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Preface to the Second Edition

For the second edition, I have made a number of typographic, historical and math-
ematical corrections to the original text. I am deeply grateful to many people who
have been kind enough to communicate some of these corrections to me. In this
respect, I would like to mention the following names, again, in alphabetical or-
der: Hansjoerg Albrecher, Larbi Alili, Sandra Palau Calderon, Loïc Chaumont, Ron
Doney, Leif Döring, Irmingard Eder, Janos Engländer, Her Majesty Queen Eliza-
beth II, Clément Foucart, Hans Gerber, Sasha Gnedin, Martin Herdegen, Friedrich
Hubalek, Lyn Imeson, Robert Knobloch, Takis Konstantopoulos, Alexey Kuznetsov,
Eos Kyprianou, Ronnie Loeffen, Juan Carlos Pardo, Pierre Patie, José-Luis Tripitaka
Garmendia Pérez, Victor Rivero, Antonio Elbegdorj Murillo Salas, Paavo Salminen,
Uwe Schmock, Renming Song, Matija Vidmar, Zoran Vondraček, Long Zhao and
Xiaowen Zhou. I must give exceptional thanks to my four current Ph.D. students,
Maren Eckhoff, Marion Hesse, Curdin Ott and Alex Watson, who diligently organ-
ised themselves to give an extremely thorough read of the penultimate draft of this
document. Likewise, Erik Baurdoux and Kazutoshi Yamazaki deserve exceptional
thanks for their meticulous proof-reading of substantial parts of the text. In partic-
ular, Erik must be commended for his remarkable stamina and ability to spot the
most subtle of errors.

The biggest thanks of all however must go to the mighty Nick Bingham who
committed himself to reading the entire book from cover to cover. Aside from errors
of a mathematical and historical nature, he uncovered untold deficiencies in my
use of the English language.1,2 Sincerely, thank you, Nick, for having the patience
to fight your way through both my grammar and punctuation and to teach me by
example.

I have also included some additional material which reflects some of the many
developments that have occurred in the theory and application of Lévy processes

1Many thanks to Erik Baurdoux who ironically pointed out that, in the penultimate draft of this
manuscript, even the original version of the sentence referred to by this footnote was a grammatical
mess.
2Erik also took issue with the wording in footnote 1 above.
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x Preface to the Second Edition

since the last edition, and which I believe are accessible at the level that I originally
pitched this book. Within existing chapters, I have included new material on the
theory of special subordinators and I have updated the discussion on particular ex-
amples of Wiener–Hopf factorisations. I have also included three new chapters. One
chapter concerns the theory of scale functions and another their use in the theory
of ruin. Finally, the third new chapter addresses the theory of positive self-similar
Markov processes. Another notable change to the book is that the full set of so-
lutions at the back has been replaced by a more terse set of hints. This follows in
response to the remarks of several colleagues who have used the book to teach from,
as well as using the exercises as homeworks. Finally, the title of the book has also
changed. Everyone hated the title of the first edition, most of all me. Within the con-
straints of permuting the original wording, I am not sure that the new title is a big
improvement.

The final big push to finish this second edition took place during my six-month
sabbatical as a guest at the Forschungsinstitut für Mathematik, ETH Zürich. I am
most grateful to Paul Embrechts and the FIM for the invitation and for accommo-
dating me so comfortably.

Once again, by way of a new inscription, special thanks go to Jagaa, Sophia,
Sanaa and, the new addition to the family, little Alina (although she is not so little
any more as it took me so long to get through the revision in the end).

Andreas E. KyprianouZürich, Switzerland
December 2012



Preface to the First Edition

In 2003, I began teaching a course entitled Lévy processes on the Amsterdam-
Utrecht masters programme in stochastics and financial mathematics. Quite natu-
rally, I wanted to expose my students to my own interests in Lévy processes; that
is, the role that certain subtle behaviour concerning their fluctuations plays in ex-
plaining different types of phenomena appearing in a number of classical models of
applied probability. Indeed, recent developments in the theory of Lévy processes, in
particular concerning path fluctuations, have offered the clarity required to revisit
classical applied probability models and improve on well-established and funda-
mental results.

Whilst teaching the course, I wrote some lecture notes which have now matured
into this text. Given the audience of students, who were either engaged in their “af-
studeerfase”1 or just starting a Ph.D., these lecture notes were originally written
with the restriction that the mathematics used would not surpass the level that they
should, in principle, have reached. Roughly speaking, that means the following: hav-
ing experience to the level of third year or fourth year university courses delivered
by a mathematics department on

– foundational real and complex analysis,
– basic facts about Lp spaces,
– measure theoretic probability theory,
– elements of the classical theory of Markov processes, stopping times and the

strong Markov property,
– Poisson processes and renewal processes,
– Brownian motion as a Markov process and
– elementary martingale theory in continuous time.

For the most part, this affected the way in which the material is handled when com-
pared with the classical texts and research papers from which almost all of the results
and arguments in this text originate. A good example of this is the conscious exclu-

1The afstudeerfase is equivalent to the typical European masters-level programme.
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xii Preface to the First Edition

sion of calculations involving the master formula for the Poisson point process of
excursions of a Lévy process from its maximum.

There are approximately 80 exercises, which are also pitched at a level appro-
priate to the aforementioned audience. Indeed, several of the exercises have been
included in response to some of the questions that have been asked by students
themselves, concerning curiosities of the arguments given in class. Arguably some
of the exercises are quite long. These exercises reflect some of the other ways in
which I have used preliminary versions of this text. A small number of students in
Utrecht also used the text as an individual reading/self-study programme contribut-
ing to their “kleine scripite” (extended mathematical essay) or “onderzoekopdracht”
(research project). In addition, some exercises were used as (take-home) examina-
tion questions. The exercises in the first chapter are, in particular, designed to show
the reader that the basics of the material presented thereafter is already accessible
assuming basic knowledge of Poisson processes and Brownian motion.

There can be no doubt, particularly to the more experienced reader, that the cur-
rent text has been heavily influenced by the outstanding books of Bertoin (1996a)
and Sato (1999), especially the former which also takes a predominantly pathwise
approach to its content. It should be reiterated however that, unlike these two books,
this text is not intended as a research monograph nor as a reference manual for the
researcher.

Writing of this text began whilst I was employed at Utrecht University in the
Netherlands. In early 2005, I moved to a new position at Heriot–Watt University in
Edinburgh, and then, in the final stages of completion of the book, to the University
of Bath. Over a period of several months my presence in Utrecht was phased out and
my presence in Edinburgh was phased in. Along the way, I passed through the Tech-
nical University of Munich and the University of Manchester. I should like to thank
these four institutes and my hosts for giving me the facilities necessary to write this
text (mostly time and a warm, dry, quiet room with an ethernet connection). I would
especially like to thank my colleagues at Utrecht for giving me the opportunity and
environment in which to develop this course, Ron Doney, during his two-month ab-
sence, for lending me the key to his office, thereby giving me access to his book
collection whilst mine was in storage, and Andrew Cairns for arranging to push my
teaching duties into 2006, thereby allowing me to focus on finalising this text.

Let me now thank the many, including several of the students who took the
course, who have made a number of remarks, corrections and suggestions (ma-
jor and minor) which have helped to shape this text. In alphabetical order these
are: Larbi Alili, David Applebaum, Johnathan Bagley, Erik Baurdoux, M.S. Bratiy-
chuk, Catriona Byrne, Zhen-Qing Chen, Gunther Cornelissen, Irmingard Eder, Ab-
delghafour Es-Saghouani, Serguei Foss, Uwe Franz, Shota Gugushvili, Thorsten
Kleinow, Paweł Kliber, Claudia Klüppelberg, V.S. Korolyuk, Ronnie Loeffen,
Alexander Novikov, Zbigniew Palmowski, Goran Peskir, Kees van Schaik, Sonja
Scheer, Wim Schoutens, Budhi Arta Surya, Enno Veerman, Maaike Verloop and Zo-
ran Vondraček. In particular, I would also like to thank Peter Andrew, Jean Bertoin,
Nick Bingham, Ron Doney, Niel Farricker, Alexander Gnedin, Amaury Lambert,
Antonis Papapantoleon and Martijn Pistorius who rooted out many errors from ex-
tensive sections of the text and provided valuable criticism. Antonis Papapantoleon
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very kindly produced some simulations of the paths of Lévy processes which have
been included in Chap. 1. I am most grateful to Takis Konstantopoulos who read
through earlier drafts of the entire text in considerable detail, taking the time to dis-
cuss with me at length many of the issues that arose. The front cover was produced
in consultation with Hurlee Gonchigdanzan and Jargalmaa Magsarjav. All further
comments, corrections and suggestions on the current text are welcome.

Finally, the deepest gratitude of all goes to Jagaa, Sophia and Sanaa for whom
the special inscription is written.

Andreas E. KyprianouEdinburgh, UK
June 2006
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Chapter 1
Lévy Processes and Applications

In this chapter, we define and characterise the class of Lévy processes. To illustrate
the variety of processes captured within the definition of a Lévy process, we explore
briefly the relationship between Lévy processes and infinitely divisible distributions.
We also discuss some classical applied probability models, which are built on the
strength of well-understood path properties of elementary Lévy processes. We hint
at how generalisations of these models may be approached using more sophisticated
Lévy processes. At a number of points later on in this text, we handle these gener-
alisations in more detail. The models we have chosen to present are suitable for the
course of this text as a way of exemplifying fluctuation theory but are by no means
the only applications.

1.1 Lévy Processes and Infinite Divisibility

Let us begin by recalling the definition of two familiar processes, a Brownian motion
and a Poisson process.

A real-valued process, B = {Bt : t ≥ 0}, defined on a probability space (Ω,F ,P)
is said to be a Brownian motion if the following hold:

(i) The paths of B are P-almost surely continuous.
(ii) P(B0 = 0)= 1.

(iii) For 0≤ s ≤ t , Bt −Bs is equal in distribution to Bt−s .
(iv) For 0≤ s ≤ t , Bt −Bs is independent of {Bu : u≤ s}.
(v) For each t > 0, Bt is equal in distribution to a normal random variable with

zero mean and variance t .

A process valued on the non-negative integers, N = {Nt : t ≥ 0}, defined on a
probability space (Ω,F ,P), is said to be a Poisson process with intensity λ > 0 if
the following hold:

(i) The paths of N are P-almost surely right-continuous with left limits.
(ii) P(N0 = 0)= 1.

A.E. Kyprianou, Fluctuations of Lévy Processes with Applications, Universitext,
DOI 10.1007/978-3-642-37632-0_1, © Springer-Verlag Berlin Heidelberg 2014
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2 1 Lévy Processes and Applications

(iii) For 0≤ s ≤ t , Nt −Ns is equal in distribution to Nt−s .
(iv) For 0≤ s ≤ t , Nt −Ns is independent of {Nu : u≤ s}.
(v) For each t > 0, Nt is equal in distribution to a Poisson random variable with

parameter λt .

On first encounter, these processes would seem to be considerably different from
one another. Firstly, Brownian motion has continuous paths whereas a Poisson pro-
cess does not. Secondly, a Poisson process is a non-decreasing process, and thus has
paths of bounded variation over finite time horizons, whereas a Brownian motion
does not have monotone paths and, in fact, its paths are of unbounded variation over
finite time horizons.

However, when we line up their definitions next to one another, we see that they
have a lot in common. Both processes have right-continuous paths with left lim-
its, both are initiated from the origin and both have stationary and independent in-
crements. We may use these common properties to define a general class of one-
dimensional stochastic processes, which are called Lévy processes.

Definition 1.1 (Lévy Process) A process X = {Xt : t ≥ 0}, defined on a proba-
bility space (Ω,F ,P), is said to be a Lévy process if it possesses the following
properties:

(i) The paths of X are P-almost surely right-continuous with left limits.
(ii) P(X0 = 0)= 1.

(iii) For 0≤ s ≤ t , Xt −Xs is equal in distribution to Xt−s .
(iv) For 0≤ s ≤ t , Xt −Xs is independent of {Xu : u≤ s}.

Unless otherwise stated, from now on, when talking of a Lévy process, we shall
always use the measure P (with associated expectation operator E) to be implicitly
understood as its law.1 We shall also associate to X the filtration F = {Ft : t ≥ 0},
where, for each t ≥ 0, Ft is the natural enlargement of the sigma-algebra generated
by {Xs : s ≤ t}. (See Definition 1.3.38. of Bichteler (2002) for a detailed description
of what this means.) In particular, this assumption ensures that, for each t ≥ 0, Ft
is complete with respect to the null sets of P|Ft and there is right-continuity, in the
sense that Ft =⋂

s>t Fs .2
The term “Lévy process” honours the work of the French mathematician Paul

Lévy who, although not alone in his contribution, played an instrumental role in

1We shall also repeatedly abuse this notation throughout the book as, on occasion, we will need to
talk about a Lévy process, X, referenced against a random time horizon, say e, which is indepen-
dent of X and exponentially distributed. In that case, we shall use P (and accordingly E) for the
product law associated with X and e.
2Where we have assumed natural enlargement here, it is commonplace in other literature to as-
sume that the filtration F satisfies “les conditions habituelles”. In particular, for each t ≥ 0, Ft is
complete with respect to all null sets of P. This can create problems, for example, when looking
at changes of measure (as indeed we will in this book). The reader is encouraged to read Warn-
ing 1.3.39. of Bichteler (2002) for further investigation.
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bringing together an understanding and characterisation of processes with stationary
independent increments. In earlier literature, Lévy processes can be found under a
number of different names. In the 1940s, Lévy himself referred to them as a sub-
class of processus additifs (additive processes), that is, processes with independent
increments. For the most part, however, research literature through the 1960s and
1970s refers to Lévy processes simply as processes with stationary independent
increments. One sees a change in language through the 1970s and by the 1980s the
use of the term “Lévy process” had become standard.

From Definition 1.1 alone it is difficult to see just how rich the class of Lévy
processes is. The mathematician de Finetti (1929) introduced the notion of infinitely
divisible distributions and showed that they have an intimate relationship with Lévy
processes. It turns out that this relationship gives a reasonably good impression of
how varied the class of Lévy processes really is. To this end, let us now devote a
little time to discussing infinitely divisible distributions.

Definition 1.2 We say that a real-valued random variable, Θ , has an infinitely di-
visible distribution if, for each n= 1,2, . . . , there exists a sequence of i.i.d. random
variables Θ1,n, . . . ,Θn,n such that

Θ
d=Θ1,n + · · · +Θn,n,

where
d= is equality in distribution. Alternatively, we could have expressed this re-

lation in terms of probability laws. That is to say, the law μ of a real-valued random
variable is infinitely divisible if, for each n= 1,2, . . . , there exists another law μn
of a real-valued random variable such that μ= μ∗nn . (Here μ∗nn denotes the n-fold
convolution of μn.)

In view of the above definition, one way to establish whether a given random vari-
able has an infinitely divisible distribution is via its characteristic exponent. Suppose
that Θ has characteristic exponent Ψ (u) := − logE(eiuΘ), defined for all u ∈ R.
Then Θ has an infinitely divisible distribution if, for all n ≥ 1, there exists a char-
acteristic exponent of a probability distribution, say Ψn, such that Ψ (u)= nΨn(u),
for all u ∈R.

The full extent to which we may characterise infinitely divisible distributions is
described by the characteristic exponent Ψ and an expression known as the Lévy–
Khintchine formula.

Theorem 1.3 (Lévy–Khintchine formula) A probability law, μ, of a real-valued
random variable is infinitely divisible with characteristic exponent Ψ ,

∫

R

eiθxμ(dx)= e−Ψ (θ), for θ ∈R,
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if and only if there exists a triple (a, σ,Π), where a ∈R, σ ∈R andΠ is a measure
concentrated on R\{0} satisfying

∫
R
(1∧ x2)Π(dx) <∞, such that

Ψ (θ)= iaθ + 1

2
σ 2θ2 +

∫

R

(
1− eiθx + iθx1(|x|<1)

)
Π(dx),

for every θ ∈R. Moreover, the triple (a, σ 2,Π) is unique.

Definition 1.4 The measure Π is called the Lévy (characteristic) measure.

The proof of the Lévy–Khintchine characterisation of infinitely divisible random
variables is quite lengthy and we choose to exclude it in favour of moving as quickly
as possible to fluctuation theory. The interested reader is referred to Lukacs (1970)
or Sato (1999) to name but two of many possible references.

A special case of the Lévy–Khintchine formula was established by Kolmogorov
(1932) for infinitely divisible distributions with second moments. However, it was
Lévy (1934a 1934b) who gave a complete characterisation of infinitely divisible dis-
tributions and, in doing so, he also characterised the general class of processes with
stationary independent increments. Later, Khintchine (1937) and Itô (1942) gave
further simplification and deeper insight to Lévy’s original proof. All of this was
integrated in Lévy’s book of 1948 (with second edition in 1965); cf. Lévy (1948).

Let us now discuss in greater detail the relationship between infinitely divisible
distributions and processes with stationary independent increments.

From the definition of a Lévy process, we see that, for any t > 0, Xt is a random
variable belonging to the class of infinitely divisible distributions. This follows from
the fact that, for any n= 1,2, . . . ,

Xt =Xt/n + (X2t/n −Xt/n)+ · · · + (Xt −X(n−1)t/n), (1.1)

together with the facts that X has stationary independent increments and that
X0 = 0. Suppose, now, that we define, for all θ ∈R, t ≥ 0,

Ψt(θ)=− logE
(
eiθXt

)
.

Then using (1.1) twice, we have, for any two positive integers m,n, that

mΨ1(θ)= Ψm(θ)= nΨm/n(θ).
Hence, for any rational t > 0,

Ψt(θ)= tΨ1(θ). (1.2)

If t is an irrational number, then we can choose a decreasing sequence of rationals
{tn : n ≥ 1} such that tn ↓ t as n tends to infinity. Almost sure right-continuity of
X implies right-continuity of exp{−Ψt(θ)} (by dominated convergence) and hence
(1.2) holds for all t ≥ 0.
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In conclusion, any Lévy process has the property that, for all t ≥ 0,

E
(
eiθXt

)= e−tΨ (θ), (1.3)

where Ψ (θ) := Ψ1(θ) is the characteristic exponent of X1. Moreover, the latter has
an infinitely divisible distribution.

Definition 1.5 In the sequel, we shall also refer to Ψ (θ) as the characteristic expo-
nent of the Lévy process.

It is now clear that each Lévy process can be associated with an infinitely divisi-
ble distribution. What is not clear is whether given an infinitely divisible distribution,
one may construct a Lévy process X, such that X1 has that distribution. This issue
is dealt with by the following theorem, which gives the Lévy–Khintchine formula
for Lévy processes.

Theorem 1.6 (Lévy–Khintchine formula for Lévy processes) Suppose that a ∈R,
σ ∈R andΠ is a measure concentrated on R\{0} such that

∫
R
(1∧x2)Π(dx) <∞.

From this triple, define for each θ ∈R,

Ψ (θ)= iaθ + 1

2
σ 2θ2 +

∫

R

(
1− eiθx + iθx1(|x|<1)

)
Π(dx).

Then there exists a probability space, (Ω,F ,P), on which a Lévy process is defined
having characteristic exponent Ψ .

The proof of this theorem is rather complicated, but very rewarding as it also re-
veals much more about the general structure of Lévy processes. Later, in Chap. 2, we
will prove a stronger version of this theorem, which also explains the path structure
of the Lévy process in terms of the triple (a, σ,Π).

