
MA30087/50087: Optimisation methods of
operational research

Brief notes to accompany the lectures.1

Prepared by A. E. Kyprianou2

Department of Mathematical Sciences
The University of Bath

Claverton Down
BA2 7AY

Suggested further reading: Elementary Linear Programming With Ap-
plications, (Second Edition). B. Kolman and R. E. Beck, Academic Press
1980. ISBN 0-12-417910-X. This book goes at rather a slow pace but spells
the theory and practice out very clearly.

Other books:
- Understanding and Using Linear Programming Series: Universitext J. Ma-
toušek, B. Gärtner, Springer (2007).
- B.D. Bunday, Basic Optimization Methods, Hodder Arnold (1984) .
- Bazaran, J.J. Harvis and H.D. Shara’i, Linear Programming and Network
Flows, Wiley (2005).
- V. Chvatal, Linear Programming, Freeman (1983).
- D. G. Luenberger, Linear and Nonlinear Programming, Addison-Wesley
(1984).
- F. S. Hillier, G. J. Lieberman, Introduction to Operations Research. McGraw-
Hill (2001), 7th Edition.
- A. M. Glicksman, An Introduction to Linear Programming and the Theory
of Games. Dover.

A very interesting source of material: The internet - try googling ‘linear
programming’ and look for lecture notes given at other universities!!

1Corrections are strongly encouraged to be sent to a.kyprianou@bath.ac.uk
2Also partly based on the older notes of M.E. Brigden. Thanks also to M.E. Brigden for

supplying me with a comprehensive set of notes with additional examples and exercises.

1

Contents

1 Introduction: aims of the course 4

2 The linear programming problem 5
2.1 A Simple Example . 5
2.2 Another example . 5
2.3 A third example . 6
2.4 General statement of the linear programming problem 7
2.5 Slack variables and canonical form 8

3 Geometrical considerations 11
3.1 Constraints, objective functions and hyperplanes 11
3.2 Feasible solutions and convexity 18
3.3 Extreme points . 20

4 The fundamental theorem of linear programming 21
4.1 Basic solutions . 21
4.2 The fundamental theorem . 23

5 The simplex method 26
5.1 Simplex algorithm in action: example 1 26
5.2 Simplex algorithm in action: example 2 30
5.3 Simplex algorithm in action: example 3 32
5.4 The theory behind the simplex method 34
5.5 Degeneracy and cycling . 36
5.6 The two-phase method . 37
5.7 An example of the two-phase method 39

6 Duality 42
6.1 Introduction . 42
6.2 Symmetric dual . 43
6.3 The asymmetric dual . 44
6.4 Primal to the Dual via the diet problem 45
6.5 The Duality Theorem . 46
6.6 Complementary slackness . 54

2

7 The transportation problem 59
7.1 Introduction . 59
7.2 The canonical form . 59
7.3 Dual of the transportation problem 60
7.4 Properties of the solution to the transportation problem . . . 63
7.5 Solving the transportation problem 65
7.6 Initial feasible solutions . 67
7.7 A worked example . 68
7.8 Improvement at each iteration 70
7.9 Degeneracy . 71
7.10 Pricing out . 73

8 Optimisation over Networks 77
8.1 Capacitated Networks . 77
8.2 Flows in Networks . 78
8.3 Maximal flow problem and labelling algorithm 79
8.4 A worked example . 81
8.5 Maximal flow and minimal cuts 83
8.6 Example revisited . 86
8.7 A second worked example . 87

3

1 Introduction: aims of the course

The principle aim of this course will be to cover the basic ideas and techniques
which lie behind modern-day linear programming. One may think of the
latter as a field of applied mathematics which concerns itself with resource
allocation making use of classical elements of Linear Algebra. Specifically
the reader, who should be well versed in an understanding of basic Linear
Algebra, will see that many of the results and techniques presented boil down
to an application of concepts such as

linear independence and matrix inversion,

convexity in Euclidian spaces and

geometric interpretation of linear equations.

The course is divided into essentially two parts. First we consider the clas-
sical linear programming problem and show that there exists a generic
method for analysing such problems with the so called the simplex method.
In the second part of the course we look at a more complicated class of lin-
ear programming problems which come under the heading of the transport
problem and optimisation on networks. We consider methods of solu-
tion to the latter class of problems which can be thought of as variants of
the simplex method.

Some of the proofs in this course are rather lengthy but none are particu-
larly demanding in view of the volume of mathematics that 3rd year students
in their first semester will have seen thus far. Although you may be expecting
this course to be more ‘applied’ and therfore ‘easier’, please remember that
even applications require some degree of intellectual justification for them to
be of any value. Therefore the algorithms alone will be meaningless to you
unless you make the effort to understand the mathematics behind them.

4

2 The linear programming problem

2.1 A Simple Example

Let us begin by with an example. Betta Machine Products plc makes two
different products. Each requires casting, machining and assembly time.
Products are made at a fixed cost and likewise sold at a fixed cost. This
information is given in the table below.

Casting Machining Assembly Cost Selling Price
Product 1 5 5 1 25 40
Product 2 8 4 3 30 50

Times are given in minutes per unit. Costs and Prices are in pounds. Each
week there are 16,000 mins of casting time, 14,000 mins of machining time
and 5,000 mins of assembly time available and there is no limit to numbers
that can be sold. The objective of this company is to maximise the
difference between total revenue and total cost.

We may now formulate this optimisation problem in a purely mathemat-
ical context. Define x1 units of product 1 and x2 units of product 2 each
week. Our objective is to:

maximise z = 15x1 + 20x2

subject to:
5x1 + 8x2 ≤ 16, 000
5x1 + 4x2 ≤ 14, 000
x1 + 3x2 ≤ 5, 000
x1 ≥ 0, x2 ≥ 0.

This is a linear programming problem with two variables and three con-
straints. (Strictly speaking there are in fact five constraints but, as we shall
shortly see, positivity of variables is a usual requirement). Many practical
problems have literally thousands of variables and constraints.

2.2 Another example

We wish to feed cattle, meeting nutritional requirements at minimum cost.
A farmer has two feeds A and B at her disposal. There are certain nutritional
requirements which stipulate that cattle should receive minimum quantities

5

of carbohydrate, vitamins and protein. The table below gives the number of
units per kilo of the nutrients.

Food Carbo. Vit. Pro. Cost (pence/kilo)
A 10 2 2 40
B 5 3 8 80

Daily Requirement 10 3 4

The mathematical formulation of the above problem is as follows. Use x1

kilos of food A and x2 kilos of B per day. Our objective is to:

minimise z = 40x1 + 80x2

subject to:
10x1 + 5x2 ≥ 10
2x1 + 3x2 ≥ 3
2x1 + 8x2 ≥ 4
x1, x2 ≥ 0.

This is an example of a diet problem. Note that where as in the previous
example we were asked to maximise a linear function, in this problem we are
asked to minimise a linear function. None the less, as we see in the next
section, both problems fit into the same framework.

2.3 A third example

The R.H.Lawn Products Co. has available 80 metric tons of nitrate and
50 metric tons of phosphate to use in producing its three types of fertiliser
during the coming week. The mixture ratios and profit figures are given in
the table below. Determine how the current inventory should be used to
maximise profit.

Metric tons / 1000 bags Profit
Nitrate Phosphate (dollars / 1000 bags)

Regular lawn 4 2 300
Super lawn 4 3 500

Garden 2 2 400

6

The above problem is again a maximisation problem. In this case we let
x1, x2, x3 denote the quantities of the number of bags of the three products
in the left hand column of the given table respectively. Our objective is to:

maximise z = 300x1 + 500x2 + 400x3

subject to:
4x1 + 4x2 + 2x3 ≤ 80
2x1 + 3x2 + 2x3 ≤ 50
x1, x2, x3 ≥ 0.

Thus we reach a linear programming problem with three variables and
two constraints.

2.4 General statement of the linear programming prob-
lem

In general we may identify a linear programming problem to take the follow-
ing standard form. Suppose that A is a matrix belonging to Rm×n where
m,n ≥ 1, b is a vector belonging to Rm and c is a vector belonging to Rn

and 0n is an n-dimensional vector filled with zeros. Our objective is to find
a vector x ∈ Rn that will:

maximise z := c · x
subject to:
Ax ≤ b
x ≥ 0n.

(1)

This is a compact way of saying:

maximise z := c1x1 + c2x2 + · · ·+ cnxn

subject to:
A11x1 + A12x2 · · ·A1nxn ≤ b1

A21x1 + A22x2 · · ·A2nxn ≤ b2
...
Am1x1 + Am2x2 · · ·Amnxn ≤ bm

xj ≥ 0, j = 1, 2, ..., n.

Notes.

1. In general there are no restrictions on the dimension of the matrix A
so that either m ≤ n or n ≤ m.

7

2. A ‘minimisation’ problem (i.e. a problem which requires one to min-
imise a linear function of the form c · x) can easily be converted to a
maximisation problem by changing c to −c.

3. A problem which appears to require Ax ≥ b (i.e. the inequality goes
the wrong way) can reduced to the standard form by writing it in the
form −Ax ≤ −b.

4. A problem which appears to require that Ax = b (i.e. an equality in-
stead of an inequality) can be re-expressed in terms of the requirements
that Ax ≤ b and −Ax ≤ −b. However, as we shall see later when we
define the canonical form of a linear programming problem, having
an equality in place of an inequality is an advantage.

5. Sometimes one may find that instead of x ≥ 0, one has unconstrained
values for the vector x. In that case, one may always write x = x+ −
x− where x± ≥ 0 and then one may re-write the conditions on x as
conditions on the concatenation of x+ and x−.

We conclude this section with a definition of two types of solutions.

Definition 2.1 Consider the standard form of the linear programming prob-
lem (2). We say that x ∈ Rn is a feasible solution if it respects all the
constraints of the specified problem. If x is feasible and maximises the value of
z then we call it an optimal solution. (We will also refer to it on occasion
as an optimal feasible solution3).

Note, we have no reason to believe at this point in time that any given
linear programming problem has a feasible solution, let alone an optimal
feasible solution. Moreover, even if it does have an optimal solution, then it
may not necessarily be unique.

2.5 Slack variables and canonical form

If instead of Ax ≤ b we have Ax = b in the formulation of the linear
programming problem then we say that it is in canonical form. In other

3Sometimes we will drop the word ‘feasible’ as clearly an optimal solution must neces-
sarily be feasible!

8

words, a linear programming problem in canonical form requires one to find
a vector x ∈ Rn that will:

maximise z := c · x
subject to:
Ax = b
x ≥ 0n.

(2)

The way to convert a problem from standard form into canonical form
is to introduce slack variables. That is to say, if A is a matrix belonging
to Am×n then we introduce m new variables, say u1, ..., um so that the i-th
constraint becomes

Ai1x1 + · · ·+ Ainxn + ui = bi

for i = 1, ..., m. If we now introduce the new vector belonging to Rn+m which
is the concatenation of x and uT = (u1, ..., um), say

x′ =
(

x
u

)
.

Similarly we introduce the vector c′ which is the concatenation of c and 0m,

c′ =
(

c
0m

)

and define a new Rm×(m+n) matrix

A′ = (A|Im)

where Im is the m-dimensional identity matrix, then the linear programming
problem in standard form can be re-expressed as a linear programming prob-
lem in linear form by identifying it as having objective to find a vector x′ in
Rn+m that will:

maximise z′ := c′ · x′
subject to:
A′x′ = b
x′ ≥ 0m+n.

As with the standard form of the linear programming problem, we call a
feasible solution for the canonical form to be any solution which satisfies

9

Ax = b and x ≥ 0n. Further, an optimal solution for the canonical form
is any feasible solution which optimises the value of objective function.

An important observation is that if one is presented with a linear program-
ming problem in standard form, solving the associated linear programming
problem in canonical form will produce the same optimal value of the ob-
jective. Further, restricting the optimal solution of the canonical problem
to the original variables will also give an optimal solution to the problem
in standard form. In principle this is all intuitively obvious, however for a
proof, see the accompanying exercise sheet.

Let us conclude this chapter with a note on notation. In the above
discussion on the introduction of slack variables, we started with n variables
and m constraints which meant that we needed to introduce m slack variables.
Hence we ended up with a matrix of dimension m× (m+n). However, more
often than not, when introducing a linear programming problem already in
canonical form for the purpose of theoretical discussion, we shall write the
constraints simply as Ax = b where A is a matrix of dimension m×n. That
is to say, we shall not bother indicating the number of slack variables that
have been introduced (if al all) and use m and n as generic terms for the
dimensions of the matrix A as it appears in the given linear programming
problem.

10

3 Geometrical considerations

3.1 Constraints, objective functions and hyperplanes

There is a very natural geometrical interpretation of a system of linear equa-
tions which are presented in the form Ax ≤ b where A is a prespecified
Rm×n matrix, x is an Rn vector and b is a prespecified Rm vector. Suppose
for i = 1, ..., m we write ri as the vector corresponding to the i-th row of A
then the system Ax ≤ b may otherwise be written

ri · x ≤ bi for i = 1, ..., m

where bi is the i-th entry of b.
At this point it is instructive to recall that in n-dimensional Euclidian

space one may describe any hyperplane in the the form

n · x = d

where n is a vector of unit length orthogonal to the hyperplane and d is the
orthogonal distance of the hyperplane from the origin. Indeed the intuition
behind this formula is that any vector x which belongs to such a hyperplane
can be decomposed into the sum of two vectors. The first vector moves from
the origin onto the hyperplane at the closest position to the origin and the
second vector moves from the aforementioned point on the hyperplane to x.
That is to say

x = dn + y

where obviously the first vector on the right hand side is the shortest straight
line from the origin to the hyperplane and the vector y is the relative posi-
tion of x to the closest point on the hyperplane to the origin and must be
orthogonal to n. See Figure 1.

Hence n · x = dn · n + n · y = d + 0. Note in particular that when each
of the vectors is taken in two dimensional Euclidian space then

n · x =

(
n1

n2

)
·
(

x1

x2

)
= n1x1 + x2x2 = d

which is the equation of a line. If we are working in three-dimensional Eu-
clidian space then

n · x =




n1

n2

n3


 ·




x1

x2

x3


 = n1x1 + n2x2 + n3x3 = d

11

y

x

n

d

Figure 1: A visial representation of the plane n · x = d.

which is the equation of a plane.
If instead we now consider the equation

n · x ≤ d

then in light of the above intuitive explanation one sees that the latter equa-
tion describes a closed half space which lies ‘to one side’ of the hyperplane
n ·x = d. Indeed, if a vector x satisfies x ·n < d then we can imagine that it
lies on another hyperplane with the same normal n which is at some other
orthogonal distance, say D, from the origin; i.e. n · x = D. Then if, for
example, d > 0 and D < d then x lies on a hyperplane parallel to n · x = d,
which is contained in the same half-space as the origin is and which is an
orthogonal distance D from the origin.

Returning to the linear programming problem in standard form (1) we
now see that if the vector x satisfies Ax ≤ b then it must lie within the
intersection of a number of closed half spaces whose boundaries are described
by the hyperplanes

ri · x ≤ bi for i = 1, ..., m.

Indeed, even the additional positivity constraint x ≥ 0n is also a requirement
that x lies to one side of a hyperplane. It says that x lies in the positive

12

orthant of Rn which is a quick way of saying that




−1
0
...
0


·




x1

x2
...

xn


 ≤ 0,




0
−1
...
0


·




x1

x2
...

xn


 ≤ 0, · · · and




0
0
...
−1


·




x1

x2
...

xn


 ≤ 0.

This interpretation also has meaning when we look at the objective func-
tion of a linear programming problem too. Indeed in the standard form we
are required to maximise the function c · x. If we write

z = c · x

then we have the usual constraints Ax ≤ b and x ≥ 0n then are required to:
find a vector x which belongs to a hyperplane which is orthogonal to c and
whose distance from the origin is as large as as possible4 so that x is still
contained in the region which lies in the intersection of the closed half spaces
specified by the constraints. We call the hyperplane given by the objective
equation z = c · x the objective hyperplane or objective function.

