)
which describes the evolution of the the process X under PY. In particular, for g € Lg'd] (E),
x € E and s, t > 0, note that

N, N,
e H w(xh(5))g(x’ ()
! . o =1
Ej, {1:[1 gxi(t +5) | fr} w1 Eax[ ) | ]—“,]
(2.19)
1 M .
=o® 1:[1 w (i (0)uy[g](xi (1),

where, given J;, ((xj- @®),j=1,...,N ;) are the physical configurations of particles at time

t + s that are descendent from particle i € N;. This ensures the Markov branching property
holds.

It thus suffices for the remainder of the proof to show, in the spirit of (1.13), that, for
geLL\(E),

t
(2.20) uf [81(x) = B [g](x) + fo PG [u/_[g]](x)ds, t=0.x€E,
holds, where " is defined in a similar spirit to (2.5), which is the semigroup evolution equa-
tion for a (P, G)-MBP, and to identify the internal structure of GY.

From (2.4) and (2.18) it follows that, for g € Lo+0’1 (E),

1. 1
(2.21) u}[g]z—pt[ng/ —py[G[wu)_,[g]]ds, >0.
w 0w

In the spirit of the derivation of (2.10), we can apply [12], Lemma 1.2, Chapter 4, Part 1,
and use (2.14) and (2.21) to get, for x € E,

uf[gl(x) =

|
|:w G[wutfs [g]] ] (x) dS

( ) ,[wg](x>+/

+f t #Ps[@wui_s[g]]mds - t LPS[G[U’] e s[g]}mds
0 w 0 w

w(x) w(x)

ink GlwlEw) g,

= LB [gE 0w e
U)(X) tAk tAk

1 Ex[/Mk G[wuz s[g11(&s)
w(x) 0 w(&;s)

_ 1 tAk G U)](SS) J/ fO ww]f du :|
w(x)Ex |:/0 (Ss) slglEs)w(és)e &) ds

s GlwlE g,

wiell HE 4 s
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N t ! G
= BHgl) + /0 Pi[%“g”}u)d /0 Pi[%uh[g]}(x)cls

t
= 3110 + [ BHG* [uf | ls1]x) ds.
where we have used the definition (2.15).

It remains to identify the internal structure of G V. Taking as a preemptive definition ¢V :=
¢ +w~'Gw], we have, for f € LL(E),

1
1) = ——[Glfw] — fGlw]](x)
w(x)

1 N
= w—x)[s‘(x)&c [H f(x,')w(xi)} —c(x) f(X)w(x) — fG[w](x):|
i=1

. g()c) Glw]
= @) []_[ S xi)w(x;) ] - (g(x) + T(x))f(x)

c(x) N
= g¢<x><m [1‘[ w(x;) £ (x;) } — f(x)).

Moreover, recalling the change of measure (2.17), note that, for x € E, Pi is a probability
measure on account of the fact that, when we set f = 1, recalling again that ¢V = ¢ +
w~G[w] as well as the definition of G given in (2.2),

stv) Glwl(x) + c(wx) 1
Ex| ————— l_[ wx;) | = — =
ctwx) L c(x) + w10 Gw](x) w(x)

as required. [

2.3. ¢-Trees. Inasimilar spirit to the previous section we can look at the law of our MBP,
when issued from a single ancestor, conditioned to have a subtree of prolific individuals. As
such, for A € F;, we define

ng(A; c¢i =1,foratleastonei =1,..., V)
P} (cz(0) =1)

_ B, [a(l — 1Y wixi ()]
p(x) '

Py (A]ce(0)=1) =
(2.22)

In the next proposition, we want to describe our MBP under ]P’gx (- | cz(0) =1). In order to do
so, we first need to introduce a type-1-type-| MBP.

Our type-1-type-| MBP process, say X¥ = (X $, t > 0), has an ancestor which is of type-
1. We will implicitly assume (and suppress from the notation X¥) that Xg =4y, for x € E.
Particles in X¥ of type-1 move as a PT-Markov process. When a branching event occurs
for a type-1 particle, both type-1 and type-| particles may be produced, but always at least
one type-1 is produced. Type-1 particles may be thought of as offspring and any additional
type-J particles may be thought of as immigrants. Type-| particles that are created can only
subsequently produce type-| particles in such a way that they give rise to a (P¥, G+)-MBP.
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The joint branching/immigration rate of type-1 and type-| particles in X¥ at x € E is
given by

(2.23) ¢ )— g( ¢ [1— ]_[w(xj)}
j=1

We can think of the branching rate in (2.23) as the original rate ¢ (x) multiplied by the prob-
ability (under P, ) that at least one of the offspring are of type-1, given the branching particle
is of type-1

At a branching/immigration event of a type-1 particle, we will write NT and (xiT,i =
1,..., N1 for the number and positions of type-1 offspring and N+ and (x}, j=1,...,N%
for the number and positions of type-| immigrants. We will write (PX$ ,x € E) for the joint

law of the the random variables in the previous sentence. Formally speaking, the branching
generator, GV, of offspring/immigrants for a type-4 particle positioned at x € E is written

Nt

(2.24) G'[f. gl(x) = g%c)(s)? [1‘[ flx H g(x } (x))
i=1
for f,g € LL(E).

For our process X¥, for each x € E, we will define the laws Pf in terms of an addi-
tional random selection from (x;,i = 1, ..., N) under P,. Write /T for the set of indices in
{1,..., N}, which, together, identify the type-1 particles, that is, (x;,i € N T) = (xJT, j=
1,...,NT). The remaining indices {I,..., N} \ AT will identify the type-] immigrants
from (x;,i = 1,...,N). Thus, to describe 73)? , for any x € E, it suffices to give the law
of (N;xl,...,xN;j\/’T). To this end, for F € 6(N; x1,...,xy) and I C N, we will set

PHF NN =1))

(2.25) s (x)
== ¢7€x|:117ﬂ{1§{1 ..... VD
sH(X)px) iel ie(l,...N)\I

Said another way, for all / C N,
PYNT=T|o(N;x1,....xn))

(2.26) ) [lier P(xi) Hie{l

..... Nz wWxi)
=1y=1)nucil,... N} .