1.2 Some Examples of Lévy Processes

To conclude our introduction to Lévy processes and infinite divisible distributions,
let us proceed to some concrete examples. Some of these will also be of use later to
verify certain results from the forthcoming fluctuation theory we will present.

1.2.1 Poisson Processes

For each λ > 0, consider a probability distribution μλ which is concentrated on
k = 0,1,2, . . . such that μλ({k})= e−λλk/k!, that is to say, the Poisson distribution.
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An easy calculation reveals that

∑

k≥0

eiθkμλ
({k}) = e−λ(1−eiθ )

= [
e−

λ
n
(1−eiθ )

]n
.

The right-hand side is the characteristic function of the sum of n independent Pois-
son variables, each of which has parameter λ/n. In the Lévy–Khintchine decompo-
sition, we see that a = σ = 0 andΠ = λδ1, where δ1 is the Dirac measure supported
on {1}.

Recall that a Poisson process, {Nt : t ≥ 0}, is a Lévy process such that, for each
t > 0, Nt is Poisson distributed with parameter λt . From the above calculations, we
have

E
(
eiθNt

)= e−λt (1−eiθ )

and hence its characteristic exponent is given by Ψ (θ)= λ(1− eiθ ), for θ ∈R.

1.2.2 Compound Poisson Processes

Suppose now that N is a Poisson random variable with parameter λ > 0 and that
{ξi : i ≥ 1} is a sequence of i.i.d. random variables (independent ofN ) with common
law F which has no atom at zero. By first conditioning on N , we have for θ ∈R,3

E
(
eiθ

∑N
i=1 ξi

) =
∑

n≥0

E
(
eiθ

∑n
i=1 ξi

)
e−λ λ

n

n!

=
∑

n≥0

(∫

R

eiθxF (dx)

)n
e−λ λ

n

n!

= e−λ
∫
R
(1−eiθx )F (dx). (1.4)

We see from (1.4) that distributions of the form
∑N
i=1 ξi are infinitely divisible with

triple a = −λ ∫0<|x|<1 xF(dx), σ = 0 and Π(dx) = λF(dx), for x 	= 0. If F con-
sists of an atom of unit mass at 1, then we have simply a Poisson distribution. Note
also that if we allow the distribution F to have an atom at zero, then the expression
in the exponent on the right-hand side of (1.4) remains the same. Moreover, straight-
forward computations show that we may interpret it as corresponding to the char-
acteristic exponent of a compound Poisson process with arrival rate λ(1− F({0}))
and jump distribution F(dx)/(1− F({0})), for x ∈R\{0}.

3Here and throughout the remainder of the book, we use the convention that, for any n =
0,1,2, . . . ,

∑n
n+1 · = 0.
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Suppose now that {Nt : t ≥ 0} is a Poisson process with intensity λ > 0 and
consider a compound Poisson process {Xt : t ≥ 0} defined by

Xt =
Nt∑

i=1

ξi, t ≥ 0.

Using the fact that N has stationary independent increments together with the mu-
tual independence of the random variables {ξi : i ≥ 1}, by writing

Xt =Xs +
Nt∑

i=Ns+1

ξi,

for 0 ≤ s < t <∞, it is clear that Xt is the sum of Xs and an independent copy of
Xt−s . Right-continuity and left limits of the process {Nt : t ≥ 0} also ensure right-
continuity and left limits ofX. In conclusion, compound Poisson processes are Lévy
processes. From the calculations in the previous paragraph, for each t ≥ 0, we may
substitute Nt for the variable N1 to discover that the Lévy–Khintchine formula for
a compound Poisson process takes the form Ψ (θ)= λ ∫

R
(1− eiθx)F (dx). Note in

particular that the Lévy measure of a compound Poisson process is always finite
with total mass equal to the rate λ of the underlying process N .

Compound Poisson processes provide a direct link between Lévy processes and
random walks. Recall that a random walk is a discrete-time process of the form
S = {Sn : n≥ 0} where

S0 = 0 and Sn =
n∑

i=1

ξi, for n≥ 1. (1.5)

A compound Poisson process is nothing more than a random walk whose jumps
have been spaced out in time with independent and exponentially distributed inter-
arrival periods.

1.2.3 Linear Brownian Motion

Take the probability law

μs,γ (dx) := 1√
2πs2

e−(x−γ )2/2s2
dx,

supported on R, where γ ∈R and s > 0. This is the well-known Gaussian distribu-
tion with mean γ and variance s2. It is well known that

∫

R

eiθxμs,γ (dx)= e−
1
2 s

2θ2+iθγ

= [
e
− 1

2 (
s√
n
)2θ2+iθ γ

n
]n
,
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showing, again, that it is an infinitely divisible distribution, this time with a =−γ ,
σ = s and Π = 0.

We immediately recognise the characteristic exponent Ψ (θ)= s2θ2/2− iθγ as
that of a scaled Brownian motion with linear drift (otherwise referred to as linear
Brownian motion),

Xt := sBt + γ t, t ≥ 0,

where B = {Bt : t ≥ 0} is a standard Brownian motion. It is a trivial exercise to
verify that X has stationary independent increments with continuous paths as a con-
sequence of the fact that B does.

1.2.4 Gamma Processes

For α,β > 0, define the gamma-(α,β) distribution by its associated probability
measure

μα,β(dx)= αβ

Γ (β)
xβ−1e−αxdx,

concentrated on (0,∞). Note that when β = 1, this is the exponential distribution.
We have

∫ ∞

0
eiθxμα,β(dx) = 1

(1− iθ/α)β

=
[

1

(1− iθ/α)β/n

]n

and infinite divisibility follows. For the Lévy–Khintchine decomposition, we have
σ = 0 and Π(dx) = βx−1e−αxdx, concentrated on (0,∞) and a = − ∫ 1

0 xΠ(dx).
However, this is not immediately obvious. The following lemma proves to be useful
in establishing the above triple (a, σ,Π). Its proof is Exercise 1.3; see also Bingham
(1975).

Lemma 1.7 (Frullani integral) For all α,β > 0 and z ∈ C such that4 �z ≤ 0, we
have

1

(1− z/α)β = exp

{

−
∫ ∞

0

(
1− ezx

)
βx−1e−αxdx

}

.

To see how this lemma helps, note that the Lévy–Khintchine formula for a
gamma distribution takes the form

Ψ (θ)= β
∫ ∞

0

(
1− eiθx)1

x
e−αxdx = β log(1− iθ/α),

4The notation �z refers to the real part of z.



1.2 Some Examples of Lévy Processes 9

for θ ∈R. The choice of a in the Lévy–Khintchine formula is the necessary quantity
to cancel the term coming from iθx1(|x|<1) in the integral with respect to Π , in the
general Lévy–Khintchine formula.

According to Theorem 1.6, there exists a Lévy process whose Lévy–Khintchine
formula is given by Ψ , the so-called gamma process.

Suppose now that X = {Xt : t ≥ 0} is a gamma process. Stationary independent
increments tell us that, for all 0 ≤ s < t <∞, Xt = Xs + X̃t−s , where X̃t−s is an
independent copy of Xt−s . The fact that X̃t−s is strictly positive with probability
one (on account of it being gamma distributed) implies that Xt > Xs almost surely.
Hence a gamma process is an example of a Lévy process with almost surely non-
decreasing paths (in fact its paths are strictly increasing). Another example of a Lévy
process with non-decreasing paths is a compound Poisson process where the jump
distribution F is concentrated on (0,∞). Note, however, that a gamma process is
not a compound Poisson process, on two counts. Firstly, its Lévy measure has infi-
nite total mass, unlike the Lévy measure of a compound Poisson process, which is
necessarily finite (and equal to the arrival rate of jumps). Secondly, whilst a com-
pound Poisson process with positive jumps does have paths which are almost surely
non-decreasing, it does not have paths that are almost surely strictly increasing.

Lévy processes whose paths are almost surely non-decreasing (or simply non-
decreasing for short) are called subordinators. We will return to a formal definition
of this subclass of processes in Chap. 2.

1.2.5 Inverse Gaussian Processes

Suppose, as usual, that B = {Bt : t ≥ 0} is a standard Brownian motion. Define the
first passage time

τs = inf{t > 0 : Bt + bt > s}. (1.6)

This is the first time a Brownian motion with linear drift b > 0 crosses above level s.
Recall that τs is a stopping time5 for Brownian motion and, since Brownian motion
has continuous paths, we know that Bτs + bτs = s almost surely. From the strong
Markov property, it is known that {Bτs+t + b(τs + t)− s : t ≥ 0} is equal in law to
{Bt + bt : t ≥ 0} and hence, for all 0≤ s < t ,

τt = τs + τ̃t−s ,
where τ̃t−s is an independent copy of τt−s . This shows that the process τ :=
{τt : t ≥ 0} has stationary independent increments. Continuity of the paths of
{Bt + bt : t ≥ 0} ensures that τ has right-continuous paths. Further, it is clear that τ

5We assume that the reader is familiar with the basic notion of a stopping time for a Markov process
as well as the strong Markov property. Both will be dealt with in more detail for a general Lévy
process in Chap. 3.
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has almost surely non-decreasing paths, which guarantees its paths have left limits
as well as being yet another example of a subordinator. According to its definition as
a sequence of first passage times, τ is also the almost sure right inverse of the graph
of {Bt + bt : t ≥ 0}. From this, τ earns its name as the inverse Gaussian process.

According to the discussion following Theorem 1.3, it is now immediate that,
for each fixed s > 0, the random variable τs is infinitely divisible. Its characteristic
exponent takes the form

Ψs(θ)= s
(√−2iθ + b2 − b),

for all θ ∈R, where Ψs corresponds to the triple a =−2sb−1
∫ b

0 (2π)
−1/2e−y2/2dy,

σ = 0 and

Π(dx)= s 1√
2πx3

e−
b2x

2 dx,

concentrated on (0,∞). The law of τs can also be computed explicitly as

μs(dx)= s√
2πx3

esbe−
1
2 (s

2x−1+b2x)dx,

for x > 0. For the proof of these facts, see Exercise 1.6.

1.2.6 Stable Processes

Stable processes are the class of Lévy processes whose characteristic exponents
correspond to those of stable distributions. Stable distributions were introduced by
Lévy (1924, 1925) as a third example of infinitely divisible distributions after Gaus-
sian and Poisson distributions. A random variable, Y , is said to have a stable distri-
bution if, for all n≥ 1, it observes the distributional equality

Y1 + · · · + Yn d= anY + bn, (1.7)

where Y1, . . . , Yn are independent copies of Y , an > 0 and bn ∈ R. By subtract-
ing bn/n from each of the terms on the left-hand side of (1.7) and then dividing
through by an one sees, in particular, that this definition implies that any stable ran-
dom variable is infinitely divisible. It turns out that an = n1/α , for α ∈ (0,2]; see
Feller (1971), Sect. VI.1. In that case, we refer to the parameter α as the stability
index. A smaller class of distributions are the strictly stable distributions. A random
variable Y is said to have a strictly stable distribution if it observes (1.7) but with
bn = 0. In that case, we necessarily have

Y1 + · · · + Yn d= n1/αY. (1.8)

The case α = 2 corresponds to zero mean Gaussian random variables and is ex-
cluded in the remainder of the discussion as such distributions have been dealt with
in Sect. 1.2.3.
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Stable random variables observing the relation (1.7) for α ∈ (0,1) ∪ (1,2) have
characteristic exponents of the form

Ψ (θ)= c|θ |α
(

1− iβ tan
πα

2
sgn θ

)

+ iθη, (1.9)

where β ∈ [−1,1], η ∈R and c > 0. Stable random variables observing the relation
(1.7) for α = 1, have characteristic exponents of the form

Ψ (θ)= c|θ |
(

1+ iβ
2

π
sgn θ log |θ |

)

+ iθη, (1.10)

where β ∈ [−1,1], η ∈R and c > 0. Here, we work with the sign function, sgn θ =
1(θ>0) − 1(θ<0). To make the connection with the Lévy–Khintchine formula, one
needs σ = 0 and

Π(dx)=
{
c1x
−1−αdx for x ∈ (0,∞)

c2|x|−1−αdx for x ∈ (−∞,0), (1.11)

where c =−(c1 + c2)Γ (−α) cos(πα/2), c1, c2 ≥ 0 and β = (c1 − c2)/(c1 + c2) if
α ∈ (0,1)∪ (1,2) and c1 = c2 if α = 1. The choice of a ∈R in the Lévy–Khintchine
formula is then implicit. Exercise 1.4 shows how to make the connection between
Π and Ψ with the right choice of a (which depends on α). Unlike the previous
examples, the distributions that lie behind these characteristic exponents are heavy
tailed in the sense that the tails of their distributions decay slowly enough to zero,
so that they only have moments strictly less than α. The value of the parameter β
gives an indication of asymmetry in the Lévy measure and likewise for the distri-
butional asymmetry (although this fact is not immediately obvious). The densities
of stable processes are known explicitly in the form of convergent power series.
See Zolotarev (1986), Sato (1999) and Samorodnitsky and Taqqu (1994) for further
details of all the facts given in this paragraph. With the exception of the defining
property (1.8), we shall generally not need detailed information on distributional
properties of stable processes in order to proceed with their fluctuation theory. This
explains our reluctance to give further details here.

Two examples of the aforementioned power series that tidy up to more compact
expressions are centred Cauchy distributions, corresponding to α = 1, β = 0 and
η = 0, and 1

2 -stable distributions, corresponding to α = 1/2, β = 1 and η = 0. In
the former case, Ψ (θ)= c|θ |, for θ ∈R, and its law is given by

c

π

1

(x2 + c2)
dx, (1.12)

for x ∈ R. In the latter case, Ψ (θ) = c|θ |1/2(1 − isgn θ) for θ ∈ R and its law is
given by

c√
2πx3

e−c2/2xdx.
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Note that an inverse Gaussian distribution coincides with a 1
2 -stable distribution for

s = c and b= 0.
Suppose that S(c,α,β,η) is the distribution of a stable random variable with

parameters c, α, β and η. For each choice of c > 0, α ∈ (0,2), β ∈ [−1,1] and
η ∈ R, Theorem 1.6 tells us that there exists a Lévy process with characteristic
exponent given by (1.9) or (1.10), according to the choice of parameters. Further,
from the definition of its characteristic exponent, it is clear that, at each fixed time,
the α-stable process will have distribution S(ct, α,β, ηt).

In this text, we shall henceforth make an abuse of notation and refer to an α-
stable process to mean a Lévy process based on a strictly stable distribution.

Strict stability means that the associated characteristic exponent takes the form

Ψ (θ)=
{
c|θ |α(1− iβ tan πα2 sgn θ) for α ∈ (0,1)∪ (1,2)
c|θ | + iηθ for α = 1,

(1.13)

where the parameter ranges for c, β and η are as above. The reason for the restriction
to strictly stable distributions is that we will want to make use of the following
fact. If {Xt : t ≥ 0} is an α-stable process, then from its characteristic exponent (or
equivalently the scaling properties of strictly stable random variables), we see that,
for all λ > 0, {Xλt : t ≥ 0} has the same law as {λ1/αXt : t ≥ 0}.

1.2.7 Other Examples

There are many more known examples of infinitely divisible distributions (and
hence Lévy processes). Of the many known proofs of infinitely divisibility for spe-
cific distributions, most of them are non-trivial, often requiring intimate knowl-
edge of special functions. A brief list of such distributions might include gener-
alised inverse Gaussian (see Good 1953 and Jørgensen 1982), truncated stable (see
Tweedie 1984; Hougaard 1986; Koponen 1995; Boyarchenko and Levendorskii
2002a and Carr et al. 2003), generalised hyperbolic (see Halgreen 1979; Bing-
ham and Kiesel 2004 and Eberlein 2001; Barndorff-Nielsen and Shephard 2001),
Meixner (see Schoutens and Teugels 1998), Pareto (see Steutel 1970 and Thorin
1977a), F -distributions (see Ismail and Kelker 1979), Gumbel (see Johnson and
Kotz 1970 and Steutel 1973), Weibull (see Johnson and Kotz 1970 and Steutel
1970), lognormal (see Thorin 1977b), Student t-distribution (see Grosswald 1976
and Ismail 1977), Lamperti-stable (see Caballero et al. 2010) and β-class (see
Kuznetsov 2010a).

Despite being able to identify a large number of infinitely divisible distributions,
and hence their associated Lévy processes, it is not clear at this point what the paths
of Lévy processes look like. The task of giving a mathematically precise account
of this lies ahead in Chap. 2. In the meantime, let us make the following informal
remarks concerning paths of Lévy processes.
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Fig. 1.1 A sample path of a Poisson process; Ψ (θ)= λ(1− eiθ ) where λ is the jump rate.

Exercise 1.1 shows that a linear combination of a finite number of independent
Lévy processes is again a Lévy process. It turns out that one may consider any Lévy
process as an independent sum of a Brownian motion with drift and a countable
number of independent compound Poisson processes with different jump rates, jump
distributions and drifts. The superposition occurs in such a way that the resulting
path remains almost surely finite at all times. Moreover, for each ε > 0, over all fixed
time intervals, the process experiences at most a countably infinite number of jumps
of magnitude ε or less with probability one, and an almost surely finite number of
jumps of magnitude greater than ε. In this description, a necessary and sufficient
condition for there to be an almost surely finite number of jumps over each fixed
time interval is that the Lévy process is a linear combination of a Brownian motion
with drift and an independent compound Poisson process. Depending on the under-
lying structure of the jumps and the presence of a Brownian motion in the described
linear combination, a Lévy process will either have paths of bounded variation on
all finite time intervals or paths of unbounded variation on all finite time intervals.

Below, we include six computer simulations to give a rough sense of what the
paths of Lévy processes look like. Figures 1.1 and 1.2 depict the paths of a Poisson
process and a compound Poisson process, respectively. Figures 1.3 and 1.4 show
the paths of a Brownian motion and the independent sum of a Brownian motion
and a compound Poisson process, respectively. Finally Figs. 1.5 and 1.6 show the
paths of a variance-gamma process and a normal inverse Gaussian processes. Both
are pure jump processes (no Brownian component as described above). Variance-
gamma processes are discussed in more detail later in Sect. 2.7.3 and Exercise 1.5,
normal inverse Gaussian processes are Lévy processes whose jump measure is given
byΠ(dx)= (δα/π |x|) exp{βx}K1(α|x|)dx, for x ∈R, where α, δ > 0, β ≤ |α| and
K1(x) is the modified Bessel function of the third kind with index 1 (the precise
meaning of this is not worth the detail at this moment in the text). Both experience
an infinite number of jumps over a finite time horizon. However, variance-gamma
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Fig. 1.2 A sample path of a compound Poisson process; Ψ (θ)= λ ∫
R
(1− eiθx)F (dx) where λ is

the jump rate and F is the common distribution of the jumps.

Fig. 1.3 A sample path of a Brownian motion; Ψ (θ)= θ2/2.

processes have paths of bounded variation whereas normal inverse Gaussian pro-
cesses have paths of unbounded variation. The reader should be warned that com-
puter simulations can only depict a finite number of jumps in any given path. All
figures were very kindly produced by Antonis Papapantoleon for the purpose of this
text.

