
Chapter 1

Discrete time Markov chains

In this course we consider a class of stochastic processes called Markov chains. The course is roughly
equally divided between discrete-time and continuous-time Markov chains. We shall study various
methods to help understand the behaviour of Markov chains, in particular over the long term.

1.1 What is a Markov chain?

1.1.1 Examples

A stochastic process is a mathematical model for a random development in time. Formally, a discrete-
time stochastic process is a sequence {Xn : n = 0, 1, 2, . . .} of random variables. The value of the
random variable Xn is interpreted as the state of the random development after n time steps.

Example 1.1. Suppose a virus can exist in two different strains α, β and in each generation either
stays the same, or with probability p � 1/2 mutates to the other strain. Suppose the virus is in strain
α initially, what is the probability that it is in the same strain after n generations?

We let Xn be the strain of the virus in the nth generation, which is a random variable with values
in {α, β}. The crucial point here is that the random variable Xn and Xn+1 are not independent and
things you have learnt about i.i.d. sequences of random variables do not apply here! To check this
out note that

P{Xn = α,Xn+1 = α} = P{Xn = α and no mutation occurs in step n + 1} = (1 − p)P{Xn = α},

P{Xn = β,Xn+1 = α} = P{Xn = β and mutation occurs in step n + 1} = pP{Xn = β},
and hence

P{Xn+1 = α} = P{Xn = α,Xn+1 = α} + P{Xn = β,Xn+1 = α}
= (1 − p)P{Xn = α} + p(1 − P{Xn = α})
= (1 − 2p)P{Xn = α} + p < (1 − p).

This gives,

P({Xn = α} ∩ {Xn+1 = α}) = (1 − p)P{Xn = α} > P{Xn+1 = α}P{Xn = α},
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contradicting independence. Recall that another way to express the last formula is that

P{Xn+1 = α |Xn = α} > P{Xn+1 = α}.
To study this process we therefore need a new theory, which is the theory of discrete-time Markov
chains. The possible values of Xn are making up the statespace I of the chain, here I = {α, β}. The
characteristic feature of a Markov chain is that the past influences the future only via the present. For
example you should check yourself that

P{Xn+1 = α |Xn = α,Xn−1 = α} = P{Xn+1 = α |Xn = α}.
Here the state of the virus at time n + 1 (future) does not depend on the state of the virus at time
n − 1 (past) if the state at time n (present) is already known. The question raised above can be
anserwed using this theory, we will give an intuitive argument below.

Example 1.2 The simple random walk
A particle jumps about at random on the set Z of integers. At time 0 the particle is in fixed position
x ∈ Z. At each time n ∈ N a coin with probability p of heads and q = 1 − p of tails is tossed. If the
coin falls heads, then the particle jumps one position to the right, if the coin falls tails the particle
jumps one position to the left. For n ∈ N the position Xn of the particle at time n is therefore

Xn = x + Y1 + · · · + Yn = Xn−1 + Yn

where

Yk :=
{

1 if kth toss is heads,
−1 if kth toss is tails.

The Yks are independent random variables with

P{Yk = 1} = p and P{Yk = −1} = q.

The stochastic process {Xn : n ∈ N} has again the time-parameter set N and the statespace is the
discrete (but infinite) set Z of integers. The rules of evaluation are given by the laws of Yk and we
note that

P{Xn+1 = k |Xn = j,Xn−1 = xn−1, . . . ,X1 = x1}
= P{Yn+1 = k − j|Yn = j − xn−1, Yn−1 = xn−1 − xn−2, . . . , Y2 = x2 − x1, Y1 = x1 − x}}

= P{Yn+1 = k − j} =




0 if |k − j| �= 1,
p if k − j = 1,
q if k − j = −1,

is again independent of x1, . . . , xn−1. Observe that here the independence of the random variables Yk

plays an important role, though the random variables Xn are not independent.

1.1.2 Intuition

Markov chain theory offers many important models for application and presents systematic methods
to study certain questions. The existence of these systematic methods does not stop us from using
intuition and common sense to guess the behaviour of the models.
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For example, in Example 1.1 one can use the equation

P{Xn+1 = α |X0 = α} = pP{Xn = β |X0 = α} + (1 − p)P{Xn = α |X0 = α}

together with
P{Xn = β |X0 = α} = 1 − P{Xn = α |X0 = α},

to obtain for the desired quantity pn = P{Xn = α |X0 = α} the recursive relation

pn+1 = p(1 − pn) + (1 − p)pn = pn(1 − 2p) + p, p0 = 1.

This has a unique solution given by

pn =
1
2

+
1
2
(1 − 2p)n.

As n → ∞ this converges to the long term probability that the virus is in strain α, which is 1/2
and therefore independent of the mutation probability p. The theory of Markov chains provides a
systematic approach to this and similar questions.

1.1.3 Definition of discrete-time Markov chains

Suppose I is a discrete, i.e. finite or countably infinite, set. A stochastic process with statespace I and
discrete time parameter set N = {0, 1, 2, . . .} is a collection {Xn : n ∈ N} of random variables (on the
same probability space) with values in I. The stochastic process {Xn : n ∈ N} is called a Markov
chain with statespace I and discrete time parameter set N if its law of evolution is specified by the
following:

(i) An initial distribution on the state space I given by a probability mass function (wi : i ∈ I),
with wi ≥ 0 and

∑
i∈I wi = 1.

(ii) A one-step transition matrix P = (pij : i, j ∈ I) with pij ≥ 0 for all i, j ∈ I and
∑
j∈I

pij = 1 for all i ∈ I.

The law of evolution is given by

P{X0 = x0,X1 = x1, . . . ,Xn = xn} = wx0px0x1 · · · pxn−1xn , for all x0, . . . , xn ∈ I.

1.1.4 Discussion of the Markov property

Interpretation of the one-step transition matrix

All jumps from i to j in one step occur with probability pij, so if we fix a state i and observe where
we are going in the next time step, then the probability distribution of the next location in I has the
probability mass function (pij : j ∈ I).

Given the present, the future is independent of the past
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We have
P{X0 = x0,X1 = x1, . . . ,Xn = xn} = wx0px0x1 · · · pxn−1xn ,

and
P{X0 = x0,X1 = x1, . . . ,Xn−1 = xn−1} = wx0px0x1 · · · pxn−2xn−1 ,

for all x0, . . . , xn ∈ I. Recall the definition of conditional probabilities

P(A |B) =
P(A ∩ B)

P(B)
.