=& wix))]

The pairs (x.i=1,...,N") and (x},j=1,...,N¥) under (P}, x € E) in (2.24) can
thus be seen as equal in law to selecting the type of each particle following an independent
sample of the nonlocal branching configuration (xi,...,xy) under P,, where each xji is
independently assigned either as type-1 with probability p(xi) or as type-| with probability
w(xg) =1 — p(xx), but then conditional on there being at least one type-1.

As such with the definitions above, it is now a straightforward exercise to identify the
branching generator in (2.24) in terms of (x;,i = 1,..., N) under (P, x € E) via the fol-
lowing identity, for x € E,

G¢[f,g]<x>—£5[ X~ Mrewra

(x)
(2.27) |I|>1 NYyiel ie{l,...N\I

— P f(x).
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PROPOSITION 2.2 (Dressed t-trees). For x € E, the process X* is equal in law to X
under }P’gx (- | cz(0) =1). Moreover, both are equal in law to to a dressed (', GM-MBP, say

X1 with probabilities PT := (IP)TX,x € E), where the motion semigroup P! corresponds to

the Markov process & on E U {1} with probabilities (P;, x € E) given by (recalling that p is
valued 0 on T)

N
(2.28) dP; _ p&) xp( /O’ G[w](%‘) ) >0,

dpP, o (&s,5<t) p(x) p(&s)
and the branching generator is given by
1
(2.29) G'f1=(Glpf +wl = (1= NHGlw). [ eLZE).

The dressing consists of additional particles, which are immigrated nonlocally in space at the
branch points of X1, with each immigrated particle continuing to evolve as an independent
copy of (X¥, PV) from their respective space-point of immigration, such that the joint branch-
ing/immigration generator of type-1 offspring and type-|, immigrants is given by (2.27).

PROOF OF PROPOSITION 2.2.  We may think of ((x;(¢), ci(¢)),i < N;), t > 0, under p?
as a two-type branching process. To this end, let us write N, T= Zl&] 1¢;()=1) and N V=
N; — N, for t > 0. Define, for f, g € LEY(E),

(2.30) uf [f. 81x) =Ef [TL[f. 81| cz(0) =1], 120,
where, for t > 0,

NT

N
mif.gl=[] p(x/ @) f T<z)1‘[ RHOHEHON]

i=1
where
(@), i=1,...,N}) = (xi(¢) such that ¢; (1) =1,i < N,)

and (xl-i(t), i=1,...,N¥)is similarly defined.

We can break the expectation in the definition of u? [ f, g] over the first branching event,
noting that until that moment, the initial ancestor is necessarily prolific. We have (again re-
membering p(f) =0)

ul1f, gl(x)
_ Es [T [ f, g]l(cy0)=1)]
Ps, (cz(0) =1)

1
= —E,[p&) f(&)e sG]

(2.31) p(x)
1 ! (&) _f (€4) du
—E, 0 S\Su
) [/0 PE e
ngs[ > l—[p(x»u?_s[f, gl [ wGu; s[g](xz)} ds}
I<{l,..,N}iel ie{l,....N}\I

[1]>1

To help the reader interpret (2.31) better, we note that the first term on the right-hand side
comes from the event that no branching occurs up to time ¢, in which case the initial an-
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cestor is positioned at &. Moreover, we have used the fact that Ps_(cx(0) =1| F;) = p(&).
The second term is the consequence of a branching event occurring at time s € [0, 7], at
which point in time, the initial ancestor is positioned at & and thus has offspring scattered at
(xi,i=1,..., N) according to Pg, . The contribution thereof from time s to ¢, can be either
captured by u? sLf, g], with probability p, if a given offspring is of type-7 (thereby growing
a tree of particles marked both 1 and | ), or captured by u ;[gl, with probability w, if a
given offspring is of type-| (thereby growing a tree of partlcles marked only with | ). Hence
projecting the expectation of IT;[ f, g]1(c,=1) onto the given configuration (x;,i =1, ..., N)
at time s, we get the sum inside the expectation with respect to Pg,, which caters for all the
possible markings of the offspring of the initial ancestor, ensuring that at least one of them is
1 (which guarantees c4(0) =1). In both expectations, the event of killing is accommodated

for the fact that p(1) = f () = ¢(f) =
We may now substitute (2.27) into (2.31) to get

ulLf, g1(x)

1 .
_ — fi ey du
= p(x)Ex[p(%‘z)f(ét)e 0 ]

! e SE) st
o E SINGEE e NG £ ¢ i L41](6)

+ et Eul L 81(E))] ds]

(2.32)

Next, recalling the first equality in (2.23) that ¢(x) = T (x) + Glw](x)/p(x), in each
of the terms on the right-hand side of (2.32), we can exchange the exponential potential
exp(— /o s (€,) du) for the exponential potential exp(— f, G[w](§,)/p(€,) du) by transfer-
ring the difference in the exponent to an additive potential (cf. Lemma 1.2, Chapter 4 in
[11]). In this exchange, the term g¢(§.)u,$, sLf, g]1(§) is cancelled out on the right-hand side
of (2.32). Then recalling the change of measure (2.28) that defines the semigroup P', we get,
on E,

t
(2.33) ulLf, gl =P f1+ /0 PG [ul_[f. gl.u)_,[g]]]ds, ©>0.

(Note, there is no need to define the object " in the spirit of (2.5) as the semigroup P is that
of a conservative process on E.) This is the semigroup of a two-type MBP in which | -marked
particles immigrate off an 1-marked MBP. We have yet to verify however that the 1-marked
MBP is in fact the previously described (PT, G1)-MBP. In order to do this, we need to show
that G'[f1=G*[f, 1], forall f € LL;!(E), where G was given in (2.29).