To some extent it is easier to visualise what is being said above with a
diagram. This can be done however only in dimensions 2 and 3 for obvious
reasons.5 Below are several examples of systems of constraints in either
two or three variables together with a plot of the region which lies in the
intersection of the closed half spaces specified by the constraints.

Example 3.1 This is a system of constraints in two dimensions,

x1 + x2 ≤ 5
2x1 + x2 ≤ 8
x1 ≥ 0, x2 ≥ 0.

As mentioned earlier, a hyperplane in two dimensions is nothing more
than a line. If we take the first constraint and change the inequality to an
equality then it reads

x2 = 5− x1.

4Even if this is negative.
5I have not yet found a way of drawing diagrams in 4 or more dimensional space which

can be put effectively on paper.

13

2 4 6

4

2

6

8

x2

x1

x1 + x2 = 5

2x1 + x2 = 8

Figure 2: The region described by the equations x1 + x2 ≤ 5, 2x1 + x2 ≤ 8
and x1, x2 ≥ 0.

That is to say it describes the unique line which passes through the points
(x1, x2) = (0, 5) and (x1, x2) = (5, 0) (and therefore has gradient −1). Or,
said another way, it describes the line which is an orthogonal distance 5/

√
2

for the origin with orthogonal unit vector

(1√
2

1√
2
.

)

When we put the inequality back in so that it reads

x2 ≤ 5− x1

then it describes all pairs (x1, x2) which are ‘below’ the line x2 = 5 − x1.
A similar analysis of the second constraint requires us to consider all points
which are ‘below’ the points described by the line x2 = 8 − 2x1. Finally
taking account of the fact that both variables must be positive, we should
only consider points which are ‘to the right’ of the line described by the
vertical axis x1 = 0 and ‘above’ the line described by the horizontal axis
x2 = 0. We thus arrive at the representation in Figure 2 for points satisfying
the given constraints (shaded in grey).

14

−3x1 + 2x2 = 6

x1 + x2 = 3
2 4

2

4

x1

x2

Figure 3: The region described by the equations x1 +x2 ≥ 3, −3x1 +2x2 ≤ 6
and x1, x2 ≥ 0.

Example 3.2 A similar analysis of the constraints

x1 + x2 ≥ 3
−3x1 + 2x2 ≤ 6
x1 ≥ 0, x2 ≥ 0

yields Figure 3 for the points satisfying the constraints (shaded in grey).

Example 3.3 Now consider the following system of constraints

6x1 + 4x2 + 9x3 ≤ 36
2x1 + 5x2 + 4x3 ≤ 20
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Take for example the first constraint. Changing the inequality to an equality
it may be written in the form 6x1 + 4x2 + 9x3 = 36 or equivalently in the
form 


6√
133
4√
133
9√
133


 ·




x1

x2

x3


 =

36√
133

suggesting that it is a plane whose orthogonal distance from the origin is
36/
√

133 which has a unit normal vector equal to the first vector in the

15

inner product above. It might seem difficult to imagine how one can easily
draw this plane, however looking again at the equation of this plane in the
form 6x1 + 4x2 + 9x3 = 36 one easily sees that it passes through the points
(x1, x2, x3) = (6, 0, 0), (0, 9, 0) and (0, 0, 4) which is enough information to see
how this plane appears in the positive orthant x1, x2, x3 ≥ 0. This appears
as one of the planes in Figure 4. Returning to the original constraint 6x1 +
4x2 + 9x3 ≤ 36, we are required to look for points (x1, x2, x3) which are on
the ‘same side’ of the plane 6x1 + 4x2 + 9x3 = 36 as the origin is.

The other plane in the diagram in Figure 4 represents the second con-
straint. Note that, for example, the constraint x1 ≥ 0 corresponds to the
requirement that points (x1, x2, x3) lie ‘on the positive side’ of the (x2, x3)
plane. All points satisfying the constraints are again shaded in grey.

9

x1

x2

x3

5
4

6

10

Figure 4: The region described by the equations 6x1 + 4x2 + 9x3 ≤ 36,
2x1 + 5x2 + 4x2 ≤ 20 and x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Example 3.4 In our final example we leave the reader to examine the fol-
lowing system of equations,

x1 + x2 + x3 ≤ 1
2x1 + 5x2 + 3x2 ≤ 4
4x1 + x2 + 3x3 ≤ 2
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

We leave it as an exercise to associate them with the sketch in Figure 5.

16

x1

x3

x2

Figure 5: The region described by the equations x1 + x2 + x3 ≤ 1, 2x1 +
5x2 + 3x2 ≤ 4, 4x1 + x2 + 3x3 ≤ 2 and x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Examples 3.1 and 3.2 examples above in the context of a linear program-
ming problem, would require an objective function of the form z = c1x1+c2x2.
For a fixed objective value z we thus have an equation of a straight line which
passes through the points (x1, x2) = (0, z/c2) and (z/c1, 0). Maximising the
value of z constitutes increasing the value of z, thereby moving the line in
the direction of the vector (

c1

c2,

)

until the value z∗ for which there is no intersection between the line and
region described by the constraints for all z > z∗.

The second two examples in the context of a linear programming problem
would require an objective function taking the form z = c1x1 + c2x2 + c3x3

which is the equation of a plane. Analogously to the two dimensional case,
maximising the value of z requires us to move the plane in the direction of
its orthogonal such that z increases until we reach a value z∗ beyond which
there is no longer contact with the region described by the constraints.

How should one understand the canonical form of the linear program-
ming problem in the above geometrical context? The introduction of slack

17

variables increases the dimension of the problem and one looks for a vector x
which solves a system of m linear equations in the positive orthant. There-
fore any solution, written in terms of the original and slack variables, will
lie at the intersection of the m specified hyperplanes. In general as there
are less equations than variables, in dimension three and above, there must
be an infinite number of intersection points whose intersection with the pos-
itive orthant describe the feasible region. This is difficult to see in higher
dimensions, but note that two planes in three dimensional space with dis-
tinct normal vectors intersect on a line; that is to say common solutions to
both planes are points on a line.

Alternatively, since an equation of the form r · x = d may be written as
the two constraints r ·x ≤ d and r ·x ≥ d, then the feasible region of a linear
programming problem in canonical form is still the intersection of a finite
number of closed half spaces. There is a special definition for the latter.

Definition 3.5 The intersection of a finite number of closed half spaces is
a closed polyhedron.

Note that the intersection of a finite number of closed spaces is still closed6

which qualifies the use of the word ‘closed’ in the definition.

3.2 Feasible solutions and convexity

For linear programming problems in either canonical or standard form, let
us define F , the feasible domain, to be the set of feasible solutions. From
the previous section we argued that F consists of the intersection of a finite
number of closed half spaces and hence constitutes a closed polyhedron.

In this section our objective is to give a mathematical description of the
set F . Indeed we shall see that F is a closed convex polyhedron. To this
end, let us recall the notion of a convex set in Rn.

Definition 3.6 A non-empty set S in Rn is a convex set if for all x1,x2 ∈ S
and λ ∈ (0, 1) it holds that

λx1 + (1− λ)x2 ∈ S.

6Suppose that C1, ..., Cn are closed spaces. If {xn : n ≥ 1} is a sequence of points in⋂n
i=1 Ci with an accumulation point, say x. Then for each i = 1, ..., n we have {xn : n ≥ 1}

is a sequence of points in Ci. Since, for each i = 1, ..., n, we are given that Ci is closed
then it follows that x ∈ Ci. Hence x ∈ ⋂n

i=1 Ci and thus
⋂n

i=1 Ci is also closed.

18

Roughly speaking what this definition means that S is a convex set if, when
choosing any two points in that set, the line joining those points is also
contained in S. Here are some relevant examples of convex sets.

Example 3.7 Suppose that for some given vector n in Rn and constant d ≥
0, S = {x ∈ Rn : n · x = d} (i.e. S is a hyperplane in Rn). Then S is a
convex set. To see why note that if x1,x2 ∈ S then since for λ ∈ (0, 1)

n · (λx1 + (1− λ)x2) = λn · x1 + (1− λ)n · x2

= λd + (1− λ)d

= d

it follows that λx1 + (1− λ)x2 ∈ S.

Example 3.8 Suppose now that we take S = {x ∈ Rn : n · x ≤ d} where
the quantities n and d are as in the previous example (i.e. S is the closed
half space with boundary given by the hyperplane in the previous example).
Then again S is convex. In this case the proof of this fact is almost the same
as before. Indeed as before we may write

n · (λx1 + (1− λ)x2) = λn · x1 + (1− λ)n · x2

≤ λd + (1− λ)d

= d

showing that λx1 + (1− λ)x2 ∈ S whenever x1,x2 ∈ S and λ ∈ (0, 1).

Example 3.9 Suppose that S1, ..., Sn are convex sets in Rm such that
⋂m

i=1 Si 6=
∅. Then

⋂m
i=1 Si is also a convex set. In this case, one supposes that

x1,x2 ∈
⋂n

i=1 Si then in particular x1,x2 ∈ Si for each i = 1, 2, ...,m and
hence by convexity of each of the latter sets, λx1 + (1 − λ)x2 ∈ Si for any
λ ∈ (0, 1) and i = 1, 2, ..., m. Consequently, λx1 + (1 − λ)x2 ∈

⋂n
i=1 Si as

required.

The last three examples can be used to prove in particular the following
result.

Theorem 3.10 Consider either the standard or the canonical form of the
linear programming problem, (1) and (2). Then the set F of feasible solutions
is a closed convex polyhedron.

Proof. By the examples above and the earlier observation that F is
the intersection of a finite number closed half spaces, the statement of the
theorem follows.

19

3.3 Extreme points

Let us conclude this chapter on the geometry of the linear programming
problem by hinting at where we should expect to find optimal solutions in
the feasible region F .

Definition 3.11 Given a non-empty convex set S, we say that x ∈ S is an
extreme point in S if x is not an interior point of any line segment in S.
That is to say, there exists no two vectors x1,x2 ∈ S and λ ∈ (0, 1) such that

x = λx1 + (1− λ)x2.

A good example to visualise extreme points is to think of the vertices of
any Platonic Solid or indeed any n-dimensional simplex7. The following
result is intuitively obvious and we exclude its proof.

Lemma 3.12 Any closed convex polyhedron generated by the intersection of
a finite number of half spaces (and hence any feasible region) has at most a
finite number of extreme points.

The importance of extreme points is that one should look for optimal solu-
tions to linear programming problems by considering the extreme points of
the feasible region as the following theorem confirms. The proof is omitted.

Theorem 3.13 Consider a linear programming problem either in standard
or canonical form. Let F be the space of feasible solutions. Then one of the
following three scenarios necessarily holds.

(i) If F 6= ∅ and is bounded8 and there is an optimal solution which occurs
at an extreme point.

(ii) If F 6= ∅ and not bounded, but an optimal solution exists which occurs
at an extreme point.

(iii) There exists no optimal solution in which case F is either unbounded
or F = ∅.

7Look them up on Google!
8One may understand bounded in this context to mean that F ⊂ B(r) where B(r) =

{x ∈ Rn : ||x|| < r} for some 0 < r < ∞. In other words, there exists a big enough
hyper-sphere of radius r, centred at the origin such that F fits inside this sphere.

20

4 The fundamental theorem of linear program-

ming

4.1 Basic solutions

Recall that, by the introduction of slack variables, the linear programming
problem can be expressed in canonical form. That is to say one has a given
matrix A ∈ Rm×n and given vector b ∈ Rm and the objective is to find a
vector x ∈ Rn that will:

maximise z := c · x
subject to:
Ax = b
x ≥ 0n.

(3)

Let us assume that c1, ..., cn are the columns of A so that we may write the
constraint Ax = b as

x1c1 + · · ·+ xncn = b

where xi is the i-th entry in the vector x.
Note we may assume without loss of generality that m ≤ n and

that rank(A) = m. Otherwise when m > n there are more linear equations
than unknowns and by a series of linear row operations, one may use row
reduction9 to decrease the constraints Ax = b to a system of linear equa-
tions whose rank can be no greater than the number of unknowns. Also if
rank(A) < m then one may again reduce the constraints to a linear system
where the rank is equal to the number of equations.

The assumption that rank(A) = m implies that there are precisely m
columns of A which are linearly independent. For the sake of notational
convenience it will be henceforth assumed without loss of generality
that the last m columns of A are the ones which are linearly independent.
Under such circumstances we may write A = (A◦|B) where B ∈ Rm×m and
rank(B) = m so that in particular B is invertible.

Definition 4.1 Consider the canonical form of the linear programming prob-
lem (3). A basic solution to Ax = b is a vector x such that if I = {i : xi 6=

9Row reduction means taking linear combinations of the rows of A to produce as many
rows of zeros as possible. Recall that the latter is only possible if there is linear dependence
between rows.

21

0} (that is to say the set of indices for which x has a non-zero entry) then
the columns of A corresponding to the index set I are linearly independent.
Note that necessarily |I| ≤ rank(A). If x is a basic solution and x ≥ 0n then
we say that x is a basic feasible solution.

Another way of understanding what a basic solution is as follows. Suppose
we decompose the matrix A = (A◦|B) as above and consider solutions of the
form

x =

(
0n−m

xB

)
(4)

where xB ∈ Rm. In particular BxB = b and since B is invertible, then xB

is uniquely identifiable as xB = B−1b. Here x is a basic solution.
In the next theorem it is proved that basic solutions are necessarily ex-

treme points. This conclusion suggests that since optimal solutions occur
at extreme points, one may try to find an optimal solution in the
class of basic solutions. The reader should naturally be concerned that
the optimal solution may of course occur at an extreme point which is not a
basic solution. However we shall dispel this concern in the next section. For
now we conclude this section with the aforementioned theorem.

Theorem 4.2 Suppose that x is a basic feasible solution of the linear pro-
gramming problem (3). Then x is an extreme point of the feasible region.

Proof. Without loss of generality we may arrange the given basic solution
in the form (4). Let us assume for contradiction that x is not an extreme
point so that we may write it as

x = λv + (1− λ)w

where λ ∈ (0, 1) and v and w belong to the feasible region of the linear
programming problem (3). Let us write in the usual way vj and wj for the
j-th elements of the vectors v and w. Since x1, .., xn−m are all equal to zero,
it follows that for j = 1, ..., n−m,

0 = λvj + (1− λ)wj.

Since λ ∈ (0, 1) and vj, wj ≥ 0 by assumption, it follows that vj = wj = 0
for j = 1, ..., n−m.

22

Recalling that v is a feasible solution, we may now write it in the form

v =

(
0n−m

vB

)

where BvB = b. Consequently we have

0m = BvB −BxB = (vn−m+1 − xn−m+1)cn−m+1 + · · ·+ (vn − xn)cn

and hence by the linear independence of cn−m+1, ..., cn it follows that vj = xj

for j = n−m+1, ..., n. However this contradicts the assumption that x was
not an extreme point (i.e. the assumption that λ ∈ (0, 1)).

4.2 The fundamental theorem

Thus far we have seen that a bounded optimal solution, when it exists, can
always be found at an extreme point and that all basic solutions are extreme
points. This makes the class of basic solutions a good class in which to look
for solutions. As mentioned earlier however, one may worry that the optimal
solution may be an extreme point (or indeed any other point) which cannot
be expressed as a basic solution. The fundamental theorem dismays this
concern.

Theorem 4.3 Consider the linear programming problem in canonical form
(3). Then if there is a finite optimal feasible solution then there is an optimal
basic feasible solution. (In other words, by Theorem 4.2, an extreme point
corresponding to a finite optimal solution can be chosen to be a basic feasible
solution).

Proof. Suppose that x is an optimal feasible solution and without loss
of generality we may write it in the form

x =

(
0n−k

y

)

where n− k is the number of zeros entries in x and y > 0k. Next partition
A = (H|G) where the columns of H are equal to the first n− k columns of
A and the columns of G are equal to the last k columns of A. Consequently
we have

Ax = Gy = b.