Dividing the two equations gives

P{Xn = xn |X0 = x0, . . . ,Xn−1 = xn−1} = pxn−1xn . (1.1.1)

In order to find P{Xn = xn |Xn−1 = xn−1} we use the properties of the one-step transition matrix P
to see that

P{Xn = xn, Xn−1 = xn−1} =
∑
x0∈I

· · ·
∑

xn−2∈I

P{Xn = xn, . . . ,X0 = x0}

=
∑
x0∈I

· · ·
∑

xn−2∈I

wx0px0x1 · · · pxn−2xn−1pxn−1xn

=
∑
x0∈I

· · ·
∑

xn−2∈I

P{X0 = x0, . . . ,Xn−1 = xn−1}pxn−1xn

= P{Xn−1 = xn−1} pxn−1xn .

Hence,
P{Xn = xn |Xn−1 = xn−1} = pxn−1xn . (1.1.2)

Now compare (1.1.1) and (1.1.2). We get the formula known as the Markov property:

P{Xn = xn |Xn−1 = xn−1, . . . ,X1 = x1} = P{Xn = xn |Xn−1 = xn−1} = pxn−1xn ,

for all x0, . . . , xn ∈ I and n ≥ 1.

1.1.5 Examples

Example 1.1 Recall the virus example. Initially the virus is in strain α, hence w = (wα, wβ) = (1, 0).
The P -matrix is

P =
(

1 − p p
p 1 − p

)
.

Example 1.2 For the simple random walk, the particle starts in a fixed point x, hence the initial
distribution is given by

wi = P{X0 = i} =
{

1 if i = x.
0 otherwise.

The one-step transition matrix is given by

pij = P{Xn+1 = j |Xn = i} =




0 if |j − i| �= 1,
p if j − i = 1,
q if j − i = −1.
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Example 1.3 Suppose that X0,X1,X2, . . . is a sequence of independent and identically distributed
random variables with

P{Xn = i} = µ(i) for all n ∈ N, i ∈ I,

for some finite statespace I and probability mass function µ : I → [0, 1]. Then the initial distribution
is w = (wi : i ∈ I) with wi = µ(i) and the one-step transition matrix is

P =




µ(i1) µ(i2) · · · µ(in)
µ(i1) µ(i2) · · · µ(in)
· · · · · · · · · · · ·

µ(i1) µ(i2) · · · µ(in)




where we enumerated the statespace I = {i1, . . . , in}.
Example 1.4 Random walk on a finite graph

A particle is moving on the graph below by starting on the top left vertex and at each time step moving
along one of the adjacent edges to a neighbouring vertex, choosing the edge with equal probability
and independently of all previous movements.

There are four vertices, which we enumerate from left to right by {1, . . . , 4}. At time n = 0 we are in
vertex 1. Hence w = (1, 0, 0, 0) is the initial distribution. Each vertex has exactly two neighbours, so
that it jumps to each neighbour with probability 1/2. This gives

P =




0 1/2 0 1/2
1/2 0 1/2 0
0 1/2 0 1/2

1/2 0 1/2 0




1.1.6 Fundamental questions about the long term behaviour

• Will the Markov chain converge to some ”equilibrium regime”? And, what does this mean
precisely?

• How much time does the Markov chain spend in the different states? What is the chain’s
favourite state? Does the answer depend on the starting position?

• How long does it take, on average, to get from some given state to another one?
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1.2 n-step transition probabilities

Unless otherwise stated X = {Xn : n ∈ N} is a Markov chain with (discrete) statespace I and one-
step transition matrix P . The Markov property shows that, whatever the initial distribution of the
Markov chain is, we have

P{Xn+1 = j |Xn = i} = pij.

Let us consider a two-step transition,

P{Xn+2 = j |Xn = i} =
∑
k∈I

P{Xn+2 = j,Xn+1 = k |Xn = i}

=
∑
k∈I

P{Xn+1 = k |Xn = i}P{Xn+2 = j |Xn+1 = k,Xn = i}

=
∑
k∈I

pikpkj = (P 2)ij,

where P 2 is the product of the matrix P with itself. More generally,

P{Xn+k = j |Xk = i} = (Pn)ij .

Moreover, if the vector (wi : i ∈ I) is the initial distribution, we get

P{Xn = j} =
∑
k∈I

P{X0 = k}P{Xn = j |X0 = k}

=
∑
k∈I

wk (Pn)kj .

Hence we get
P{Xn = j} = (wPn)j.

Hence, if we can calculate the matrix power Pn, we can find the distribution of Xn and the n-step
transition probabilities, i.e. the probabilities of being in state j at time n + k if we are in state i at
time n.

If n is large (recall that we are particularly interested in the long term behaviour of the process!) it
is not advisable to calculate Pn directly, but there are some more efficient methods, which we shall
discuss now.

1.2.1 Calculation of matrix powers by diagonalization

We present the diagonalization method by an example. Suppose a village has three pubs along the
main road. A customer decides after every pint whether he moves to the next pub on the left or on
the right, and he chooses each option with the same probability. If there is no pub in this direction,
he stays where he is for another pint. Here is a graph indicating the situation

The statespace of this Markov chain is I = {1, 2, 3}, where the three numbers indicate the three pubs
and the one-step transition matrix is

P =


 1

2
1
2 0

1
2 0 1

2
0 1

2
1
2



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1
2

1
2

1
2

1
2

To find P k for large k, we diagonalize P , if possible. This is happening in two steps.

Step 1 Find det(λI − P ), the characteristic polynomial, of P . Here

λI − P =


 λ − 1

2 −1
2 0

−1
2 λ −1

2
0 −1

2 λ − 1
2


 ,

and hence

det(λI − P ) = (λ − 1
2 ) det

(
λ −1

2
−1

2 λ − 1
2

)
+ 1

2 det
(−1

2 0
−1

2 λ − 1
2

)
= (λ − 1

2 )(λ2 − λ/2 − 1
4) − 1

4(λ − 1
2 )

= (λ − 1
2 )(λ − 1)(λ + 1

2).

Thus P has three distinct eigenvalues

λ1 = 1, λ2 =
1
2
, λ3 = −1

2
,

so it must be diagonalizable (which in this particular case was clear from the fact that P is symmetric).

Important remark: 1 is always an eigenvalue of p, because the vector v = (1, . . . , 1)T satisfies
Pv = v. This is the fact that the row sums of P -matrices are 1!

Step 2 Now we find the corresponding eigenvectors v1, v2, v3 with Pvi = λivi. You can either solve
the simultaneous equations (P − λiI)vi = 0 or guess the answer.

Let S be the matrix with the eigenvectors as columns. In our case,

S =


 1 1 1

1 0 −2
1 −1 1


 ,

then

S−1PS =


 λ1 0 0

0 λ2 0
0 0 λ3


 =: Λ.