To this end, let us note two computational facts. First, for any x € E,

N
(2.34) 1=5x[]_[(p(xi)+w(xl~))]=€x[ Z [Tred 1 w(xi)},
I<il,

i=1 cil,...,N}yiel ie{l,...N\I
so that

(2.35) ¢()—— [Z MMrey T[] w(x»}.

gl ,,,,, NYyiel iefl,....N}\I

Second, recalling (2.2), note

N
G[f1(x) — Glgl(x) = g(x)( [1‘[ f(xj)] [1‘[ g(xpD
Jj=1
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and G[1](x) = 0. We thus have that, for x € E,
G'f1=G*[f. 11(x)

=g(")8x[ S [Ireofen ] w(xi)}

p(x) IC{l,..,N}iel ie{l,....N}\1
[]=1

— f(x) Exi [ > [Ired

I<{l,..,N}iel ie{l,....N}\/
[71=1

N N
- W, 1_[( ) f )+ wl)) — [ w)
p(x) )

k=1

N
— flx )@[H(p(m +w) - [] w(xk)}

()kl k=1

- ﬁ{G[Pf + w](x) — Glw](x)} — f(x)ﬁ{(;[l](x) — Glw](x))

1
e ){ [pf +wlx) — (1 = /)Glw](x)},
since p(x) + w(x) = 1, and this is just as required. [

THEOREM 2.1 (Skeletal decomposition). We assume throughout that (M1) and (M2) are
in force. Suppose that p = Y_"'_, 8y, forn e Nand x1, ..., x, € E. Then (X,P,) is equal in

law to
n

(2.36) Y (xyt+ (- BHXY), 1=0,
i=1
where, foreachi =1, ..., n, B; is an independent Bernoulli random variable with probability
of success given by
(2.37) pxi):=1—w(x;)

and the processes XV and XY are independent copies of (X, Pi{-) and (X, ng- (|
cz(0) =1)), respectively.

As alluded to previously, Theorem 2.1 pertains to a classical decomposition of branching
trees in which the process (2.36) describes how the MBP divides into the genealogical lines
of descent which are “prolific” (surviving with probability p), in the sense that they create
eternal subtrees which never leave the domain, and those which are “unsuccessful” (dying
with probability w), in the sense that they generate subtrees in which all genealogies die out.

REMARK 2.1. It is an easy consequence of Theorem 2.1 that, for ¢ > 0, the law of X tT
conditional on F; = o (X, s <t), is equal to that of a Binomial point process with intensity
p()X;(-). The latter, written BinPP(p X;), is an atomic random measure given by

Ny
BinPP(pX:) =) Bidy (),
i=1
where (we recall) that X, = Zf\i 1 Ox;(1)> and B; is a Bernoulli random variable with probabil-
ity p(x;(#)),i=1,..., N;.
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REMARK 2.2. It is also worth noting that the skeleton process X', given above, neces-
sarily has at least one type-1 offspring at each branch point, and indeed might have exactly
one type-1 offspring (although possibly with other simultaneous type-| immigrants). As
such, an alternative way of looking at the type-1 process would be to think of the skeleton
of prolific individuals as a (PT, G™)-MBP with at least two type-1 offspring at each branch
point, with a modified motion P in place of PT which integrates the event of a single type-1
as an additional discontinuity in the movement. However, note these additional jumps are
special in the sense as they are also potential points of simultaneous immigration of type-|
particles, unlike other jumps corresponding to P where there is no type-| immigration.

2.4. Combining $-trees and | -trees into the skeletal decomposition. Finally we are now
ready to give the skeletal decomposition of (X, P).

PROOF OF THEOREM 2.1. As previously, we may think of ((x;(¢), ¢;(¢)),i < N;),t >0,
as a two-type branching process under P¥. A similar calculation to (2.12) gives us that, for
v=>)" 8y withn>1landx; € E,i=1,...,n,

ENMIfell= Y [Ipeoullfigded  []  weiu wglex).

IC(l,...n}iel ie{l,...n\I

What this shows, together with the conditional version (2.12), is that the change of measure
(2.12) (which is of course unity) is equivalent to a Doob A-transform on a two-type branching
particle system (i.e., types {7, | }) where we consider the system after disregarding the marks.
The effect of this Doob A-transform on type- |, particles is that they generate (P¥, G¥)-MBPs,
where as type-1 particles generate a dressed (P1, G1)-MBP as described in Proposition 2.2.

O

2.5. Remarks on the skeletal decomposition for the NBP. The case of the skeletal de-
composition for the NBP adds an additional layer of intricacy to the general picture given
above. In this case, we have £ = D x V with cemetery state { that is entered when there is
neutron capture (a neutron disappears in D x V without undergoing fission) or neutrons go
to the physical boundary points {(r, v) : ¥ € 9D and v - n, > 0}. It turns out that for the NBP,
it is more convenient to view Theorem 2.1 in the spirit of Remark 2.2, that is, we view the
process X' as a branching process that has at least two offspring at every branching event
and whose movement corresponds to advection plus an extra discontinuity, which accounts
for a branching event with one offspring.

To make this statement more precise, we first enforce the conditions of Theorem 1.2 in
order to ensure (M1) and (M2) are satsfied. Indeed, on account of the inclusion {¢ < oo} C
{Woo = 0}, we see that w(x) < Ps (Woo =0), r € D, v € V. Recalling that W converges
both almost surely as well as in LY(P) to its limit, we have that Ps,(Woo =0) < 1forr e D,
v € V. This, combined with the fact that every particle may leave the bounded domain D
directly without scattering or undergoing fission with positive probability, gives us that

Kr[.)U
(2.38) e o ortusvds )y <1 forallre D,ve V.

