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1. Below is a linear programming problem in standard and canonical form respectively.

(S) :

maximise z(x) = c · x
subject to:
Ax ≤ b

x ≥ 0n

and (C) :

maximise z′(y) = c′ · y
subject to:
A′y = b

y ≥ 0n+m

where x, c ∈ R
n, A ∈ R

m×n, b ∈ R
m, A′ = (A

...Im), Im is the m-dimensional identity
matrix, y ∈ R

m+n and

c′ =

(

c

0m

)

.

Write F (S) for the feasible region of (S) and F (C) for the feasible region of (C).

(a) Suppose that F (C) 6= ∅. Show that if y ∈ F (C) and y is written in the form

y =

(

yo

yB

)

where yo ∈ R
n, then yo ∈ F (S).

Show moreover that

sup
x∈F (S)

z(x) ≥ sup
y∈F (C)

z′(y).

[6]

(b) Now suppose that F (S) 6= ∅. Let x ∈ F (S). Show that there exists u ≥ 0m such
that

(

x

u

)

∈ F (C).

Show moreover that
sup

x∈F (S)
z(x) ≤ sup

y∈F (C)
z′(y).

[6]

(c) Use parts (a) and (b) of the question to deduce that (S) has an optimal solution if and
only if (C) has an optimal solution in which case their objectives are equal. [8]
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2. (a) Consider the (primal) linear programming problem

maximise z = c · x
subject to:
Ax ≤ b

x ≥ 0n

where A ∈ R
m×n, c,x ∈ R

n and b ∈ R
m.

(i) Write down the dual linear programming problem. [2]

(ii) State without proof the Duality Theorem. [2]

(iii) Suppose that the primal has an optimal solution and that the dual problem
has a strictly positive optimal solution. Prove from first principles, making use
of the Duality Theorem, that if x0 is an optimal solution to the primal, then
Ax0 = b. [6]

(b) Use complementary slackness to deduce whether or not (x1, x2, x3, x4, x5) =
(1, 4, 0, 0, 0) is an optimal solution to the following linear programming problem

minimise z = x1 − x3 + 5x4 − x5

subject to:
x1 − x3 + 3x4 − x5 = 1
x2 + x3 + 4x4 + 2x5 = 4
−x4 + 3x5 = 0
x1, . . . , x5 ≥ 0

[5]

(c) Use complementary slackness to deduce whether or not (x1, x2, x3) = (1, 1, 0) is an
optimal solution to the following linear programming problem

maximise z = x2

subject to:
x1 + x2 + x3 ≤ 2
x1 ≤ 1
x1, x2, x3 ≥ 0

[5]
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3. Consider the transportation problem in balanced form

minimise z =
∑m

i=1

∑n
j=1 cijxij

subject to:
∑n

j=1 xij = si i = 1, ...,m
∑m

i=1 xij = dj j = 1, ..., n
xij ≥ 0 ∀i = 1, ...,m and j = 1, ..., n

where cij > 0, si > 0, dj > 0 are given with
∑

i si =
∑

j dj .

(a) Describe the matrix A ∈ R
(m+n)×mn and the vector b if the constraints are written

in the form Ax = b. [3]

(b) Formulate the dual. [3]

(c) Suppose that {xij : i = 1, ...,m and j = 1, ..., n} is a non-degenerate basic feasible
solution to the transportation problem and the variables {ui : i = 1, ...,m} and
{vj : j = 1, ..., n} solve the system of equations u1 = 0 and

ui + vj = cij for pairs (i, j) satisfying xij > 0.

Assume moreover that there exist indices (k, l) such that

ckl − uk − vl < 0.

(i) Explain why {xij : i = 1, ...,m and j = 1, ..., n} is not optimal. [1]

(ii) Prove that introducing the variable xkl into a new basic feasible solution will
reduce the value of the objective. [4]

(d) Solve the transportation problem with supplies (s1, s2, s3) = (8, 11, 16), demands
(d1, d2, d3, d4) = (4, 9, 9, 13) and cost matrix

(cij) =





4 3 3 1
3 2 4 8
5 4 6 3





using the matrix method to produce the first basic feasible solution. [9]
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4. (a) Solve, using the simplex algorithm, the following linear programming problem

maximise z = 2x1 − 3x2 + x3

subject to:
3x1 + 6x2 + x3 ≤ 6
4x1 + 2x2 + x3 ≤ 4
x1 − x2 + x3 ≤ 3
x1, x2, x3 ≥ 0.

[8]

(b) Draw the directed network whose capacities are given by the matrix

















0 8 8 0 4 0
0 0 0 1 0 0
0 0 0 7 0 3
0 1 3 0 0 3 + K

0 0 0 0 0 4
0 0 0 0 0 0

















where K ≥ 0. [1]

(c) Suppose that K = 0. Find the maximum flow through this network from source to
sink. [6]

(d) Find a minimal cut when K = 0 and verify that the capacity across this cut equals
the maximal flow. [2]

(e) Describe how the maximal flow changes as K increases through the non-negative
numbers. [3]
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