Hence P = SΛS−1, and
P 2 = SΛS−1SΛS−1 = SΛ2S−1.

Continuing, we get

Pn = S


 λn

1 0 0
0 λn

2 0
0 0 λn

3


S−1. (1.2.1)
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Hence we have Pn. Looking back at our example, in our case

S−1 =
1
6


 2 2 2

3 0 −3
1 −2 1


 .

If our friend starts at Pub 1, what is the probability that he is in Pub 2 after 3 pints, i.e. what is
P{X3 = 2}? We find

P 3 =
1
6


 1 1 1

1 0 −2
1 −1 1





 1 0 0

0 1/8 0
0 0 −1/8





 2 2 2

3 0 −3
1 −2 1


 =


 3/8 3/8 1/4

3/8 1/4 3/8
1/4 3/8 3/8


 .

(Check: row sums are still one, all entries positive!) Now we need the initial distribution, which is
given by the probability mass function w = (1, 0, 0) (start is in Pub 1) and we get

P{X3 = 1} = (wP 3)1 = 3/8, P{X3 = 2} = (wP 3)2 = 3/8, P{X3 = 3} = (wP 3)3 = 1/4.

1.2.2 Tricks for Diagonalization

We continue with the same example and give some useful tricks to obtain a quick diagonalization of
(small) matrices. In step 1, to find the eigenvalues of the matrix P , one has three automatic equations,

(1) 1 is always an eigenvalue for a P -matrix,

(2) the trace of P (=sum of the diagonal entries) equals the sum of the eigenvalues,

(3) the determinant of P is the product of the eigenvalues.

In the 2 × 2 or 3 × 3 case one may get the eigenvalues by solving the system of equations resulting
from these three facts.

In our example we have λ1 = 1 by Fact (1), Fact (2) gives 1 + λ2 + λ3 = 1, which means λ2 = −λ3.
Fact (3) gives λ2λ3 = −1/4, hence λ2 = 1/2, and λ3 = −1/2 (or vice versa).

If we have distinct eigenvalues, the matrix is diagonalizable. Then from the representation of Pn in
(1.2.1) we see that (in the 3 × 3 case) there exist matrices U1, U2 and U3 with

Pn = λn
1U1 + λn

2U2 + λn
3U3.

We know this without having to find the eigenvectors! Now taking the values n = 0, 1, 2 in the equation
gives

(1) U1 + U2 + U3 = P 0 = I =


 1 0 0

0 1 0
0 0 1


 ,

(2) U1 +
1
2
U2 − 1

2
U3 = P,

(3) U1 +
1
4
U2 +

1
4
U3 = P 2.
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All one has to do is to solve the (matrix) simultaneous equations.

In the example (1)− 4× (3) gives −3U1 = I − 4P 2 and (1) + 2× (2) gives 3U1 + 2U2 = I + 2P . Now,

P 2 =


 1

2
1
2 0

1
2 0 1

2
0 1

2
1
2





 1

2
1
2 0

1
2 0 1

2
0 1

2
1
2


 =


 1

2
1
4

1
4

1
4

1
2

1
4

1
4

1
4

1
2


 .

Hence

U1 =
1
3

(4P 2 − I) =
1
3

[
 2 1 1

1 2 1
1 1 2


 −


 1 0 0

0 1 0
0 0 1


 ]

=


 1

3
1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3


 .

And,

U2 =
1
2

(I + 2P − 3U1) =
1
2

[
 1 0 0

0 1 0
0 0 1


 +


 1 1 0

1 0 1
0 1 1


 −


 1 1 1

1 1 1
1 1 1


 ]

=


 1

2 0 −1
2

0 0 0
−1

2 0 1
2


 ,

U3 = I − U1 − U2 =


 1 0 0

0 1 0
0 0 1


 −


 1

3
1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3


 −


 1

2 0 −1
2

0 0 0
−1

2 0 1
2


 =


 1

6 −1
3

1
6

−1
3

2
3 −1

3
1
6 −1

3
1
6


 .

Hence, for all n = 0, 1, 2, . . .,

Pn =


 1

3
1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3


 +

(1
2

)n


 1

2 0 −1
2

0 0 0
−1

2 0 1
2


 +

(
− 1

2

)n


 1

6 −1
3

1
6

−1
3

2
3 −1

3
1
6 −1

3
1
6


 .

And recall that the n-step are just the entries of this matrix, i.e.

p
(n)
ij := P{Xn = j |X0 = i} = (Pn)ij ,

for example P{Xn = 2 |X0 = 0} = (Pn)02 = 1
3 − 1

2 (1
2 )n + 1

6 ( − 1
2)n.

As a further example look at

P =


 0 1 0

1
4

1
2

1
4

0 1 0


 .

Then the eigenvalues are λ1 = 1 (always) and λ2, λ3 satisfy λ1λ2λ3 = det P = 0, and λ1 + λ2 + λ3 =
trace P = 1/2. Hence λ2 = −1/2 and λ3 = 0. As the eigenvalues are distinct, the matrix P is
diagonalizable and there exist matrices U1, U2, U3 with

Pn = U1 +
(
− 1

2

)n
U2 + 0nU3, for all n = 0, 1, 2, . . .

Either take n = 0, 1, 2 and solve or find U1 directly as

U1 =


 1

6
2
3

1
6

1
6

2
3

1
6

1
6

2
3

1
6


 ,
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by solving πP = π [see tutorials for this trick]. In the second case one only has to use the equations
for n = 0, 1 and gets I = U1 + U2 + U3 and P = U1 − 1

2U2. Hence

U2 = 2(U1 − P ) =


 1

3 −2
3

1
3

−1
6

1
3 −1

6
1
3 −2

3
1
3


 .

For n ≥ 1 we do not need to find U3 and get

Pn =


 1

6
2
3

1
6

1
6

2
3

1
6

1
6

2
3

1
6


 +

(
− 1

2

)n


 1

3 −2
3

1
3

−1
6

1
3 −1

6
1
3 −2

3
1
3


 .

1.2.3 The method of generating functions

This method if particularly efficient when we want to find certain entries of the matrix Pn without
having to determine the complete matrix. The starting point is the geometric series,

1 + z + z2 + · · · =
1

1 − z
, for all |z| < 1.

For a finite square matrix A the same proof gives that

I + A + A2 + · · · = (I − A)−1,

if lim
n→∞An = 0 and I − A is invertible. This is the case if all the eigenvalues of A have modulus < 1.

Recall that the one-step transition matrix of a Markov chain does not fulfill this condition, as 1 is
always an eigenvalue, however we have the following useful fact.