1.3 Lévy Processes and Some Applied Probability Models

In this section, we introduce some classical applied probability models, which are
structured around basic examples of Lévy processes. This section provides a par-
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Fig. 1.4 A sample path of the independent sum of a Brownian motion and a compound Poisson
process; Ψ (θ)= θ2/2+ ∫

R
(1− eiθx)F (dx).

Fig. 1.5 A sample path of a variance-gamma processes. The characteristic exponent is given by
Ψ (θ)= β log(1− iθc/α + β2θ2/2α) where c ∈R and β > 0.

ticular motivation for the study of the fluctuation theory that follows in subsequent
chapters. (There are of course other reasons for wanting to study fluctuation the-
ory of Lévy processes.) With the right understanding of the models given below,
much richer generalisations may be studied. At different points later on in this text,
we will return to these models and reconsider these phenomena in the light of the
theory that has been presented along the way. In particular, all of the results ei-
ther stated or alluded to below will be proved in greater generality in later chap-
ters.
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Fig. 1.6 A sample path of a normal inverse Gaussian process; Ψ (θ) = δ(√α2 − (β + iθ)2 −√
α2 − β2) where α, δ > 0, |β|< α.

1.3.1 Cramér–Lundberg Risk Process

Consider the following model of the surplus of an insurance company as a process in
time, first proposed by Lundberg (1903). The insurance company collects premiums
at a fixed rate c > 0 from its customers. At times of a Poisson process, a customer
will make a claim causing the surplus to jump downwards. The claim sizes are
independent and identically distributed. If we call Xt the capital of the company at
time t , then the above description amounts to saying,

Xt = x + ct −
Nt∑

i=1

ξi, t ≥ 0,

where x > 0 is the initial capital of the company, N = {Nt : t ≥ 0} is a Poisson
process with rate λ > 0, and {ξi : i ≥ 1} is a sequence of positive, independent and
identically distributed random variables, also independent of N . The process X =
{Xt : t ≥ 0} is nothing more than a compound Poisson process with drift of rate c,
initiated from x ≥ 0. Denote its law by Px and, for convenience, write P instead
of P0.

Financial ruin in this model (or just ruin for short) will occur if the surplus of the
insurance company drops below zero. Since this will happen with probability one
if P(lim inft↑∞Xt =−∞)= 1, an additional assumption imposed on the model is
that

lim
t↑∞Xt =∞. (1.14)
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A sufficient condition to guarantee (1.14) is that the distribution of ξ has finite mean,
say μ> 0, and that

λμ

c
< 1,

the so-called security loading condition (per unit time). Indeed, to see why, note
that the Strong Law of Large Numbers for Poisson processes, which states that
limt↑∞Nt/t = λ, and the obvious fact that limt↑∞Nt =∞, together imply that

lim
t↑∞

Xt

t
= lim
t↑∞

(
x

t
+ c− Nt

t

∑Nt
i=1 ξi

Nt

)

= c− λμ> 0.

Hence, under the security loading condition it follows that ruin will occur with prob-
ability less than one. Fundamental quantities of interest in this model, whenX drifts
to infinity, are the distribution of the time to ruin and the deficit at ruin, otherwise
identified as

τ−0 := inf{t > 0 :Xt < 0} and Xτ−0
on

{
τ−0 <∞

}
.

The following classic result links the probability of ruin to the conditional distri-
bution

η(x)= P
(−Xτ−0 ≤ x|τ

−
0 <∞

)
, x ≥ 0.

Theorem 1.8 (Pollaczek–Khintchine formula) Suppose that λμ/c < 1. For all
x ≥ 0,

1− Px

(
τ−0 <∞

)= (1− ρ)
∑

k≥0

ρkη∗k(x), (1.15)

where ρ = P(τ−0 <∞).

Formula (1.15) is not particularly explicit in the sense that it gives no information
about constant ρ, nor about the distribution η. It turns out that these unknowns can
be identified explicitly, as the next theorem reveals.

Theorem 1.9 In the Cramér–Lundberg model (with λμ/c < 1), ρ = λμ/c and

η(x)= 1

μ

∫ x

0

[
1− F(y)]dy, (1.16)

where F is the distribution of ξ1.

This result can be derived via a classical path analysis of random walks. More-
over, the aforesaid analysis gives some taste of general fluctuation theory for Lévy
processes that we will spend quite some time on in this book. The proof of Theo-
rem 1.9 can be found in Exercise 1.8.
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The Pollaczek–Khintchine formula, together with some additional assumptions
on F , gives rise to interesting asymptotic behaviour of the probability of ruin.
Specifically, we have the following result.

Theorem 1.10 If λμ/c < 1 and there exists a ν ∈ (0,∞) such that E(e−νX1)= 1,
then

Px

(
τ−0 <∞

)≤ e−νx,

for all x > 0. If further, the distribution of F is non-lattice, then

lim
x↑∞ eνxPx

(
τ−0 <∞

)=
(

λν

c− λμ
∫ ∞

0
xeνx

[
1− F(x)]dx

)−1

,

where the right-hand side should be interpreted as zero if the integral is infinite.

In the above theorem, the parameter ν is known as the Lundberg exponent. See
Cramér (1994a, 1994b) for a review of these results.

In more recent times, some authors in this field have moved to working
with more general classes of Lévy processes for which there are no positive
jumps, in place of the Cramér–Lundberg process. See for example Huzak et al.
(2004a, 2004b), Chan (2004) and Klüppelberg et al. (2004a, 2004b). It turns
out that working with this class of Lévy processes preserves the idea that the
surplus of the insurance company is the aggregate superposition of lots of in-
dependent claims, arriving sequentially through time, offset against a deter-
ministic increasing process, corresponding to the accumulation of premiums,
even when there are an almost surely infinite number of jumps downwards
(claims) in any fixed time interval. We will provide a more detailed interpre-
tation of this class in Chap. 2. In Chaps. 4 and 7, amongst other things, we
will also re-examine the Pollaczek–Khintchine formula and the asymptotic prob-
ability of ruin, given in Theorem 1.10, in the light of these generalised risk
models.

1.3.2 The M/G/1 Queue

Let us recall the classical definition of the M/G/1 queue. Customers arrive at a
service desk according to a Poisson process and join a queue. Customers have ser-
vice times that are independent and identically distributed. Once served, they leave
the queue. The terminology M/G/1 refers to the fact that the arrival process is
Markovian, the service times are General and there is 1 server.

At each time t ≥ 0, the workload, Wt , is defined to be the time it will take a
customer, who joins the back of the queue at that moment, to reach the service desk.
That is to say, the amount of processing time remaining in the queue at time t .
Suppose that at an arbitrary moment, which we shall call time zero, the server is not
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idle and the workload is equal to w > 0. On the event that t is before the first time
the queue becomes empty, we have that

Wt =w+
Nt∑

i=1

ξi − t. (1.17)

Here, as with the Cramér–Lundberg risk process, N = {Nt : t ≥ 0} is a Poisson pro-
cess with intensity λ > 0 and {ξi : i ≥ 0} are positive random variables that are inde-
pendent and identically distributed, with common distribution F and mean μ<∞.
The process N models the arrivals of new customers and {ξi : i ≥ 0} are understood
to be their respective service times. The negative unit drift simply corresponds to the
decrease in time as the server deals with jobs at a constant rate. Thanks to the lack-
of-memory property, once the queue becomes empty, the queue remains empty for
an exponentially distributed period of time with parameter λ, after which, a new ar-
rival causes a jump inW , which has distribution F . The process proceeds to evolve
as the compound Poisson process, described above, until the queue next empties,
and so on.

The workload is clearly not a Lévy process as it is impossible for {Wt : t ≥ 0}
to decrease in value from the state zero, whereas it can decrease in value from any
other state x > 0. However, it turns out that it is quite easy to link the workload to a
familiar functional of a Lévy process, which is also a Markov process. Specifically,
suppose we define {Xt : t ≥ 0} as equal to the same Lévy process describing the
Cramér–Lundberg risk model, with c= 1 and x = 0. Then

Wt = (w ∨Xt)−Xt, t ≥ 0,

where the process X := {Xt : t ≥ 0} is the running supremum of X. That is, Xt :=
supu≤t Xu, t ≥ 0. Whilst it is easy to show that the pair (X,X) is a Markov process,
with a little extra work it can also be shown thatW is a strong Markov process (this
is dealt with in more detail in Exercise 3.2). Clearly then, under P, the process W
behaves like w−X until the stopping time

τ+w := inf{t > 0 :Xt > w}.
At the time τ+w , the process W = {Wt : t ≥ 0} first becomes zero in value. On ac-
count of the strong Markov property and the lack-of-memory property, W then re-
mains zero for an interval of time, whose length is exponentially distributed with
parameter λ. Note that during this interval of time, w ∨Xt = Xt = Xt . At the end
of this so-called idle period,X makes another negative jump distributed according to
F and, accordingly,W makes a positive jump with the same distribution, and so on,
thereby matching the description of the evolution of W in the previous paragraph;
see Fig. 1.7.

Note that this description still makes sense when w = 0, in which case, for an
initial period of time, which is exponentially distributed, W remains equal to zero
until X first jumps (corresponding to the first arrival in the queue).
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Fig. 1.7 Sample paths of X and W .

There are a number of fundamental points of interest concerning both local
and global behavioural properties of the workload of the M/G/1 queue. Take,
for example, the time it takes before the queue first empties, namely τ+w . It is
clear from a simple analysis of the paths of X and W that τ+w is finite with
probability one, if the underlying process X drifts to infinity with probability
one. With the help of the Strong Law of Large Numbers, it is easy to deduce
that this happens when λμ < 1. Another common situation of interest in this
model corresponds to the case that the server is only capable of dealing with a
maximum workload of z units. The first time the workload exceeds the buffer
level z,

σz := inf{t > 0 :Wt > z},
therefore becomes relevant. In particular, one is interested in the probability of
{σz < τ+w }, which corresponds to the event that the workload exceeds the buffer
level before the server can complete a busy period.

The following two theorems give some classical results concerning the idle
time of the M/G/1 queue and the stationary distribution of the workload.
Roughly speaking, they say that when there is heavy traffic (λμ > 1), eventu-
ally the queue never becomes empty, the workload grows to infinity and the
total time that the queue remains empty is finite with a particular distribution.
Further, when there is light traffic (λμ < 1), the queue repeatedly becomes
empty and the total idle time grows to infinity, whilst the workload process con-
verges in distribution. At the critical value λμ = 1, the workload grows to ar-
bitrary large values but, nonetheless, the queue repeatedly becomes empty and
the total idle time grows to infinity. Ultimately, all these properties are reinter-
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pretations of the long-term behaviour of a special class of reflected Lévy pro-
cesses.

Theorem 1.11 Suppose that W = {Wt : t ≥ 0} is the workload of an M/G/1
queue with arrival rate λ and service distribution F , having mean μ. Define the
total idle time

I =
∫ ∞

0
1(Wt=0)dt.

(i) Suppose that λμ> 1. Let

ψ(θ)= θ − λ
∫

(0,∞)
(
1− e−θx

)
F(dx), θ ≥ 0,

and define θ∗ to be the largest root of the equation ψ(θ)= 0. Then6

P(I ∈ dx|W0 =w)=
(
1− e−θ∗w

)
δ0(dx)+ θ∗e−θ∗(w+x)dx.

(ii) If λμ≤ 1 then I is infinite with probability one.

Note that the function ψ , given above, fulfils the relation ψ(θ) = logE(eθX1),
for θ ≥ 0, and is called the Laplace exponent of the underlying Lévy process which
drives the process W . It is easy to check, by differentiating it twice, that ψ is a
strictly convex function. Moreover, it is zero at the origin and tends to infinity at in-
finity. Furthermore, under the assumption λμ> 1, ψ ′(0+) < 0 and hence θ∗ exists,
is finite and is in fact the only solution to ψ(θ)= 0, other than θ = 0, in [0,∞).

Theorem 1.12 Let W = {Wt : t ≥ 0} be the same as in Theorem 1.11.

(i) Suppose that λμ< 1. Then for all w ≥ 0 the workload process has a stationary
distribution,

lim
t↑∞P(Wt ≤ x|W0 =w)= (1− ρ)

∞∑

k=0

ρkη∗k(x),

where

η(x)= 1

μ

∫ x

0

[
1− F(y)]dy and ρ = λμ.

(ii) If λμ≥ 1 then lim supt↑∞Wt =∞ with probability one.

6Following standard notation, the measure δ0 is the Dirac measure, which assigns a unit atom to
the point 0.
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Some of the conclusions in the above two theorems can already be obtained with
basic knowledge of compound Poisson processes. Theorem 1.11 is proved in Exer-
cise 1.9 and gives some feeling for the fluctuation theory that will be touched upon
later on in this text. The remarkable similarity between part (i) of Theorem 1.12 and
the Pollaczek–Khintchine formula is of course no coincidence. Indeed, the funda-
mental principles that are responsible for these two results are embedded within a
larger fluctuation theory for general Lévy processes. We will revisit Theorems 1.11
and 1.12 later, but for more general versions of the workload process of theM/G/1
queue, known as general storage models. Such generalisations involve working with
a class of Lévy process that have no positive jumps (that isΠ(0,∞)= 0) and defin-
ing, as before, Wt = (w ∨ Xt) − Xt . When there are an infinite number of jumps
in each finite time interval, this process may be thought of as modelling a proces-
sor that deals with an arbitrarily large number of small jobs and occasional large
jobs. The precise interpretation of such a generalisedM/G/1 workload process and
issues concerning the distribution of the busy period, the stationary distribution of
the workload, time to buffer overflow and other related quantities, will be dealt with
later on in Chaps. 2, 4 and 8.

1.3.3 Optimal Stopping Problems

A fundamental class of problems motivated by applications in physics, optimal con-
trol, sequential testing and economics (to name but a few) concerns optimal stopping
problems of the form: Find v(x) and a stopping time, τ ∗, belonging to a specified
family of stopping times, T , such that

v(x)= sup
τ∈T

Ex

(
e−qτG(Xτ )

)= Ex

(
e−qτ∗G(Xτ∗)

)
, (1.18)

for all x ∈R. Here, X = {Xt : t ≥ 0} is an R-valued Markov process with probabil-
ities {Px : x ∈ R} (with the usual understanding that Px is the law of X given that
X0 = x), q ≥ 0 andG :R→[0,∞) is a function suitable to the application at hand.
The optimal stopping problem (1.18) is not the most general class of such problems
that one may consider but will suffice for the discussion at hand.

In many cases it turns out that the optimal strategy takes the form

τ ∗ = inf
{
t > 0 : (t,Xt ) ∈D

}
,

whereD ⊂ [0,∞)×R is a domain in time-space called the stopping region. Further,
there are many examples within this class for which D = [0,∞)× I where I is an
interval or the complement of an interval. In other words an optimal strategy is the
first hitting time of X into I ,

τ ∗ = inf{t > 0 :Xt ∈ I }. (1.19)
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A classic example of an optimal stopping problem in the form (1.18), for which
the solution agrees with (1.19), is the following, taken from McKean (1965). Find

v(x)= sup
τ∈T

Ex

(
e−qτ

(
K − eXτ

)+)
, x ∈R, (1.20)

where now q > 0, T is the family of stopping times with respect to the filtration
Ft := σ(Xs : s ≤ t) and X is a linear Brownian motion, Xt = σBt + γ t , t ≥ 0 (see
Sect. 1.2.3). Note that we use here the standard notation y+ = y ∨ 0. This particular
example, when seen in the right context, models the optimal time to sell a risky
asset for a fixed value K when the value of the asset’s dynamics are those of an
exponential linear Brownian motion. Optimality in this case is determined via the
expected discounted gain at the selling time. On account of the underlying source
of randomness being Brownian motion and the optimal strategy taking the simple
form (1.19), the solution to (1.20) turns out to be explicitly computable as follows.

Theorem 1.13 The solution (v, τ ∗) to (1.20) can be represented by

τ ∗ = inf
{
t > 0 :Xt < x∗

}
,

where

ex
∗ =K

(
Φ(q)

1+Φ(q)
)

,

Φ(q)= (√γ 2 + 2σ 2q + γ )/σ 2 and

v(x)=
{
(K − ex) if x < x∗
(K − ex

∗
)e−Φ(q)(x−x∗) if x ≥ x∗.

The solution to this problem reflects the intuition that the optimal time to stop
should be at a time when X is as negative as possible, taking into consideration
that waiting too long to stop incurs an exponentially weighted penalty. Note that,
in (−∞, x∗), the value function v(x) is equal to the gain function (K − ex)+ as
the optimal strategy τ ∗ dictates that one should stop immediately here. A particular
curiosity of the solution to (1.20) is the fact that at x∗, the value function v joins
smoothly to the gain function. In other words,

v′
(
x∗−)=−ex

∗ = v′(x∗+).
A natural question, in light of the above optimal stopping problem, is whether

one can characterise the solution to (1.20) when X is replaced by a general Lévy
process. Indeed, if the same strategy of first passage below a specified level is still
optimal, one is then confronted with needing information about the distribution of
the overshoot of a Lévy process when first crossing below a barrier in order to
compute the function v. This is also of interest if one would like to address the
question as to whether the phenomenon of smooth fit is still to be found in the
general Lévy process setting.
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Later in Chap. 11, we give a brief introduction to some general principles ap-
pearing in the theory of optimal stopping and apply them to a handful of examples,
where the underlying source of randomness is provided by a Lévy process. The first
of these examples is the generalisation of (1.20), as mentioned above. All of the ex-
amples presented in Chap. 11 can be solved (semi-)explicitly thanks to a degree of
simplicity in the optimal strategy, such as (1.19), coupled with knowledge of fluctu-
ation theory of Lévy processes. In addition, through these examples, we will attempt
to give some insight into how and when smooth pasting occurs as a consequence of
a subtle type of path behaviour of the underlying Lévy process.

1.3.4 Continuous-State Branching Processes

Originating, in part, from the concerns of the Victorian British upper classes that
aristocratic surnames were becoming extinct, the theory of branching processes now
forms a cornerstone of classical applied probability. Some of the earliest work on
branching processes dates back to Watson and Galton (1874). However, approxi-
mately 100 years later, it was discovered by Heyde and Seneta (1977) that the lesser
known work of I.J. Bienaymé, dated around 1845, contained many aspects of the
later-dated work of Galton and Watson. The Bienaymé–Galton–Watson process, as
it is now known, is a discrete-time Markov chain with state space {0,1,2, . . .}, de-
scribed by the sequence {Zn : n= 0,1,2, . . .}, satisfying the recursion Z0 > 0 and

Zn =
Zn−1∑

i=1

ξ
(n)
i ,

for n = 1,2, . . . , where {ξ (n)i : i = 1,2, . . .} are independent and identically dis-

tributed on {0,1,2, . . .}. We use the usual notation
∑0
i=1 to represent the empty

sum. The basic idea behind this model is that Zn is the population count in the n-th
generation and from an initial population Z0 (which may be randomly distributed)
individuals reproduce asexually and independently, with the same distribution of
numbers of offspring. These reproductive properties are referred to as the branch-
ing property. Note that, as soon as Zn = 0 it follows from the given construction
that, for all k = 1,2, . . . , Zn+k = 0. A particular consequence of the branching
property is that, if Z0 = a + b, then Zn is equal in distribution to Z(1)n + Z(2)n ,
where Z(1)n and Z(2)n are independent with the same distribution as an n-th gener-
ation Bienaymé–Galton–Watson process initiated from population sizes a and b,
respectively.