23

If it so happens that the columns of G are linearly independent (in which
case it must necessarily be the case that k ≤ m)10 and the proof is complete.

Assume then that the columns of G are not linearly independent so that

α1cn−k+1 + · · ·+ αkcn = 0m (5)

implies that for at least one j = 1, ..., k, we have αj 6= 0. Without loss of
generality we can assume that αj > 0.11 Now writing the equation Gy = b
in the form

y1cn−k+1 + · · · ykcn = b,

since (5) holds, we have for any ε > 0 that

(y1 − εα1)cn−k+1 + · · ·+ (yk − εαk)ck = b.

Now let us define a new vector

x′ε = x− εα

where the first n − k entries of α are zero and the remaining k entries are
equal to α1, ..., αk respectively. It follows that Ax′ε = b.

Note that for ε sufficiently small, it can be arranged that all the entries
of x′ε are positive. Indeed let

δ1 = max
αj<0

yj

αj

or −∞ if all αj ≥ 0

δ2 = min
αj>0

yj

αj

and note that it is always true that δ1 < 0 < δ2 and that x′ε ≥ 0 for all
ε ∈ [δ1, δ2]. In other words, x′ε ≥ 0 is a feasible solution for ε ∈ [δ1, δ2]. On
account of the optimality of x we have for ε ∈ [δ1, δ2] that

c · x ≥ c · x′ε = c · x− εc · α.

In other words
εc · α ≥ 0

10Otherwise one would have k > m vectors in Rm which necessarily must have linear
dependency.

11Note that at least one of the αj 6= 0. If that αj < 0 then multiplying (5) by −1 then
relabelling each αi by −αi we have the existence of at least one αj > 0.

24

for all ε ∈ [δ1, δ2]. This can only happen if c · α = 0 and so for ε ∈ [δ1, δ2] we
have shown that x′ε is also an optimal feasible solution! Now choose ε = δ2

and note that by doing so, the number of zero terms in the vector x′δ2 has
increased by at least one over and above the number of zeros in x.

We may now take return to the very beginning of this proof working
with x′δ2 instead of x and apply the same reasoning to deduce that either
we have found an optimal basic feasible solution, or we can find another
optimal feasible solution which has at least one more zero in its entries. In
the latter case, an iterative procedure will eventually bring us to an optimal
basic feasible solution.

Let us conclude this chapter by reiterating the main drive of the discus-
sion.

For a given linear programming problem, an optimal solution (if it exists)
will occur at an extreme point and by the fundamental theorem of linear
programming this extreme point may be chosen to correspond to a basic
feasible solution. We therefore need a mechanism which looks systematically
through the basic feasible solutions in order to identify one which gives an
optimal value.

Thus enter the simplex method!

25

5 The simplex method

In 1947 George Dantzig carried out an analysis of military programming
and realised that many of the activities of large organisations could be viewed
as linear programming problems. During a major international economic
conference in 1949, Dantzig presented a method of solution for these problems
which became known as the simplex method. It also became even clearer
at the conference how wide were the possible applications.

The simplex method is an iterative procedure for solving high-dimensional12

linear programming problems. The simplex method gives an algorithm by
which one may search for an optimal basic feasible solution by proceeding
from a vertex of the feasible region to an adjacent vertex, moving in a direc-
tion that improves the objective function.

The algorithm is quite straight-forward, but it is quite difficult to de-
scribe in a precise way, mainly because of the notation required to cope with
different possible choices of basic feasible solutions and how to move between
them.

We shall present the algorithm in this chapter, initially with three con-
crete examples, followed by some theoretical considerations for a general
set-up and conclude with some discussion on degenerate solutions and extra
care that one needs to take in certain situations.

5.1 Simplex algorithm in action: example 1

Let us consider the following explicit problem. Our objective is to:

maximise z = 5x1 + 6x2 + 4x3

subject to:
x1 + x2 + x3 ≤ 10
3x1 + 2x2 + 4x3 ≤ 21
3x1 + 2x2 ≤ 15
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

12High dimensional essentially means of dimension three or above since these problems
cannot be illustrated graphically.

26

Step 1. Let us introduce slack variables u1, u2, u3 allowing us to replace
inequalities by equalities so that the constraints become

x1 + x2 + x3 +u1 = 10
3x1 + 2x2 + 4x3 +u2 = 21
3x1 + 2x2 +u3 = 15

and the new variables u1 ≥ 0, u2 ≥ 0, u3 ≥ 0. We may now take as our first
basic feasible solution

(x1, x2, x3, u1, u2, u3) = (0, 0, 0, 10, 21, 15).

Take a moment and look back at the previous chapter to see why this is a
basic feasible solution! Note that with this choice of basic feasible solution,
our objective function z = 0. The reason for this is that our basic feasible
solution has not included any of the variables x1, x2, x3 and clearly including
at least one of these variables into the basic feasible solution would increase
the objective function from it current value.

Step 2. Recall the conclusion of the previous chapter, that it suffices to
look through all the basic feasible solutions in order to find the solution to
a linear programming problem when it is finite. Further from the previous
step, we can already see that moving to another basic feasible solution which
includes one of the variables x1, x2, x3 would increase the objective function.
Keeping the constraints tight, the simplest thing to do is consider introducing
the variable x1 into the basis and removing one of the basis variables u1, u2

or u3. From the three main constraints, our options are:

(i) x1 : 0→ 10 and u1 : 10→ 0
or (ii) x1 : 0→ 7 and u2 : 21→ 0

or (iii) x1 : 0→ 5 and u3 : 15→ 0.

Whichever of these options we choose, we must respect the feasibility of the
solution. Below we see what the values of the basis variables would become
in the three scenarios above:

(i) (x1, x2, x3, u1, u2, u3) = (10, 0, 0, 0,−9,−15)
(ii) (x1, x2, x3, u1, u2, u3) = (7, 0, 0, 3, 0,−6)
(iii) (x1, x2, x3, u1, u2, u3) = (5, 0, 0, 5, 6, 0).

Clearly only the third case respects the constraints of non-negativity and so
we move to a new basis containing the variables (x1, u1, u2).

27

Step 3. The next step is to reformulate the linear programming problem
in terms of the new basis variables so that they appear only once in each
constraint and have unit coefficients. A little linear algebra13 gives us the
following

1
3
x2 +x3 +u1 −1

3
u3 = 5

4x3 +u2 −u3 = 6
x1 +2

3
x2

1
3
u3 = 5.

Further, by writing the objective function in terms of the non-basic elements,
we see that

z = 5(5− 1

3
u3 − 2

3
x2) + 6x2 + 4x3 = 25− 5

3
u3 +

8

3
x2 + 4x3.

This tells us immediately two things. Firstly that with the new basis, the
objective function is valued at z = 25. Secondly, if we are to change to a new
basic feasible solution, it would only make sense to introduce the variables
x2 or x3 as otherwise introducing u3 would decrease the value of z.

Step 4. Let us now consider the two alternatives of introducing x3 or x2

into the basis.
If we introduce x3 then our options are:

(i) x3 : 0→ 5 and u1 : 5→ 0
or (ii) x3 : 0→ 3

2
and u2 : 6→ 0

or (iii) x3 ∈ R and x1 = 5.

In order to respect the positivity of all basis variables as well as maximising
the contribution to the objective function, the best choice from the above is
(ii). In that case z increases by 6 units.

If we introduce x2 then our options are:

(i) x2 : 0→ 15 and u1 : 5→ 0
or (ii) x2 ∈ R and u2 = 6

or (iii) x2 : 0→ 15
2

and x1 : 5→ 0.

In order to respect the positivity of all basis variables as well as maximising
the contribution to the objective function, the best choice from the above is
(iii). In that case z increases by 20.

13We did row 1 - 1
3 row 3 and row 2 - row 1.

28

The conclusion of these calculations is that we should move to a new basic
feasible solution

(x1, x2, x3, u1, u2, u3) = (0,
15

2
, 0,

5

2
, 6, 0).

giving value z = 45 to the objective function.

Step 5. Again writing the constraints so that the basic variables appear
only once in each constraint with coefficient 1, and in particular keeping x2

in the third row, we have14:

−1
2
x1 +x3 +u1 −1

2
u3 = 5

2

4x3 +u2 −u3 = 6
3
2
x1 +x2 +1

2
u3 = 15

2

Further, writing z in terms of the non-basic variables we obtain

z = 15− 5

3
u3 +

8

3
(
15

2
− 8

2
x1 − 1

2
u3) + 4x3 = 45− 4x1 + 4x3 − 3u3.

The only way we can improve on the value of the objective function is to
include the variable x3 into the basis and this becomes the final step of the
algorithm.

Step 6. Introducing x3, our options are:

(i) x3 : 0→ 5
2

and u1 : 5
2
→ 0

or (ii) x3 : 0→ 3
2

and u2 : 6→ 0
or (iii) x3 ∈ R and x2 = 15

2
.

The first option would not work as it would force u2 to take a negative value.
The second and third options are essentially the same when one takes account
of the need for positive values. In conclusion the new basic feasible solution

(x1, x2, x3, u1, u2, u3) = (0,
15

2
,
3

2
, 1, 0, 0).

Increasing the value of z by 6 to 51.

Step 7. A quick calculation allows us to see that

z = 51− 4x1 − 2u3 − u2

14We did row operations: row1 → row1 - 1
2 row3 and row3 → 3

2 row3.

29

and there is no point to introduce any further variables into the basis as this
would only decrease the value of the objective problem.

Step 8. The fundamental theorem of linear programming tells us that
we must have found the optimal solution since we have found the optimal
value of z amongst all the basic feasible solutions.

5.2 Simplex algorithm in action: example 2

In this second example, we present our computations in a more sophisticated
way by making use of a standard tool called a tableau. Let us briefly intro-
duce the latter. Suppose that we are given a linear programming problem
with m equations in n variables in standard form which we then extend to
canonical form with the introduction of slack variables which form the basis
of an initial basic feasible solution. We can represent all this information in
a tableau of the form given below.

x1 x2 · · · xn u1 u2 · · · um

u1 a11 a12 · · · a1n 1 0 · · · 0 b1

u2 a21 a22 · · · a2n 0 1 · · · 0 b2
...

...
...

...
...

...
...

...
...

...
um am1 am2 · · · amn 0 0 · · · 1 bm

−c1 −c2 · · · −cn 0 0 · · · 0 0

The left most column describes the basis variables and the bottom row gives
the negative of the coefficients of the objective function in terms of the non-
basic variables. The bottom right entry is the value of the objective function
with the current choice of basis. The rest is self-explanatory.

Let us now state an example of a linear programming problem and, fol-
lowing similar logic to the example given in the previous section, we shall
produce a series of tableaus which describe how the optimal solution is ob-
tained.

30

Consider now the linear programming problem. Our objective is to:

maximise z = 8x1 + 9x2 + 5x3

subject to:
x1 + x2 + 2x3 ≤ 2
2x1 + 3x2 + 4x3 ≤ 3
6x1 + 6x2 + 2x3 ≤ 8
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Moving to the tableau for the canonical form we have

x1 x2 x3 u1 u2 u3

u1 1 1 2 1 0 0 2
u2 2 3 4 0 1 0 3
u3 6 6 2 0 0 1 8

−8 −9 −5 0 0 0 0

Following the logic of the previous example, we note that non-basic vari-
ables which have a negative coefficient in the final row will contribute a
positive increase in the value of the objective if introduced to the basis. For
each such variable xj we compute θj = mini{bi/aij : bj/aij ≥ 0}. Of these xj

introduce the one for which ojθj, the increase in the objective, is the great-
est where oj is the coefficient of xj when the objective function is written
in terms of the non-basic variables and xj. (In other words oj is minus the
entry in the j-th column of the last row and oj).

Pivoting about the entry in bold in the above tableau so that x1 is in-
troduced into the basis and u3 is removed from the basis (note that one will
have chosen this change of basis variable on by considering feasibility) one
obtains the following.

x1 x2 x3 u1 u2 u3

u1 0 0 5/3 1 0 −1/6 2/3
u2 0 1 10/3 0 1 −1/3 1/3
x1 1 1 1/3 0 0 1/6 4/3

0 −1 −7/3 0 0 4/3 32/3

31

Pivoting again about the entry shown in bold we obtain:

x1 x2 x3 u1 u2 u3

u1 0 0 5/3 1 0 −1/6 2/3
x2 0 1 10/3 0 1 −1/3 1/3
x1 1 0 −3 0 −1 1/2 1

0 0 1 0 1 1 11

Since all the coefficients of the non-basic variables in the bottom row
are now positive, this means that an increase in their value would cause a
decrease in the value of the objective function which is now identifiable as

z = 11− x3 − u2 − u3.

As an exercise, go back to the first example and see if you can summarise
the key steps in a sequence of tableaus too. Alternatively consider the linear
programming problem in the next section whose solution is given simply as
a sequence of tableaus.

5.3 Simplex algorithm in action: example 3

Here is a third example of the simplex algorithm where we discover at the
end that there is in fact no finite optimal solution. The problem is to:

maximise z = 2x1 + 3x2 + x3 + x4

subject to:
x1 − x2 − x3 ≤ 2
−2x1 + 5x2 − 3x3 − 3x4 ≤ 10
2x1 − 5x2 + 3x4 ≤ 5
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Introducing slack variables u1, u2, u3 we move straight to to the first tableau
and from which we produce two further tableaus. As usual we have pivoted
about the entry indicated in bold. The details are left to the reader.

x1 x2 x3 x4 u1 u2 u3

u1 1 −1 −1 0 1 0 0 2
u2 −2 5 −3 −3 0 1 0 10
u3 2 −5 0 3 0 0 1 5

−2 −3 −1 −1 0 0 0 0

32

x1 x2 x3 x4 u1 u2 u3

u1 3/5 0 −8/5 −3/5 1 1/5 0 4
x2 −2/5 1 −3/5 −3/5 0 1/5 0 2
u3 0 0 −3 0 0 1 1 15

−16/5 0 −14/5 −14/5 0 3/5 0 6

x1 x2 x3 x4 u1 u2 u3

x1 1 0 −8/3 −1 5/3 1/3 0 20/3
x2 0 1 −5/3 −1 2/3 1/3 0 14/3
u3 0 0 −3 0 0 1 1 15

0 0 −34/3 −6 16/3 5/3 0 82/3

In this last tableau all the coefficients of x3 are negative and hence it
would be easy to create a solution with the four variables, x1, x2, x3 and u3

by setting x3 = M > 0 and then taking

x1 = 20
3

+ 8
3
M

x2 = 14
3

+ 5
3
M

u3 = 15 + 3M.

Note that all three of the above variables are, like x3, strictly positive and
hence we have constructed a feasible (but not necessarily basic) solution; and
this reasoning is valid for any M > 0. Note also from the last row of the
final tableau above that since one may write the objective as

z =
34

3
x3 + 6x4 − 16

3
u1 +

5

3
u2 +

82

3

and hence including x3 in the solution increases the objective by 34/3 for
every unit increase in x3. The preceding analysis would seem to indicate
that we can set x3 = M > 0 for any arbitrary large M and hence z can be
made arbitrarily large with a feasible solution. In other words there is no
bounded optimal solution.

33

5.4 The theory behind the simplex method

Given a linear programming problem in canonical form

maximise z := c · x
subject to:
Ax = b
x ≥ 0n.

where A ∈ Rm×n and we are at some point in the simplex algorithm were we
are in possession of a basic feasible solution of the form

x =

(
0n−m

xB

)

where xB > 0m represents the basic variables corresponding to the decom-
position of the matrix A = (A◦|B). Arranging the constraints so that the
basic variables appear in only one row and with unit coefficient we obtain
the tableau

B−1A◦ ... Im xB

cB
TB−1A◦ − (c◦)T ... 0T

m z = cB
TB−1b

The last row gives the coefficients in the objective function when it is written
in terms of the non-basic variables. To see where this comes from, suppose
that we remove one basic variable from the current solution and introduce
another variable giving a new solution

y =

(
y◦

yB

)

where y◦ are the first n−m entries and yB are the last m entries correspond-
ing to the old basis variables. Since

Ay = A◦y◦ + ByB = b

it follows that
yB = B−1b−B−1A◦y◦.