Lemma 1.1 Suppose P is the one-step transition matrix of a finite state Markov chain, then all
eigenvalues have modulus less or equal to one.

We can thus use this series for the matrices θP for all |θ| < 1. The idea is to expand (I − θP )−1 as a
power series in θ around θ = 0 and to find Pn by comparing the coefficients of θn.

Let us look at an example. Let X be a Markov chain with statespace I = {0, 1, 2} and one-step
transition matrix

P =


 0 1 0

1
4

1
2

1
4

0 1 0


 .

Then

I − θP =


 1 −θ 0

−1
4θ 1 − 1

2θ −1
4θ

0 −θ 1


 .

To invert this matrix, recall that A−1 = CT /det A where C = {cij : 0 ≤ i, j ≤ 2} is the matrix of
cofactors of A, i.e. cij is the determinant of the matrix A with the ith row and jth column removed,
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multiplied with the factor (−1)i+j . For example,

(I − θP )−1
01 =

c10

det(I − θP )
=

− det
(−θ 0
−θ 1

)

det
(

1 − 1
2θ −1

4θ
−θ 1

)
− (−θ) det

(−1
4θ −1

4θ
0 1

)

=
θ

1 − 1
2θ − 1

4θ2 − 1
4θ2

=
θ

(1 − θ)(1 + 1
2θ)

.

To expand this as a power series in θ we need to use partial fractions, write

θ

(1 − θ)(1 + 1
2θ)

=
a

1 − θ
+

b

1 + 1
2θ

.

then θ = a(1 + 1
2θ) + b(1− θ). Using this for θ = 1 gives a = 2/3, and for θ = 0 we get b = −2/3. We

can thus continue with

(I − θP )−1
01 =

2
3
(1 − θ)−1 − 2

3
(1 − (−θ/2))−1 =

2
3
(1 + θ + θ2 + · · · ) − 2

3
(1 − θ

2
+

θ2

4
− θ3

8
+ · · · ).

For the last expansion we have used the geometric series. Now we can compare the coefficients here
with those coming from the matrix valued geometric series,

(I − θP )−1
01 =

∞∑
n=0

θn(Pn)01 =
∞∑

n=0

θnp
(n)
01 ,

and get, for all n ∈ N,

P{Xn = 1 |X0 = 0} = p
(n)
01 =

2
3
− 2

3

(
− 1

2

)n
.

You may wish to check that p
(0)
01 = 0.

As another example we ask for the probability that, starting in state 0, we are again in state 0 after
n time steps. Then,

(I − θP )−1
00 =

c00

det(I − θP )
=

det
(

1 − θ
2 − θ

4
−θ 1

)
(1 − θ)(1 + θ

2)
=

1 − θ
2 − θ2

4

(1 − θ)(1 + θ
2)

.

Now we use partial fractions again (note that we need the α-term, as numerator and denominator
have the same order),

1 − θ
2 − θ2

4

(1 − θ)(1 + θ
2 )

= α +
β

1 − θ
+

γ

1 + θ
2

.

To get α, β, γ, we look at

α(1 − θ)(1 +
θ

2
) + β(1 +

θ

2
) + γ(1 − θ) = 1 − θ

2
− θ2

4
.

11



Then θ = 1 gives β = 1/6, θ = −2 gives γ = 1/3 and comparing the θ2 coefficient yields α = 1/2.
Hence,

(I − θP )−1
00 =

1
2

+
1
6
(1 − θ)−1 +

1
3

(
1 −

(
− θ

2

))−1

=
1
2

+
1
6
(1 + θ + θ2 + θ3 + · · ·) +

1
3
(1 − θ

2
+

θ2

4
− · · ·).

Equating coefficients of θn gives,

P{Xn = 0 |X0 = 0} =

{
1
6 + 1

3

(
− 1

2

)n
for n ≥ 1,

1 for n = 0.

1.3 Hitting probabilities and expected waiting times

As always, X is a Markov chain with discrete statespace I and one-step transition matrix P . We now
introduce a notation which allows us to look at the Markov chain and vary the initial distributions,
this point of view turns out to be very useful later.

We denote by Pi the law of the chain X when X starts in the fixed state i ∈ I. In other words, for all
x1, . . . , xn ∈ I,

Pi{X1 = x1, . . . ,Xn = xn} = pix1px1x2 · · · pxn−1xn .

We can also think of Pi as the law of the Markov chain conditioned on X0 = i, i.e.

Pi(A) = P{A |X0 = i}.

The law Pw of X with initial distribution w is then given as the mixture or weighted average of the
laws Pi, i.e. for the initial distribution w = (wi : i ∈ I) of the Markov chain and any event A,

Pw(A) =
∑
i∈I

Pw(A ∩ {X0 = i}) =
∑
i∈I

Pw{X0 = i}Pi(A) =
∑
i∈I

wiPi(A).

We also use this notation for expected values, i.e. Ei refers to the expectation with respect to Pi and
Ew refers to expectation with respect to Pw.

Remember that in expressions such as P{Xn+1 = xn+1 |Xn = xn} = pxnxn+1 we do not have to write
the index w because if we are told the state at time n we can forget about the initial distribution.

1.3.1 Hitting probabilities

We define the first hitting time Tj of a state j ∈ I by

Tj := min{n > 0 : Xn = j}

and understand that Tj := ∞ if the set is empty. Note the strict inequality here: we always have
Tj > 0. Also observe the following equality of events,

{Tj = ∞} = {X never hits j}.

12



Using this we can now define the hitting probabilities (Fij : i, j ∈ I), where Fij is the probability that
the chain started in i hits the state j (in positive, finite time). We let

Fij := Pi{Tj < ∞}.

Note that Fii is in fact the probability that the chain started in i returns to i in finite time and need
not be 1!

Example: We suppose a particle is moving on the integers Z as follows: it is started at the origin
and in the first step moves to the left with probability 1/2 and to the right with probability 1/2. In
each further step it moves one step away from the origin. (Exercise: write down the P -matrix!)

1
2

1
21 1

. . . . . .

Here we have

Fij =




1 if j > i > 0 or j < i < 0,
0 if i < 0 < j or i > 0 > j,
1/2 if i = 0, j �= 0,
0 if i = j.

Theorem 1.2 For a fixed state b ∈ I the probabilities

xi := Fi,b := Pi{Tb < ∞}, for i ∈ I,

form the least non-negative solution of the system of equations,

xi =
(∑

j �=b

pijxj

)
+ pib for i ∈ I. (1.3.1)

In particular, if yi ≥ 0 for all i ∈ I form a solution of

yi =
(∑

j �=b

pijyj

)
+ pib, (1.3.2)

then yi ≥ xi for every i ∈ I.