A mild modification of the Bienaymé–Galton–Watson process is to set it into
continuous time by assigning life lengths to each individual, which are indepen-
dent and exponentially distributed with parameter λ > 0. Individuals reproduce at
their moment of death, in the same way as described previously for the Bienaymé–
Galton–Watson process. If Y = {Yt : t ≥ 0} is the {0,1,2, . . .}-valued process de-
scribing the population size, then it is straightforward to see that the lack-of-memory
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property of the exponential distribution implies that, for all 0≤ s ≤ t ,

Yt =
Ys∑

i=1

Y
(i)
t−s ,

where, given {Yu : u≤ s}, the variables {Y (i)t−s : i = 1, . . . , Ys} are independent, with
the same distribution as Yt−s conditional on Y0 = 1. In that case, we may talk of
Y as a continuous-time Markov chain on {0,1,2, . . .}, with probabilities, say, {Py :
y = 0,1,2, . . .}, where Py is the law of Y under the assumption that Y0 = y. As
before, the state 0 is absorbing in the sense that, if Yt = 0, then Yt+u = 0 for all
u > 0. The process Y is called the continuous-time Markov branching process. The
branching property for Y may now be formulated as follows.

Definition 1.14 (Branching property) For any t ≥ 0 and y1, y2 in the state space
of Y = {Yt : t ≥ 0}, the random variable Yt under Py1+y2 is equal in law to the

independent sum Y
(1)
t + Y (2)t , where the distribution of Y (i)t is equal to that of Yt

under Pyi , for i = 1,2.

So far there appears to be little connection with Lévy processes. However, a
remarkable time transformation shows that the path of Y is intimately linked to
the path of a compound Poisson process whose jump distribution is supported in
{−1,0,1,2, . . .} and which is stopped at the first instant that it hits zero. To explain
this in more detail, let us introduce the probabilities {πi : i =−1,0,1,2, . . .}, where
πi = P(ξ = i + 1) and ξ has the same distribution as the typical family size in
the Bienaymé–Galton–Watson process. To avoid complications, let us assume that
π0 = 0 so that a transition in the state of Y always occurs when an individual dies.
When jumps of Y occur, they are independent and always distributed according to
{πi : i = −1,0,1, . . .}. The idea now is to adjust time accordingly with the evolu-
tion of Y in such a way that these jumps are spaced out with inter-arrival times that
are independent and exponentially distributed. Crucial to the following exposition is
the simple and well-known fact that the minimum of n ∈ {1,2, . . .} independent and
exponentially distributed random variables, with common parameter λ, is exponen-
tially distributed with parameter λn. Further, if eα is exponentially distributed with
parameter α > 0, then for β > 0, βeα is equal in distribution to eα/β .

Write, for t ≥ 0,

Jt =
∫ t

0
Yudu,

set

ϕt = inf{s ≥ 0 : Js > t},
with the usual convention that inf∅ =∞, and define

Xt = Yϕt , (1.21)
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with the understanding that when ϕt =∞, we put Xt = 0. Observe that, when Y0 =
y ∈ {1,2, . . .}, the first jump of Y occurs at a time, say T1, which is the minimum of
y independent exponential random variables, each with parameter λ > 0 (and hence
T1 is exponentially distributed with parameter λy). Moreover, the size of the jump
is distributed according to {πi : i =−1,0,1,2, . . .}. Note that JT1 = yT1 is the first
time that the process X = {Xt : t ≥ 0} jumps. This time is exponentially distributed
with parameter λ. The jump at this time is independent of the historical evolution to
that point in time and distributed according to {πi : i =−1,0,1,2, . . .}.

Given the information G1 = σ(Yt : t ≤ T1), the lack-of-memory property im-
plies that the continuation, {YT1+t : t ≥ 0}, has the same law as Y under Py ,
with y = YT1 . Hence, if T2 is the time of the second jump of Y , then conditional
on G1, we have that T2 − T1 is exponentially distributed with parameter λYT1 and
JT2 − JT1 = YT1(T2 − T1), which is again exponentially distributed with parameter
λ and further, is independent of G1. Note that JT2 is the time of the second jump of
X and the size of the second jump is again independent and distributed according to
{πi : i =−1,0,1, . . .}. Iterating in this way it becomes clear that X is nothing more
than a compound Poisson process with arrival rate λ and jump distribution

F(dx)=
∞∑

i=−1

πiδi(dx), x ∈R, (1.22)

stopped on first hitting the origin.
A converse to this construction is also possible. Suppose now that X = {Xt :

t ≥ 0} is a compound Poisson process with arrival rate λ > 0 and jump distribution
F(dx)=∑∞

i=−1 πiδi(dx), x ∈R. Write

It =
∫ t

0
X−1
u du

and set

θt = inf{s ≥ 0 : Is > t}, (1.23)

again with the understanding that inf∅ =∞, Define

Yt =Xθt∧τ {0} ,

where τ {0} = inf{t > 0 :Xt = 0}. By analysing the behaviour of Y = {Yt : t ≥ 0} at
the jump times of X in a similar way to above, one readily shows that the process Y
is a continuous-time Markov branching process. The details are left as an exercise
to the reader.

The relationship between compound Poisson processes and continuous-time
Markov branching processes, as described above, turns out to hold in a much more
general setting. In the work of Lamperti (1967a, 1967b), it is shown that there exists
a correspondence between a class of branching processes, called continuous-state
branching processes, and Lévy processes with no negative jumps (Π(−∞,0)= 0).
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In brief, a continuous-state branching process is a [0,∞)-valued Markov process
having paths that are right-continuous with left limits and probabilities {Px : x > 0}
that satisfy the branching property in Definition 1.14. Note in particular that, now,
the quantities y1 and y2 may be chosen from the non-negative real numbers. Lam-
perti’s characterisation of continuous-state branching processes states that they can
be identified as time-changed Lévy processes with no negative jumps precisely
via the transformations given in (1.21), with an inverse transformation analogous
to (1.23). We explore this relationship in more detail in Chap. 12 by looking at
issues such as explosion, extinction and conditioning on survival.

Exercises

1.1 Prove that, in order to check for stationary and independent increments of the
process {Xt : t ≥ 0}, it suffices to check that, for all n ∈ N and 0 ≤ s1 ≤ t1 ≤ · · · ≤
sn ≤ tn <∞ and θ1, . . . , θn ∈R,

E

[
n∏

j=1

eiθj (Xtj−Xsj )
]

=
n∏

j=1

E
[
eiθjXtj−sj

]
.

Show, moreover, that the sum of two (or indeed any finite number of) independent
Lévy processes is again a Lévy process.

1.2 Suppose that S = {Sn : n ≥ 0} is any random walk and �p is an independent
random variable with a geometric distribution on {0,1,2, . . .}, with parameter p.

(i) Show that �p is infinitely divisible.
(ii) Show that S�p is infinitely divisible.

1.3 (Proof of Lemma 1.7) In this exercise, we derive the Frullani identity.

(i) Show for any function f , such that f ′ exists and is continuous and f (0) and
f (∞) are finite, that

∫ ∞

0

f (ax)− f (bx)
x

dx = (
f (0)− f (∞)) log

(
b

a

)

,

where b > a > 0.
(ii) By choosing f (x)= e−x , a = α > 0 and b= α− z, where z < 0, show that

1

(1− z/α)β = e−
∫∞

0 (1−ezx ) β
x

e−αxdx (1.24)

and hence, by analytic extension, show that the above identity is still valid for
all z ∈C such that �z≤ 0.
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1.4 Establishing formulae (1.9) and (1.10) from the Lévy measure given in (1.11) is
the result of a series of technical manipulations of special integrals. In this exercise,
we work through them. In the following text, we will use the gamma function Γ (z),
defined by

Γ (z)=
∫ ∞

0
tz−1e−tdt,

for z > 0. Note the gamma function can also be analytically extended so that it is
also defined on R\{0,−1,−2, . . .} (see Lebedev 1972). Whilst the specific defini-
tion of the gamma function for negative numbers will not play an important role in
this exercise, the following two facts, which can be derived from it, will. For z ∈
R\{0,−1,−2, . . .} the gamma function observes the recursion Γ (1 + z) = zΓ (z)
and Γ (1/2)=√π .

(i) Suppose that 0< α < 1. Prove that for u > 0,

∫ ∞

0

(
e−ur − 1

)
r−α−1dr = Γ (−α)uα

and show that the same equality is valid when −u is replaced by any complex
number w 	= 0 with �w ≤ 0. Conclude, by considering w = i, that

∫ ∞

0

(
1− eir)r−α−1dr =−Γ (−α)e−iπα/2 (1.25)

and similarly for the complex conjugate of both sides of (1.25). Deduce (1.9)
by considering the integral

∫ ∞

0

(
1− eiξθr)r−α−1dr

for ξ =±1 and θ ∈ R. Note that you will have to take a = η− ∫
R
x1(|x|<1)×

Π(dx), which you should check is finite.
(ii) Now suppose that α = 1. First prove that

∫

|x|<1
eiθx(1− |x|)dx = 2

(
1− cos θ

θ2

)

,

for θ ∈R. Hence by, Fourier inversion, show that

∫ ∞

0

1− cos r

r2
dr = π

2
.

Use this identity to show that for z > 0,

∫ ∞

0

(
1− eirz + izr1(r<1)

) 1

r2
dr = π

2
z+ iz log z− ikz,
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for some constant k ∈ R. By considering the complex conjugate of the above
integral, establish the expression in (1.10). Note that you will need a different
choice of a to part (i).

(iii) Now suppose that 1< α < 2. Integrate (1.25) by parts to get

∫ ∞

0

(
eir − 1− ir

)
r−α−1dr = Γ (−α)e−iπα/2.

Deduce the identity (1.9) in a similar manner to the proof of (i) and (ii).

1.5 For any θ ∈R, prove that

exp
{
iθXt + tΨ (θ)

}
, t ≥ 0,

is a martingale where {Xt : t ≥ 0} is a Lévy process with characteristic exponent Ψ .

1.6 In this exercise, we will work out in detail some features of the inverse Gaussian
process discussed earlier on in this chapter. Recall that τ = {τs : s ≥ 0} is a non-
decreasing Lévy process defined by τs = inf{t ≥ 0 : Bt + bt > s}, s ≥ 0, where
B = {Bt : t ≥ 0} is a standard Brownian motion and b > 0.

(i) Argue along the lines of Exercise 1.5 to show that, for each λ > 0,

eλBt−
1
2λ

2t , t ≥ 0,

is a martingale. Use Doob’s Optional Sampling Theorem to obtain

E
(
e−(

1
2λ

2+bλ)τs )= e−λs .

Use analytic extension to deduce further that τs has characteristic exponent

Ψs(θ)= s
(√−2iθ + b2 − b),

for all θ ∈R.
(ii) Defining the measure Π(dx) = (2πx3)−1/2e−xb2/2dx on x > 0, check, using

(1.25) from Exercise 1.4, that
∫ ∞

0

(
1− eiθx)Π(dx)= Ψ (θ),

for all θ ∈ R. Confirm that the triple (a, σ,Π), appearing in the Lévy–
Khintchine formula, is thus σ = 0,Π as above and a =−2sb−1

∫ b
0 (2π)

−1/2×
e−y2/2dy.

(iii) Taking

μs(dx)= s√
2πx3

esbe−
1
2 (s

2x−1+b2x)dx, x > 0,
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show that
∫ ∞

0
e−λxμs(dx) = ebs−s

√
b2+2λ

∫ ∞

0

s√
2πx3

e
− 1

2 (
s√
x
−
√
(b2+2λ)x)2

dx

= ebs−s
√
b2+2λ

∫ ∞

0

√
2λ+ b2

2πu
e
− 1

2 (
s√
u
−
√
(b2+2λ)u)2

du.

Hence, by adding the last two integrals together deduce that
∫ ∞

0
e−λxμs(dx)= e−s(

√
b2+2λ−b),

thereby confirming both that μs(dx) is a probability distribution on (0,∞),
and that it is the probability distribution of τs .

1.7 Show that for a simple Brownian motion B = {Bt : t > 0} the first passage
process τ = {τs : s > 0}, where τs = inf{t ≥ 0 : Bt ≥ s}, is a stable process with
parameters α = 1/2 and β = 1.

1.8 (Proof of Theorem 1.9) As we shall see in this exercise, the proof of Theo-
rem 1.9 follows from the proof of a more general result given by the conclusion of
parts (i)–(iv) below for random walks.

(i) Suppose that S = {Sn : n≥ 0} is a random walk with S0 = 0 and jump distribu-
tion Q on R. By considering the variables S∗k := Sn − Sn−k for k = 0,1, . . . , n
and noting that the joint distributions of (S0, . . . , Sn) and (S∗0 , . . . , S∗n) are iden-
tical, show that for all y > 0 and n≥ 1,

P(Sn ∈ dy and Sn > Sj for j = 0, . . . , n− 1)

= P(Sn ∈ dy and Sj > 0 for j = 1, . . . , n).

Hint: it may be helpful to draw a diagram of the path of the first n steps of S
and to rotate it by 180◦.

(ii) Define

T −0 = inf{n > 0 : Sn ≤ 0} and T +0 = inf{n > 0 : Sn > 0}.
By summing both sides of the equality

P(S1 > 0, . . . , Sn > 0, Sn+1 ∈ dx)

=
∫

(0,∞)
P (S1 > 0, . . . , Sn > 0, Sn ∈ dy)Q(dx − y)

over n, show that for x ≤ 0,

P(ST −0
∈ dx)=

∫

[0,∞)
V (dy)Q(dx − y),
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where, for y ≥ 0,

V (dy)= δ0(dy)+
∑

n≥1

P(Hn ∈ dy)

andH = {Hn : n≥ 0} is a random walk withH0 = 0 and step distribution given
by P(ST +0

∈ dz), for z≥ 0.
(iii) Embedded in the Cramér–Lundberg model is a random walk S whose incre-

ments are equal in distribution to that of ceλ − ξ1, where eλ is an independent
exponential random variable with mean 1/λ. Noting (using obvious notation)
that ceλ has the same distribution as eβ , where β = λ/c, show that the step
distribution of this random walk satisfies

Q(z,∞)=
(∫ ∞

0
e−βuF (du)

)

e−βz, z≥ 0,

and

Q(−∞,−z)=E(F(eβ + z)
)
, z > 0,

where F(x)= 1−F(x), for all x ≥ 0, and E is expectation with respect to the
random variable eβ .

(iv) Since upward jumps are exponentially distributed in this random walk, use the
lack-of-memory property to reason that

V (dy)= δ0(dy)+ βdy, y ≥ 0.

Hence deduce from parts (ii) and (iii) that

P(−ST −0 > z)=E
(

F(eβ)+
∫ ∞

x

βF (eβ + z)dz
)

and so, by writing out the above identity with the density of the exponential
distribution, show that the conclusions of Theorem 1.9 hold.

1.9 (Proof of Theorem 1.11) Suppose that X is a compound Poisson process of the
form

Xt = t −
Nt∑

i=1

ξi, t ≥ 0,

where the process N = {Nt : t ≥ 0} is a Poisson process with rate λ > 0 and
{ξi : i ≥ 1} positive, independent and identically distributed with common distri-
bution F having finite mean μ.

(i) Show by direct computation that, for all θ ≥ 0, E(eθXt )= eψ(θ)t , where

ψ(θ)= θ − λ
∫

(0,∞)
(
1− e−θx

)
F(dx).
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Show that ψ is strictly convex, is equal to zero at the origin and tends to infinity
at infinity. Further, show that ψ(θ)= 0 has one additional root in [0,∞) other
than θ = 0 if and only if ψ ′(0+) < 0.

(ii) Show that {exp{θ∗Xt∧τ+x } : t ≥ 0} is a martingale, where τ+x = inf{t > 0 :
Xt > x}, x > 0 and θ∗ is the largest root described in the previous part of
the question. Show further that

P(X∞ > x)= e−θ∗x,

for all x > 0.
(iii) Show that for all t ≥ 0,

∫ t

0
1(Ws=0)ds = (Xt −w)∨ 0,

where Wt = (w ∨Xt)−Xt .
(iv) Deduce that I := ∫∞

0 1(Ws=0)ds =∞ if λμ≤ 1.
(v) Assume that λμ> 1. Show that

P
(
I ∈ dx; τ+w =∞|W0 =w

)= (
1− e−θ∗w

)
δ0(dx), x ≥ 0.

Next use the lack-of-memory property to deduce that

P
(
I ∈ dx; τ+w <∞|W0 =w

)= θ∗e−θ∗(w+x)dx.

1.10 Here, we solve a considerably simpler optimal stopping problem than (1.20).
Suppose, as in the aforementioned problem, thatX is a linear Brownian motion with
scaling parameter σ > 0 and drift γ ∈R. Fix K > 0 and let

v(x)= sup
a∈R

Ex

(
e−qτ−a

(
K − e

X
τ
−
a

)+)
, (1.26)

where

τ−a = inf{t > 0 :Xt < a}.

(i) Following similar arguments to those in Exercises 1.5 and 1.9, show that
{exp{θXt −ψ(θ)t} : t ≥ 0} is a martingale, where ψ(θ)= σ 2θ2/2+ γ θ .

(ii) By considering the martingale in part (i) at the stopping time t ∧ τ+x and then
letting t ↑∞, deduce that

E
(
e−qτ+x

)= e−x(
√
γ 2+2σ 2q−γ )/σ 2

and hence deduce that for a ≥ 0,

E
(
e−qτ

−−a
)= e−a(

√
γ 2+2σ 2q+γ )/σ 2

.
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(iii) Let v(x, a) = Ex(e−qτ
−−a (K − exp{Xτ−−a })). For each fixed x differentiate

v(x, a) in the variable a and show that the solution to (1.26) is the same as
the solution given in Theorem 1.13.

1.11 In this exercise, we characterise the Laplace exponent of the continuous-time
Markov branching process, Y , described in Sect. 1.3.4.

(i) Show that for φ > 0 and t ≥ 0 there exists some function ut (φ) > 0 satisfying

Ey
(
e−φYt

)= e−yut (φ),

where y ∈ {0,1,2, . . .}.
(ii) Show that for s, t ≥ 0,

ut+s(φ)= us
(
ut (φ)

)
.

(iii) Appealing to the infinitesimal behaviour of the Markov chain Y , show that

∂ut (φ)

∂t
=ψ(ut (φ)

)

and u0(φ)= φ, where

ψ(q)= λ
∫

[−1,∞)
(
1− e−qx

)
F(dx)

and F is given in (1.22).



Chapter 2
The Lévy–Itô Decomposition
and Path Structure

The main aim of this chapter is to establish a rigorous understanding of the structure
of the paths of Lévy processes. The way we shall do this is to prove the assertion in
Theorem 1.6 that, given any characteristic exponent, Ψ , belonging to an infinitely
divisible distribution, there exists a Lévy process with the same characteristic expo-
nent. This will be done by establishing the so-called Lévy–Itô decomposition, which
describes the structure of a general Lévy process in terms of three independent aux-
iliary Lévy processes, each with a different type of path behaviour. In doing so it will
be necessary to digress temporarily into the theory of Poisson random measures and
associated square-integrable martingales. Understanding the Lévy–Itô decomposi-
tion will allow us to distinguish a number of important, but nonetheless general,
subclasses of Lévy processes according to their path type. The chapter is concluded
with a discussion of the interpretation of the Lévy–Itô decomposition in the context
of some of the applied probability models mentioned in Chap. 1.