If we also write the objective vector in obvious notation

c =

(
c◦

cB

)

34

then since the objective function valued with the initial basic feasible solution
z(x) = cB · xB and BxB = b so that z(x) = cB · B−1b it follows that the
new value of the objective function

z(y) = c◦ · y◦ + cB · yB

= c◦ · y◦ + cB · (B−1b−B−1A◦y◦)

= z(x) + ((c◦)T − cB
TB−1A◦)y◦.

The last equality shows us that the coefficients in the objective function
when written in terms of non-basic variables which fill y◦ are the entries
of the vector (c◦)T − cB

TB−1A◦. This explains where the final row of the
tableau given above comes from.15

For i = 1, ..., n − m, write oi for the i-th element of the vector (c◦)T −
cB

TB−1A◦ so that

z(y) = z(x) +
n−m∑
i=1

oiyi.

If we see that oj > 0 for some j = 1, ..., n−m then it would be profitable to
take our new basis y so that

y◦ = (0, · · · , yj, 0, · · · , 0) where yj > 0

and remove one of the elements of the basis variables in xB. This would
ensure that we have improved on the value of the objective function since
then z(y) = z(x) + ojyj > z(x). It is of course necessary to do so in a way
that y remains in the feasible region. (This corresponds to considering how
one may introduce the variable yj into each of the m equations given by
Ay = b whilst respecting the requirement that y ≥ 0n).

The essence of the algorithm is thus updating the basis of the feasible
solution in such a way that one is always introducing a variable from the
non-basic variables to create a new basic feasible solution such that the value
of the objective function increases. One keeps a tab on which variables to
introduce by always writing the objective function in terms of non-basic
variables. Eventually, all the coefficients oi will be negative in which case one
has obtained the optimal basic feasible solution. The fundamental theorem
of linear programming then tells us that we have found an optimal solution.

15Don’t forget that one negates the coefficients before filling them in the tableau.

35

5.5 Degeneracy and cycling

There is always the possibility that, when introducing a new variable into
the basis, one of the basic variables coincidentally becomes equal to zero.
We define such basic feasible solutions as degenerate. Recall that a basic
feasible solution is an extreme point of the convex polyhedron describing the
feasible region and the simplex method is an algorithm which systematically
moves through extreme points of the feasible region.

It may so happen that the simplex method brings you to an extreme point
which lies on the the hyperplane xi = 0 for some i = 1, ..., n. (Recall that
there are n constraining hyperplanes to the feasible region which are given
by the condition x ≥ 0n). In that case, the basic feasible solution will be
such that xi belongs to the basis and yet xi = 0.

As an exercise, one may draw a picture and consider the extreme points
of a linear programming problem with the constraints

x1 − x2 ≤ 2
2x1 + x2 ≤ 4
−3x1 + 2x2 ≤ 6
x1, x2 ≥ 0.

For this reason, one can say that although the dimension of the basis is
always equal to m =rank(A) it may happen that the number of zeros in a
basic feasible solution may be greater than n−m.

Note that the analysis in the previous section concerning the introduction
of a non-basic variable yj to improve the objective value assumed that xB >
0m and yj > 0. The analysis is not necessarily the same if the solution xB is
degenerate.

Because of the phenomenon of degeneracy, it is possible to slip into a
cycle with the simplex method as we now explain. Suppose one has a basic
feasible solution which is degenerate. In that case, recalling that the simplex
tableau may always be rearranged in the form

B−1A◦ ... Im xB

cB
TB−1A◦ − (c◦)T ... 0T

m z = cB
TB−1b

then a degenerate solution implies that one of the entries of xB is equal to
zero. Then removing the corresponding element of the basis and introducing

36

a new basic variable will have the effect that the new basic variable will also
be zero. In other words, after pivoting, the next basic feasible solution will
be degenerate too. Further, the objective will remain at the same value after
pivoting since the new basic variable, being equal to zero, contributes no value
of the objective function. Consequently, the simplex algorithm will move a
degenerate solution to a degenerate solution without increasing the objective
value and ultimately one ends up cycling between degenerate solutions. Most
linear programming problems do not exhibit this phenomena however.

5.6 The two-phase method

There is a particular point that we need to be aware of in what we have
discussed thus far. In the three examples of Sections 5.1, 5.2 and 5.3 we
were able to specify an initial basic feasible solution by simply setting
the slack variables equal to the entries of the vector b. The above theoretical
considerations also show how one moves from one basic feasible solution to
another under the assumption that one has a basic feasible solution in the
first place.

What would happen if it is not immediately obvious how to form an initial
basic feasible solution?

Here is a very likely scenario in which one might find this to be an issue.
Suppose that at least one of the entries of the vector b is strictly negative.
Naively following what we have done in the two examples would tell us to set
the slack variable as equal to that value. However one should of course not
forget about the constraints of positivity which would then be violated! So
how does one set up the initial basic feasible solution from which to proceed
with the simplex method? This is where the two-phase method can prove to
be useful.

Phase I. The first step of the two-phase method is to introduce even
more16 variables which are known as artificial variables. The way to do
this is via the following series of actions.

(i) Arrange the linear programming problem in standard form so that the
constraints are given as Ax ≤ b (even if the entries in the vector b are
negative) and x ≥ 0n. We assume as usual that A ∈ Rm×n.

16In this context ‘even more’ means over and above the slack variables

37

(ii) Introduce slack variables in the usual way.

(iii) For each row that has a negative entry in b, multiply by −1 producing
constraints of a new linear programming problem, say A′x′ = b′ and
x′ ≥ 0m+n, where x′ includes the slack variables and now b′ ≥ 0m.
Note at this point, if i is a row which has been multiplied through by
−1, the slack variables ui has coefficient −1 and hence cannot be set
as equal to b′i = −bi as part of a basis solution.

(iv) Introduce to each row a new artificial variable, say wi for i = 1, ..., m.

The principle action of phase I is to solve the following auxiliary linear
programming problem.

Let A′′ = (A′|Im),

x′′ =
(
x′

w

)

and write 1m for the vector in Rm which has all of its entries equal to one.

maximise z′′ = −1m ·w
subject to:
A′′x′′ = b′

x′′ ≥ 0n+2m.

The importance of this linear programming problem is that since it is clear
that the last condition also implies that w ≥ 0m, then the maximal value of
z′′ is in fact zero. Further, if we solve it using the simplex method, then the
solution which will achieve this maximal value of zero will necessarily be a
basic solution and it will necessarily have w = 0m. In other words, solving
the above auxiliary linear programming problem will provide a basic feasible
solution to the system

A′x′ = b′

x′ ≥ 0n+m,

which is exactly what we are after to proceed to phase II.

Phase II. Taking the solution of the auxiliary linear programming prob-
lem we may now return to the original linear programming problem in canon-
ical form using it as an initial basic solution from which to proceed in the
usual way with the simplex method. One should take care however, to im-
mediately write the original objective function in terms of the the non-basic
variables at the end of phase I in order to proceed to the first tableau.

38

Roughly speaking, the two-phase method introduces an additional set of
variables for the purpose of establishing an initial basic feasible solution in
the easiest way of ‘setting xB = b’ (once things have been set up in the right
way of course) and then ‘pushing’ this basic feasible solution (with the help
of the simplex algorithm) onto another basic feasible solution in terms of the
original set of variables.

5.7 An example of the two-phase method

These theoretical considerations of the the two-phase method are perhaps
best illustrated with an example. Consider the problem:

maximise z = 3x1 + x2

subject to:
x1 + x2 ≤ 6
4x1 − x2 ≥ 8
2x1 + x2 = 8
x1, x2 ≥ 0

This problem has a mixture of constraint types 17 and after a slack variable
x3 is added to the first constraint, a surplus variable x4 subtracted from the
second, we have the following problem

maximise z = 3x1 + x2

subject to:
x1 + x2 + x3 = 6
4x1 − x2 − x4 = 8
2x1 + x2 = 8
x1, x2, x3, x4 ≥ 0

and there is no obvious basic feasible solution.
In order to overcome this, non negative artificial variables, x5 and x6

are added to the left hand side of the second and third constraints. Note
that this is in slight contradiction with the method described in the previous
section which dictates that we should add an artificial variable to the first

17Note that this problem is slightly different to the ones discussed up until now in the
sense that some of the constraints are slack and some are already tight. The reader will
learn with experience that one only need introduce as many slack variables as there are
slack constraints and proceed in the usual way with the simplex method.

39

constraint too. However a little thought regarding how we proceed in this
example reveals that in the end this will make no difference. This creates
the auxiliary linear programming problem,

maximise z′′ = −x5 − x6

subject to:
x1 + x2 + x3 = 6
4x1 − x2 − x4 + x5 = 8
2x1 + x2 + x6 = 8
x1, ..., x6 ≥ 0

In order for the augmented system to correspond to the original constraint
system, the artificial variables must be zero. This is achieved by using the
Simplex method to minimise their sum (or maximise the negative sum) and
this is what we called Phase I. If this terminates with all artificial variables
at zero, a basic feasible solution to the original constraint system will have
been obtained. The Simplex method is then used to maximise the original
objective in Phase II of the procedure.

Of course, in this example it would be a simple matter to use one of the
constraints to eliminate x2, or x1 from the other constraints and objective,
leaving a trivial problem. In general however, this would not be at all conve-
nient with many variables and many constraints. This simple example shows
how the general procedure would be used.

Phase I

x1 x2 x3 x4 x5 x6

x3 1 1 1 0 0 0 6
x5 4 -1 0 -1 1 0 8
x6 2 1 0 0 0 1 8

-6 0 0 1 0 0 -16

Now x1 enters and x5 leaves the set of basic variables. We shall not bother
to transform the x5 column for the next tableau as the artificial variable will
not be considered to enter the basis again.

x1 x2 x3 x4 x5 x6

x3 0 5/4 1 1/4 - 0 4
x1 1 -1/4 0 -1/4 - 0 2
x6 0 3/2 0 1/2 - 1 4

0 -3/2 0 -1/2 - 0 -4

40

Now x2 enters and x6 leaves the set of basic variables and we reach the
final tableau for phase I. In this tableau we have added an extra row for the
coefficients of the objective function z in terms of the basis variables which
conclude phase I and which initiate phase II.

x1 x2 x3 x4 x5 x6

x3 0 0 1 -1/6 - - 2/3
x1 1 0 0 -1/6 - - 8/3
x2 0 1 0 1/3 - - 8/3
z′′ 0 0 0 0 - - 0
z 0 0 0 -1/6 - - 32/3

The last row indicates that we can improve the value of z by introducing
x4 into the basis which leads to the following tableau (now for the original
problem in canonical form - ie we have now entered phase II).

x1 x2 x3 x4

x3 0 1/2 1 0 2
x1 1 1/2 0 0 4
x4 0 3 0 1 8

0 1/2 0 0 12

From this final table we see that there are no further variables which can
be introduced into the basis in order to improve the value function and we
have reached an optimal solution with the basis x1 = 4, x2 = 0, x3 = 2, x4 = 8
and z = 12.

41

6 Duality

6.1 Introduction

Recall the Betta Machine Product problem.

Maximise z = 15x1 + 20x2

subject to:
5x1 + 8x2 ≤ 16, 000
5x1 + 4x2 ≤ 14, 000
x1 + 3x2 ≤ 5, 000
x1 ≥ 0, x2 ≥ 0.

The variables x1 and x2 represent quantities of products 1 and 2 whilst the
constraints are concerned with the available numbers of minutes of time for
casting, machining and assembly respectively.

Multiplying the first constraint by 3 gives:

15x1 + 24x2 ≤ 48, 000.

Comparing this with the equation for z shows that we have found an upper
bound for z as we must have z ≤ 48, 000. Could we use a similar trick to
find a tighter bound? By adding twice the first constraint to the second we
obtain

15x1 + 20x2 ≤ 46, 000

from which we can deduce that z ≤ 46, 000.

How can we find the best possible bound on z ? Suppose we follow the
above technique and look for linear combinations of the three constraints
that would give us the best upper bound. Let us add multiples of the linear
constraints together using the multipliers w1, w2 and w3. We would need

5w1 + 5w2 + w3 ≥ 15
8w1 + 4w2 + 3w3 ≥ 20
w1, w2, w3 ≥ 0

giving an upper bound

16, 000w1 + 14, 000w2 + 5, 000w3.

42

Note that the positivity of the variables w1, w2 and w3 is necessary to preserve
the inequality in each of the original constraints.

Hence, if we wish to find the smallest bound possible, we have to solve
another linear programming problem; namely

minimise 16, 000w1 + 14, 000w2 + 5, 000w3

subject to:
5w1 + 5w2 + w3 ≥ 15
8w1 + 4w2 + 3w3 ≥ 20
w1, w2, w3 ≥ 0

This is called the dual problem. To distinguish the two problems, the
original is called the primal problem.

6.2 Symmetric dual

Consider the standard maximisation problem (P): given, A ∈ Rm×n,
b ∈ Rm and c ∈ Rn,

maximise c · x
subject to:
Ax ≤ b
x ≥ 0n.

Its symmetric dual is the standard minimisation problem (D): given
AT ∈ Rn×m, c ∈ Rn and b ∈ Rm,

minimise b ·w
subject to:
ATw ≥ c
w ≥ 0m.

Remarks

1. The primal has n variables and m constraints whilst the dual has m
variables and n constraints. In the last chapter we had n ≥ m and
m =rank(A) because the number of variables, n, included slack and
surplus variables. In the present situation slack and surplus variables
have not been counted so either n or m could be the larger.

43

2. Any problem may be put into form (P) or (D). To do this you may need
to multiply by −1 or to write an equation as two inequalities. Note it
is not required here that the elements of b should be non negative.

3. It is a very important point that the dual of the dual is the primal.

4. To appreciate why the dual problem we have identified is symmetric it
is necessary to consider the asymmetric dual problem given below.

6.3 The asymmetric dual

Suppose that instead of starting with the linear programming problem in
standard form, we started with the linear programming problem in canonical
form. That is to say: given, A ∈ Rm×n, b ∈ Rm and c ∈ Rn,

maximise c · x
subject to:
Ax = b
x ≥ 0n.

Following previous advice, we can write this linear programming problem in
the form

maximise c · x
subject to:(

A
−A

)
x ≤ (

b
−b

)
x ≥ 0n.

Now following the formulation for the dual but partitioning the dual vector

R2m 3 y =

(
u

v

)
,

we have dual problem
minimise

(
b
−b

) · (u
v

)
subject to:
(AT| −AT)

(
u
v

) ≥ c
u,v ≥ 0.

For convenience we can write z = u − v and now the dual can be more
conveniently written as

minimise b · z
subject to:
ATz ≥ c

44

noting in particular that z ∈ Rm. Hence the dual of the canonical linear
programming problem has no positivity constraint and hence is asym-
metric to its primal.

6.4 Primal to the Dual via the diet problem

Here is an example of how we may interpret duality by considering a classic
diet problem.

Suppose that there are nutrients Ni, i = 1, ..., m and foods Fj, j = 1, ..., n
with food costs cj per unit of food Fj. Suppose further that each food Fj

contains Aij units of of nutrient Ni. The diet problem is to minimise the
cost of the diet subject to the constraints that the diet provides the minimal
nutritional requirements which are specified by the quantities bi; i = 1, ...,m
for each nutrient Ni. If (x1, ..., xn) represents the quantity of the respective
foods F1, ..., Fn in the diet (and clearly we must have xj ≥ 0 for all j =
1, ..., n), then the cost of the diet becomes

∑
j cjxj. On the other hand,

to respect the minimum requirement of nutrient Ni we must also have that∑
j Aijxj ≥ bi. In other words the problem becomes:

minimise c · x
subject to
Ax ≥ b
x ≥ 0n.