Note: yi = 1 for all i ∈ I always solves (1.3.2).

Proof: First step: We show that xi = Pi{Tb < ∞} is a solution of (1.3.1). Let E = {Tb < ∞} be
the event that the chain hits b. Then

xi = Pi(E) =
∑
j∈I

Pi(E ∩ {X1 = j})

=
∑
j∈I

Pi{X1 = j}Pi{E |X1 = j}

=
∑
j∈I

pijP{E |X1 = j}.

13



Looking at the last probability we see that

P{E |X1 = j} =
{

1 if j = b,
Pj{Tb < ∞} if j �= b.

This gives
xi =

∑
j �=b

pijxj + pib.

Second step: Suppose yi ≥ 0 forms a solution of (1.3.2). To finish the proof we have to show that
yi ≥ xi. Observe that,

yi =
(∑

j �=b

pijyj

)
+ pib

= pib +
∑
j �=b

pij

(∑
k �=b

pjkyk + pjb

)

= pib +
∑
j �=b

pijpjb +
∑
j �=b

∑
k �=b

pijpjkyk

= Pi{X1 = b} + Pi{X1 �= b,X2 = b} +
∑
j �=b

∑
k �=b

pijpjkyk.

Repeated substitution yields,

yi = Pi{X1 = b} + Pi{X1 �= b,X2 = b} + . . . + Pi{X1 �= b, . . . ,Xn−1 �= b,Xn = b}
+

∑
j1 �=b

· · ·
∑
jn �=b

pij1pj1j2 · · · pjn−1jnyjn.

Because yj ≥ 0 the last term is positive and we get, for all n ∈ N,

yi ≥ Pi{X1 = b} + Pi{X1 �= b,X2 = b} + . . . + Pi{X1 �= b, . . . ,Xn−1 �= b,Xn = b}
= Pi{Tb = 1} + · · · + Pi{Tb = n}
= Pi{Tb ≤ n}.

Hence, letting n → ∞,

yi ≥ lim
n→∞Pi{Tb ≤ n} = Pi

( ⋃
n

{Tb ≤ n}
)

= Pi{Tb < ∞} = xi.

Example Consider a Markov chain with state space I = {0, 1, 2, . . .} given by the diagram below,
where, for i = 1, 2, . . ., we have 0 < pi = 1 − qi < 1. Here 0 is an absorbing state and

xi := Pi{T0 < ∞}

is the hitting probability of state 0 if the chain is started in state i ∈ I.
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0
q1

p1

1
q2

p2

2
q3

p3

3
q4

p4

4
q5

p5

5
...

For
γ0 := 1, γi :=

qiqi−1 · · · q1

pipi−1 · · · p1
for i ≥ 1,

• If
∑∞

i=0 γi = ∞ we have xi = 1 for all i ∈ I.

• If
∑∞

i=0 γi < ∞, we have

xi =

∑∞
j=i γj∑∞
j=0 γj

for i ∈ I.

To prove this, we first use the ‘one-step method’ to find the equations x0 = 1 and

xi = qixi−1 + pixi+1, for i ≥ 1.

The solutions of this system are given by

xi = 1 − A(γ0 + · · · γi−1), for i ≥ 1,

for any choice of a fixed A ∈ R. To prove this we have to

• check that the given form solves the equation,

• show that any solution is of this form.

For the first part we just plug in:

qixi−1 + pixi+1 = qi(1 − A(γ0 + · · · + γi−2)) + pi(1 − A(γ0 + · · · + γi))
= 1 − A(qi(γ0 + · · · + γi−2) + pi(γ0 + · · · + γi)),

and

qi(γ0 + · · · + γi−2) + pi(γ0 + · · · + γi) = γ0 + · · · + γi−2 +
piqi−1 · · · q1 + qi · · · q1

pi−1 · · · p1
= γ0 + · · · + γi−1.

For the second part assume that (xi : i = 1, 2, · · ·) is any solution. Let yi = xi−1 − xi. Then
piyi+1 = qiyi, which implies inductively that

yi+1 =
( qi

pi

)
yi = γiy1.

Hence
x0 − xi = y1 + · · · + yi = y1(γ0 + · · · + γi−1).

Therefore, for A := y1, we have
xi = 1 − A(γ0 + · · · + γi−1).
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To complete the proof we have to find the smallest nonnegative solution, which means we want to
make A as large a spossible without making xi negative. First suppose that

∑∞
i=0 γi = ∞, then for

any A > 0 the solution gets negative eventually, so that the largest nonnegative solution corresponds
to the case A = 0, i.e. xi = 1.

Next suppose that
∑∞

i=0 γi := M < ∞. Then the solution remains nonnegative iff 1−AM ≥ 0, i.e. if
A ≤ 1/M , so that the choice A = 1/M gives the smallest solution. This solution is the one giving the
right value for the hitting probabilities.

Now we look at a simple random walk {Xn : n = 0, 1, 2} with parameter p ∈ [1/2, 1]. If X0 = i > 0,
we are essentially in the situation of the previous example with pi = p and qi = 1 − p. Then
γi = ((1 − p)/p)i and

∑∞
i=0 γi dicverges if p = 1

2 and converges otherwise. Hence Fi0 = 1 if p = 1
2 and

otherwise, for i > 0,

Fi0 =

∑∞
j=i

(
1−p

p

)j

∑∞
j=0

(
1−p

p

)j
=

(1 − p

p

)i
.

Note that, by the one-step method,

F00 = p F10 + q F−10 = p
1 − p

p
+ q = 1 − p + q = 2 − 2p.

Hence we can summarize our results for the random walk case as follows.

Theorem 1.3 The hitting probabilities Fij = Pi{Tj < ∞} for a simple random walk with parameter
p ∈ [1/2, 1] are given in the symmetric case p = 1/2 by

Fij = 1 for all i, j ∈ Z,

and in the asymmetric case p > 1/2 by

Fij =




1 if i < j,
2 − 2p if i = j,(

1−p
p

)i−j
if i > j.

By looking at −X the theorem also gives full information about the case p < 1/2. As a special case
note that, for all p ∈ [0, 1],

P0{X does not return to 0} = |p − q|.

1.3.2 Expected waiting times

In a manner similar to the problem of hitting probabilities, Theorem 1.2, one can prove the following
theorem for the expected waiting time until a state b is hit for the first time.