2.1 The Lévy–Itô Decomposition

According to Theorem 1.3, any characteristic exponent Ψ belonging to an infinitely
divisible distribution can be written, after some simple reorganisation, in the form

Ψ (θ) =
{

iaθ + 1

2
σ 2θ2

}

+
{

Π
(
R\(−1,1)

)
∫

|x|≥1

(
1− eiθx) Π(dx)

Π(R\(−1,1))

}

+
{∫

0<|x|<1

(
1− eiθx + iθx

)
Π(dx)

}

, (2.1)

for all θ ∈ R, where a ∈ R, σ ∈ R and Π is a measure on R\{0} satisfying∫
R
(1 ∧ x2)Π(dx) <∞. Note that this condition on Π implies that Π(A) <∞ for
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all BorelA such that 0 is in the interior ofAc and, in particular, thatΠ(R\(−1,1)) ∈
[0,∞). In the case that Π(R\(−1,1)) = 0, one should think of the second set of
curly brackets in (2.1) as absent. Call the contents of the three sets of curly brackets
in (2.1) Ψ (1)(θ), Ψ (2)(θ) and Ψ (3)(θ). The essence of the Lévy–Itô decomposition
revolves around showing that Ψ (1)(θ), Ψ (2)(θ) and Ψ (3)(θ) correspond to the char-
acteristic exponents of three different types of Lévy processes. Therefore, Ψ may
be considered as the characteristic exponent of the independent sum of these three
Lévy processes, which is again a Lévy process (cf. Exercise 1.1). Indeed, as we
have already seen in Chap. 1, Ψ (1) and Ψ (2) correspond, respectively, to a linear
Brownian motion, say, X(1) = {X(1)t : t ≥ 0}, where

X
(1)
t = σBt − at, t ≥ 0, (2.2)

and an independent compound Poisson process, say X(2) = {X(2)t : t ≥ 0}, where,

X
(2)
t =

Nt∑

i=1

ξi, t ≥ 0, (2.3)

{Nt : t ≥ 0} is a Poisson process with rate Π(R\(−1,1)) and {ξi : i ≥ 1} are inde-
pendent and identically distributed with common distributionΠ(dx)/Π(R\(−1,1))
concentrated on {x : |x| ≥ 1} (unless Π(R\(−1,1)) = 0 in which case X(2) is the
process which is identically zero).

The proof of existence of a Lévy process with characteristic exponent given
by (2.1) thus boils down to showing the existence of a Lévy process, X(3), whose
characteristic exponent is given by Ψ (3). Note that

∫

0<|x|<1

(
1− eiθx + iθx

)
Π(dx)

=
∑

n≥0

{

λn

∫

2−(n+1)≤|x|<2−n

(
1− eiθx)Fn(dx)

+ iθλn

(∫

2−(n+1)≤|x|<2−n
xFn(dx)

)}

, (2.4)

where λn = Π({x : 2−(n+1) ≤ |x| < 2−n}) and Fn(dx) = Π(dx)/λn, restricted to
{x : 2−(n+1) ≤ |x| < 2−n} (again with the understanding that the n-th integral is
absent if λn = 0). It would appear from (2.4) that the process X(3) consists of the
superposition of (at most) a countable number of independent compound Poisson
processes with different arrival rates and additional linear drift. To understand the
mathematical sense of this superposition, we shall need to establish some facts con-
cerning Poisson random measures and related martingales. This is done in Sects. 2.2
and 2.3. The precise construction of X(3) is given in Sect. 2.5.

The identification of a Lévy process, X, as the independent sum of processes
X(1), X(2) and X(3) is attributed to Lévy (1954) and Itô (1942) and is thus known as
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the Lévy–Itô decomposition. Formally speaking, and in a little more detail, we quote
the Lévy–Itô decomposition in the form of a theorem.

Theorem 2.1 (Lévy–Itô decomposition) Given any a ∈ R, σ ∈ R and measure Π
concentrated on R\{0} satisfying

∫

R

(
1∧ x2)Π(dx) <∞,

there exists a probability space on which three independent Lévy processes exist,
X(1),X(2) andX(3), whereX(1) is a linear Brownian motion given by (2.2),X(2) is a
compound Poisson process given by (2.3) andX(3) is a square-integrable martingale
with an almost surely countable number of path discontinuities (or jumps) on each
finite time interval, which are of magnitude less than unity, and with characteristic
exponent given by Ψ (3). Moreover, by takingX =X(1)+X(2)+X(3), the conclusion
of Theorem 1.6 holds, namely that there exists a probability space on which a Lévy
process is defined with characteristic exponent

Ψ (θ)= aiθ + 1

2
σ 2θ2 +

∫

R

(
1− eiθx + iθx1(|x|<1)

)
Π(dx), (2.5)

for θ ∈R.

2.2 Poisson Random Measures

Poisson random measures turn out to be the right mathematical mechanism to de-
scribe the jump structure embedded in any Lévy process. Before engaging in an
abstract study of Poisson random measures, we give a rough idea of how they are
related to the jump structure of Lévy processes by considering the less complicated
case of a compound Poisson process.

Suppose that X = {Xt : t ≥ 0} is a compound Poisson process with a drift taking
the form

Xt = δt +
Nt∑

i=1

ξi, t ≥ 0,

where δ ∈ R and, as usual, {ξi : i ≥ 1} are independent and identically distributed
random variables with common distribution function F . Further, let {Ti : i ≥ 1}
be the times of arrival of the Poisson process N = {Nt : t ≥ 0} with rate λ > 0.
See Fig. 2.1.

Suppose now that we pick any set in A ∈ B[0,∞)×B(R\{0}). Define

N(A)= #
{
i ≥ 1 : (Ti, ξi) ∈A

}=
∞∑

i=1

1((Ti ,ξi )∈A). (2.6)
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Fig. 2.1 The initial period of a sample path of a compound Poisson process with drift {Xt : t ≥ 0}
and the field of points it generates.

Clearly, since X experiences an almost surely finite number of jumps over a fi-
nite period of time, it follows that N(A) < ∞ almost surely when t ≥ 0 and
A⊆ B[0, t)×B(R\{0}).

Lemma 2.2 Choose k ≥ 1. If A1, . . . ,Ak are disjoint sets in B[0,∞)×B(R\{0}),
then N(A1), . . . ,N(Ak) are mutually independent and Poisson distributed1 with

1We understand a Poisson random variable whose parameter is infinite to be infinite valued with
probability 1.
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parameters λi := λ
∫
Ai

dt × F(dx), respectively. Further, for P-almost every reali-

sation of X, N : B[0,∞)×B(R\{0})→{0,1,2, . . .} ∪ {∞} is a measure.2

Proof First recall a classic result concerning the Poisson process {Nt : t ≥ 0}. That
is, when t > 0, the law of {T1, . . . , Tn} conditional on the event {Nt = n} is the
same as the law of an ordered independent sample of size n from the uniform dis-
tribution on [0, t]. (See Exercise 2.2.) This, together with the fact that the vari-
ables {ξi : i = 1, . . . , n} are independent and identically distributed with common
law F , implies that, conditional on {Nt = n}, the joint law of the pairs {(Ti, ξi) : i =
1, . . . , n} is that of n independent bivariate random variables, with common distri-
bution t−1ds×F(dx) on [0, t]× (R\{0}), ordered in time. In particular, for any A ∈
B[0, t] ×B(R\{0}), the random variable N(A) conditional on the event {Nt = n} is
a binomial random variable with probability of success given by

∫
A
t−1ds×F(dx).

A generalisation of this statement for the k-tuple (N(A1), . . . ,N(Ak)), where
A1, . . . ,Ak are mutually disjoint and chosen from B[0, t]×B(R\{0}), is the follow-
ing. Suppose thatA0 = {[0, t]×R}\{A1∪· · ·∪Ak},∑k

i=1 ni ≤ n, n0 = n−∑k
i=1 ni

and λ0 =
∫
A0
λds ×F(dx)= λt − λ1 − · · · − λk , then (N(A1), . . . ,N(Ak)) has the

following multinomial law,

P
(
N(A1)= n1, . . . ,N(Ak)= nk|Nt = n

)

= n!
n0!n1! · · ·nk!

k∏

i=0

(
λi

λt

)ni
.

Summing out the conditioning on Nt , it follows that

P
(
N(A1)= n1, . . . ,N(Ak)= nk

)

=
∑

n≥∑k
i=1 ni

e−λt (λt)
n

n!
n!

n0!n1! · · ·nk!
k∏

i=0

(
λi

λt

)ni

=
∑

n≥∑k
i=1 ni

e−λ0
λ
(n−∑k

i=1 ni)

0

(n−∑k
i=1 ni)!

(
k∏

i=1

e−λi
λ
ni
i

ni !

)

=
k∏

i=1

e−λi
λ
ni
i

ni ! ,

2Specifically, P-almost surely, N(∅)= 0 and for disjoint A1,A2, . . . in B[0,∞)× B(R\{0}), we
have

N

(⋃

i≥1

Ai

)

=
∑

i≥1

N(Ai).
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showing that N(A1), . . . ,N(Ak) are independent and Poisson distributed, as
claimed.

To complete the proof for arbitrary disjoint A1, . . . ,Ak , for each i = 1, . . . , k,
write Ai as a countable union of disjoint sets, each of which belongs to B[0, t ′)×
B(R\{0}) for some t ′ > 0. Recall that the sum of an independent sequence of Pois-
son random variables is Poisson distributed with the sum of their rates. If we agree
that a Poisson random variable with infinite rate is infinite with probability one (see
Exercise 2.1), then the proof is complete.

Finally the fact that N is a measure P-almost surely follows immediately from
its definition. �

Lemma 2.2 shows that N : B[0,∞)× B(R\{0})→ {0,1, . . .} ∪ {∞} fulfils the
following definition of a Poisson random measure.

Definition 2.3 (Poisson random measure) Let (S,S, η) be an arbitrary sigma-finite
measure space and (Ω,F ,P ) a probability space. Let N :Ω × S→{0,1,2, . . .} ∪
{∞} in such a way that the family {N(·,A) : A ∈ S} are random variables defined
on (Ω,F ,P ). Henceforth, for convenience, we shall suppress the dependency of
N on ω. Then N is called a Poisson random measure on (S,S, η) (or sometimes a
Poisson random measure on S with intensity η) if

(i) for mutually disjoint A1, . . . ,An in S , the variables N(A1), . . . ,N(An) are
independent,

(ii) for each A ∈ S , N(A) is Poisson distributed with parameter η(A) (here we
allow 0≤ η(A)≤∞),

(iii) N(·) is a measure P -almost surely.

In the second condition, we note that, if η(A) = 0, then it is understood that
N(A)= 0 with probability one and if η(A)=∞ then N(A) is infinite with proba-
bility one.

In the case of (2.6), we have S = [0,∞) × (R\{0}) and dη = λdt × dF . Note
also that, by construction of the compound Poisson process on the probability space
(Ω,F ,P), for each A ∈ B[0,∞) × B(R\{0}), the random variable 1((Ti ,ξi )∈A) is
F -measurable, and hence so is the variable N(A).

We complete this section by proving that a Poisson random measure, as defined
above, exists. This is done in Theorem 2.4 below, the proof of which has many
similarities to the proof of Lemma 2.2.

Theorem 2.4 There exists a Poisson random measure N(·) as in Definition 2.3.

Proof First suppose that S is such that 0< η(S) <∞. There exists a standard con-
struction of an infinite product space, say (Ω,F ,P ), defined on which are the inde-
pendent random variables

N and {υ1, υ2, . . .},
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such that N has a Poisson distribution with parameter η(S) and each of the variables
υi has distribution η(dx)/η(S) on S. Define for each A ∈ S ,

N(A)=
N∑

i=1

1(υi∈A), (2.7)

so that N=N(S). For each A ∈ S and i ≥ 1, the random variables 1(υi∈A) and N are
F -measurable, hence so are the random variables N(A).

When presented with mutually disjoint sets of S , say A1, . . . ,Ak , a calculation
identical to the one given in the proof of Lemma 2.2 shows, again, that

P
(
N(A1)= n1, . . . ,N(Ak)= nk

)=
k∏

i=1

e−η(Ai) η(Ai)
ni

ni ! ,

for non-negative integers n1, n2, . . . , nk . Returning to Definition 2.3, it is now clear
from the previous calculation that conditions (i)–(iii) are met by N(·). In particular,
similar to the case dealt with in Lemma 2.2, the third condition is automatic as N(·)
is a counting measure by definition.

Next, we turn to the case that (S,S, η) is a sigma-finite measure space. The
sigma-finite assumption means that there exists a countable disjoint exhaustive se-
quence of sets B1,B2, . . . in S such that 0 < η(Bi) <∞ for each i ≥ 1. Define,
for each i ≥ 1, the measures ηi(·) = η(· ∩ Bi). The first part of this proof shows
that, for each i ≥ 1, there exists some probability space, say (Ωi,Fi , Pi), on which
we can define a Poisson random measure, say Ni(·), in (Bi,S ∩ Bi, ηi), where
S ∩ Bi = {A ∩ Bi : A ∈ S} (the reader should verify easily that S ∩ Bi is indeed
a sigma-algebra on Bi ). The idea is now to show that

N(·)=
∑

i≥1

Ni(· ∩Bi)

is a Poisson random measure on S, with intensity η, defined on the product space

(Ω,F ,P ) :=
∏

i≥1

(Ωi,Fi , Pi).

First note, again from its definition, that N(·) is P -almost surely a measure. In
particular with the help of Fubini’s Theorem, for disjoint A1,A2, . . . , we have

N

(⋃

j≥1

Aj

)

=
∑

i≥1

Ni

(⋃

j≥1

Aj ∩Bi
)

=
∑

i≥1

∑

j≥1

N(Aj ∩Bi)

=
∑

j≥1

∑

i≥1

N(Aj ∩Bi)

=
∑

j≥1

N(Aj ).
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Next, for each i ≥ 1, we have that Ni(A ∩ Bi) is Poisson distributed with parame-
ter ηi(A); Exercise 2.1 tells us that under P the random variable N(A) is Poisson
distributed with parameter η(A). The proof is complete once we show that, for dis-
jointA1, . . . ,Ak in S , the variablesN(A1), . . . ,N(Ak) are all independent under P .
However this is obvious since the double array of variables,

{
Ni(Aj ∩Bi) : i = 1,2, . . . and j = 1, . . . , k

}
,

is also an independent sequence of variables. �

From the construction of the Poisson random measure, the following two corol-
laries should be clear.

Corollary 2.5 Suppose that N(·) is a Poisson random measure on (S,S, η). Then
for each A ∈ S , N(· ∩A) is a Poisson random measure on (S ∩A,S ∩A,η(· ∩A)).
Further, if A,B ∈ S and A∩B = ∅, then N(· ∩A) and N(· ∩B) are independent.

Corollary 2.6 Suppose that N(·) is a Poisson random measure on (S,S, η), then
the support of N(·) is P -almost surely countable. If, in addition, η is a finite mea-
sure, then the support is P -almost surely finite.

Finally, note that, if η is a measure with an atom at, say, the singleton s ∈ S and
{s} ∈ S , then it follows from the definition of N(·) in the proof of Theorem 2.4 that
P(N({s}) ≥ 1) > 0. Conversely, if η has no atoms then P(N({s}) = 0) = 1 for all
singletons s ∈ S such that {s} ∈ S . For further discussion on this point, the reader is
referred to Kingman (1993).

2.3 Functionals of Poisson Random Measures

Suppose as in Sect. 2.2 that N(·) is a Poisson random measure on the measure
space (S,S, η). As N(·) is P -almost surely a measure, classical measure theory
now allows us to talk of

∫

S

f (x)N(dx) (2.8)

as a well-defined [0,∞]-valued random variable, for measurable functions f : S→
[0,∞]. Further, (2.8) is still well defined and [−∞,∞] valued for signed measur-
able f provided at most one of the integrals of f+ = f ∨ 0 and f− = (−f )∨ 0 is
infinite. Note however, from the construction of the Poisson random measure in the
proof of Theorem 2.4, the integral in (2.8) may be interpreted as equal to

∑

υ∈Υ
f (υ)mυ,
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where Υ is the support of N(·), which, from Corollary 2.6, is countable, and mυ is
the multiplicity of points at υ . Recalling the remarks following Corollary 2.6, if η
has no atoms then mυ = 1 for all υ ∈ Υ .

We move to the main theorem of this section for which the reader is referred to
Sect. 9.8 of Moran (1968), Kingman (1967) and the earlier work of Campbell (1909,
1910).

Theorem 2.7 Suppose that N is a Poisson random measure on (S,S, η). Let f :
S→R be a measurable function.

(i) Then

X =
∫

S

f (x)N(dx)

is almost surely absolutely convergent if and only if

∫

S

(
1∧ ∣∣f (x)∣∣)η(dx) <∞. (2.9)

(ii) When condition (2.9) holds, then (with E as expectation with respect to P )

E
(
eiβX)= exp

{

−
∫

S

(
1− eiβf (x))η(dx)

}

(2.10)

for any β ∈R.
(iii) Further

E(X)=
∫

S

f (x)η(dx) when
∫

S

∣
∣f (x)

∣
∣η(dx) <∞ (2.11)

and

E
(
X2)=

∫

S

f (x)2η(dx)+
(∫

S

f (x)η(dx)

)2

when
∫

S

f (x)2η(dx) <∞ and
∫

S

∣
∣f (x)

∣
∣η(dx) <∞. (2.12)

Proof (i) We begin by defining simple functions to be those of the form

f (x)=
n∑

i=1

fi1Ai (x),

where fi is constant and {Ai : i = 1, . . . , n} are disjoint sets in S and further η(A1∪
· · · ∪An) <∞.
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For such functions, we have

X =
n∑

i=1

fiN(Ai),

which is clearly finite with probability one since each N(Ai) has a Poisson distri-
bution with parameter η(Ai) <∞. Recall the well-known fact that the moment-
generating function of a Poisson distribution with parameter λ > 0 is exp{−λ(1−
e−θ )}, for θ ≥ 0. For the same range of θ , we have

E
(
e−θX

) =
n∏

i=1

E
(
e−θfiN(Ai)

)

=
n∏

i=1

exp
{−(1− e−θfi

)
η(Ai)

}

= exp

{

−
n∑

i=1

(
1− e−θfi

)
η(Ai)

}

.

Since 1− e−θf (x) = 0 on S\(A1 ∪ · · · ∪An), we may thus conclude that

E
(
e−θX

)= exp

{

−
∫

S

(
1− e−θf (x)

)
η(dx)

}

.

