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1. Consider the linear programming problem

maximise z = c · x
subject to:
Ax = b

x ≥ 0n

where c ∈ R
n, A ∈ R

m×n and b ∈ R
m are given and x ∈ R

n. You may assume (as usual)
that rank(A) = m and m ≤ n.

Suppose that there exists a basic feasible solution, x, which may be written as

x =

(

0n−m

xB

)

where xB ∈ R
m and xB > 0m. Suppose that the columns of A are partitioned accordingly

with the non-zero entries of x so that A = (A0|B) where A0 ∈ R
m×(n−m) and B ∈ R

m×m.

(a) Explain why the matrix B is invertible. [1]

Now partition c accordingly with the partition of x and write it as

c =

(

c0

cB

)

so that c0 ∈ R
n−m and cB ∈ R

m. For each i = 1, ..., n − m let ei be the unit vector in
R

n−m which has a unit entry in the i-th position and all other entries equal to zero.

(b) Show that x is optimal if and only if

((c0)T − cB
TB−1A0)ei ≤ 0 for all i = 1, ..., n − m.

[8]

(c) Find a basic feasible solution to the following system of constraints

x1 + 2x2 − x3 + x4 = 3
2x1 + 4x2 + x3 + 2x4 = 12
x1 + 4x2 + 2x3 + x4 = 9
x1, x2, x3, x4 ≥ 0.

(Hint: use artificial variables). [11]
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2. Consider the following linear programming problem in standard form,

maximise z = c · x
subject to:
Ax ≤ b

x ≥ 0n

where c ∈ R
n, A ∈ R

m×n and b ∈ R
m are given and x ∈ R

n.

(a) Write down the dual problem to the above primal. [2]

(b) Suppose that x and y are feasible solutions to the primal and dual respectively.
Show that

c · x ≤ b · y.

[2]

(c) Deduce from part (b) that if the feasible region of the primal is not empty but there
is no bounded optimal solution to the primal, then the dual problem has no feasible
solution. [3]

(d) Show that if x and y are feasible solutions to the primal and dual problems
respectively such that c · x = b · y then they must be optimal solutions for the
primal and dual problems respectively. [3]

(e) State without proof the Symmetric Complementary Slackness Theorem. [3]

(f) Consider the linear programming problem

maximise z = 5x1 + 6x2 + 4x3

subject to:
x1 + x2 + x3 ≤ 10
3x1 + 2x2 + 4x3 ≤ 21
3x1 + 2x2 ≤ 15
x1, x2, x3 ≥ 0.

Use the Symmetric Complementary Slackness Theorem to verify that

(x1, x2, x3) =

(

0,
15

2
,
3

2

)

is the optimal solution to the above problem. [7]

MA30087/50087 continued



MA30087/50087 continued 4.

3. (a) Formulate as a linear programming problem the balanced transportation problem of
minimising the total cost of shipping quantities of goods s1, ..., sm from m sources
to n destinations with demands d1, ..., dn where the cost of shipping from location i

to location j is cij. [4]

(b) Formulate its dual. [3]

(c) State without proof the Duality Theorem and use it to prove that a bounded optimal
solution to the balanced transportation problem must exist. [4]

(d) Solve the balanced transportation problem in which the cost matrix (cij) for moving
goods from i = 1, 2, 3 to j = 1, 2, 3 is given by





14 13 6
15 14 8
9 11 2



 ,

the supplies are s1 = 14, s2 = 13, s3 = 6 and the demands are d1 = 7, d2 = 11, d3 =
15. [9]
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4. Consider a capacitated network (N, γ) having a single source s ∈ N and single sink d ∈ N .
Any flow f in the network satisfies the usual conditions

f(i, j) ≤ γ(i, j) ∀i, j ∈ N

f(i, j) = −f(j, i) ∀i, j ∈ N
∑

j∈N f(i, j) =
∑

j∈N f(j, i) ∀i ∈ N\{s, d}.

(a) Define a cut (A,B). [2]

(b) Show that for any flow f

∑

j∈N

f(s, j) ≤ min
all cuts (A,B)

∑

i∈A

∑

j∈B

γ(i, j)

and hence if there exists a flow f ′ and a cut (A′, B′) such that

∑

j∈N

f ′(s, j) =
∑

i∈A′

∑

j∈B′

γ(i, j). (∗)

then f ′ is optimal. [8]

(c) (i) Draw the six node network whose capacities are given in the matrix γ(i, j)
below and find the maximal flow.

















0 10 15 0 0 0
0 0 6 0 8 0
0 6 0 0 11 0
0 0 0 0 2 6
0 8 11 2 0 10
0 0 0 0 0 0

















[5]

(ii) Show that, consistently with part (b), if f ′ is the maximal flow there exists a
cut (A′, B′) such that (∗) holds. [3]

(iii) What would happen to the solution if the entry γ(4, 6) were changed to 7?
Justify carefully your answer. [2]
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