Theorem 1.4 Fix a state b ∈ I and let yi := Ei{Tb}. Then

yi = 1 +
∑
j �=b

pijyj (1.3.3)

and y is the least nonnegative solution of this equation.
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1
2

2
3

2
3

1
2

1
3

1
2

1
2

1
3

D

BA

C

Note that yi = ∞ is possible for some, or even all, i, and the convention 0 ×∞ = 0 is in place.

Example 1.2 We again look at the simple random walk and calculate yi = E{T0}, the average time
taken to reach the origin if we start from the state i. To save some work we use the intuitively obvious
extra equation yn = ny1 for all n ≥ 1. Combining this with (1.3.3) for i = 1 gives

y1 = 1 + py2 = 1 + 2py1.

If p < 1/2 (the case of a downward drift) we get the solution

En{T0} =
n

1 − 2p
for all n ≥ 1.

If p ≥ 1/2 this gives y1 ≥ 1 + y1, which implies y1 = ∞. In particular, for p = 1/2 we get,

The average waiting time until a symmetric, simple
random walk travels from state i to state j is infinite for all i �= j.

However, we know that the waiting time is finite almost surely!

Example 1.6 Consider a Markov chain with statespace I = {A,B,C,D} and jump probabilities
given by the diagram.

Problem 1: Find the expected time until the chain started in C reaches A.

Solution: Let xi = Ei{TA}. By considering the first step and using the Markov property (or just
using (1.3.3)) we get

xC = 1 +
1
2
xB +

1
2
xD

xB = 1 +
2
3
0 +

1
3
xC

xD = 1 +
1
3
0 +

2
3
xC .

Hence,
xC = 1 + 1

2(1 + 1
3xC) + 1

2(1 + 2
3xC) = 2 + 1

2xC ,
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which implies EC{TA} = xC = 4. The expected time until the chain started in C reaches A is 4.

Problem 2: What is the probability that the chain started in A reaches the state C before B?

Solution: Let xi = Pi{TC < TB}. By considering the first step and using the Markov property we
get

xA =
1
2
xD +

1
2
0,

xD =
1
3
xA +

2
3
1.

Hence 2xA = (1/3)xA + (2/3), which gives xA = 2/5. Hence the probability of hitting C before B
when we start in A is 2/5.

1.4 Classification of states and the renewal theorem

We now begin our study of the long-term behaviour of the Markov chain. Recall that Ti = inf{n >
0 : Xn = i} and

Fii = Pi{Ti < ∞} = Pi{X returns to i at some positive time}.
Definition The state i is called

• transient if Fii < 1, i.e. if there is a positive probability of escape from i,

• recurrent or persistent if Fii = 1, i.e. if the chain returns to state i almost surely, and hence
infinitely often.

Let us look at the total number of visits to a state i given by the random variable

Vi =
∞∑

n=0

1{Xn=i},

where 1{Xn=i} takes the value 1 if Xn = i and 0 otherwise. Note that we include time n = 0.

If i is recurrent we have Pi{Vi = ∞} = 1, in particular the expected number of visits to state i is
Ei{Vi} = ∞. If i is transient, then, for n ≥ 1,

Pi{Vi = n} = Fn−1
ii (1 − Fii),

hence

Ei{Vi} =
∞∑

n=1

nPi{Vi = n} = (1 − Fii)
∞∑

n=1

nFn−1
ii =

1 − Fii

(1 − Fii)2
=

1
1 − Fii

< ∞,

recalling
∑∞

n=1 nxn−1 = (1 − x)−2 for |x| < 1.

Example: We look at the simple random walk again, focusing on the case p > q of an upward drift.
We know that Fii = 2q = 1 − (p − q), so EiVi = (p − q)−1.

Intuitively, this can be explained by recalling that Xn/n → p − q. For large n, the walk must visit
≈ n(p − q) states in its first n steps, so it can spend a time of roughly 1/(p − q) in each state.
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1.4.1 The renewal theorem

The aim of this section is to study the long term asymptotics of Pi{Xn = i} = (Pn)ii. We start by
deriving a second formula for Ei{Vi}. Directly from the definition of Vi we get

Ei{Vi} =
∞∑

n=0

Ei{1{Xn=i}} =
∞∑

n=0

Pi{Xn = i}.

Recall that Pi{Xn = i} = (Pn)ii. Hence,

Ei{Vi} =
∞∑

n=0

(Pn)ii.

We thus get the renewal theorem in the transient case.

Theorem 1.5 (Renewal Theorem in the transient case) If i is a transient state of the Markov
chain X, then

∞∑
n=0

(Pn)ii = Ei{Vi} =
1

1 − Fii
< ∞.

In particular, we have limn→∞(Pn)ii = 0.

The more interesting case of the renewal theorem refers to the recurrent case. In this case, Ei{Vi} =∑∞
n=0(P

n)ii = ∞, leaving open whether limn→∞(Pn)ii = 0. In fact, as we shall see below, both cases
can occur.

Definition A recurrent state i is called

• positive recurrent if Ei{Ti} < ∞, i.e. if the mean time until return to i is finite,

• null recurrent if Ei{Ti} = ∞.

For example we have seen before that in the symmetric simple random walk E0{T0} = ∞, so 0 (and
all other states) is null recurrent.

If we want study the limiting behaviour of (Pn)ii we first have to deal with the problem of periodicity.
For example, for simple random walk we have

(Pn)ii

{
= 0 if n odd ,
> 0 otherwise.

We can only expect interesting behaviour for the limit of (P 2n)ii.

Generally, we define the period of a state i ∈ I as the greatest common divisor of the set {n > 0 :
(Pn)ii > 0}. We write d(i) for the period of the state i. For example, the period of every state in the
simple random walk is 2. For another example let

P =
(

0 1
1
2

1
2

)
.

Although one cannot return to the first state imediately, the period is one.
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Theorem 1.6 (Renewal Theorem (main part))

(a) If i is a null recurrent state, then limn→∞(Pn)ii = 0.

(b) If i is positive recurrent, then (Pn)ii = 0 if n is not a multiple of d(i). Otherwise,

lim
n→∞(Pnd(i))ii =

d(i)
Ei{Ti} .

We omit the proof and look at examples instead.

Example 1.7 This is a trivial example without randomness, a particle moves always one step coun-
terclockwise through the graph.

1

1

1 1

D

BA

C

Here the period of every state is 4 and the average return time is also 4, the transition probabilities
satisfy (P 4n)ii = 1. The theorem holds (even without the limit!)

Example 1.8 Consider the example given by the following graph.

1
2 1

1 1
2

The one-step transition matrix is given by

P =


 0 1 0

1/2 0 1/2
0 1 0


 .

All states have period 2. We can find

(a) Pn by diagonalization with tricks,

(b) Ei{Ti} by the“one-step method”.