Note that the lower bound is uniformly bounded away from O thanks to the maximal diam-
eter of D, the minimal velocity vyi, (Which, together uniformly upper bound K,?U) and the
uniformly upper bounded rates of fission and scattering. The upper inequality becomes an
equality forr € 9D and v - n, > 0.

Now, viewing the NBP X as a process with movement Q and branching generator G,
heuristically speaking, we can understand a little better the motions of X' and XV through
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the action of their generators. By considering only the leading order terms in small time (the
process (X;, t > 0) is but a Markov chain), the action of the generator can be see as the result
of the limit

(2.39) Lf —hm (Q;[f] f);

for suitably smooth f (e.g., continuously differentiable within L} (D x V)). It is easy to
show, and indeed known (cf., e.g., [6, 9]), that the action of the generator corresponding to Q
is given by

(2.40) Lf(r,v)=v-Vf({rv)+ /;/(f(r, V') — f(r,v))os(r, v)ws(r, v, V) dv/,

for f € LY (D x V) such that V f is well defined (here V is assumed to act on the spatial
variable r). We emphasise again that, in view of Remark 2.2, this corresponds to motion plus
a branching event with one offspring (or scattering).

The change of measure (2.14) induces a generator action given by

[ ]

LY f(r,v) = L(wf)(r, v) + f(r, v)——(r, V)

w(r,v)

=v-Vf(r, U)—i—/ (r,v') — f(r,v))os(r,v) wir, V) ws(r, v, V') dV’

w(r, v)
(2.41) o Gl
¥ Fr v (—w + —w>(r, v)
w
=v-Vf(, v)—l—/ (r,v') — f(r,v))os(r, U)w((:’z)) s(r,v, V) dv,

where the fact that the right-hand side of (2.14) is a martingale will lead to Lw + G[w] =

In other words, our heuristic reasoning above shows that the motion on the |-marked
tree is tantamount to a w-tilting of the scattering kernel. This tilting favours scattering in a
direction where extinction becomes more likely, and as such, LV encourages |-marked trees
to become extinct “quickly”.

Almost identical reasoning shows that the change of measure (2.28) has generator with
action

G
L f(rv) = L(pf)(rv) — £(r. ) v)

1
p(r,v)
=v-Vf(r, U)-i—/ rv — f(r, U))os(r U)

(2.42) )

(,v)

for suitably smooth f, where we have again used Lw + G[w] = 0 and left the calculations
that the second equality from the first as an exercise for the reader. One sees again a p-
tilting of the scattering kernel, and hence L1 rewards scattering in directions that “enable
survival”. Note, moreover for regions of D x V for which p(r, v) can be come arbitrarily
small (corresponding to a small probability of survival), the scattering rate also becomes very
large, and hence LT “urgently” scatters particles away from such regions.

ns(r, v, V') dV,

2.6. Remarks on BBM. On account of the fact that we have stated Theorem 2.1 for a
relatively general MBP with nonlocal branching, it is worth pointing to the known example
of a BBM in a strip that has previously been worked out in detail in [15]. This model has the
features that P is that of a Brownian motion with drift x killed on existing an interval [0, K],
so that L = (1/2) d?/dx? + ;¢ d/dx, the branching rate ¢ is constant (not spatially dependent)
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and the offspring distribution is concentrated at the point of death of each particle. As such,
the generator G in (2.2) takes the simpler form

(2.43) Glol=c&(6N —9),

where it suffices to take 8 as a number in (0, 1), rather than a function, as there is no spatial
dependency. The extinction probability now solves the differential equation
%% +M(}Ew + Glw]=0 on (0, K) withw(0) =w(K) =1.

In order for survival to occur with positive probability, it is required that the leading eigen-
value of the mean semigroup associated to the branching process, which is A, := (m — 1)¢ —
w?/2 — 2 /2K, must satisfy A, > 0, where m = Y22 kpy is the mean number of offspring.
Note, the mean semigroup is the analogue of (1.10) and the leading eigenvalue plays precisely
the role of A, in Theorem 1.1 for the NTE.

For the | process, writing GV in (2.15) in a similar format to (2.43), it is straightforward
to verify that it agrees with the branching generator stipulated in analysis of the red tree given
in [15].

However, for the 1 process, this model also takes the point of view described in Re-
mark 2.2. Indeed, it is straightforward to show that the branching generator for the blue tree
in [15] agrees with GT given in Remark 2.2 and the “discontinuity” associated with a birth of
one offspring is appended to the motion. However, since this model only has local branching
and the movement is a Brownian motion, this does not actually change the motion. On the
other hand, this choice does affect the overall process X¥ and leads to two types of immigra-
tion of red trees onto the blue tree: immigration at branch points and immigration along the
trajectory, with the latter immigration occurring at the points corresponding to a “birth of one
offspring”.

When, additionally, the interval [0, K] is replaced by R, the extinction probability w is
no longer spatially dependent and is a simple solution of G[w] = 0. Assuming that w €
(0, 1), it is easy to see that LT and LV are both equal to L and the skeletal decomposition is
nothing more than the original skeletal decomposition for Galton—Watson processes (albeit
in continuous time) given in the book of Harris [17].

3. SLLN on the skeleton. Our aim is to use the skeletal decomposition of the neutron
branching process to prove Theorem 1.3 by first stating and proving the analogous result
for XT. Hence, in what follows, we will assume (H1), (H2)*, (H3)* and (H4) hold. Before
continuing to the proof, let us consider a useful identity. For a suitable g € Loo(D x V) and
t > 0, we have from Theorem 2.1 (cf. Remark 2.1) that

31 E} (e XN =E]  [(g pX:) | ca(0)=t] = Es,..,[(ep, X0)].

1
p(r,v)

We can use this identity to show that A, is also an eigenvalue for the linear semigroup of
X1, as well as to compute the associated left and right eigenfunctions (in a similar sense to
(1.18)). Our first claim is that the right eigenfunction is given by ¢/ p. Indeed, for (r, v) €
D x V, due to the above computation,
E‘S(r,u)[«o’ Xt)] _ e)h*t (P(r, U)

p(r,v) p(r,v)’

For the left eigenfunction, again using (3.1), we have

(3.3)  (@p.El[(g. X)) =(@p. Es[(gp. X)]/p()) = (. Bs.[(gp, X1)]) =" (¢p. &).