The above we may consider as our primal problem.
Now suppose that there is a company which, instead of selling the foods

F1, ..., Fn, sells the raw nutrients (for example in the form of pills) at re-
spective costs y1, ..., ym. Since food Fj contains Aij units of nutrient of Ni,
then

∑
i yiAij is the equivalent cost of food Fj for j = 1, ..., n. The man-

ufacturer of the raw nutrients wishes to maximise the profits of selling the
recommended dietary intake,

∑
i biyi, whilst competing with the primal diet.

In other words, the equivalent cost of food Fj should not be more expensive
than the primal cost of food Fj so that

∑
i yiAij ≤ cj.

From the perspective of the manufacturer of the raw nutrients the problem
is to:

maximise b · y
subject to
yTA ≤ cT

y ≥ 0m.

45

We see that the manufacturer of the raw nutrients is thus concerned with
the dual problem.

Intuitively we would expect that any feasible solution to the above prob-
lem, which would specify a profit for a particular diet of the raw nutrients
N1, ..., Nm, should not be greater than any feasible solution to the primal
problem which is the cost of a diet using the foods F1, ..., Fn. That is to say,
we would expect b · y ≤ c · x where x and y are feasible solutions to the
primal and dual respectively. Moreover in that case, it would seem sensible
that both have optimal solutions if there exist feasible solutions, x and y,
such that b·y = c·x. This is the beginning of duality theory which consumes
the remainder of this chapter.

6.5 The Duality Theorem

We shall henceforth continue our analysis for the case of the symmetric du-
ality. That is to say we shall analyse the relationship between the primal (P)
and dual (D) given in Section 6.2.

As we have seen in the preliminary example, the dual objective gives a
bound for the primal objective (and vice versa). This is exactly what the
Weak Duality Theorem says.

Theorem 6.1 (Weak Duality Theorem) Suppose that x0 is a feasible so-
lution to the primal problem (P) and y0 is a feasible solution to its dual (D).
Then

c · x0 ≤ b · y0.

Proof. Since Ax0 ≤ b and y0 ≥ 0m it follows that

y0 ·Ax0 ≤ y0 · b

Similarly, since ATy0 ≥ c and x0 ≥ 0n it follows that x0 ·ATy0 ≥ x0 · c; or
transposing both sides, that

y0 ·Ax0 ≥ c · x0.

Comparing the established inequalities we see immediately that

c · x0 ≤ b · y0

as required.

46

Since in the proof above, x0 and y0 are abitrary, it follows that

sup
x∈F (P)

c · x ≤ inf
y∈F (D)

b · y (6)

where F (P) and F (D) are the feasible regions of (P) and (D) respectively.
Two consequences follow immediately from this observation which we give
below.

Corollary 6.2 If (P) has a feasible solution but no bounded optimal solution
then (D) has no feasible solution. Since (P) is the dual of (D) it also follows
that if (D) has a feasible solution but no bounded optimal solution then (P)
has no feasible solution.

Proof. When (P) has an unbounded optimal solution then (6) shows that,
should it be the case that F (D) 6= ∅, infy∈F (D) b · y =∞ which is a contra-
diction. It must therefore follow that F (D) = ∅.
Corollary 6.3 Suppose there exist feasible solutions for (P) and (D), say x0

and y0 respectively, such that c · x0 = y0 · b then necessarily x0 and y0 are
optimal solutions for (P) and (D) respectively.

Proof. Note that for any pair of solutions x0 and y0 we have

c · x0 ≤ sup
x∈F (P)

c · x ≤ inf
y∈F (D)

b · y ≤ b · y0

and hence if c · x0 = y0 · b then all of the above inequalities are necessarily
equalities an in particular we see immediately that x0 and y0 are optimal.

The main result of this section is the following.

Theorem 6.4 (Duality Theorem) The primal problem (P) has a finite
optimal solution if and only if the dual problem (D) does too in which case
the optimal value of their objective functions are the same.

The way we will prove the Duality Theorem is to consider first four auxil-
iary results. The first two of these four are classic results coming from convex
analysis.

The first result makes the somewhat intuitively obvious statement that
for any point which lies outside of a closed convex set, it is possible to pass
a hyperplane between that point and the convex set.

47

Lemma 6.5 (Separating Hyperplane Lemma) Suppose that C is a closed
convex set in Rn and that b 6∈ C. Then there exists y ∈ Rn such that
y · b < y · z for all z ∈ C.

C

b
z0

y

0

Figure 6: A diagrammatic representation of elements of the Separating Hy-
perplane Lemma.

Proof. Let B(b, r) be a closed hyper-sphere whose centre is at b and
radius r is sufficiently large that C ∩B(b, r) 6= ∅. Now consider the function
f : Rn → R defined by

f(z) = {(b− z) · (b− z)}1/2 = ||b− z||
for z ∈ Rn. As f is a continuous function and C∩B(b, r) is a closed bounded
convex domain18 then f is bounded and there exists a z0 ∈ C ∩B(b, r) such
that 19

r ≥ f(z0) = inf{f(z) : z ∈ C ∩B(b, r)} =: δ > 0.

Note that the first inequality is a consequence of the fact that z ∈ C ∩
B(b, r) ⊆ B(b, r) can never be further than distance r from b and the last
inequality is due to the fact that b 6∈ C. Hence for all z ∈ C ∩B(b, r)

δ = ||b− z0|| ≤ ||b− z|| (7)

18Recall that the intersection of two closed domains is closed and that the non-empty
intersection of two convex domains is convex

19Google Weierstrauss’ Theorem!

48

and otherwise for z ∈ C\B(b, r)

δ = ||b− z0|| ≤ r ≤ ||b− z||.

In other words (7) holds for all z ∈ C (even when C is an unbounded domain).
As C is a convex domain, it follows in particular that for each λ ∈ (0, 1) and
z ∈ C

(b− z0) · (b− z0) ≤ (b− λz− (1− λ)z0) · (b− λz− (1− λ)z0).

This may otherwise be written as a quadratic inequality in λ,

0 ≤ λ2||z0 − z||2 + 2λ(b− z0) · (z0 − z)

and since λ ∈ (0, 1) we may divide through by λ and then let λ ↓ 0 to
discover that necessarily (b− z0) · (z0 − z) ≥ 0. Note we have used the fact
that ||z0 − z)||2 ≥ 0. We may now write

(b− z0) · b = (b− z0) · (b− z0) + (b− z0) · z0

= ||b− z0||2 + (b− z0) · z0

> (b− z0) · z0 (8)

≥ (b− z0) · z

for all z ∈ C. Now take y = z0 − b and we see that

y · b < y · z

for all z ∈ C as required. Note that the strict inequality follows from (8).

The second result is slighly less intuitively obvious and says that the
range of a linear transformation, when restricted in its domain to the positive
orthant, is a closed convex domain. Convexity is the easy part, being closed
is difficut!

Lemma 6.6 Suppose as usual that A ∈ Rm×n. Define

C = {z = Ax|x ≥ 0n}

Then C is closed and convex.

49

Proof. To check that C is convex, suppose that z1, z2 ∈ C and λ ∈ (0, 1).
Then λz1 + (1− λ)z2 ∈ C because

λz1 + (1− λ)z2 = A(λx1 + (1− λ)x2)

and λx1 + (1 − λ)x2 ≥ 0n (the latter is a consequence of the fact that the
positive orthant is a convex space).

To show that C is closed, suppose that {zn : n ≥ 1} is a sequence in
C which has some limit z. We need to show that z ∈ C. To do this, note
that by definition there exists a sequence of vectors {xn : n ≥ 1} such that
zn = Axn. If it so happens that xn has a limit, say x, then since the positive
orthant is a closed space, it must follow that x ≥ 0n. Then by continuity of
the mapping A : Rn 7→ Rm it follows that z = Ax.

If the sequence of vectors xn does not converge then we can look for a
convergent subsequence instead. We do this by assuming without loss of
generality that xn is a basic feasible solution and hence can be written in the
form

xn =

(
0

xBn

)

where xBn is the basic part which induces a partition A = (A◦
n|Bn) which

depends on n. As there can only be a finite number of variables we can
include in the basis, along the sequence xn we will see the same basis being
used infinitely often. For any particular basis which partitions A = (A◦|B)
we can therefore identify a subsequence {xBnk

: k ≥ 1} of the basic feasible
solutions xn which may be written in terms of that basis. Since B is inveritble
we thus have xBnk

= B−1znk
and hence the existence of the limit z and

continuity of the inverse mapping implies the existence of a limit of the xnk

to some x satisfying

x =

(
0

B−1z

)
.

As before, we necessarily have x in the positive orthant as it is a closed set
and clearly z = Ax. Hence C contains all its limit points and thus, by
definition, is closed.

The remaining two lemmas give complementary existence results using
the Separating Hyperplane Lemma. The first is used to prove the second
and the second is the principle result which is instrumental in proving the
Duality Theorem. We assume that the quantities A and b are given as in
the primal linear programming problem.

50

Lemma 6.7 (Farkas’ Lemma) Either

(i) Ax = b and x ≥ 0n has a solution or

(ii) yTA ≥ 0T
n and y · b < 0 has a solution

but not both.

Proof. Suppose both (i) and (ii) hold. Then, on the one hand from (i),
since x ≥ 0n, we have yTAx ≥ 0. On the other hand from (ii) we have
yTAx = y · b < 0. Hence (i) and (ii) cannot be true at the same time. In
particular when (i) is true then (ii) is false. To complete the proof it suffices
to show that when (i) is false then (ii) is true.

Suppose now that (i) is false and recall the definition

C = {z = Ax|x ≥ 0n}
which was shown to be closed and convex in the previous Lemma. Note that
by assumption b 6∈ C. Then by The Separating Hyperplane Lemma we have
the existence of y such that y ·b < y · z for all z ∈ C. Taking x = 0n we see
then that y · b < y ·A0n = 0. The proof is thus concluded by showing that
yTA ≥ 0T

n .
To this end, suppose that (yTA)i =: λi < 0. Then let

x =
1

λi

(y · b)ei ≥ 0n

where ei is the vector in Rn with zero entries except in the i-th row where
it has a unit entry. Now note that

yTAx = y · b
but on account of the definition of y from the Separating Hyperplane Lemma
and the positivity of this particular choice of x, we also have

y · b < y ·Ax = yTAx.

This constitutes a contradiction and hence all elements of yTA are positive
as required.

Lemma 6.8 Either

51

(i) Ax ≤ b and x ≥ 0n has a solution, or

(ii) yTA ≥ 0T
n , y · b < 0 and y ≥ 0m has a solution

but not both.

Proof. If both (i) and (ii) hold, then

0 ≤ yTAx = y ·Ax ≤ y · b < 0

which is a contradiction. Hence (i) and (ii) cannot hold simultaneously and
in particular if (i) is true then (ii) is false. To complete the proof, it again
suffices to show that if (i) is false then (ii) is true to complete the proof.

Suppose then that (i) is false. This implies that Ax + z = b has no
solution for x ≥ 0n, z ≥ 0m as otherwise we would have that Ax = b−z ≤ b.
Otherwise said, we have that

(A|Im)

(
x

z

)
= b and

(
x

z

)
≥ 0n+m

has no solution. Hence by Lemma 6.7 it follows that there exists a y ∈ Rm

such that yT(A|Im) ≥ 0T
n+m and y · b < 0 as required. Note that the last

but one inequality implies that yTA ≥ 0T
n and yT ≥ 0T

m.

Now we are ready to prove the Duality Theorem.

Proof of Theorem 6.4. Our strategy for proving this theorem is in
two steps. Step 1 is to show that if (P) has no finite optimal feasible solution,
then (D) has no finite optimal feasible solution. Since (P) is the dual of (D)
it then follows by symmetry that (P) has (no) finite optimal feasible solution
if and only if (D) has (no) finite optimal feasible solution. After that, step
2 will show that when both (P) and (D) have finite optimal solutions then
their objective values must be equal.

Step 1. There are two ways that (P) may have no finite optimal feasible
solution. Either because there is an unbounded optimal solution or because
there is no feasible solution. If there is an unbounded optimal solution then
by Corollary 6.2 it follows that (D) cannot have a feasible solution. Now
suppose that (P) has no feasible solution. Then by Lemma 6.8 there exists
a y∗ ≥ 0m such that yT

∗A ≥ 0T
n and y∗ · b < 0. Suppose however that

there exists a feasible solution to (D), say y, then it must be the case that

52

for any λ ≥ 0 that y + λy∗ is also a feasible solution. However, as λ is
unconstrained, it follows that we can make (y + λy∗) · b arbitrarily large in
magnitude showing that (D) has an unbounded feasible solution.

Step 2. From Step 1 it is now apparent that (P) has a bounded optimal
solution if and only (D) has a bounded optimal solution. Assume now that
both (P) and (D) have bounded optimal solutions. We know already from
the Weak Duality Theorem that

max c · x ≤ min y · b.

It would therefore suffice to show that there exist feasible solutions x and
y to (P) and (D) respectively such that c · x ≥ y · b. To this end, let us
consider the existence solutions x ≥ 0n, y ≥ 0m to the linear system

Ax ≤ b
yTA ≥ cT

c · x ≥ y · b
or, in a more suitable notation for what follows,




A 0m×m

0n×n −AT

−cT bT




(
x

y

)
≤




b
−c
0


 (9)

Now consider the linear system which requires one to find z ≥ 0m, w ≥ 0n

and λ ≥ 0 such that

(zT wT λ)




A 0m×m

0n×n −AT

−cT bT


 ≥ 0T

n+m (10)

and at the same time 


z
w
λ


 ·




b
−c
0


 < 0. (11)

If we can prove that this system has no solution, then by Lemma 6.8 it follows
that (9) must hold with x ≥ 0n, y ≥ 0m. In other words we want to show
that

zTA ≥ λcT

λbT ≥ wTAT

z · b < w · c.
(12)

53

has no solution to complete the proof.
If a solution to (12) were to exist and λ = 0 then let x∗ and y∗ be the

optimal solutions to (P) and (D) (which are assumed to exist20) and we have

zTAx∗ ≥ 0 and yT
∗Aw ≤ 0.

But on the other hand, since Ax∗ ≤ b and yT
∗A ≥ cT then

c ·w ≤ yT
∗Aw ≤ 0 ≤ zTAx∗ ≤ z · b.

However, this leads to a contradiction of the third statement of (12).
Suppose instead that a solution to (12) were to exist and λ > 0. In that

case we would see that

λz · b ≥ zTAw ≥ λc ·w

which contradicts again the third statement of (12).
So in short, there can be no solution to (12), in other words no solution

to (10) and (11), and hence there must be a solution to (9) and the proof is
complete.

There is a very nice observation we can also make from the Duality The-
orem.

Corollary 6.9 Suppose that there exists at least one feasible solution to each
of (P) and (D) respectively. Then there exist optimal bounded optimal solu-
tions to both (P) and (D) with equal objective values.

Proof. The result follows as a result of Corollary 6.2 and the Duality
Theorem.

6.6 Complementary slackness

There is a another very nice relation between the solution of the primal and
the dual which can be useful for verifying that a solution to the primal (and
hence dual) is optimal.

20Remember that we are proving that IF bounded optimal feasible solutions to (P) and
(D) exist then their objective values are equal.

54

Theorem 6.10 (Symmetric complementary Slackness) Consider the stan-
dard linear programming problem:

maximise z = c · x
subject to:
Ax ≤ b
x ≥ 0n

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn are given and x ∈ Rn.
Then x ∈ Rn is an optimal feasible solution for the primal and y ∈ Rm

is an optimal feasible solution for the dual if and only if they are feasible
solutions and

yi[(Ax)i − bi] = 0 ∀i
xi[(y

TA)i − ci] = 0 ∀i.
Note that the last two conditions can also be written equivalently as

yi > 0⇒ (Ax)i = bi

xi > 0⇒ (yTA)i = ci.

or equivalently again as

(Ax)i < bi ⇒ yi = 0
(yTA)i > ci ⇒ xi = 0.