Then we can verify the statement of the theorem in our example.

(a) We have trace P = 0, det P = 0 and hence eigenvalues 1, 0,−1. Solving πP = π gives

π = (1/4, 1/2, 1/4).

Hence
Pn = U1 + (−1)nU2 + 0nU3 for all n ≥ 1,
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and

U1 =


 1/4 1/2 1/4

1/4 1/2 1/4
1/4 1/2 1/4


 ,

U2 = U1 − P =


 1/4 −1/2 1/4

−1/4 1/2 −1/4
1/4 −1/2 1/4


 ,

and U3 is irrelevant. For example, we get

(Pn)33 =
1
4

+ (−1)n
1
4

for all n ≥ 1.

(b) For yi = Ei{T3} we get the equations

y1 = 1 + y2

y2 = 1 + 1
2y1

y3 = 1 + y2.

Solving gives, for example, E3{T3} = y3 = 4, E1{T1} = 4 by symmetry and trivially E2{T2} = 2.

Checking the renewal theorem we observe that (Pn)33 = 0 if n is odd and

lim
n→∞(P 2n)33 = lim

n→∞
1
4

+ (−1)2n 1
4

=
1
2

=
d(2)

E3{T3} .

1.4.2 Class properties and irreducibility

We say that the state i communicates with the state j, and write i ↔ j if there exist n,m ≥ 0 with
(Pn)ij > 0 and (Pm)ji > 0. The relation ↔ is an equivalence relation on the state space I, because

• i ↔ i,

• i ↔ j implies j ↔ i,

• i ↔ j and j ↔ k implies i ↔ k.

Only the last statement is nontrivial. To prove it assume i ↔ j and j ↔ k. Then there exist n1, n2 ≥ 0
with (Pn1)ij > 0 and (Pn2)jk > 0. Then,

(Pn1+n2)ik = Pi{X(n1 + n2) = k}
≥ Pi{X(n1) = j, X(n1 + n2) = k}
≥ Pi{X(n1) = j}Pi{X(n1 + n2) = k |X(n1) = j}
= (Pn1)ij(Pn2)jk > 0.

Similarly, there exist m1,m2 with (Pm1+m2)ki > 0 and hence i ↔ k.

Since ↔ is an equivalence relation, we can define the corresponding equivalence classes, which are
called communicating classes. The class of i consists of all j ∈ I with i ↔ j. A property of a state is a
class property if whenever it holds for one state, it holds for all states in the same class. The following
properties are class properties,
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• i is transient,

• i is positive recurrent,

• i is null recurrent,

• i has period d.

Now we can attribute the property to the class, saying for example that a class has period d, etc.

We can decompose the statespace I as a disjoint union

I = T ∪ R1 ∪ R2 ∪ . . . ,

where T is the set of transient states and R1, R2, . . . are the recurrent classes.

If X starts in T , it can either stay in T forever (somehow drifting off to infinity) or get trapped (and
stay forever) in one of the recurrent classes.

1
3

1
31 11

11

1
1
3

q

p

q

p

q

p
. . .

p > q

1 − p

Figure 1.1: 6 classes, 2 recurrent, 4 transient

A Markov chain is called irreducible if all states communicate with each other, i.e. if I is the only
communicating class. Thanks to the decomposition the study of general chains is frequently reduced
to the study of irreducible chains.

1.5 The Big Theorem

1.5.1 The invariant distribution

Let π be a probability mass function on I, i.e. π : I → [0, 1] with
∑

i∈I πi = 1. π is called an invariant
distribution or equilibrium distribution if πP = π, that is∑

i∈I

πipij = πj for all j.

If such a π exists, then we can use is at as initial distribution to the following effect,

Pπ{X1 = j} =
∑
i∈I

Pπ{X0 = i,X1 = j} =
∑
i∈I

πipij = πj = Pπ{X0 = j},
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and, more generally,
Pπ{Xn = j} = πj for all j ∈ I.

In other words the law of Xn under Pπ is π at all times n, we say that the system is in equilibrium.

We now assume that the chain X is irreducible. The all states have the same period d. The chain is
called aperiodic if d = 1.

Theorem 1.7 (The Big Theorem) Let X be an irreducible chain. Then the following statements
are equivalent:

• X has a positive recurrent state,

• all states of X are positive recurrent,

• X has an invariant distribution π.

If this holds, the invariant distribution is given by

πi =
1

Ei{Ti} > 0.

Moreover,

(a) For all initial distributions w, with probability 1,

1
n

(
#visits to state i by time n

)
−→ πi.

(b)
Ej{#visits to state i before Tj} =

πi

πj
for all i �= j.

(c) In the aperiodic case d = 1, we have for all initial distributions w,

lim
n→∞Pw{Xn = j} = πj for all j ∈ I.

Note how (b) tallies with the following fact deduced from (a),

#visits to state i by time n

#visits to state j by time n
−→ πi

πj
.

We do not give the full proof here, but sketch the proof of (c), because it is a nice example of a
coupling argument. We let X be the Markov chain with initial distribution w and Y an independent
Markov chain with the same P -matrix and initial distribution π. The proof comes in two steps.

Step 1. Fix any state b ∈ I and let T = inf{n > 0 : Xn = b and Yn = b}.
We show that P{T < ∞} = 1.

The process W = {Wn = (Xn, Yn) : n ∈ N} is a Markov chain with statespace I × I and n-step
transition probabilities

(P̃n)(i,k)(j,l) = (Pn)ij(Pn)kl,
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which is positive for sufficiently large n since P is aperiodic. Hence W is irreducible. W has an
invariant distribution given by π̃(i,k) = πiπk and hence — by the first part of the big theorem— it
must be positive recurrent. Positive recurrence implies that the expected first hitting time of every
state is finite with probability one, see Q1 on Sheet 6. Now observe that

T = inf{n > 0 : Xn = b and Yn = b} = inf{n > 0 : Wn = (b, b)},

and note that we have shown that T < ∞ almost surely.

Step 2. The trick is to use the finite time T to switch from the chain X to the chain Y . Let Z be
the Markov chain given by

Zn =
{

Xn if n ≤ T,
Yn if n ≥ T.

It is intuitively obvious and not hard to show that Z is a Markov chain with the same P -matrix as X
and initial distribution w. We have

P{Zn = j} = P{Xn = j and n < T} + P{Yn = j and n ≥ T}.

Hence,

|P{Xn = j} − πj| = |P{Zn = j} − P{Yn = j}|
= |P{Xn = j and n < T} − P{Yn = j and n < T}|
≤ P{n < T}.

As P{T < ∞} = 1 the last term converges to 0 and we are done.