Hence ¢ p is the corresponding left eigenfunction with eigenvalue e*+'.

(3.2) B}, le/p X[)]=
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It now follows by similar arguments to those given in [18] that

4
, X

(3.4) Wi o gmher OLP Xi )
{(0/p. 1)

is a positive martingale under ]P’,TL for uw € M(D x V), and hence has a finite limit, which we

denote WOTO.
A second useful fact that we will use is the following result.

LEMMA 3.1. There exists a constant C € (0,00) such that sup,cp ,cy ¢(r,v)/p(r,
v) < C.

PROOF. Let us introduce the family of measures P¥ := (P, u € M(D x V)), where

dpr?,
(3.5) —H =w,, r>0.
dPy [ 7 t

We start by noting that, for all »r € D, v e V, p(r,v) =1 — P&r,u)@ < ) =
Ps,, ,, (X survives), where ¢ is the lifetime of X defined in (2.6). Taking account of (3.5),
we can thus write, with the help of Fatou’s Lemma and Jensen’s inequality,

p(r,v) = lim Py, (1 <¢)

= lim EY ! 1

_t—1>Igo a(r,v) W (t<¢)
5()[1/W4n

>1/E& oy [Weol,

where we note that the indicator is dropped in the first inequality as, from Lemma 6.1 in [18],
the process (X, P?) is immortal.
From equations (10.1) and (10.3) in [18], it has already been shown that

G0 8( )[WOO] - hm IE:‘S(r v)[Wz] = CAW _2}\*[%

for some constant ¢ € (0, c0). Taking account of Theorem 1.1, which tells us that
lim ™'y [11(r, v) = (1, §)p(r, v) < plloo(1, @),
t—00

we deduce that there exists a constant C € (0, co), which does not depend on (r, v) € D x V,
such that

’

@(r,v)

>
p(r,v) > C

The result now follows. [
We are now in a position to state and prove a strong law for the skeleton X 1.

THEOREM 3.1. For all nonnegative and directionally continuous g (in the sense that
limg o g(r +vs,v) =g(r,v) forall r € D, v € V) such that, for some constant ¢ > 0, g <

cp/p,
(3.7) lim e (g, X1 = (g, @p) {0/ p, WL,

t—00

]P’lt-almost surely for p € M(D x V).
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We prove this theorem by breaking it up into several parts. Starting with the following
lemma, we first prove that Theorem 3.1 holds along lattice times. Our proofs are principally
by techniques that have been used a number of times in the literature, developed by [1, 3,
4, 14] among others. Just before we state the next lemma, it will be convenient to quickly
introduce the notation .7-",T = J(X.? s <t),t>0.

LEMMA 3.2.  Fix § > 0. For nonnegative bounded functions g € LI, (D x V), define
(33) Ur=c(gp/p. X[), 1=20.
Then, for any nondecreasing sequence (mp),>0 with mg > 0 and (r,v) € D x V,

: 1 t
(39) nll)ngo|U(mn+”)8 - ET[U(mil+n)6 | Fnﬁ:” = O’ ]P)S(r‘u) -a.s.

PROOF. By the Borel-Cantelli lemma, it is sufficient to prove that for each (r, v) € D x
V and all ¢ > 0,

(310) Z ]P)g(ryu)(‘U(mn‘i‘n)s - E[U(mn+n)8 | fljz;]’ > 8) < 0.

n>1

To this end, note that Markov’s inequality gives
P, (Umtms = E[Umy+ms | Fs1 > )

G.11) o -
<& B ([Um,+ms — E[Uam,+ms | Fus][)-

Hence, let us consider the term in the conditional expectation on the right-hand side above.
First note that

an . .
(3.12) Uinpsms — EN [Unyms | Fils] = e (U —ENUYs | F]),
i=1

where, given .7-";, the U are independent and equal in distribution to U under IP;(R'(I) o)

and {(R; (), Yi(¢)):i=1,..., N} describes the configuration of X1 at time r > 0. Note in
particular, conditional on .7-",13, Zi = U;S:a — ET(U;SZS | .7-";5) are independent with E[Z;] = 0.
The formula for the variance of sums of zero mean independent random variables together
with the inequality |a + b2 <2(lal* + |b]?), we get

2
E'(|Umy s = E[Umn,mys | Fis11° 1 Fly)
& M) O | 2112 £
—24n8
:Ze " ETHUmlna_ET[Un;na | Fas)l” 1 Fos]
i=1
& 0 2 M | £t 72y £
—224n8 i
<> e ENA(|U, 51T+ [ENU,)s | FuslF) | Fs)
i=1
Nys .
<4y e EN|U, 5[ | Fus),
i=1
where we have used Jensen’s inequality again in the final inequality. Hence, with {(R;(nd),
Yi(nd)):i=1,..., Nys} describing the configurations of the particles at time N,5 in X1, we
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have
> 2
S EM|Umnyms — BN Ugn,4ms | Fs) ]
n=1
00 1‘ Nus
—2Xx 5 2
(3.13) <4 2:1 ¢ " (r v) |:Z 8(R; (n8),7; (n5)) Umnﬁ]:|
n—=

gt [N @RI (09). Yi(08)® -
= sl Ze i [Z p(R;i(né), T(nS))2E5<R avernn (Wnas) ] |

n=1

where the final inequality was obtained by noting that, from the definitions of U; and WIT,
we have

B [02] <12 2w [w

3(r,v) p(r,v)? 8(rv) 4

Due to Theorem 2.1, in particular Remark 2.1, and the calculation leading to (3.1), we
have, for all ¢t > 0,

e—2x*z

1 127 _ 1
E(S(,.’U)[(Wl‘ ) ] - (90(1", U)/p(r, U))2E5(1',v)

o 2hsl
2E6
(so(r v)/p(r,v))s

- p(r,v)?
~ o, v)?