Next we establish the above equality for a general positive measurable f . For this
class of f , there exists a pointwise increasing sequence of positive simple functions,
{fn : n ≥ 0}, such that limn↑∞ fn = f , where the limit is also understood in the
pointwise sense. Since N is an almost surely sigma-finite measure, we have that

lim
n↑∞

∫

S

fn(x)N(dx)=
∫

S

f (x)N(dx)=X

almost surely. An application of bounded convergence followed by an application
of monotone convergence tells us that, for any θ > 0,

E
(
e−θX

) = E
(

exp

{

−θ
∫

f (x)N(dx)

})

= lim
n↑∞E

(

exp

{

−θ
∫

fn(x)N(dx)

})

= lim
n↑∞ exp

{

−
∫

S

(
1− e−θfn(x)

)
η(dx)

}

= exp

{

−
∫

S

(
1− e−θf (x)

)
η(dx)

}

. (2.13)
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Note that the integral on the right-hand side of (2.13) is either infinite, for all θ > 0,
or finite, for all θ > 0, accordingly as X =∞ with probability one or X =∞ with
probability less than one, respectively. If

∫
S
(1− e−θf (x))η(dx) <∞ for all θ > 0

then as, for each x ∈ S, (1− e−θf (x))≤ (1− e−f (x)), for all 0< θ < 1, dominated
convergence implies that

lim
θ↓0

∫

S

(
1− e−θf (x)

)
η(dx)= 0,

and hence dominated convergence, as θ ↓ 0, applied again in (2.13) tells us that
P(X =∞)= 0.

In conclusion, we have that X < ∞ almost surely if and only if
∫
S
(1 −

e−θf (x))η(dx) <∞, for all θ > 0. Moreover, it can be checked (see Exercise 2.3)
that this happens if and only if

∫

S

(
1∧ f (x))η(dx) <∞.

Note that both sides of (2.13) may be analytically continued by replacing θ by θ− iβ
for β ∈R. Then taking limits on both sides as θ ↓ 0, we deduce (2.10).

Now we shall remove the restriction that f is positive. Henceforth assume, as
in the statement of the theorem, that f is a measurable function. We may write
f = f+ − f− where f+ = f ∨ 0 and f− = (−f ) ∨ 0 are both measurable. The
sum X can be written X+ −X− where

X+ =
∫

S

f (x)N+(dx) and X− =
∫

S

f (x)N−(dx)

and N+ = N(· ∩ {x ∈ S : f (x) ≥ 0}) and N− = N(· ∩ {x ∈ S : f (x) < 0}). From
Corollary 2.5, we know that N+ and N− are both Poisson random measures with
respective intensities η(· ∩ {f ≥ 0}) and η(· ∩ {f < 0}). Further, they are indepen-
dent and hence the same is true of X+ and X−. It is now clear that, almost surely,
X converges absolutely if and only ifX+ andX− are convergent. The analysis of the
case when f is positive applied to the sums X+ and X− now tells us that absolute
convergence of X occurs if and only if

∫

S

(
1∧ ∣∣f (x)∣∣)η(dx) <∞, (2.14)

and the proof of (i) is complete.
To complete the proof of (ii), assume that (2.14) holds. Using the independence

of X+ and X−, as well as the conclusion of part (i), we have that, for any β ∈R,
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E
(
eiβX) = E(eiβX+)E

(
e−iβX−)

= exp

{

−
∫

{f≥0}
(
1− eiβf+(x))η(dx)

}

× exp

{

−
∫

{f<0}
(
1− e−iβf−(x))η(dx)

}

= exp

{

−
∫

S

(
1− eiβf (x))η(dx)

}

,

and the proof of (ii) is complete.
Part (iii) is dealt with similarly as in the above treatment. That is, first consider

positive, simple f , then extend to positive measurable f and then to a general mea-
surable f by treating its positive and negative parts separately.

Alternatively one may take the identity (2.10) and differentiate in β , once for
E(X) and twice for E(X2), and then set β = 0. The integrability conditions in
(2.11) and (2.12) are used in applying the Dominated Convergence Theorem to dif-
ferentiate through the integral on the right-hand side of (2.10). The details are left
to the reader. �

2.4 Square-Integrable Martingales

We shall predominantly use the identities in Theorem 2.7 for a Poisson random mea-
sure, N(·), on ([0,∞)×R,B[0,∞)× B(R),dt ×Π(dx)), where Π is a measure
concentrated on R\{0}. We shall be interested in integrals of the form

∫

[0,t]

∫

B

xN(ds × dx), (2.15)

where B ∈ B(R). The relevant integrals appearing in (2.9)–(2.12), with f (x) = x,
for the above Poisson random measure, can now be checked to take the form

t

∫

B

(
1∧ |x|)Π(dx), t

∫

B

(
1− eiβx)Π(dx),

t

∫

B

|x|Π(dx), and t

∫

B

x2Π(dx),

with the appearance of the factor t in front of each of the integrals being a conse-
quence of the involvement of Lebesgue measure in the intensity ofN . The following
two lemmas capture the context in which we use sums of the form (2.15). The first
may be considered as a converse to Lemma 2.2 and the second shows the relation-
ship with martingales.

Lemma 2.8 Suppose that N(·) is a Poisson random measure on ([0,∞) ×
R,B[0,∞) × B(R),dt × Π(dx)), where Π is a measure concentrated on R\{0}
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and B ∈ B(R) such that 0<Π(B) <∞. Then

Xt :=
∫

[0,t]

∫

B

xN(du× dx), t ≥ 0,

is a compound Poisson process with arrival rate Π(B) and jump distribution
Π(B)−1Π(dx)|B .

Proof First note that since it is assumed Π(B) <∞, from Corollary 2.6, we know
that, for each t > 0, Xt may be written as an almost surely finite sum. This ex-
plains why X = {Xt : t ≥ 0} is right-continuous with left limits. (One may also see
finiteness of Xt from Theorem 2.7 (i).) Next note that, for all 0≤ s < t <∞,

Xt −Xs =
∫

(s,t]

∫

B

xN(du× dx),

which is independent of {Xu : u ≤ s} as N(·) has independent counts over disjoint
regions. From the construction of N(·), see for example (2.7), and the fact that its
intensity measure takes the specific form dt ×Π(dx), it also follows that Xt −Xs
has the same distribution as Xt−s . Further, according to Theorem 2.7 (ii), we have
that, for all θ ∈R and t ≥ 0,

E
(
eiθXt

)= exp

{

−t
∫

B

(
1− eiθx)Π(dx)

}

. (2.16)

The Lévy–Khintchine exponent in (2.16) is that of a compound Poisson process
with jump distribution and arrival rate given by Π(B)−1Π(dx)|B and Π(B), re-
spectively. �

Just as in the discussion following Definition 1.1, we assume that F= {Ft : t ≥ 0}
is the filtration generated by X satisfying the conditions of natural enlargement.

Lemma 2.9 Suppose that N is the same as in the previous lemma and B is such
that

∫
B
|x|Π(dx) <∞.

(i) The compound Poisson process with drift

Mt :=
∫

[0,t]

∫

B

xN(ds × dx)− t
∫

B

xΠ(dx), t ≥ 0,

is a P -martingale with respect to the filtration F.
(ii) If further,

∫
B
x2Π(dx) <∞ then it is a square-integrable martingale.

Proof (i) First note that the process M = {Mt : t ≥ 0} is adapted to the filtration F.
Next note that, for each t > 0,

E
(|Mt |

)≤E
(∫

[0,t]

∫

B

|x|N(ds × dx)+ t
∫

B

|x|Π(dx)
)

,
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which, from Theorem 2.7 (iii), is finite because
∫
B
|x|Π(dx) is. Next use the fact

thatM has stationary independent increments to deduce that, for 0≤ s ≤ t <∞,

E(Mt −Ms |Fs)
=E(Mt−s)

=E
(∫

(s,t]

∫

B

xN(du× dx)

)

− (t − s)
∫

B

xΠ(dx)

= 0,

where in the final equality we have used Theorem 2.7 (iii) again.
(ii) To see that M is square-integrable, we may yet again appeal to Theorem 2.7

(iii), together with the assumption that
∫
B
x2Π(dx) <∞, to deduce that

E

({

Mt + t
∫

B

xΠ(dx)

}2)

= t
∫

B

x2Π(dx)+ t2
(∫

B

xΠ(dx)

)2

.

Recalling from the martingale property that E(Mt) = 0, it follows by developing
the left-hand side in the previous display that

E
(
M2
t

)= t
∫

B

x2Π(dx) <∞,

as required. �

The conditions in both Lemmas 2.8 and 2.9 mean that we may consider sets, for
example, of the form Bε := (−1,−ε) ∪ (ε,1) for any ε ∈ (0,1). However, it is not
necessarily the case that we may consider sets of the form B = (−1,0)∪(0,1). Con-
sider for example the case that Π(dx)= 1(x>0)x

−(1+α)dx + 1(x<0)|x|−(1+α)dx for
α ∈ (1,2). In this case, we have that

∫
B
|x|Π(dx)=∞ whereas

∫
B
x2Π(dx) <∞.

It will turn out to be quite important in the proof of the Lévy–Itô decompo-
sition to understand the limit of the martingale in Lemma 2.8 for sets of the
form Bε as ε ↓ 0. For this reason, let us now state and prove the following
theorem.

Theorem 2.10 Suppose that N(·) is as in Lemma 2.8 and
∫
(−1,1) x

2Π(dx) <∞.
For each ε ∈ (0,1) define the martingale

Mε
t =

∫

[0,t]

∫

Bε

xN(ds × dx)− t
∫

Bε

xΠ(dx), t ≥ 0.
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Then there exists a martingaleM = {Mt : t ≥ 0} with the following properties:

(i) for each T > 0, there exists a deterministic subsequence {εTn : n = 1,2, . . .}
with εTn ↓ 0 along which

P
(

lim
n↑∞ sup

0≤s≤T
(
M
εTn
s −Ms

)2 = 0
)
= 1,

(ii) it is adapted to the filtration F,
(iii) it has right-continuous paths with left limits almost surely,
(iv) it has, at most, a countable number of discontinuities on [0, T ] almost surely

and
(v) it has stationary and independent increments.

In short, there exists a Lévy process, which is also a martingale with a countable
number of jumps to which, for any fixed T > 0, the sequence of martingales {Mε

t :
t ≤ T } converges uniformly on [0, T ] with probability one along a subsequence in
ε which may depend on T .

Before proving Theorem 2.10, we need to remind ourselves of some general
facts concerning square-integrable martingales. In our account, we shall recall a
number of well-established facts coming from straightforward L2 theory, measure
theory and continuous-time martingale theory. The reader is referred to Sects. 2.4,
2.5 and 9.6 of Ash and Doléans-Dade (2000) for a clear account of the necessary
background.

Fix a time horizon T > 0. Let us assume that (Ω,F , {Ft : t ∈ [0, T ]},P ) is a
filtered probability space in which the filtration {Ft : t ≥ 0} satisfies the conditions
of natural enlargement.

Definition 2.11 Fix T > 0. Define M2
T =M2

T (Ω,F , {Ft : t ∈ [0, T ]},P ) to
be the space of real-valued, zero mean, almost surely right-continuous, square-
integrable P -martingales with respect to the given filtration over the finite time
period [0, T ].

One luxury that follows from the assumptions on {Ft : t ≥ 0} is that any
zero mean square-integrable martingale with respect to this filtration has a right-
continuous modification3 which is also a member of M2

T .
If we quotient out the equivalent classes of versions4 of each martingale, it is

straightforward to deduce that M2
T is a vector space over the real numbers with

3Recall that M ′ = {M ′t : t ∈ [0, T ]} is a modification of M if, for every t ≥ 0, we have P (M ′t =
Mt)= 1.
4Recall that M ′ = {M ′t : t ∈ [0, T ]} is a version of M if it is defined on the same probability space
and {∃t ∈ [0, T ] :M ′t 	=Mt } is measurable with zero probability. Note that, ifM ′ is a modification
of M , then it is not necessarily a version of M . However, it is obviously the case that, if M ′ is a
version of M , then it also fulfils the requirement of being a modification.
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zero elementMt = 0 for all t ∈ [0, T ] and all ω ∈Ω . In fact, as we shall shortly see,
M2
T is a Hilbert space5 with respect to the inner product

〈M,N〉 =E(MTNT ),
whereM,N ∈M2

T . It is left to the reader to verify the fact that 〈·, ·〉 forms an inner
product. The only mild technical difficulty in this verification is showing that, for
M ∈M2

T , 〈M,M〉 = 0 implies thatM = 0, the zero element. Note that, if 〈M,M〉 =
0, then by Doob’s Maximal Inequality, which says that forM ∈M2

T ,

E
(

sup
0≤s≤T

M2
s

)
≤ 4E

(
M2
T

)
,

we have that sup0≤t≤T |Mt | = 0 almost surely. It follows necessarily that Mt = 0
for all t ∈ [0, T ] with probability one. This corresponds to the zero element in the
quotient space.

As alluded to above, we can show without too much difficulty that M2
T is a

Hilbert space. To do that, we are required to show that, if {M(n) : n = 1,2, . . .} is
a Cauchy sequence of martingales taken from M2

T , then there exists an M ∈M2
T

such that
∥
∥M(n) −M∥

∥→ 0,

as n ↑ ∞, where ‖ · ‖ := 〈·, ·〉1/2. To this end let us assume that the sequence of
processes {M(n) : n= 1,2, . . .} is a Cauchy sequence, in other words,

E
[(
M
(m)
T −M(n)

T

)2]1/2→ 0 as m,n ↑∞.

Necessarily the sequence of random variables {M(k)
T : k ≥ 1} is a Cauchy se-

quence in the Hilbert space of zero mean, square-integrable random variables de-
fined on (Ω,FT ,P ), say L2(Ω,FT ,P ), endowed with the inner product 〈M,N〉 =
E(MN). Hence, there exists a limiting variable, say MT in L2(Ω,FT ,P ), satisfy-
ing

E
[(
M
(n)
T −MT

)2]1/2→ 0,

as n ↑∞. Define the martingaleM to be the right-continuous version6 of

E(MT |Ft ) for t ∈ [0, T ]

5Recall that 〈·, ·〉: L×L→ R is an inner product on a vector space L over the reals if it satisfies
the following properties, for f,g ∈ L and a, b ∈ R; (i) 〈af + bg,h〉 = a〈f,h〉 + b〈g,h〉 for all
h ∈ L, (ii) 〈f,g〉 = 〈g,f 〉, (iii) 〈f,f 〉 ≥ 0 and (iv) 〈f,f 〉 = 0 if and only if f = 0.

For each f ∈ L, let ‖f ‖ = 〈f,f 〉1/2. The pair (L, 〈·, ·〉) are said to form a Hilbert space if all
sequences, {fn : n= 1,2, . . .} in L that satisfy ‖fn−fm‖→ 0 asm,n→∞, i.e. so-called Cauchy
sequences, have a limit in L.
6Here, we use the fact that {Ft : t ∈ [0, T ]} satisfies the conditions of natural enlargement.
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and note that, by definition,
∥
∥M(n) −M∥

∥→ 0,

as n tends to infinity. Clearly it is an Ft -adapted process and by Jensen’s inequality

E
(
M2
t

) = E(E(MT |Ft )2
)

≤ E(E(M2
T |Ft

))

= E(M2
T

)
,

which is finite. Hence Cauchy sequences converge in M2
T and we see that M2

T is
indeed a Hilbert space.

We are now ready to return to Theorem 2.10.

Proof of Theorem 2.10 (i) Choose 0< η < ε < 1, fix T > 0 and defineMε = {Mε
t :

t ∈ [0, T ]}. A calculation similar to the one in Lemma 2.9 (ii) gives

E
((
Mε
T −Mη

T

)2)

=E
({∫

[0,T ]

∫

η≤|x|<ε
xN(ds × dx)− T

∫

η<|x|<ε
xΠ(dx)

}2)

= T
∫

η≤|x|<ε
x2Π(dx).

Note, however, that the left-hand side above is also equal to ‖Mε−Mη‖2 (where as
in the previous discussion, ‖ · ‖ is the norm induced by the inner product on M2

T ).
Thanks to the assumption that

∫
(−1,1) x

2Π(dx) < ∞, we now have that
limε,η↓0 ‖Mε −Mη‖ = 0 and hence that {Mε : 0 < ε < 1} is a Cauchy sequence
in M2

T . As M2
T is a Hilbert space, we know that there exists a right-continuous

martingaleM = {Ms : s ∈ [0, T ]} ∈M2
T such that

lim
ε↓0

∥
∥M −Mε

∥
∥= 0.

An application of Doob’s Maximal Inequality tells us that, in fact,

lim
ε↓0
E
[

sup
0≤s≤T

(
Ms −Mε

s

)2
]
≤ 4 lim

ε↓0

∥
∥M −Mε

∥
∥= 0. (2.17)

From this, one may deduce that the limit {Ms : s ∈ [0, T ]} does not depend on T .
Indeed, suppose it did and we adjust our notation accordingly so that {Ms,T : s ≤ T }
represents the limit. Then from (2.17), we see that, for any 0< T ′ < T ,

lim
ε↓0
E
[

sup
0≤s≤T ′

(
Mε
s −Ms,T ′

)2
]
= 0
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as well as

lim
ε↓0
E
[

sup
0≤s≤T ′

(
Mε
s −Ms,T

)2
]
≤ lim
ε↓0
E
[

sup
0≤s≤T

(
Mε
s −Ms,T

)2
]
= 0,

where the inequality is the result of a trivial upper bound. Hence, using that, for any
two sequences of real numbers {an} and {bn}, supn a

2
n = (supn |an|)2 and supn |an+

bn| ≤ supn |an| + supn |bn|, we have, together with an application of Minkowski’s
inequality, that

E
[

sup
0≤s≤T ′

(Ms,T ′ −Ms,T )2
]1/2 ≤ lim

ε↓0
E
[

sup
0≤s≤T ′

(
Mε
s −Ms,T ′

)2
]1/2

+ lim
ε↓0
E
[

sup
0≤s≤T ′

(
Mε
s −Ms,T

)2
]1/2

= 0,

thus showing that the processes M·,T and M·,T ′ are almost surely uniformly equal
on [0, T ′]. Since T ′ and T may be arbitrarily chosen, we may now speak of a well-
defined limiting martingale,M = {Mt : t ≥ 0}.

From the limit (2.17), we may also deduce that there exists a deterministic sub-
sequence {εTn : n≥ 0} along which

lim
εTn ↓0

sup
0≤s≤T

(
M
εTn
s −Ms

)2 = 0

P -almost surely. This follows from the well-established fact that L2 convergence of
a sequence of random variables implies almost sure convergence on a deterministic
subsequence.

(ii) and (iii) Since, for each T <∞, {Ms : s ∈ [0, T ]} ∈M2
T , it is automatic

from the definition of this space of martingales that M is F-adapted with right-
continuous paths. It remains to show that the paths of M have left limits. To this
end, note that the paths of Mε are right-continuous with left limits. Hence, almost
sure uniform convergence (along a subsequence) on finite time intervals implies
that the limiting process, M , also has paths which are right-continuous with, in
particular, left limits. We are using here the fact that, if D[0,1] is the space of
functions f : [0,1] → R which are right-continuous with left limits, then D[0,1]
contains all its limit points under the metric d(f,g) = supt∈[0,1] |f (t) − g(t)| for
f,g ∈D[0,1]. See Exercise 2.4.

(iv) According to Corollary 2.6, there are at most an almost surely count-
able number of points in the support of N . Further, recalling the discussion af-
ter Corollary 2.6, as the measure dt × Π(dx) has no atoms, the random mea-
sure N(·) is necessarily {0,1}-valued on time-space singletons. Hence every dis-
continuity in {Ms : s ≥ 0} corresponds to a unique point in the support of N(·).
It follows that M has at most a countable number of discontinuities. Another
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way to see that there are, at most, a countable number of discontinuities is sim-
ply to note that the same is true of functions in the space D[0,1]; see Exer-
cise 2.4.