1.5.2 Time-reversible Markov chains

We discuss the case of time-reversible or symmetrizable Markov chains. Suppose (mi : i ∈ I) is a
collection of nonnegative numbers, not all zero. We call a Markov chain m-symmetrizable if we have

mipij = mjpji for all i, j ∈ I.

These equations are called detailed balance equations. They imply that∑
i∈I

mipij = mj

∑
i∈I

pji = mj for all j ∈ I.

If, moreover, M =
∑

i∈I mi < ∞, then

• πi = mi
M is an invariant distribution and also solves the detailed balance equations,

• Pπ{X0 = i0, . . . ,Xn = in} = Pπ{X0 = in, . . . ,Xn = i0}.

In other words, under the law Pπ the sequence X0, . . . ,Xn has the same law as the time-reversed
sequence Xn, . . . ,X0. Note that both statements are very easy to check!

Remarks:
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• If X is π-symmetrizable, then π is an invariant distribution of X. But conversely, if π is an
invariant distribution of X this does not imply that X is π-symmetrizable!

• It is sometimes much easier to solve the detailed balance equations and thus find an invariant
distribution, rather than solving πP = π, see Example 1.11 below.

• If the invariant distribution does not solve the detailed balance equations, then they have no
solution.

Example 1.9 Let X be a Markov chain with state space I = {0, 1, 2} and transition matrix

P =


 1/2 1/4 1/4

1/2 1/6 1/3
1/4 1/6 7/12




• Find the equilibrium distribution π.

• Is P π-symmetrizable?

π has to satisfy π0 + π1 + π2 = 1 and, from πP = π,

1
2π0 + 1

2π1 + 1
4π2 = π0,

1
4π0 + 1

6π1 + 1
6π2 = π1,

1
4π0 + 1

3π1 + 7
12π2 = π2.

This can be solved to give π = (2/5, 1/5, 2/5). To check symmetrizability we have to verify πipij =
πjpji for all i, j ∈ {0, 1, 2}. There are three non-trivial equations to be checked,

π0p01 = π1p10 ⇔ π0 = 2π1

π0p02 = π2p20 ⇔ π2 = π0

π1p12 = π2p21 ⇔ π2 = 2π1.

This is satisfied for our π. In fact one could have started with these equations and π0 + π1 + π2 = 1
and the only solution is the invariant distribution π.

Example 1.10 Let X be a Markov chain with state space I = {0, 1, 2} and transition matrix

P =


 1/2 1/4 1/4

1/2 1/6 1/3
1/2 1/6 1/3


 .

This matrix is not symmetrizable. Trying to find a suitable m leads to the equations

m0p01 = m1p10 ⇔ m0 = 2m1

m0p02 = m2p20 ⇔ m0 = 2m2

m1p12 = m2p21 ⇔ m2 = 2m1.

These equations have only the trivial solution m0 = m1 = m2 = 0, which is not permitted in the
definition of symmetrizability! Still, one can find an invariant distribution π = (1/2, 5/24, 7/24).
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1.6 Finding the invariant distribution using generating functions

Let X be an irreducible chain. The Big Theorem tells us that it is worth trying to find the invariant
distribution, because it can tell us lots about the long term behaviour of the Markov chain, for example
the ergodic principle

1
n

(
#visits to state j by time n

)
−→ πj

and, in the aperiodic case,
lim

n→∞Pw{Xn = j} = πj for all j ∈ I.

If the state space I = N, then we cannot find π by solving a finite system of linear equations, as before.
Instead the powerful method of generating functions is available.

The generating function π̂ of an invariant distribution is given by

π̂(s) =
∞∑

n=0

πnsn.

One of our requirements for an invariant distribution is that π̂(1) = 1, which is equivalent to
∑∞

n=0 πn =
1. We study the method by looking at an example.

Example 1.11 Let X be a Markov chain with statespace I = N and one-step transition matrix

P =




6/7 0 1/7 0 . . . . . .
6/7 0 0 1/7 0 · · ·
0 6/7 0 0 1/7 . . .

. . . . . .
. . . . . . . . . . . .


 .

The system πP = π gives

6
7
π0 +

6
7
π1 = π0

6
7
π2 = π1

1
7
π0 +

6
7
π3 = π2

1
7
π1 +

6
7
π4 = π3,

and so on. Multiplying the equations above by s, s2, s3, . . . gives for the generating function

1
7
s3π̂(s) +

6
7

(
π̂(s) − π0

)
+

6
7
sπ0 = sπ̂(s).

Rearranging gives,

π̂(s)
(1

7
s3 − s +

6
7

)
= π0

(6
7
− 6

7
s
)
,

hence
π̂(s) = π0

6(1 − s)
s3 − 7s + 6

.

To find π0 recall π̂(1) = 1. Here are two ways to use this.
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First Method: Use L’Hôpital’s rule to get

π̂(1) = lim
s→1

π0
−6

3s2 − 7
=

3
2
π0,

hence π0 = 2
3 .

Better Method: Factorize and cancel the common factor 1 − s if possible. Here

π̂(s) = π0
−6(1 − s)

(1 − s)(s2 + s − 6)
.

Hence π̂(1) = 6π0/4 and we arrive at the same conclusion.

Altogether

π̂(s) =
−4

s2 + s − 6
=

−4
(s + 3)(s − 2)

.

Once we have found π̂ we can find πn by writing π̂ as a power series and equating coefficients. For
this purpose first use partial fractions

−4
(s + 3)(s − 2)

=
a

s + 3
+

b

s − 2
,

which gives −4 = a(s − 2) + b(s + 3) and s = 2 gives b = −4/5 and s = −3 gives a = 4/5, hence

π̂(s) =
4
5

1
s + 3

− 4
5

1
s − 2

.

Now we use (1 − s)−1 = 1 + s + s2 + s3 + · · · and obtain

π̂(s) =
4
5

(
1
3

(
1 − s

3
+

s2

32
− s3

33
+ · · ·

)
+

1
2

(
1 +

s

2
+

s2

22
+

s3

23
+ · · ·

))
.

Hence the coefficient at sn is, for all n ≥ 0,

πn =
4
5

(
1

2n+1
+

(−1)n

3n+1

)
.

We have thus found the invariant distribution π.

To find the long term average state of the system, recall that we just have to find the mean of the
distribution π, which is

∞∑
n=0

nπn = π̂′(1),

because π̂′(s) =
∑∞

n=0 nπnsn−1 by taking termwise derivatives of a power series. In our example

π̂′(s) =
4(1 + 2s)

(s2 + s − 6)2
,

then π̂′(1) = 3/4 is the long time average state.

27