+e Es,, [, X))/ p(r,v))
e—k*t

=¢(
@(r,v)
P B, WP+ 1),

lle/p. X1V

[{¢/p. BinPP(pX))* | co(0) =1]

(3.14) (e By, [l¢*/p. X1/ p(r,v)

+Es, (W) pirv)

where we have used Lemma 3.1 in the second inequality. From Corollary 5.3 of [18], more
precisely from its proof, we know that Es . [sup,-g le] < 0o. Hence we have from Doob’s
maximal inequality that, for each fixed ¢ > 0,

E!

2 2
6(r v) [(WIT) ] S Eg\(nu) [SEP(WST) ]

N

<lim sup4]E5( )[(WT) ]

§—>0Q

(3.15)

<4C

<4C

pr,v)
@(r,v)
p(r,v)
@(r,v)

(¢(r, v)Es, , [WE]+1)

(C'"+1)<o0

for some constant C” which does not depend on (r, v), where we have used (3.6). (Note (3.15)
implies that w1 isan LQ(PT)—convergent martingale.)
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Substituting the estimate (3.14) back into (3.13) and making use of the uniform bounded-
ness of ¢, we get

o0
S EN|Ugntms — EN Uonpms | Fs) ]
(3.16) n=l

Nys
. @(R; (nd), Y;(nd))
< Kligl3 Ze PR [Z P(R;(nd), Y; (né))}

n=1

for some constant K € (0, co0). Now the fact that ¢/ p is an eigenfunction for the linear semi-
group of X1, we get

ZET (Unysms = BN Ui | Fs) 71 < Kllgllz 3o 7" EL [(0/p, X))

G17 " n=l "
= K2 20 S ehens o,
*p(r,v)

n>1

The result now follows by (3.10) and (3.11). O

It is worth noting that a small corollary falls out of the above proof, which will be useful
later on.

COROLLARY 3.2.  We have sup, WtT is square integrable and hence W' converges in
Lo(Ph).

PROOF OF THEOREM 3.1 (LATTICE SEQUENCES). We have already noted that

E(g( v) Ul‘-f‘b |]'—t Ze A*tl_]s(i)’

where, given ]:, , the US( D are independent and equal to IE(S(R 070 [Us] and {(R; (t), Y; (1)) :

i=1,..., N} describes the configuration of X T at time ¢ > 0. Hence, once again using (3.1),
as well as (1.10), we have

Eg( v) [Urs |]: Ze ME 5(R mr([))[ Y g0/p, X])]

_ —Ast 5(R (I)T(r))[e (g, X5)]
Z P(R;i (1), Yi(2))

(3.18) _ %e—x*re_“s% [pgl(R: (1), Yi (1))
i=1 PR (1), (1))

= (g9, <p>WzT

s UslOg) R (1), Ti (1)) o(Ri (1), Y:(1))
t2 e (e o (Ri (D), Y1 (1)) >>p<Rl-<z>,Ti(z>>‘

Appealing to Theorem 1.1, we can pick s sufficiently large so that, for any given & > 0,

(3.19) le ™ o~ s lpg] — (@, 0g)| o, <&

— (g0, ¢
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Combining this with (3.18) yields

, p(r,v)
(3.20) lim B} [Uses | F] = Whilpg. ) o v)

—>00
The above combined with the conclusion of Lemma 3.2 gives the conclusion of Theorem 1.3
along lattice sequences. [J

=0.

‘We now make the transition from lattice times to continuous times.

PROOF OF THEOREM 3.1 (FULL SEQUENCE). Fore > 0 and (r,v) € D x V, define

o(', ) so(r,u)}
1 .
P, ’)—( to g

If we consider the equation (2.9) for the special setting of the NBP, we can decompose it over
the first scatter event, rather than the first fission event, from which we will obtain

Qe(r,v):=1{(',v)eDxV:g(r' v)

w(r, v) =0, [w](r, v) + /Ot Us[Sw + G[w]](r,v)ds, r>0,x€E,

where the semigroup (U;, ¢ > 0) was defined in (1.4), (U;, t > 0) was defined in (1.14), and
the scattering operator S was defined in (1.5). This implies that, fora givenr e Dandv e V,
w(r + vt, v), and hence p(r + vt, v), are continuous for all ¢ sufficiently small. Similarly
noting that ¥, [¢] = e**/¢, from (1.3), we can also deduce a similar continuity property of ¢.
Hence, together with the assumed directional continuity of g, for each r € D, v € V and
& K 1, there exists a §, such that (r + vt, v) € Q. (r,v) forall t <§,.

Next, for each § > 0 define

B (r,v) =1 (r,v)eD x V,

{supp(X,T)CSZE(r,v) for all 1€[0,68]}’
and let n%¢(r, v) = Eg(r U)[E‘S’g(r, v)] < 1. Appealing to Fatou’s Lemma and the continuity

properties discussed abdve, we have, for ¢ <« 1,

LR §,e i)
hf}i})nf" (rv) = B, >[1H§1¢bnf1 supp(X])C R (r,v) for all te[o,a]}]

= Eg(, ) Dslf(} L{(r4v1,0)€Q: (r,v) for all 10, 5]}]

=1.