Proof. First we prove the ⇐ direction. To this end suppose that yi > 0⇒
(Ax)i = bi and that xi > 0⇒ (yTA)i = ci. In that case

yTAx =
∑

i

yi(Ax)i =
∑

i:yi>0

yi(Ax)i =
∑

i:yi>0

yibi =
∑

i

yibi.

In other words
yTAx = yTb = y · b.

On the other hand we also have

yTAx =
∑

i

(yTA)ixi =
∑

i:xi>0

(yTA)ixi =
∑

i

cixi

so that we also have
yTAx = c · x

55

Hence c ·x = y ·b and thanks to the Weak Duality Theorem this shows that
x and y are optimal for the primal and the dual respectively.

Now we deal with the⇒ direction. Suppose that x and y are optimal for
the primal and the dual respectively. Then by the Duality Theorem we have
that c · x = y · b. Taking the latter into account together with the fact that
Ax ≤ b and yTA ≥ cT we have

yTAx ≤ yTb = cTx ≤ yTAx. (13)

In other words the inequalities in (13) are actually equalities and hence

yTAx− yTb =
∑

i

yi{(Ax)i − bi} = 0. (14)

As x is feasible it follows that (Ax)i − bi ≤ 0 and as y is feasible, it also
follows that yi ≥ 0. In consequence, re-examining (14) we see that

yi{(Ax)i − bi} = 0

for each i = 1, ..., m. In other words yi > 0 ⇒ (Axi) = bi or equivalently
Axi < bi ⇒ yi = 0.

To complete the proof note that (13) also implies that

∑
i

{(yTA)i − ci}xi = 0

and similar reasoning to above shows that xi > 0 ⇒ (yTA)i = ci or equiva-
lently (yTA)i > ci ⇒ xi = 0.

A similar result can be established for the asymmetric duality.

Theorem 6.11 (Asymmetric complementary slackness) Consider the
canonical linear programming problem:

maximise z = c · x
subject to:
Ax = b
x ≥ 0n

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn are given and x ∈ Rn.

56

Then x ∈ Rn is an optimal feasible solution for the primal and y ∈ Rm

is an optimal feasible solution for the dual if and only if they are feasible
solutions and

xi[(y
TA)i − ci] = 0 ∀i.

Note that the last condition can also be written equivalently as

xi > 0⇒ (yTA)i = ci.

or equivalently again as

(yTA)i > ci ⇒ xi = 0.

Proof. The proof is somewhat simpler than the symmetric case. Suppose
that x and y are optimal feasible solutions for the primal and dual respec-
tively. Then by the Duality Theorem we have c · x = b · y. It follows that

yTAx = yTb = cTx

and hence
(yTA− cT)x =

∑
i

{(yTA)i − ci}xi = 0. (15)

As x ≥ 0n and yTA ≥ cT it follows that xi > 0⇒ (yTA)i = ci.
Now suppose that xi > 0⇒ (yTA)i = ci (or equivalently that (yTA)i >

ci ⇒ xi = 0). In that case it follows that (15) holds. That is to say yTAx =
cTx. On the other hand, as Ax = b it follows that yTAx = yTb. In
conclusion c · x = b · y so that by the Weak Duality Theorem x and y are
optimal.

Note that at the end of the above proof we have used the Weak Dual-
ity Theorem for the asymmetric dual. Strictly speaking the Weak Duality
Theorem, as presented in this text, is a statement about the symmetric case.
None the less it is still true for the asymmetric case. Can you prove it? (See
Exercise sheets).

Here is an example of how to use complementary slackness. Consider the
linear programming problem

minimise z = x1 + 6x2 + 2x3 − x4 + x5 − 3x6

subject to:
x1 + 2x2 + x3 + 5x6 = 3
−3x2 + 2x3 + x4 + x6 = 1
5x2 + 3x3 + x5 − 2x6 = 2
x1, ..., x6 ≥ 0.

57

Writing cT = (1, 6, 2,−1, 1,−3) we can multiply the objective by −1 to con-
vert the primal to a maximisation problem and then write down its (asym-
metric) dual,

minimise z = 3z1 + z2 + 2z3

subject to:
zTA ≥ −cT

Note in particular we have z ∈ R. It is more convenient to multiply the
constraints by −1 and since there is no restriction on the sign of the entries
in z we can set −y = z. This leads us to the representation of the dual
problem,

maximise z = 3y1 + y2 + 2y3

subject to:
yTA ≤ cT

Suppose we are asked to verify that

xT = (0,
16

29
, 0,

66

29
, 0,

11

29
)

is optimal for the primal. If this were the case then the Asymmetric Comple-
mentary Slackness Theorem would hold. In particular we would have that
as x2, x4, x6 are all strictly positive, then (yTA)2 = c2, (y

TA)4 = c4 and
(yTA)6 = c6. Having written out carefully the matrix A we see that this is
tantamount to

2y1 − 3y2 + 5y3 = 6
y2 = −1
5y1 + y2 − 2y3 = −3.

Solving these equations we find that

(y1, y2, y3) = (− 4

29
,−1,

19

29
)

and it is a straightforward exercise to check that y is feasible for the dual
and that c · x = b · y = −3/29.

In conclusion, by assuming the given x is optimal, we have been able
to use complementary slackness to deduce what the optimal y should be.
However, having obtained this hypothetical value of y we discover that in
fact x and y are necessarily optimal solutions to primal and dual respectively
by by virtue of the fact that they have the same objective values and hence
the Weak Duality Theorem comes into effect.

58

7 The transportation problem

7.1 Introduction

We are concerned with moving a commodity from various sources (factories)
to various destinations (markets) at minimum cost. The standard prob-
lem has m sources of the commodity with respective (strictly positive) sup-
plies si, i = 1, ..., m and n destinations for the commodity having respective
(strictly positive) demands dj, j = 1, ..., n. The transport cost per unit be-
tween supply i and demand j is cij. We wish to plan the transport from the
supply to the demand at minimal total cost. The problem may be formulated
as a linear programming problem with special structure as follows.

Let xij be the amount transported from source i to destination j. The
problem is then:

minimise z =
∑m

i=1

∑n
j=1 cijxij

subject to:∑n
j=1 xij ≤ si i = 1, ..., m∑m
i=1 xij ≥ dj j = 1, ..., n

xij ≥ 0 ∀i = 1, ..., m and j = 1, ..., n.

Remarks

1. Note that the general transportation problem is a linear programming
problem with mn variables and m + n constraints.

2. In order for a feasible solution to exist we must necessarily have that total
supply is greater or equal to demand. This is indeed the case since

m∑
i=1

si ≥
m∑

i=1

n∑
j=1

xij ≥
n∑

j=1

dj. (16)

7.2 The canonical form

If it is the case that supply strictly outstrips demand, then we can introduce
an additional ‘dump’ to the problem where additional supply,

∑m
i si−

∑n
j dj

is consumed and cost of shipping to this ‘dump’ state as equal to zero. Note
that the zero shipping cost means that objective function for the enlarged
problem remains the same as the original one. In that case we may assume

59

without loss of generality that supply is equal to demand. In other
words the transportation problem is balanced and

m∑
i=1

si =
n∑

j=1

dj.

In that case, the inequalities in (16) are in fact equalities and the transporta-
tion problem takes the canonical or balanced form as follows:

minimise z =
∑m

i=1

∑n
j=1 cijxij

subject to:∑n
j=1 xij = si i = 1, ..., m∑m
i=1 xij = dj j = 1, ..., n

xij ≥ 0 ∀i = 1, ...,m and j = 1, ..., n

where cij ≥ 0, si > 0, dj > 0 are given with
∑

i si =
∑

j dj.

7.3 Dual of the transportation problem

It turns out that providing an effective algorithmic solution to the trans-
portation problem involves making calculations which interplay between the
primal and dual. We therefore devote a little time to understanding the
relationship of the transportation problem to its dual.

Suppose we introduce the matrix

X = (xij) =




xT
1
...

xT
m




where for i = 1, ..., m
xT

i = (xi1, ..., xin).

Then let xT = (xT
1 , ...,xT

m), in other words

xT = (x11, x12, ..., x1n, x21, ..., x2n, ..., xmn).

Similarly write

C = (cij) =




cT
1
...

cT
m




60

where for i = 1, ..., m
cT

i = (ci1, ..., cin).

Then let cT = (cT
1 , ..., cT

m), in other words

cT = (c11, c12, ..., c1n, c21, ..., c2n, ..., cmn).

Now let
bT = (s1, ..., sm, d1,, dn)T.

The primal problem can be written in the form

minimise z = c · x
subject to:
Ax = b
x ≥ 0mn

where A ∈ R(m+n)×mn and for 1 ≤ i ≤ m, 1 ≤ j ≤ mn we have21

Aij = δj,{(i−1)n+1,....,in}

and for m + 1 ≤ i ≤ m + n, 1 ≤ j ≤ mn

Aij = δj,{(i−m),(i−m)+n,...,(i−m)+(m−1)n}.

Otherwise said, the main constraints can be seen in the following form




1 1 · · · 1 1
1 1 · · · 1 1

. . .
1 1 · · · 1 1

1 1 1
1 1 1

.
1 1 1







x11

...
x1n

x21

...
x2n

...
xm1

...
xmn




=




s1

...
sm

d1

...
dn




. (17)

It is important to note that the matrix A has only entries which are either
zero or unity. Further, there are only two non-zero entries in each column.

21For scalar j and set S, we use the delta function δj,S which is equal to 1 if j ∈ S and
zero otherwise.

61

This means that the matrix AT has only two non-zero entries in each row.
Another way of representing A is to characterise its columns. We know that
A ∈ R(m+n)×mn and hence write

A = (c11|c12| · · · |c1n|c21| · · · |cmn)

where

cij =

(
e

(m)
i

e
(n)
j

)

where e
(k)
l is the vector in Rk whose entries all zero with the exception of the

l-th entry which is unity.

Consider the asymmetric dual22 which requires one to

maximise z = b · y
subject to:
ATy ≤ c
y ∈ Rm+n.

For convenience let us write

y = (u1, ..., um, v1, ..., vn)T.

Then note that the condition ATy ≤ c can be written as the system of
inequalities

ui + vj ≤ cij for all i = 1, ..., m and j = 1, ..., n.

Further, the objective function b · y can be written as

n∑
j=1

vjdj +
m∑

i=1

uisi.

To conclude, the dual problem to the balanced transportation problem
can be summarised as the following linear programming problem

maximise z =
∑n

j=1 vjdj +
∑m

i=1 uisi.

subject to:
ui + vj ≤ cij for all i = 1, ..., m and j = 1, ..., n.

22In order to write down the asymmetric dual, it is useful to write the primal in the
form: maximise z = (−c) · x subject to −Ax = −b and x ≥ 0mn.

62

with no restriction on the sign of the uis and vjs.
There is an intuitive way of looking at the formulation of the dual prob-

lem. The primal concerns a way of shipping goods from supply to demand
at minimal cost. Suppose now there is a competing agent who wishes to
offer the same service. This agent charges ui for picking up goods at the
i-th supply and charges vj for delivering to the j-th demand23. The charge
for shipping from i → j is thus ui + vj. In order to remain competitive,
this agent wishes to maximise his income, i.e.

∑n
j=1 vjdj +

∑m
i=1 uisi, but at

the same time offering a cheaper alternative to the operator in the primal
problem, i.e. ui + vi ≤ cij on all routes i→ j.

7.4 Properties of the solution to the transportation
problem

Let us first examine existence of the solution to the transportation problem.
Here The Duality Theorem will play an essential role.

Theorem 7.1 The transportation problem when in balance has a finite op-
timal solution.

Proof. Consider the solution to the primal

xij =
sidj∑m
i=1 si

.

It is easy to check that this solution satisfies
∑

i xij = dj,
∑

j xij = si, xij ≥ 0.
In other words it is a feasible solution.

On the other hand, if we look at the dual to the transportation problem,
then it is also clear that vj = ui = 0 for all i = 1, ..., m and j = 1, ..., n is a
feasible solution.

Hence by Corollary 6.9 a bounded optimal solution to both primal and
dual must exist.

The following result is requires a proof which goes beyond the scope of
this course and hence the proof is omitted.

23There is a slight problem with this interpretation in that the charges ui and vj may
be negative valued! Can you think why this is not necessarily a problem?

63

Theorem 7.2 If the supplies si : i = 1, ..., m and the demands dj : j =
1, ..., n are all integers, then any feasible solution to the transportation prob-
lem X = (xij) in balance is an integer valued matrix. That is to say X ∈
Z(m+n)×mn

+ .

Intuitively speaking, the reason why this result is true is due to the fact
that the entries of the matrix A are either zero or unity.

Finally we conclude this section with a result concerning the rank of
the matrix A which will be of use in the next section when we look at an
algorithm for solving the transportation problem.

Theorem 7.3 Rank(A) = m + n− 1.

Proof. Recall that A ∈ R(n+m)×mn. Suppose that rT
1 , ..., rT

m+n are the
rows of A. Partitioning A between the m-th and (m + 1)-th row, in any one
column we have just one unit entry on either side and the remaining terms
zero. Hence

m∑
i=1

ri =
n∑

i=m+1

ri =




1
...
1


 ∈ Rmn.

It follows that the rows of A are linearly dependent. The main aim of this
proof is to deduce from this fact that this means that rank of the matrix A
is the number of rows minus one.

To this end, consider solutions (λ1, · · · , λm+n−1) to the equation

u(λ1, ..., λm+n−1) = 0

where

u(λ1, ..., λm+n−1) :=
m+n−1∑

i=1

λiri.

As we do not include the bottom row of the matrix A it must be the case
that (∑m+n−1

i=1 λiri

)
n

= λ1 = 0(∑m+n−1
i=1 λiri

)
2n

= λ2 = 0
...(∑m+n−1

i=1 λiri

)
mn

= λm = 0.

64

Note, it is worth looking at (17) to see why the above holds.
As a consequence of the above we also have

(∑m+n−1
i=1 λiri

)
1

= λ1 + λm+1 = λm+1 = 0(∑m+n−1
i=1 λiri

)
2

= λ1 + λm+2 = λm+2 = 0
...(∑m+n−1

i=1 λiri

)
n−1

= λ1 + λm+n−1 = λm+n−1 = 0.

In conclusion, the unique solution to the equation u(λ1, ..., λm+n−1) = 0 is
λ1 = · · ·λm+n−1 = 0 showing that all but the last row of A are linearly
independent and hence rank(A) = m + n− 1.

To some extent the conclusion of the last theorem is intuitively obvious
since we have m equations of the form

∑
j xij = si, n equations of the form∑

i xij = dj with one constraint
∑

i si =
∑

j dj.

7.5 Solving the transportation problem

The transportation problem is nothing more than a linear programming prob-
lem and hence there is no reason why not to solve it using the simplex algo-
rithm. However, by virtue of the large number of variables involved this not
the most practical option. Below we describe an algorithm for solving the
transportation problem which is essentially based on the Asymmetric Com-
plementary Slackness Theorem. Looking back to this theorem and putting
it into the current context we have that, if xij and ui, vj are feasible, then
they satisfy

xij > 0⇒ ui + vj = cij

and
ui + vj < cij ⇒ xij = 0

where i = 1, ..., m and j = 1, ..., n.

Here-now is the promised algorithm.

(a) Find a basic feasible solution to the primal. Since rank(A) = m + n− 1
it follows that that there should be at most m+n− 1 of the entries xij

are non-zero.24 Assume that this solution is optimal.

24When there are less than m + n − 1 non-zero entries, we have a degenerate basic
feasible solution.

65

(b) Write down the m + n− 1 equations which are of the form

ui + vj = cij for each i, j that xij > 0.

This will give the solution to the m+n variables u1,, um, v1, ..., vn in
terms of an unknown parameter. We can fix this parameter by choosing
(for example) u1 = 0.