(v) For any n ∈ N, 0 ≤ s1 ≤ t1 ≤ · · · ≤ sn ≤ tn ≤ T <∞ and θ1, . . . , θn ∈ R,
dominated convergence and almost sure uniform convergence along the subse-
quence {εTn : t ≥ 0} gives

E

[
n∏

j=1

eiθj (Mtj−Msj )
]

= lim
n↑∞E

[
n∏

j=1

e
iθj (M

εTn
tj
−MεTn

sj
)

]

= lim
n↑∞

n∏

j=1

E
[
e

iθjM
εTn
tj−sj

]

=
n∏

j=1

E
[
eiθjMtj−sj

]
,

which, thanks to Exercise 1.1, is sufficient to deduce that M has stationary and
independent increments. This concludes the proof. �

2.5 Proof of the Lévy–Itô Decomposition

As previously indicated in Sect. 2.1, we will take X(1) to be the linear Brownian
motion (2.2), now defined on some probability space (Ω#,F#,P #).

GivenΠ in the statement of Theorem 2.1, we know from Theorem 2.4 that there
exists a probability space, say (Ω∗,F∗,P ∗), on which we may construct a Pois-
son random measure, N , on ([0,∞)×R,B[0,∞)× B(R),dt ×Π(dx)). We may
think of the points in the support of N as having a time and space coordinate, or
alternatively, as points in R\{0} arriving in time.

Now define

X
(2)
t =

∫

[0,t]

∫

|x|≥1
xN(ds × dx), t ≥ 0,

and note from Lemma 2.8 that, sinceΠ(R\(−1,1)) <∞, it is a compound Poisson
process with rate Π(R\(−1,1)) and jump distribution

Π
(
R\(−1,1)

)−1
Π(dx)|R\(−1,1).

(We can assume without loss of generality that Π(R\(−1,1)) > 0 as otherwise, we
may take the process X(2) as the process which is identically zero.)

Next, we construct a Lévy process having only small jumps. For each 1> ε > 0,
define similarly the compound Poisson process with drift,

X
(3,ε)
t =

∫

[0,t]

∫

ε≤|x|<1
xN(ds × dx)− t

∫

ε≤|x|<1
xΠ(dx), t ≥ 0. (2.18)
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(As in the definition ofX(2), we shall assume without loss of generalityΠ({x : |x|<
1}) > 0, otherwise the process X(3) may be taken as the process which is identically
zero.) Using Theorem 2.7 (ii), we can compute its characteristic exponent,

Ψ (3,ε)(θ) :=
∫

ε≤|x|<1

(
1− eiθx + iθx

)
Π(dx).

According to Theorem 2.10, there exists a Lévy process, which is also a square-
integrable martingale, defined on (Ω∗,F∗,P ∗), to which X(3,ε) converges uni-
formly on [0, T ] along an appropriate deterministic subsequence in ε. Note that
it is precisely at this point that we use the assumption that

∫
(−1,1) x

2Π(dx) <∞. It
is clear that the characteristic exponent of the aforementioned Lévy process is equal
to

Ψ (3)(θ)=
∫

|x|<1

(
1− eiθx + iθx

)
Π(dx).

From Corollary 2.5, we know that, for each t > 0,N has independent counts over
the two domains [0, t] × {R\(−1,1)} and [0, t] × (−1,1). It follows that X(2) and
X(3) are independent.

To conclude the proof of the Lévy–Itô decomposition in line with the statement
of Theorem 2.1, define the process

Xt =X(1)t +X(2)t +X(3)t , t ≥ 0. (2.19)

This process is defined on the product space

(Ω,F ,P)= (
Ω#,F#,P #)× (

Ω∗,F∗,P ∗
)
,

has stationary independent increments, has paths that are right-continuous with left
limits and has characteristic exponent

Ψ (θ) = Ψ (1)(θ)+Ψ (2)(θ)+Ψ (3)(θ)
= iaθ + 1

2
σ 2θ2 +

∫

R

(
1− eiθx + iθx1(|x|<1)

)
Π(dx),

as required. �

Let us conclude this section with some additional remarks on the Lévy–Itô de-
composition.

Recall from (2.4) that the exponent Ψ (3) appears to have the form of the infi-
nite sum of characteristic exponents belonging to compound Poisson processes with
drift. This suggests that X(3) may be taken as the superposition of such processes.
We now see from the above proof that this is exactly the case. Indeed, moving ε to
zero through the sequence {2−k : k ≥ 0} shows us that in the appropriate sense of
L2 convergence
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lim
k↑∞X

(3,2−k)
t = lim

k↑∞

∫

[0,t]

∫

2−k<|x|<1
xN(ds × dx)− t

∫

2−k<|x|<1
xΠ(dx)

= lim
k↑∞

k−1∑

i=0

{∫

[0,t]

∫

2−(i+1)<|x|<2−i
xN(ds × dx)

− t
∫

2−(i+1)<|x|<2−i
xΠ(dx)

}

.

It is also worth remarking that the definition of X(2) and X(3) in the proof of the
Lévy–Itô decomposition, corresponding to the partition of R\{0} into R\(−1,1)
and (−1,1)\{0}, is to some extent arbitrary. The point is that one needs to deal
differently with the contributions to the path from N which come from a neighbour-
hood of the origin, and which come from its complement. In this respect one could
have redrafted the proof replacing (−1,1) by (α,β), for any α < 0 and β > 0. In
which case, one would need to choose a different value of a in the definition of
X(1) in order to make terms add up precisely to the expression given in the Lévy–
Khintchine exponent. To be more precise, if for example α < −1 and β > 1, then
one should take X(1)t = a′t + σBt where

a′ = a −
∫

α<|x|≤−1
xΠ(dx)−

∫

1≤|x|<β
xΠ(dx).

This also shows that the Lévy–Khintchine formula (2.1) is not a unique representa-
tion and, indeed, the indicator 1(|x|<1) in (2.1) may be replaced by 1(α<x<β) with an
appropriate adjustment in the constant a.

Taking a much deeper view of things, the Lévy–Itô decomposition illustrates
one of many examples where a Markov process can be decomposed according to
an endogenous Poisson point process. This approach was pursued by K. Itô. See
for example Itô (2004, 1970). Later on, in Chap. 6, we shall see another path-
decomposition of Lévy processes in this spirit. In that case, the path is decomposed
according to a Poisson point process of excursions of the Lévy process from its
maximum.

2.6 Lévy Processes Distinguished by Their Path Type

As is clear from the proof of the Lévy–Itô decomposition, we should think of the
measure Π given in the Lévy–Khintchine formula as characterising a Poisson ran-
dom measure which encodes the rate at which the jumps of the associated Lévy
process occur. In this section we shall re-examine elements of the proof of the Lévy–
Itô decomposition and show that, with additional assumptions onΠ , we may further
identify special classes of Lévy processes embedded within the general class.
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2.6.1 Path Variation

It is clear from the Lévy–Itô decomposition that the presence of the linear Brownian
motion X(1) would imply that paths of the Lévy process have unbounded variation.
On the other hand, should it be the case that σ = 0, then the Lévy process may or
may not have unbounded variation. The term X(2), being a compound Poisson pro-
cess, has only bounded variation. Hence, in the case σ = 0, understanding whether
the Lévy process has unbounded variation is an issue determined by the limiting
process X(3); that is to say, the process of compensated small jumps.

Reconsidering the definition ofX(3), it is natural to ask under what circumstances

lim
ε↓0

∫

[0,t]

∫

ε≤|x|<1
xN(ds × dx)

exists almost surely without the need for compensation by its mean as in (2.18).
Once again, the answer is given by Theorem 2.7 (i). Here we are told that

∫

[0,t]

∫

|x|<1
|x|N(ds × dx) <∞

if and only if
∫
|x|<1 |x|Π(dx) <∞. In that case, we may identify X(3) directly via

X
(3)
t =

∫

[0,t]

∫

|x|<1
xN(ds × dx)− t

∫

|x|<1
xΠ(dx), t ≥ 0.

This also tells us thatX(3) will be of bounded variation if and only if
∫
|x|<1 |x|Π(dx)

<∞. Note that this is a stronger integrability condition than the general integrability
condition

∫
R
(1∧ x2)Π(dx) <∞. We get the following lemma.

Lemma 2.12 A Lévy process with Lévy–Khintchine exponent corresponding to the
triple (a, σ,Π) has paths of bounded variation if and only if

σ = 0 and
∫

R

(1∧ |x|)Π(dx) <∞. (2.20)

Note that the finiteness of the integral in (2.20) also allows for the Lévy–
Khintchine exponent of any such bounded variation process to be rewritten as

Ψ (θ)=−iδθ +
∫

R

(
1− eiθx)Π(dx), (2.21)

where the constant δ ∈R relates to the constant a and Π via

δ =−
(

a +
∫

|x|<1
xΠ(dx)

)

.
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In this case, we may write the Lévy process in the form

Xt = δt +
∫

[0,t]

∫

R

xN(ds × dx), t ≥ 0. (2.22)

In view of the decomposition of the Lévy–Khintchine formula for a process of
bounded variation and the corresponding representation (2.22), the term δ is often
referred to as the drift. Strictly speaking, one should not talk of drift in the case
of a Lévy process whose jump part is a process of unbounded variation. If drift is
to be understood in terms of a purely deterministic trend, then it is ambiguous on
account of the “infinite limiting compensation” that one sees in X(3) coming from
the second term on the right-hand side of (2.18).

From the expression given in (1.4) of Chap. 1, we see that, if X is a compound
Poisson process with drift, then its characteristic exponent takes the form of (2.21)
with Π(R) <∞. Conversely, if σ = 0 and Π has finite total mass, then we know
from Lemma 2.8 that (2.22) is a compound Poisson process with drift δ. In conclu-
sion, we have the following lemma.

Lemma 2.13 A Lévy process is a compound Poisson process with drift if and only
if σ = 0 and Π(R) <∞.

2.6.2 One-Sided Jumps

Suppose now that Π(−∞,0)= 0. From the proof of the Lévy–Itô decomposition,
we see that the corresponding Lévy process has no negative jumps. If further we
have that

∫
(0,∞)(1 ∧ x)Π(dx) <∞, σ = 0 and, in the representation (2.21) of the

characteristic exponent, δ ≥ 0, then from the representation (2.22) it becomes clear
that the Lévy process has non-decreasing paths. Conversely, if a Lévy process has
non-decreasing paths, then necessarily it has bounded variation. Hence

∫
(0,∞)(1∧x)

Π(dx) <∞, σ = 0 and then it is easy to see that in the representation (2.21) of the
characteristic exponent, we necessarily have δ ≥ 0. Examples of such a process were
given in Chap. 1 (the gamma process and the inverse Gaussian process) and were
named subordinators. Summarising, we have the following.

Lemma 2.14 A Lévy process is a subordinator if and only if Π(−∞,0) = 0,∫
(0,∞)(1∧ x)Π(dx) <∞, σ = 0 and δ =−(a + ∫

(0,1) xΠ(dx))≥ 0.

For the sake of clarity, we note that, when X is a subordinator, further to (2.21),
its Lévy–Khintchine formula may be written as

Ψ (θ)=−iδθ +
∫

(0,∞)
(
1− eiθx)Π(dx). (2.23)

If Π(−∞,0)= 0 and X does not have monotone paths, that is to say, it is not a
subordinator and it is not a pure negative linear drift, then it is referred to in general
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as a spectrally positive Lévy process. A Lévy process, X, will then be referred to
as a spectrally negative Lévy process if −X is spectrally positive. Together, these
two classes of processes are called spectrally one-sided. Spectrally one-sided Lévy
processes may be of bounded or unbounded variation and, in the latter case, may
or may not possess a Gaussian component. Note in particular that when σ = 0, it
is still possible to have paths of unbounded variation. If a spectrally positive Lévy
process has bounded variation, then it must take the form

Xt =−δt + St , t ≥ 0,

where {St : t ≥ 0} is a pure jump subordinator and, necessarily, δ > 0. Note that if
δ ≤ 0, then X would conform to the definition of a subordinator. Note that the above
decomposition implies that if E(X1) ≤ 0, then E(S1) <∞, as opposed to the case
that E(X1) > 0, in which case it is possible that E(S1)=∞.

A special feature of spectrally positive processes is that, if τ−x = inf{t > 0 :
Xt < x}, where x < 0, then P(τ−x <∞) > 0. Hence, as there are no downwards
jumps,

P
(
Xτ−x = x|τ−x <∞

)= 1, (2.24)

with a similar property for first passage upwards being true for spectrally negative
processes. A rigorous proof of the first of the above two facts will be given in Corol-
lary 3.13, at the end of Sect. 3.3. It turns out that (2.24) plays a very important role
in the simplification of a number of theorems we shall encounter later on in this text,
which concern the fluctuations of general Lévy processes.

2.7 Interpretations of the Lévy–Itô Decomposition

Let us return to some of the models considered in Chap. 1 and consider how our
understanding of the Lévy–Itô decomposition helps to justify working with more
general classes of Lévy processes.

2.7.1 The Structure of Insurance Claims

Recall from Sect. 1.3.1 that the Cramér–Lundberg model corresponds to a Lévy
process with characteristic exponent given by

Ψ (θ)=−icθ + λ
∫

(−∞,0)
(
1− eiθx)F(dx),

for θ ∈ R. In other words, a compound Poisson process with arrival rate λ > 0 and
negative jumps, corresponds to claims having common distribution F , as well as a
drift c > 0 corresponding to a steady income due to premiums. Suppose instead we
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work with a general spectrally negative Lévy process, that is a process for which
Π(0,∞) = 0 (but without monotone paths). In this case, the Lévy–Itô decompo-
sition offers an interpretation for large-scale insurance companies as follows. The
Lévy–Khintchine exponent may be written in the form

Ψ (θ) =
{

1

2
σ 2θ2

}

+
{

−iθc+
∫

(−∞,−1]
(
1− eiθx)Π(dx)

}

+
{∫

(−1,0)

(
1− eiθx + iθx

)
Π(dx)

}

(2.25)

for θ ∈ R. Assume that Π(−∞,0)=∞, and so Ψ is genuinely different from the
characteristic of a Cramér–Lundberg model. We may understand the third bracket in
(2.25) as a Lévy process representing a countably infinite number of arbitrarily small
claims, compensated by a deterministic positive drift (which may be infinite in the
case that

∫
(−1,0) |x|Π(dx) =∞), corresponding to the accumulation of premiums

over an infinite number of contracts. Roughly speaking, the way in which claims
occur is such that, in any arbitrarily small period of time dt , a claim of size |x|
(for x < 0) is made independently with probabilityΠ(dx)dt + o(dt). The insurance
company thus counterbalances such claims by ensuring that it collects premiums in
such a way that in any dt , |x|Π(dx)dt of its income is devoted to the compensation
of claims of size |x|. The second bracket in (2.25) can be understood as coming from
large claims, which occur occasionally and are compensated for by a steady income
at rate c > 0, just as in the Cramér–Lundberg model. Here “large” is taken to mean
claims of size one or more and c=−a, in the terminology of the Lévy–Khintchine
formula given in Theorem 1.6. Finally, the first bracket in (2.25) may be seen as a
stochastic perturbation of the system of claims and premium income.

Since the contents of the first and third set of curly brackets in (2.25) correspond
to martingales, the company may guarantee that its surplus drifts to infinity over an
infinite time horizon by assuming that such behaviour applies to the compensated
process of large claims corresponding to the second bracket in (2.25).

2.7.2 General Storage Models

The workload of the M/G/1 queue was presented in Sect. 1.3.2 as a spectrally
negative compound Poisson process with rate λ > 0 and jump distribution F with
positive unit drift, reflected in its supremum. In other words, the underlying Lévy
process has characteristic exponent

Ψ (θ)=−iθ + λ
∫

(−∞,0)
(
1− eiθx)F(dx),

for all θ ∈ R. A general storage model, described for example in the classic books
of Prabhu (1998) and Takács (1966), consists of working with a Lévy process, X,
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which is the difference of a positive drift and a subordinator and then reflected in its
supremum. Its Lévy–Khintchine exponent thus takes the form

Ψ (θ)=−iδθ +
∫

(−∞,0)
(
1− eiθx)Π(dx),

where δ > 0 and
∫
(−∞,0)(1 ∧ |x|)Π(dx) <∞. As with the case of the M/G/1

queue, the reflected process

Wt = (w ∨Xt)−Xt, t ≥ 0,

may be thought of as the stored volume or workload of some system, where X is the
running supremum and w is the initial volume in the system. The Lévy–Itô decom-
position tells us that, during the periods of time that X is away from its supremum,
there is a natural “drainage” of volume or “processing” of workload, corresponding
to the downward movement of W in a linear fashion with rate δ. At the same time
new “volume for storage” or equivalently new “jobs” arrive independently so that
in each dt , one arrives of size |x| (where x < 0) with probability Π(dx)dt + o(dt)
(thus giving similar interpretation to the occurrence of jumps in the insurance risk
model described above). When Π(−∞,0) =∞, the number of jumps are count-
ably infinite over any finite time interval, thus indicating that our model is process-
ing with “infinite frequency” in comparison to the finite activity of the workload of
theM/G/1 process.

Of course one may also envisage working with a jump measure which has some
mass on the positive half-line. This would correspond to negative jumps in the pro-
cess W . This, in turn, can be interpreted as follows. Over and above the natural
drainage or processing at rate δ, in each dt there is independent removal of a “vol-
ume” or “processing time of job” of size y > 0 with probability Π(dy)dt + o(dt).
One may also consider moving to models of unbounded variation. However, in this
case, the interpretation of drift is lost.

2.7.3 Financial Models

Financial mathematics has become a field of applied probability which has also
embraced the use of Lévy processes, in particular, for the purpose of modelling the
evolution of risky assets. We shall not attempt to give anything like a comprehensive
exposure of this topic here, nor elsewhere in this book, especially since textbooks
of Boyarchenko and Levendorskii (2002b), Schoutens (2003) and Cont and Tankov
(2004) already offer a clear and up-to-date overview between them. It is worth men-
tioning briefly some of the connections between path properties of Lévy processes
seen above and modern perspectives within financial modelling.

One may say that financial mathematics proper begins with the thesis of Louis
Bachelier who proposed the use of linear Brownian motion to model the value of
a risky asset, say the value of a stock. See Bachelier (1900, 1901). However, the
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classical model for the evolution of a risky asset, proposed by Samuelson (1965), is
generally accepted to be that of an exponential linear Brownian motion with drift;

St = s exp{σBt +μt}, t ≥ 0, (2.26)

where s > 0 is the initial value of the asset, B = {Bt : t ≥ 0} is a standard Brownian
motion, σ > 0 and μ ∈ R. This choice of model offers the feature that asset values
have multiplicative stationarity and independence in the sense that for any 0≤ u <
t <∞,

St = Su × S̃t−u, (2.27)

where S̃t−u is independent of {Sv : v ≤ u} and has the same distribution as St−u.
Whether or not this is a realistic assumption in terms of temporal correlations in
financial markets is open to debate. Nonetheless, for the purpose of a theoretical
framework in which one may examine certain economic mechanisms, such as risk-
neutrality, hedging and arbitrage, as well as giving sense to the value of certain finan-
cial products such as option contracts, exponential Brownian motion has proved to
be a successful model in capturing the imagination of mathematicians, economists
and financial practitioners alike. Indeed, what makes (2.26) “classical” is that Black
and Scholes (1973) and Merton (1973) demonstrated how one may construct ra-
tional arguments leading to the pricing of a call option on a risky asset driven by
exponential Brownian motion.