Since we can effectively see the skeleton as producing at least one® offspring at every
fission event (see also the discussion in Remark 2.2), it follows that if ¢ € [n8, (n + 1)) then,

Mgp/p, X))

32D e R s (Ri (n9), Yi(n8)) _s .
> +5),§e 8(Ri(n8), y(m8)) s B (Ri(nd), Tid))

If we denote the summation on the right-hand side of the above equation by Ups(r, v), and
assume that supp(g) is compactly embedded in D, then we can apply similar arguments to

5 Although a subtle point in the argument, this is fundamentally the reason why the skeletal decomposition is
needed and makes the proof much easier than otherwise.
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those given in the proof of Lemma 3.2 together with (3.1) to show that

~ 2
ZEs( o UTns — EN[Us Fanle

Nis

< CZe o |:Zg (R (n8), Y;(n3))’

P(Ri(0). Xi(nd))” s
PR (n3), i (n8)2"

(Ri (né), Y; (n(S))]

(3.22)

<CY e Bl [((ep/p) X))

n=1

C 2hundg 2

<0 Zle Eso0 [((89)°p 7", Xas)]

C & —ohns 2 1

=9 Yo e sl (g9)?p ] (r v),
’ n=1

Note in particular that the compact embedding of the support of g in D x V together with
Lemma 3.1, the fact that p < 1, ¢ belongs to LO+O(D x V) and is bounded away from O on
compactly embedded subsets of D x V ensures that (g)?p~! is uniformly bounded away
from 0 and oo and hence, taking account of the conclusion of Theorem 1.1, the expectation
on the right-hand side of (3.22) is finite.

Noting that

ENTns | ] = e (gon®* /p, X]5),

the consequence of (3.22), when taken in the light of the Borel-Cantelli Lemma and the
already proved limit (3.7) on lattice times, means that, IP’g(r ” -almost surely,

e 1 o(r,v)
1+8(gs0n /P, op)WJ % D)

Letting § | O with the help of Fatou’s Lemma and then ¢ | 0 in the above inequality yields

liminfe ™ (gp/p, X >
=00

0 @(r,v)
X p@rv)’
Ps,,,,-almost surely. Now replacing g by ip /¢, ensuring still that the support of & is com-

pactly embedded in D x V, so that hp/¢ is uniformly bounded away from 0 and oo, the
lower bound (3.23) yields

(3.23) liminfe ™ (g¢/p, X/) = (g0, HIWL,

(3.24) liminfe™{h, X]) > (h, @p)WOTO‘p(r’ v).

1=00 p(r,v)
We can push (3.24) a little bit further by removing the requirement that the support of # is
compactly embedded in D x V. Indeed, suppose that, forn > 1, h, = hlp,, where h < cp/p
for some constant ¢ > 0 and B, is an increasing sequence of compactly embedded domains
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in D x V, such that J,~; B, = D x V. Then (3.24) and together with monotonicity gives us
liminfe ™ (h, X)> lim liminfe™ (h,, X;)

1—00 n—-oo —o00
r,
WoTo @(r,v)
p(r,v)

= (h, (Zp)WT M
*p(r,v)

(3.25) > lim (hn, op)

]P’g( ,,-almost surely.

To complete the proof of Theorem 3.1 it now suffices to show that, IP’S -almost surely,
limsup, , . e (g, XT) < (g, (pp)Woo(p(r v)/p(r, v). To this end note that for0<g<
cg/ p, for some constant ¢ > 0 (which, without loss of generality, we may take equal to 1),

limsupe™*(g, X:) = limsup((p(r’ v) w!— e M p/p—g, X,T))

t—00 t—00 P(", v)

— LWL timinteo/p — g, X])
<ot U)W —(¢/p—23, <Z>p>(p(r’ v) %
P(F v) p(r,v)

= (g, ¢p) W/ pir.v),

*p(r,v)

as required, where we have used the normalisation (¢, ) =1. [

4. Proof of Theorem 1.3. The proof we will give relies on the stochastic embedding of
the skeleton process X' in X together with a measure theoretic trick. It is worth stating the
latter in the format of a proposition which is essentially taken from [16]. (The reader may
note that there is a slight variation in the statement as the original version was missing an
additional condition.)

PROPOSITION 4.1. Let (2, F, (F;,t > 0),P) be a filtered probability space and define
Foo :=0 (U2 Fi). Suppose (U;, t > 0) is an F-measurable nonnegative process such that
sup,~q U; has finite expectation and (E(U; | F;), t > 0) is cadlag. If

zl—l>nolo E(U; | Fo)=Y a.s.,

then
Iim E(U; | F;) =Y a.s.
—00

In fact, this result can be readily obtained by considering Y; := E(U; | F) then using
right continuity and Hunt’s Lemma: If Y,, — Y a.s., (Y, n € N) is dominated by sup,, . | Y5 |
with Esup, . |Yr| < 0o, then E(Y, | F,) — E(Y | Fo) ass.

We will take the quantities in the above proposition from their definition in the context
of the physical process of the neutron transport equation. In a similar fashion to the proof
of Theorem 3.1, set U; = e ™/ (g, X ) for g € LT (D x V), and recall that (F;,t > 0) is
the filtration generated by the neutron branchmg process (X;, t > 0). Note that we can easily
bound (Uy, t > 0) by a multiple of (W,T, ¢t > 0) and hence we automatically get that sup,..o U;
has a second, and hence first, moments thanks to Corollary 3.2. Due to Theorem 3.1 and the

fact that X : is Foo-measurable, U; = IET(Ut | Fs0) and hence

) 1 _ - 4 @(r,v)
Jim B (U1 Foo) = (g, 9 WL S

]P’g(r U)—almost surely, forr e D,v e V.
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Using (3.1) (which comes from the skeleton embedding Theorem 2.1; cf. Remark 2.1) as
we have in the proof of Theorem 3.1, we get
BN U, | F) =E(e (g, X[) | Fi) =e (g, pX,).
Combining this with Proposition 4.1 yields

- - @(r,v)
(4.1) lim e™(g, pX) = (g, §) W, :
1=00 p(r,v)
Ps,,,,-almost surely. If the support of g is compactly embedded in D x V, then we can replace
g by g/p, with the assurance that the latter is uniformly bounded away from 0 and co (cf.
Lemma 3.1), and (4.1) gives us

4.2) lim e (g, X,) = (g, §) Wi, 202

=00 p(r,v)
Ps,,,,-almost surely. We can remove the assumption that the support of g is compactly em-
bedded in D x V by appealing to similar reasoning as that of the computation in (3.25).