(c) If with this set values for ui, vj, i = 1, ..., m, j = 1, ..., n we also have
that

ui + vj ≤ cij for each i, j that xij = 0

then by the the Asymmetric Complementary Slackness Theorem it fol-
lows that the feasible solution (xij) must be optimal as assumed.

If however for some pair i, j we have that

ui + vj > cij and xij = 0

then we have violated the conditions of the Asymmetric Complemen-
tary Slackness Theorem (specifically the dual solution is not feasible)
and the assumption that our feasible solution is optimal must be false.
We can improve things by increasing the value of this particular xij

(where i, j are the offending pair of indicies) to a non-zero value, ad-
justing the values of the other xij-s so that there are still m + n − 1
non-zero entries25 and returning to step (a).

This algorithm is not complete as at least the following two questions
remain to be answered when utilising the suggested routine.

How does one choose an initial basic feasible solution?

How does one re-adjust the feasible solution in step (c)?

We address these two points in the next two sections.

25This is akin to moving to another basic feasible solution in the Simplex Method.

66

7.6 Initial feasible solutions

There are several methods, but here are two of the more popular.

The ‘North-West corner’ method: Start by putting x11 = min{s1, d1}
and then move along the rows of xij using up either the supplies or filling
the demands until all supplied are distributed and all demands are fulfilled.
Below is an example.

7 11 15 ← dj

14 7 7 0
13 0 4 9
6 0 0 6

si ↑

The ‘matrix’ (or ‘cheapest route’) method: We find mini,j cij and
then allocate as large an xij value as possible to route i→ j (in other words
satisfying either supply or demand, whichever is the smaller). We repeat with
the next smallest26 cij and on until all factories are empty and all markets
are full. This method is lengthier but gives a better starting point. Consider
the previous example but with the transport costs given by the matrix

(cij) =




14 13 6
15 14 8
9 11 2


 .

In this case we establish an initial feasible solution as

7 11 15
14 0 5 9
13 7 6 0
6 0 0 6

Note if the problem has been set up with an additional ‘dump’ then obviously
it would not be advisable to allocate to the dump.

26If there is a tie between two values of cij then one picks one of them arbitrarily.

67

7.7 A worked example

We are given supply/demand/cost data in the following format

55 70 35 40 ← dj

80 13 11 18 17
100 2 14 10 1
20 5 8 18 11
si ↑

Step 1: We start by constructing a feasible solution using the North-
West corner method and obtain the following matrix for (xij) with the cost
matrix (cij) embedded in.

55 70 35 40 ui ↓
80 55 [13] 25 [11] 0 [18] 0 [17] −3
100 0 [2] 45 [14] 35 [10] 20 [1] 0
20 0 [5] 0 [8] 0 [18] 20 [11] 10

vj → 16 14 10 1 z = 2210

On the right hand column and bottom row, we have also included the values
of (u1, u2, u3, v1, v2.v3) by solving the complementary slackness equations.
Specifically

x11 > 0⇒ u1 + v1 = 13
x12 > 0⇒ u1 + v2 = 11
x22 > 0⇒ u2 + v2 = 14
x23 > 0⇒ u2 + v3 = 10
x24 > 0⇒ u2 + v4 = 1
x34 > 0⇒ u3 + v4 = 11.

We have solved this system by choosing arbitrarily u2 = 0.27 By inspection
we can see that this solution is not optimal because

x31 = 0 and yet u3 + v1 = 26 > 5 = c31.

in fact the entry in x31 is the ‘worst offender’ in this class so to speak in the
sense that

min
ij:xij=0

{cij − ui − vj} = c31 − u3 − v1 = −21

27Note the algorithm we have given suggests to take u1 = 0, however we have chosen
u2 = 0 to show that it does not matter.

68

(which is necessarily a negative number when the solution is not optimal).

Step 2: We can improve our solution by introducing a non-zero entry
to x31 by so that there are the same number of non-zero entries. Intuitively
speaking, our initial solution was a basic solution and we now wish to change
the basis to introduce x31.

We introduce x31 with the following perturbation loop.

· · · ·
· 55− η 25 + η · · ·
· · 45− η · 20 + η ·
· 0 + η · · 20− η ·

· · · · ·
In this perturbation loop we add and subtract η from a loop of nodes in such
a way that in any row or any column, for every time η has been added on to
an entry, it has also be subtracted off from another entry. This has the effect
that the perturbed solution is still feasible. Note that the maximum value of
η we can work with is 20 in order to keep the maximum number of non-zero
entries equal to m + n − 1 = 6. Reallocating resources with η = 20 and
computing the ui-s and vj-s again using complementary slackness we have

55 70 35 40
80 35 [13] 45 [11] 0 [18] 0 [17] −3
100 0 [2] 25 [14] 35 [10] 40 [1] 0
20 20 [5] 0 [8] 0 [18] 0 [11] −11

16 14 10 1 z = 1790

where we can see that again we have arbitrarily chosen u2 = 0.

Step 3: Note that

min
ij:xij=0

{cij − ui − vj} = c21 − u2 − v1 = −14

and so we propose to introduce x21 with the following perturbation loop

· · · ·
· 35− η 45 + η · · ·
· 0 + η 25− η · · ·
· · · · · ·

· · · · ·

69

The maximum value of η permitted is 25 and hence we obtain the new table

55 70 35 40
80 10 [13] 70 [11] 0 [18] 0 [17] 11
100 25 [2] 0 [14] 35 [10] 40 [1] 0
20 20 [5] 0 [8] 0 [18] 0 [11] 3

2 0 10 1 z = 1440

where the new values of ui and vj have been filled in with the arbitrary choice
u2 = 0.

Step 4: We compute as usual

min
ij:xij=0

{cij − ui − vj} = c13 − u1 − v3 = −3.

and work with the following perturbation loop

· · · ·
· 10− η · 0 + η · ·
· 25 + η · 35 + η · ·
· · · · · ·

· · · · ·
which permits η = 10 as its largest value. This results in the following table

55 70 35 40
80 0 [13] 70 [11] 10 [18] 0 [17] 8
100 35 [2] 0 [14] 25 [10] 40 [1] 0
20 20 [5] 0 [8] 0 [18] 0 [11] 3

2 3 10 1 z = 1410

By construction we have that xij > 0⇒ ui + vj = cij and a quick inspection
shows that for the remaining entries satisfy ui + vj ≤ cij and xij = 0. Hence
the conditions of the Asymmetric Complementary Slackness Theorem are
fulfilled and this solution must be optimal.

7.8 Improvement at each iteration

Why did we work with the ‘worst offender’ minij:xij=0{cij − ui − vj} at each
stage of the iteration in the example above?

70

If xkl is the variable to be made basic, then we find a ‘pertubation loop’
of basic variables of the form

xkl ↔ xkp l xrp ↔ xr., · · · , xs. ↔ xsl l xkl

These are alternately decreased and increased by the value η. The difference
between the new value of the objective minus old value of the objective is
therefore

η(ckl − ckp + crp − cr. + · · ·+ cs. − csl)

= η[ckl − (uk + vp) + (ur + vp)− (ur + v.) + · · ·+ (us + v.)− (us + vl)]

= η(ckl − uk − vl)

< 0

whenever ckl−uk−vl < 0. Note that the first equality follows becasue, apart
from the pair k, l all other entries xij in the pertubation loop are positive and
hence for such pairs i, j we have ci,j = ui + vj. The second equality is the
consequence of a large cancellation of terms. For a non-degenerate solution
we will always have η > 0 and so there will be a definite reduction in the
total transport cost. Choosing the ‘worst offender’, ie chooising xkl such that

ckl − uk − vl = min
ij:xij=0

{cij − ui − vj} < 0,

is a good way of trying to maximise the reduction at each step28. Of course,
if one does not choose the ‘worst offender’ to include in the basis, it is not
detrimental to the ultimate aim of minimising the objective, so long as one
chooses an xkl for which ckl − uk − vl < 0.

7.9 Degeneracy

Recall that a basic feasible solution to a linear programming problem is
degenerate if one of the variables in the basis is zero-valued. In the context
of a transportation problem this would correspond to finding a solution xij

for which there are strictly less than m+n− 1 non-zero entries. (Recall that
rank(A) = m + n− 1).

28If one considers two different perturbation loops, then there is not guarantee that the
quantity η is the same for each one and hence strictly speaking we cannot compare the
relative reduction between loops at this level of abstraction even if the quantity ckl−uk−vl

is the smallest negative value possible.

71

It is not uncommon to obtain degenerate solutions to transportation prob-
lems (this can even happen by using, for example, the matrix method to con-
struct an initial solution). One needs to be a little careful in the case that
one has a degenerate solution. Consider for example the following example
(taken from the 2004 exam).

In a land levelling project, soil must be taken from four zones and taken
to five other zones. The amounts (in thousands of tons) to be removed from
zones A,B,C and D are 25, 50, 30 and 40 respectively whilst the amounts
needed at zones K, L, M, N and P are 30, 60, 20, 15 and 20. The average
distances travelled (in meters) in moving soil between the various zones are
shown below.

K L M N P
A 120 70 200 60 100
B 80 130 100 130 140
C 190 130 70 110 160
D 130 90 100 180 150

Solve the problem of moving the soil as required whilst minimising the effort
required in terms of total tons times meters travelled.

This problem is a standard balanced transportation problem where the
table above can be taken directly as the cost matrix. Applying the matrix
method we can immediately produce the following initial solution.

30 60 20 15 20
25 0 [120] 10 [70] 0 [200] 15 [60] 0 [100] ·
50 30 [80] 0 [130] 0 [100] 0 [130] 20 [140] ·
30 0 [190] 10 [130] 20 [70] 0 [110] 0 [160] ·
40 0 [130] 40 [90] 0 [100] 0 [180] 0 [150] ·

· · · · · ·
Note that m = 4, n = 5 and hence m + n − 1 = 8 and yet the solution
above only has 7 non-zero entries. It is degenerate. This poses a problem
if we try to compute the dual values ui, vj as, even choosing u1 = 0, there
are not enough equations to obtain exact dual values. One way around this
is to flag one of the zeros, say 0 = x22 as the degenerate part of the basic
solution (we have done this by putting it in bold) and then including the
equality u2 + v2 = c22 in the set of linear equations used to solve for the dual

72

variables. We can now proceed to solve for the dual values (choosing u1 = 0)
and obtain.

30 60 20 15 20
25 0 [120] 10 + η [70] 0 [200] 15− η [60] 0 [100] 0
50 30 [80] 0 [130] 0 [100] 0 [130] 20 [140] 60
30 0 [190] 10− η [130] 20 [70] 0 + η [110] 0 [160] 60
40 0 [130] 40 [90] 0 [100] 0 [180] 0 [150] 20

20 70 10 60 80 ·

On a practical note, there is a quick way of filling out the final column and
row. Start by setting u1 = 0, move across the first row to non-zero entries,
do a quick mental calculation and fill in the entries for those columns in the
final row. Next by looking at the second row use these entries in the final
row to obtain as many entries as possible in the final column and so on until
all values of ui, vj have been filled out. Having filled out the final column
and final row one may now quickly check for optimality by looking at all the
zero entries and seeing if the corresponding values in the terminal row and
column add up to something less than or equal to the corresponding cost in
square brackets.

We have also included in the table above a perturbation loop around the
‘worst offender’ x34.

Following through with the calculations (bearing in mind that we are still
thinking of 0 = x22 as part of the basic solution), the next table takes the
form

30 60 20 15 20
25 0 [120] 20 [70] 0 [200] 5 [60] 0 [100] 0
50 30 [80] 0 [130] 0 [100] 0 [130] 20 [140] 60
30 0 [190] 0 [130] 20 [70] 10 [110] 0 [160] 50
40 0 [130] 40 [90] 0 [100] 0 [180] 0 [150] 20

20 70 20 60 80 z = 13, 000

and the reader can easily check that we now have that ui + vj ≤ cij for all
i, j such that xij = 0. Hence we have found the optimal solution.

7.10 Pricing out

Suppose that we wish to prevent that the solution to the transportation prob-
lem makes use of the route i→ j. We can do this by setting cij = M where

73

M is some arbitrarily large value (or indeed M = ∞). The transportation
algorithm will naturally move away from solutions which use this route as it
is a minimisation algorithm. We have thus ‘priced-out’ the route i→ j.

Consider the example in the previous section. Suppose in addition, we
want to solve this transportation problem with the additional constraint that
at most 20,000 tons are taken from D to L. The way to handle this additional
constraint is to spilt the zone D into two parts D1, which corresponds to the
first 20,000 tons of soil at D, and D2, which corresponds to the remaining
20,000 tons of soil at D. We thus formulate the problem with the data in the
table below.

30 60 20 15 20
25 120 70 200 60 100
50 80 130 100 130 140
30 190 130 70 110 160

D1 : 20 130 90 100 180 150
D2 : 20 130 M 100 180 150

This table shows in the last two rows that shipping any soil over and above
20,000 tons from D has identical costs to shipping any of the first 20,000 tons
except to L which incurs an arbitrary large cost (and hence implicitly will be
avoided by the algorithm). One may now proceed to solve this transporta-
tion problem in the usual way (note that the matrix method will produce a
degenerate initial solution again).29 At any stage of the algorithm one should
avoid introducing the variable x52 and when computing the values of the dual
variables ui, vj note that it will always be the case that (when checking the
zero 0 = x52) u5 + v2 ≤M since M is assumed to be arbitrarily large.

Below is another example of how to use pricing out (taken from the 2005
exam). Unlike the above example we use pricing out to build in a temporal
feature of the given problem.

A factory makes a product for which there is a fluctuation but predictable
demand. The following table shows the predicted demand for each of the next
five months together with the production capacity and unit production costs
for each month.

29Please refer to the model solutions provided on my webpage.

74

Month 1 2 3 4 5
Demand (‘000) 60 80 85 100 70

Production Capacity (‘000) 90 95 100 100 90
Unit production cost (pence) 50 55 60 60 65

Items produced in a month are available to meet demand in the same
month but they may also be stored to meet demand 1,2,3 or 4 months later
at a cost of 4,7,9 and 10 pence per item respectively. It is required to schedule
production to meet the anticipated demand at minimum total cost.

Formulating this as a transportation problem is rather tricky as there
is a temporal aspect that we need to build into the solution. The idea is
to note that the supply at month n can in principle feed the demand at
month n as well as all subsequent months. However the supply at month n
cannot feed the demands at previous months.30 We may thus think of xij

for i = 1, ..., 5 and j = i, .., 5 as the amount produced at time i which feeds
the demand at time j. Further when computing cij we need to take account
of the production cost at time i plus the storage costs for the additional
months after the production month before the item is sold on. We think of
the supply nodes as the production in the individual months (the second row
of the above table) and the markets as the demand in each month (the first
row of the above table). In that case we see that our transportation problem
is not balanced and we need to introduce a ‘dump’. Hence we present the
given data for use in a transportation problem as follows.

60 80 85 100 70 80
90 50 54 57 59 60 0
95 M 55 59 62 64 0
100 M M 60 64 67 0
100 M M M 60 64 0
90 M M M M 65 0

Using the matrix method we can introduce an initial solution given below.
Note that it is degenerate and as before we have indicated in bold a zero which
we wish to think of as an element of the basis and for which we shall force
tightness in the corresponding dual inequality. We have also set as usual

30We are making the assumption that time travel is not possible.

75

u1 = 0.

60 80 85 100 70 80
90 60 [50] 30− η [54] 0 [57] 0 [59] 0 + η [60] 0 [0] 0
95 0 [M] 50 + η [55] 45− η [59] 0 [62] 0 [64] 0 [0] 1
100 0 [M] 0 [M] 40 + η [60] 0 [64] 0 [67] 60− η [0] 2
100 0 [M] 0 [M] 0 [M] 100 [60] 0 [64] 0 [0] 1
90 0 [M] 0 [M] 0 [M] 0 [M] 70− η [65] 20 + η [0] 2

50 54 58 59 63 −2 ·

We have also indicated a perturbation loop and this yields the solution (set-
ting again u1 = 0).