To complete the proof of almost sure convergence, we need to show that WOTo /p =W,
almost surely. To do so, note that if we take g = ¢ in (4.2), noting that the left-hand side is
equal to lim;—, oo Wi (r, v) and (@, @) = 1, we get the desired result.

Finally, for the convergence in L, (IP), first recall that we already know that E(sup, -, W,z) <
0o by Doob’s L ,-inequality and L;(IP)-boundedness of W (see discussion within proof of
Lemma 3.2). Then, by assumption g < ¢, we similarly have sup,. (g, X;) in L>(IP), hence
we can use the dominated convergence theorem to conclude that we have convergence in
L, (P), as well as almost surely. O

5. Concluding remarks. The proof of Theorem 1.3 above gives a generic approach for
branching particle systems which have an identified skeletal decomposition. Indeed, the rea-
soning is robust and will show in any such situation that the existence of a strong law of large
numbers for the skeleton implies almost immediately a strong law of large numbers for the
original process into which the skeleton is embedded. As an exercise, the reader is encour-
aged to consider the setting of a branching Brownian motion in a strip (cf. [15]). Supposing
a strong law of large numbers exists on the skeleton there (in that setting it is called the “blue
tree”), then we claim that the above reasoning applied verbatim will deliver the strong law of
large numbers for the branching Brownian motion in a strip.

More generally, we claim that, modulo some minor technical modifications (e.g., tak-
ing account of the fact that £ may be unbounded), in the general MBP setting of Theo-
rem 2.1, an analogue of Theorem 1.3 may be reconstructed once the following three impor-
tant components are in hand: (i) An analogue of Theorem 1.1; (ii) A degree of knowledge
concerning the continuity properties of ¢ and p; (iii) the martingale W has the property
Es, [sup,~o W3] < 0o, for all x € E. Indeed, the last of these three may be weakened to y-
integrability of the martingale W, for y € (1, 2), in which case one may replace many of the
estimates in the Borel-Cantelli arguments by ¥ moment estimates instead of second moment
estimates (see, e.g., [14] for comparison).

It is also worth pointing out however that the reasoning in the proof of Theorem 1.3 does
not so obviously work in the setting of superprocesses with a skeletal decomposition. In-
deed a crucial step, which is automatic for branching particle systems, but less obvious for
superprocesses, is the point in the argument at which we claim that U, = ET(U; | Foo). In
the particle system, this statement follows immediately from the fact that F, carries enough
information to construct the marks 4 and | on particles because individual genealogical lines

of descent are identifiable. For superprocesses, it is less clear how to choose the filtration

(F:,t = 0) so that the notion of genealogy or otherwise can be used to claim that X ,T , and

hence U;, is Foo-measurable.
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APPENDIX: GLOSSARY OF SOME COMMONLY USED NOTATION

Notation Description Introduced

(Y, t >0) Solution to mild NTE/NBP expectation semigroup (1.10), (1.3)

D and V Physical and velocity domain §1

og,0f and o Scatter, fission and total cross-sections b. (1.1)

s and Scatter and fission kernels b. (1.1)

Sand F Scatter and fission operators (L.5), (1.6)

Nmax Maximum number of neutrons in a fission event b. (1.9)

As, ¢ and @ Leading eigenvalue, right- and left-eigenfunctions Th. 1.1

(We, t >0) Additive martingale (1.20)

E and } Domain and cemetery state on which P and £ is defined §2.1

Pand P Particle motion semigroup on E and E U {7} resp. §2.1

L Generator associated to P in the setting of NBP (2.40)

(&,Py) Markov process issued from x € E whose semigroup is P 2.1)

(X,Py) General (P, G)-MBP (and NBP) when issued from u §2.1 (and (1.7))
(ur,t>0) Nonlinear semigroup of X (and NBP) (2.3) (and (1.12))
e Lifetime of X 2.6)

s(x) Instantaneous branching rate of X atx € E §2.1

Px Offspring law of X when parent at x € E (and for NBP) a. (2.1) (and (1.9))
G Branching generator (and for NBP) (2.2) (and (1.11))

(i, i=1,...,N)
w(x) (resp. p(x))

(x4, Ph)
W}t >0)
pY and B
&P

b

sh(x)

Position and number of offspring positions of a family in X
Prob. extinction (resp. surivival) when issued from x € E

MBP conditioned to die out and law when issued from
Nonlinear semigroup of X +

Markov semigroup associated to X Von E and E U {#) resp.
Markov process associated to PV issued from x € E
Generator associated to PV in the setting of NBP
Instantaneous branching rate of X VatxeE

Offspring law of XV when parent at x € E

Branching generator of X +

Position and number of offspring positions of a family in X 1

Skeleton MBP (X conditioned to survive) when issued from u

Skeleton X1 dressed with XV trees when issued from 1%
Nonlinear semigroup of X?

Markov semigroup associated to X 1

Markov process associated to P! issued from x € E
Generator associated to P in the setting of NBP
Instantaneous branching rate of X Tand XY atx e E

Joint 4 and | offspring law of X¥ when parent at x € E
Branching generator of X 1

Position and number of offspring positions of a family in Xt
Joint branching generator of 1-type and | -type in X ¢

§2.1
(2.7) (resp. (2.37))

Th. 2.1()
(2.20), (2.18)
Th. 2.1()
(2.14)

(2.41)

(2.16)

(2.17)

(2.15)

Th. 2.1(ii)

Th. 2.1(ii)
Th. 2.1(ii), (2.12)
(2.30), (2.33)
Th. 2.1(ii)
(2.28)

(2.42)

(2.23)

(2.25)

(2.29)

Th. 2.1(ii)
(2.24), 2.27)

Th. = Theorem, a. = above, b. = below.
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