60 80 85 100 70 80
90 60 [50] 0 [54] 0 [57] 0 [59] 30 [60] 0 [0] 0
95 0 [M] 80 [55] 15 [59] 0 [62] 0 [64] 0 [0] 4
100 0 [M] 0 [M] 70 [60] 0 [64] 0 [67] 30 [0] 5
100 0 [M] 0 [M] 0 [M] 100 [60] 0 [64] 0 [0] 4
90 0 [M] 0 [M] 0 [M] 0 [M] 40 [65] 50 [0] 5

50 51 55 56 60 −5 z = 22, 885

A quick scan reveals that ui + vj ≤ cij for all i, j and hence we have
reached an optimal solution.

76

8 Optimisation over Networks

8.1 Capacitated Networks

A capacitated network (N, γ) consists of a set of nodes N and a set of di-
rected arcs31, which can be regarded as a subset of of N ×N . Associated
with each arc is a non-negative real number γ which can be interpreted as
the capacity of the arc. Formally γ is a a mapping γ : N×N → [0,∞) which
satisfies

γ(i, j) ≥ 0 for all i, j ∈ N
γ(i, i) = 0 for all i ∈ N .

A network may be represented either

diagramatically, for example,

1

2

3

4

5 3

6 2

6

or equivalently by a matrix of values of γ




0 5 0 0
0 0 6 3
0 2 0 6
0 0 0 0




31To be clear, a directed arc simply means the direct path i→ j where i, j ∈ {1, ..., N}.

77

8.2 Flows in Networks

Many problems are concerned with flows in networks where γ is interpreted
as a capacity limiting the possible flow along an arc. One class of problems
we shall be concerned with is finding the maximal flow through a network.
In this we shall take some nodes, called sources, to be the origin of the flows
and others, called sinks, to be where the flow is taken away. In general there
can be many sources and sinks.

We need to introduce some new notation at this point.

1. Node s ∈ N is a source iff

γ(i, s) = 0 ∀i ∈ N and ∃i ∈ N s.t. γ(s, i) > 0

2. Node d is a sink iff

γ(d, i) = 0 ∀i ∈ N and ∃i ∈ N s.t. γ(i, d) > 0

3. A path is a sequence of arcs of the form:

(i1, i2), (i2, i3),, (ik−1, ik)

where i1, i2, ..., ik are distinct nodes.

4. A flow in a network is a function f defined on N ×N satisfying:

(a) f(i, j) ≤ γ(i, j) ∀i, j ∈ N

(b) f(i, j) = −f(j, i)

(c)
∑

j∈N f(i, j) =
∑

j∈N f(j, i) ∀i ∈ N\(S ∪D)

where S and D are the sets of sources and sinks respectively. Condition
(c) simply requires conservation of flow at all nodes other than sources
or sinks. Actually, both sides of the equation in (c) are both zero as a
result of (b).32 The latter says that a flow in one direction is treated as
equivalent to a negative flow in the opposite direction. This convention
makes later computations somewhat more more convenient.

5. A path is saturated if it contains an arc (i, j) with f(i, j) = γ(i, j).

32The point being that from (b) we have that
∑

j∈N f(i, j) = −∑
j∈N f(j, i) =∑

j∈N f(j, i). Since the only number which is the negative of itself is zero, the claim
follows.

78

8.3 Maximal flow problem and labelling algorithm

Henceforth we shall consider only networks with just one source
and one sink.

For a network with single source and sink, the maximal flow problem
is to determine arc flows f(i, j) in order to maximise the total flow from the
source, A(f), which is defined by

A(f) =
∑
i∈N

f(s, i).

In this section we shall describe the labelling algorithm.33 In outline,
the algorithm is as follows. Suppose that a flow through the network has
been established.

Step 1: Find an unsaturated path from source s to sink d. If none exists,
the flow is maximal.

Step 2: Augment the existing flows to saturate the path. Return to Step1.

This looks easy, but the complicating feature is that the path may involve
traversing arcs in the opposite direction to the present flow i.e. augmenting
the flow may involve reducing the existing flow along one or more arcs.
The most reliable way to find an unsaturated path is to adopt the labelling
procedure now described.

Step 1: Suppose we have been able to assign a flow34 through the network,
say g(i, j), then calculate the residual capacities, γ′(i, j), by the
following

γ′(i, j) = γ(i, j)− g(i, j).

(a) Find all nodes i with the property

γ′(s, i) > 0

i.e all those nodes with an unsaturated arc from the source s.
Label node i with (di, s) where di = γ′(s, i).

33Also known as the Ford-Fulkerson labelling algorithm.
34We mean specifically which respects the definition of a flow.

79

(b) Find nodes j with the property

γ′(i, j) > 0 where node i is labelled.

Label node j with (dj, i) where

dj = min(γ′(i, j), di)

(c) Keep returning to Step 1 (b) until all nodes that can be labelled
have been labelled.

Step 2: If the sink d is not labelled then all paths to the sink are saturated
and the flow must be optimal. The optimal flow by the simple relation

g(i, j) = γ(i, j)− γ′(i, j)

where γ′ are the residual capacities in the current round of the algo-
rithm.

If on the other hand the sink d is labelled then there is an unsaturated
path from source to sink and the labels will show the nodes which make
up the path as well as the minimal residual capacity along the path.

We now create a new set of residual capacities for the network, γ′′(ij)
as follows

γ′′(i, j) = γ′(i, j) if i, j do not belong to the unsaturated path

and

γ′′(i, j) = γ′(i, j)− c if i, j belong to the unsaturated path

where c is the minimal residual flow along the unsaturated path.

Now return to Step 1 (a) replacing γ by γ′′.

This algorithm is to some extent incomplete as it does not tell us how to
find an initial solution. Here is a rough description of how one may do this.
Start at the source and find a path of arcs which connects the source to the
sink. The maximum flow that can be allowed along this path is the minimum
capacity of all the arcs along the path. Suppose this minimal capacity is c.
Subtract this capacity from all the capacities along the the given path so

80

that at least one arc has zero capacity. To get the best possible initial flow
one can return to the source and proceed along another path with positive
capacity at each arc and repeat the procedure and then continue in this way
until there are no more paths possible from source to sink. Essentially this
is going through the whole labelling procedure in one go and so it does not
matter if not all paths are saturated on the initial flow as subsequent steps
of the labelling algorithm will address these deficiencies.

Things are best visualised in an example!

8.4 A worked example

Consider the network whose structure and capacities are described by the
matrix 



0 8 8 0 0 0
0 0 0 4 4 0
0 2 0 0 5 2
0 4 0 0 0 5
0 4 0 0 0 6
0 0 0 0 0 0




Which can otherwise be represented in diagrammatic form as follows.

1

2

3

4

5

6

0

8

2

0

8

0

0

0 5

4

4

4 4

0

5

2

0

6

We now construct an initial flow by looking at paths from the source to
the sink and adding the minimal flow along these paths. In the diagram below
we have inserted the residual capacities which follow from each included flow
from source to sink. Note that final figures give us the initial values of γ′(i, j)
to work with in step 1 (a) of the algorithm.

81

The paths we work with and their respective flows are

1→ 2→ 4→ 6 flow 4
1→ 3→ 5→ 6 flow 5
1→ 3→ 6 flow 2

1

2

3

4

5

6

0

8

2

0

8

0

0

0 5

4

4

4 4
0

5

2

0

6

3

4

4

8 0

4

1

1

5

05

2

0

5
7

1

The reader will note that strictly speaking we could in principle add more
flow by adding a unit flow to the path 1→ 2→ 5→ 6. However, as we shall
see below this is essentially what the first step of the labelling algorithm will
do anyway.

Now following Step 1, (b) and (c) we insert the labels on the nodes where
possible and observe that the sink has been labelled which means that sat-
uration has not been reached. On the same diagram we have computed the
new set of residual capacities.

1

2

3

4

5

6

0 4

4
2

7

4

4

8 0

4

1

0

1

5

05

2
1

(4,1)

(1,1) (4,2)

(1,5)

6

0
3

5

5

3

82

From the labels we see that a flow 1 → 2 → 5 → 6 of unit strength is
still possible. We include this flow by augmenting the capacities again. With
the new residual capacities we label the network as in the following diagram.
Note that the sink is no longer labelled which means that the network is
saturated. Using the relation that g(i, j) = γ(i, j) − γ′(i, j) where γ′ is the
current residual capacities we find that

g(s, 1) = 8− 3 = 5 and g(s, 2) = 8− 1 = 7

making the maximal flow
∑

j g(s, j) = 12.

1

2

3

4

5

6

0

2

7

8 0

4

1

0

05

2
1

5

3

6

0

3

5

(3,1)

(1,1) (3,2)

Finally note that had we included the path 1→ 2→ 5→ 6 in the initial
solution, the labelling algorithm would have concluded immediately that we
have found the optimal solution.

8.5 Maximal flow and minimal cuts

The procedure described above is based upon ideas developed by Ford and
Fulkerson in 1957. Central to the underlying theory is the idea of a cut,
which is now described. This description again is limited to the case of
netwoks having a single source and sink.

We need to introduce yet more notation.

1. A cut in a network is an ordered pair (A,B) of subsets of N such that

(a) s ∈ A

(b) d ∈ B

83

(c) A ∪B = N

(d) A ∩B = ∅
2. The capacity of a cut γ(A,B) is defined as

γ(A,B) =
∑
i∈A

∑
j∈B

γ(i, j)

This same notation will be used whenever A and B are subsets of N
without necessarily being a cut.

3. If A and B are subsets of N , then the flow from A to B is defined as

f(A,B) =
∑
i∈A

∑
j∈B

f(i, j)

Since for any i, j ∈ N, f(i, j) ≤ γ(i, j), double summation gives

f(A,B) ≤ γ(A,B) (18)

for any cut (A,B).

Lemma 8.1 For any cut (A,B) and any flow f , the amount of flow in the
network equals the flow across (A,B). That is to say,

A(f) = f(A, B).

Proof. Note that by definition of a flow we
∑

j∈N f(i, j) = 0 for any i ∈
N\{s, d}. Now note that

A(f) =
∑
j∈N

f(s, j) + 0

=
∑
j∈N

f(s, j) +
∑

i∈A,i6=s

∑
j∈N

f(i, j)

=
∑
i∈A

∑
j∈N

f(i, j)

=
∑
i∈A

∑
j∈A

f(i, j) +
∑
i∈A

∑
j∈B

f(i, j)

= 0 +
∑
i∈A

∑
j∈B

f(i, j)

= f(A,B)

84

where in the penultimate equality, the terms f(i, j) and f(j, i) = −f(j, i)
appear in the double sum for i, j ∈ A which cancel one another out.

There is a nice intuition behind the above lemma. Think of arcs as pipes.
Imagine that we are pumping fluid into the network at the source and the
capacities represent the maximal flow of liquid that can pass through each
pipe. A cut is a way of severing the network so that all liquid pumped in at
the source leaks out of the system. Naturally, if this is the case then the total
flow of the ‘leakage’ must match the flow pumped in at the source. This is
what the lemma says.

Combining the conclusion of this lemma with this with the inequality
(18), we see that for any cut (A, B),

A(f) ≤ γ(A,B). (19)

In other words the amount of flow cannot exceed the capacity of any cut.
This inequality allows us to deduce that if for some flow f we can find a cut
(A′, B′) such that

A(f) = γ(A′, B′)

then it must be the case that f is an optimal flow. Indeed in that case then
by (19) we necessarily have that

γ(A′, B′) = A(f) ≤ max
g

A(g) ≤ min
(A,B)

γ(A,B) ≤ γ(A′, B′)

where the maximum is taken over all flows g and the minimum is taken over
call cuts (A,B). Hence the inequalities above must be equalities and we see
that A(f) is optimal, (A′, B′) is a minimal cut in the sense that

γ(A′, B′) = min
(A,B)

γ(A,B)

and A(f) = min(A,B) γ(A,B).
Below, the celebrated maximal flow/minimal cut theorem, provides the

converse to this conclusion.

Theorem 8.2 (Maximal flow/minimal cut theorem) Let f be a maxi-
mal flow, then there is a cut (A′, B′) such that

A(f) = γ(A′, B′) = min
(A,B)

γ(A,B).

Thus the maximal flow at the source equals the minimal capacity across all
cuts.

85

Proof. Let A′ be the set of nodes which have been labelled in the final
step of the algorithm together with the source and let B′ be the set of un-
labelled notes. Clearly A′ ∪ B′ = N and A′ ∩ B′ = ∅. We also claim that
(A′, B′) is a cut. To verify this claim we need to show that d ∈ B′. However
this is evident by virtue of the fact that the algorithm stops when the sink
is not labelled.

Now recall from Lemma 8.1 that we must necessarily have A(f) = f(A′, B′).
However, by virtue of the fact that the capacity of arcs from labeled nodes
in A′ to unlabeled nodes in B′ must be saturated (this follows by definition
of the terminal labeling), it follows that

f(A′, B′) =
∑

i∈A′

∑

j∈B′
f(i, j) =

∑

i∈A′

∑

j∈B′
γ(i, j) = γ(A′, B′).

Hence the discussion preceding this theorem implies the required result.

8.6 Example revisited

In the previously discussed example we computed the maximal flow to be
equal to 12. In the diagram below we see all the possible cuts of the network
and the associated capacities of the cuts.

1

2

3

4

5

6

0

8

2

0

8

0

0

0 5

4

4

4 4
0

5

2

0

6

Note that all the cuts are described as follows (we leave the reader to
compute their capacites and verity that 12 is indeed the minimal flow across

86

a cut).
{1}{2, 3, 4, 5, 6}
{1, 2}{3, 4, 5, 6}
{1, 3}{2, 4, 5, 6}
{1, 2, 3}{4, 5, 6}
{1, 2, 4}{3, 5, 6}
{1, 3, 5}{2, 4, 6}
{1, 2, 3, 4}{5, 6}
{1, 2, 3, 5}{4, 6}∗
{1, 2, 3, 4, 5}{6}

The cut marked with a ∗ is a minimal cut.
It is interesting to note that what is essentially going on here is Duality in

disguise. Theorem 8.2 essentially says that if we think of the optimisation of
flow over our given network as a linear programming problem, then when the
the primal problem has a solution then so does the dual and their objectives
are equal. The dual problem clearly manifests itself in cuts over the network.
We leave the reader to puzzle over what precisely the dual problem is!

8.7 A second worked example

We are required to establish the optimal flow in the the following network

1

2

3

4

5

7

6 8

0

0

0 8

7

3

0

7
0 9

0

5

8

60
04

3

50

9
0

0

0

0

4

Note that this network has a source at node 1 and a sink at note 8. We
identify the following paths and flows.

1→ 2→ 5→ 8 flow 5
1→ 3→ 6→ 8 flow 4
1→ 4→ 7→ 8 flow 3
1→ 2→ 6→ 8 flow 2

which results in the following residual capacities.

87

1

2

3

4

5

7

6 8

0

0

0 8

7

3

0

7
0 9

0

5

8

60
04

3

50

9
0

0

0

0

5

2

5 4

5

0

3

6

3 5

3

0

4 1

4 4

4 2

7

0

2

2 6 0

0

With a sharp eye, it should now be clear that we have saturated the
network. However, to be sure, we can implement the labelling procedure to
obtain the diagram below.

1

2

3

4

5

7

6 8

0

7
8

0

3

0

(1,1)

(6,1) (5,4)

7

0 5

0
06

0

3

04

4 1

5 4

2

2

3 5

3

6

(5,7)(5,5)

(2,2)

Since the sink at 8 is not labelled the network must be saturated. The
proof of the maximum flow/minimal cut theorem tells us that the minimal
cut corresponds to the the case that A is the source together with all labelled
nodes and B is the remaining nodes. We have indicated this cut too in the
diagram which corresponds to {1, 3, 4, 5, 6, 7}{8}. Note that the flow from
the source is equal to 7 + 4 + 3 = 14. On the other hand the sum of the
capacities across the indicated cut are equal to 5 + 6 + 3 = 14.

88