Two particular points, of the many, where the above model of a risky asset can
be shown to be inadequate, concern the continuity of the paths and the distribu-
tion of log-returns of the value of a risky asset. Clearly (2.26) has continuous paths
and therefore cannot accommodate for jumps which arguably are present in ob-
served historical data of certain risky assets due to shocks in the market. The feature
(2.27) suggests that for a fixed period of time �, for each n ≥ 1, the innovations
log(S(n+1)�/Sn�) are independent and normally distributed with mean μ� and
standard deviation σ

√
�. Empirical data suggests that the tails of the distribution

of the log-returns are asymmetric as well as having heavier tails than those of nor-
mal distributions. Note that the tails of normal distributions are particularly light as
they decay like exp{−x2} for large values of |x|. See for example the discussion in
Schoutens (2003).

Recent literature suggests that a possible remedy is to work with

St = seXt , t ≥ 0,

instead of (2.26), where again s > 0 is the initial value of the risky asset and
X = {Xt : t ≥ 0} is a Lévy process. This preserves multiplicative stationary and
independent increments, as well as allowing for jumps, distributional asymmetry
and the possibility of heavier tails than the normal distribution can offer. A sim-
ple example of how this may happen is simply to take for X a compound Poisson
process whose jump distribution is asymmetric and heavy tailed. A more sophisti-
cated example, and indeed quite a popular model in the research literature, is the



62 2 The Lévy–Itô Decompositionand Path Structure

so-called variance-gamma process, introduced by Madan and Seneta (1990). This
Lévy process is pure jump, that is to say σ = 0, and has Lévy measure given by

Π(dx)= 1(x<0)
C

|x|e
Gxdx + 1(x>0)

C

x
e−Mxdx,

where C,G,M > 0. It is easily seen by computing explicitly the integral
∫
R
(1 ∧

|x|)Π(dx) and the total mass Π(R) that the variance-gamma process has paths
of bounded variation and further is not a compound Poisson process. It turns out
that the exponential weighting in the Lévy measure ensures that the distribution of
the variance-gamma process at a fixed time t has exponentially decaying tails (as
opposed to the much lighter tails of the Gaussian distribution).

Working with pure jump processes implies that there is no diffusive nature to
the evolution of risky assets. Diffusive behaviour is often found attractive for mod-
elling purposes as it has the taste of a physical interpretation in which increments
in infinitesimal periods of time are explained through the Central Limit Theorem
as the aggregate effect of many simultaneous conflicting external forces.7 Geman
et al. (2001) argue the case for modelling the value of risky assets with Lévy pro-
cesses which have paths of bounded variation which are not compound Poisson
processes. In their reasoning, such processes have a countable number of jumps
over finite periods of time, which correspond to the countable, but nonetheless
infinite number of purchases and sales of the asset which collectively dictate its
value as a net effect. In particular, being of bounded variation means the Lévy
process can be written as the difference to two independent subordinators (see
Exercise 2.8). These two subordinators should be thought of the total prevailing
price buy orders and total prevailing price sell orders on the logarithmic price
scale.

Despite the fundamental difference between modelling with bounded variation
Lévy processes and Brownian motion, Geman et al. (2001) also provide an interest-
ing link to the classical model (2.26) via time change. The basis of their ideas lies
with the following lemma.

Lemma 2.15 Suppose that X = {Xt : t ≥ 0} is a Lévy process with characteristic
exponent Ψ and τ = {τs : s ≥ 0} is an independent subordinator with characteristic
exponent Ξ(θ). Then Y = {Xτs : s ≥ 0} is again a Lévy process with characteristic
exponent Ξ(iΨ (θ)).

Proof First let us make some remarks about Ξ . We already know that the formula

E
(
eiθτs

)= e−Ξ(θ)s

7See for example the second volume of Lucretius (ca. 99 BC–ca. 55 BC) and the formalisation in
Einstein (1905).



2.7 Interpretations of the Lévy–Itô Decomposition 63

holds for all θ ∈R. However, since τ is a non-negative valued process, via analytical
continuation, we may claim that the previous equality is still valid for8 θ ∈ {z ∈C :
�z≥ 0}. Note in particular that, since

�Ψ (u)= 1

2
σ 2u2 +

∫

R

(
1− cos(ux)

)
Π(dx)≥ 0,

for all u ∈R, the equalities

E
(
eiuXτs

)= E
(
e−Ψ (u)τs

)= E
(
ei(iΨ (u))τs

)= e−Ξ(iΨ (u))s (2.28)

hold.
Since X and τ have right-continuous paths, then so does Y . Next consider n ∈N,

0≤ s1 ≤ t1 ≤ · · · ≤ sn ≤ tn <∞ and θ1, . . . , θn ∈ R. Then, by first conditioning on
τ and noting that 0≤ τs1 ≤ τt1 ≤ · · · ≤ τsn ≤ τtn <∞, we have

E

(
n∏

j=1

eiθj (Ytj−Ysj )
)

= E

(
n∏

j=1

e−Ψ (θj )(τtj−τsj )
)

= E

(
n∏

j=1

e−Ψ (θj )τtj−sj
)

=
n∏

j=1

e−Ξ(iΨ (θj ))(tj−sj ),

where in the final equality, we have used the fact that τ has stationary independent
increments together with (2.28). Exercise 1.1 now allows us to conclude that Y has
stationary and independent increments. �

Suppose in the above lemma, we take for X a linear Brownian motion with drift
as in the exponent of (2.26). By sampling this continuous path process along the
range of an independent subordinator, one recovers another Lévy process. Geman
et al. (2001) suggest that one may consider the value of a risky asset to evolve as the
process (2.26) on an abstract time scale suitable to the rate of business transactions,
called business time. The link between business time and real time is given by the
subordinator τ . That is to say, one assumes that the value of a given risky asset
follows the process Y =X ◦ τ because, at real time s > 0, τs units of business time
have passed and hence the value of the risky asset is positioned at Xτs .

Returning to the example of the variance-gamma process given above, it turns out
that one may recover it from a linear Brownian motion by applying a time change
using a gamma subordinator. See Exercise 2.9 for more details on the facts men-
tioned here concerning the variance-gamma process as well as Exercise 2.12 for
more examples of Lévy processes which may be written in terms of a subordinated
Brownian motion with drift.

8The notation �z refers to the imaginary part of z.
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Exercises

2.1 The objective of this exercise is to give a reminder of the additive property
of Poisson distributions (which is also the reason why they belong to the class of
infinite divisible distributions). Suppose that {Ni : i = 1,2, . . .} is an independent
sequence of random variables defined on (Ω,F ,P ) which are Poisson distributed
with parameters λi , for i = 1,2, . . . , respectively. Let S =∑

i≥1Ni . Show that

(i) if
∑
i≥1 λi <∞ then S is Poisson distributed with parameter

∑
i≥1 λi and

hence in particular P(S <∞)= 1,
(ii) if

∑
i≥1 λi =∞ then P(S =∞)= 1.

2.2 Denote by {Ti : i ≥ 1} the arrival times in the Poisson process N = {Nt : t ≥ 0}
with parameter λ.

(i) By recalling that inter-arrival times are independent and exponentially dis-
tributed, show that, for any A ∈ B([0,∞)n),

P
(
(T1, . . . , Tn) ∈A|Nt = n

)=
∫

A

n!
tn

1(0≤t1≤···≤tn≤t)dt1 × · · · × dtn.

(ii) Deduce that the distribution of (T1, . . . , Tn), conditional on Nt = n, has the
same law as the distribution of an ordered independent sample of size n taken
from the uniform distribution on [0, t].

2.3 If η is a measure on (S,S) and f : S→ [0,∞) is measurable then show that∫
S
(1− e−φf (x))η(dx) <∞ for all φ > 0 if and only if

∫
S
(1∧ f (x))η(dx) <∞.

2.4 Recall that D[0,1] is the space of functions f : [0,1] → R which are right-
continuous with left limits.

(i) Define the norm ‖f ‖ = supx∈[0,1] |f (x)|. Use the triangle inequality to de-
duce that, if {fn : n≥ 1} is a sequence in D[0,1] and f : [0,1] →R such that
limn↑∞ ‖fn − f ‖ = 0, then f ∈D[0,1].

(ii) Suppose that f ∈D[0,1] and let �= {t ∈ [0,1] : |f (t)− f (t−)| 	= 0} (the set
of discontinuity points). Show that� is countable if�c is countable, for all c >
0, where �c = {t ∈ [0,1] : |f (t)− f (t−)| > c}. Next fix c > 0. Suppose for
contradiction that�c has an accumulation point, say x. Show that the existence
of either a left or right limit at x leads to the conclusion that there is no left or
right limit of f at x. Deduce that �c , and hence �, is countable.

2.5 The explicit construction of a Lévy process given in the Lévy–Itô decomposi-
tion begs the question as to whether one may construct examples of deterministic
functions which have similar properties to those of the paths of Lévy processes. The
objective of this exercise is to do precisely that. The reader is warned, however, that
this is purely an analytical exercise and one should not necessarily think of the paths
of Lévy processes as being entirely similar to the functions constructed below in all
respects.



Exercises 65

(i) Let us recall the definition of the Cantor function, which we shall use to
construct a deterministic function that has bounded variation, that is right-
continuous with left limits and whose points of discontinuity are dense in its
domain. Take the interval C0 := [0,1] and perform the following iteration. For
n ≥ 0 define Cn as the union of intervals which remain when removing the
middle third of each of the intervals which make up Cn−1. The Cantor set C is
the limiting object,

⋂
n≥0Cn and can be described by

C =
{

x ∈ [0,1] : x =
∑

k≥1

αk

3k
such that αk ∈ {0,2} for each k ≥ 1

}

.

One sees that the Cantor set is simply the remaining points in [0,1] after omit-
ting numbers whose tertiary expansion contains the digit 1. To describe the
Cantor function, for each x ∈ [0,1], let j (x) be the smallest j for which αj = 1
in the tertiary expansion of

∑
k≥1 αk/3

k of x. If x ∈ C, then j (x)=∞ and oth-
erwise, if x ∈ [0,1]\C, then 1≤ j (x) <∞. The Cantor function is defined as
follows

f (x)= 1

2j (x)
+
j (x)−1∑

i=1

αi

2i+1
for x ∈ [0,1].

Now consider the function g : [0,1] → R, given by g(x) = f−1(x)− ax for
a ∈R. Here, we understand f−1(x)= inf{θ : f (θ) > x}. Note that g is mono-
tone if and only if a ≤ 0. Show that g has only positive jumps and the values of
x for which g jumps form a dense set in [0,1]. Show further that g has bounded
variation on [0,1].

(ii) Now let us construct an example of a deterministic function which has un-
bounded variation and that is right-continuous with left limits. Denote by Q2

the dyadic rationals. Consider a function J : [0,∞)→ R as follows. For all
x ≥ 0 which are not in Q2, set J (x)= 0. It remains to assign a value to J for
each x = a/2n where a = 1,3,5, . . . (even values of a cancel). Let

J
(
a/2n

)=
{

2−n if a = 1,5,9, . . .
−2−n if a = 3,7,11, . . .

and define

f (x)=
∑

s∈[0,x]∩Q2

J (s).

Show that f is uniformly bounded on [0,1], is right-continuous with left
limits and has unbounded variation over [0,1].

2.6 Suppose that X is a Lévy process with Lévy measure Π .
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(i) For each n≥ 2 show that for each t > 0,

E

[∫

[0,t]

∫

R

|x|nN(ds × dx)

]

<∞

almost surely if and only if
∫

|x|≥1
|x|nΠ(dx) <∞.

(ii) Suppose now that Π satisfies
∫
|x|≥1 |x|nΠ(dx) <∞ for n≥ 2. Show that

∫

[0,t]

∫

R

xnN(ds × dx)− t
∫

R

xnΠ(dx), t ≥ 0,

is a martingale.

2.7 Let X be a Lévy process with Lévy measure Π . Denote by N the Poisson
random measure associated with its jumps.

(i) Show that

P

(
sup

0<s≤t
|Xs −Xs−| ≥ a

)
= 1− e−tΠ(R\(−a,a)),

for a > 0.
(ii) Show that the paths of X are continuous if and only if Π = 0.

(iii) Show that the paths of X are piecewise linear if and only if it is a compound
Poisson process with drift if and only if σ = 0 and Π(R) <∞. (Recall that a
function f : [0,∞)→R is right-continuous and piecewise linear if there exist
sequence of times 0= t0 < t1 < · · ·< tn < · · · with limn↑∞ tn =∞ such that
on [tj−1, tj ) the function f is linear.)

(iv) Now suppose that Π(R) =∞. Argue by contradiction that, for each positive
rational q ∈ Q, there exists a decreasing sequence of jump times for X, say
{Tn(ω) : n ≥ 0}, such that limn↑∞ Tn = q . Hence deduce that the set of jump
times are dense in [0,∞).

2.8 Show that any Lévy process of bounded variation may be written as the differ-
ence of two independent subordinators.

2.9 This exercise gives another explicit example of a Lévy process, the variance-
gamma process, introduced by Madan and Seneta (1990) to model financial data.

(i) Suppose that Γ = {Γt : t ≥ 0} is a gamma subordinator with parameters α,β
and that B = {Bt : t ≥ 0} is an independent standard Brownian motion. Show
that, for c ∈R and σ > 0, the variance-gamma process

Xt := cΓt + σBΓt , t ≥ 0,
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is a Lévy process with characteristic exponent

Ψ (θ)= β log

(

1− i
θc

α
+ σ

2θ2

2α

)

, θ ∈R.

(ii) Show that the variance-gamma process is equal in law to the Lévy process

Γ (1) − Γ (2) = {
Γ
(1)
t − Γ (2)t : t ≥ 0

}
,

where Γ (1) is a gamma subordinator with parameters

α(1) =
(
√

1

4

c2

α2
+ 1

2

σ 2

α
+ 1

2

c

α

)−1

and β(1) = β

and Γ (2) is a gamma subordinator, independent of Γ (1), with parameters

α(2) =
(
√

1

4

c2

α2
+ 1

2

σ 2

α
− 1

2

c

α

)−1

and β(2) = β.

2.10 Suppose that d is an integer greater than one. Choose a ∈ Rd and let Π be a
measure concentrated on R

d\{0} satisfying
∫

Rd

(
1∧ |x|2)Π(dx) <∞,

where | · | is the standard Euclidean norm. Show that it is possible to construct a
d-dimensional process X= {Xt : t ≥ 0} on a probability space (Ω,F ,P) having the
following properties.

(i) The paths of X are right-continuous with left limits P-almost surely in the sense
that, for each t ≥ 0,

P

(
lim
s↓t Xs =Xt

)
= 1 and P

(
lim
s↑t Xs exists

)
= 1.

(ii) P(X0 = 0)= 1, the zero vector in R
d .

(iii) For 0≤ s ≤ t , Xt −Xs is independent of {Xu : u≤ s}.
(iv) For 0≤ s ≤ t , Xt −Xs is equal in distribution to Xt−s .
(v) For any t ≥ 0 and θ ∈Rd ,

E
(
eiθ ·Xt )= e−Ψ (θ)t

and

Ψ (θ)= ia · θ + 1

2
θ ·Aθ +

∫

Rd

(
1− eiθ ·x + i(θ · x)1(|x|<1)

)
Π(dx), (2.29)

where for any two vectors x and y in R
d , x · y is the usual inner product and A

is a d × d Gaussian covariance matrix.
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2.11 Suppose that X is a subordinator.

(i) Show that it has a Laplace exponent given by

− logE
(
e−qX1

)=:Φ(q)= δq +
∫

(0,∞)
(
1− e−qx

)
Π(dx),

for q ≥ 0, where δ ≥ 0 and
∫
(0,∞)(1∧ x)Π(dx) <∞.

(ii) Show using integration by parts that

Φ(q)= δq + q
∫ ∞

0
e−qxΠ(x,∞)dx

and hence that the drift term δ may be recovered from the limit

lim
q↑∞

Φ(q)

q
= δ.

(iii) Show that

lim
q↓0

Φ(q)

q
= E(X1)= δ +

∫

(0,∞)
xΠ(dx) ∈ (0,∞].

(iv) Finally, prove that Φ(∞) <∞ if and only if X is a compound Poisson sub-
ordinator. That is to say, δ = 0 and Π(0,∞) <∞, in which case Φ(∞) =
δ+Π(0,∞).

2.12 Here are some more examples of Lévy processes which may be written as a
subordinated Brownian motion.

(i) Let α ∈ (0,2). Show that a Brownian motion subordinated by a stable process
of index α/2 is a symmetric stable process of index α.

(ii) Suppose that X = {Xt : t ≥ 0} is a compound Poisson process with Lévy mea-
sure given by

Π(dx)= {
1(x<0)e

−a|x| + 1(x>0)e
−ax}dx,

for a > 0. Now let τ = {τs : s ≥ 0} be a pure jump subordinator with Lévy
measure

π(dx)= 1(x>0)2ae−a2xdx.

Show that {√2Bτs : s ≥ 0} has the same law as X, where B = {Bt : t ≥ 0} is a
standard Brownian motion independent of τ .

(iii) Suppose now that X = {Xt : t ≥ 0} is a compound Poisson process with Lévy
measure given by

Π(dx)= λ
√

2

σ
√
π

e−x2/2σ 2
dx,
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for x ∈ R. Show that {σBNt : t ≥ 0} has the same law as X, where B is as in
part (ii) and {Ns : s ≥ 0} is a Poisson process with rate 2λ independent of B .

The final part of this question gives a simple example of Lévy processes which may
be written as a subordinated Lévy process.

(iv) Suppose that X is a symmetric stable process of index α ∈ (0,2). Show that X
can be written as a symmetric stable process of index α/β subordinated by an
independent stable subordinator of index β ∈ (0,1).



Chapter 3
More Distributional and Path-Related
Properties

In this chapter, we consider some more distributional and path-related properties
of general Lévy processes. Specifically, we examine the strong Markov property,
duality, moments and exponential change of measure.

We recall here our notation that any Lévy process, X = {Xt : t ≥ 0}, is assumed
to be defined on a probability space (Ω,F ,P), which is endowed with a filtration
F= {Ft : t ≥ 0}, which is the natural enlargement of the filtration generated by X.

3.1 The Strong Markov Property

The process X = {Xt : t ≥ 0} possesses the Markov property if, for each B ∈ B(R)
and s, t ≥ 0,

P(Xt+s ∈ B|Ft )= P
(
Xt+s ∈ B|σ(Xt )

)
. (3.1)

It is easy to see that the Markov property is satisfied for all Lévy processes. Indeed,
Lévy processes satisfy the stronger condition that the law of Xt+s −Xt is indepen-
dent of Ft , for all s, t ≥ 0.

A non-negative random variable, say τ , is called a stopping time if

{τ ≤ t} ∈Ft ,
for all t ≥ 0. It is possible that a stopping time may have the property that P(τ =
∞) > 0. In addition, for any stopping time τ ,

{τ < t} =
⋃

n≥1

{τ ≤ t − 1/n} ∈
⋃

n≥1

Ft−1/n ⊆Ft .

However, we also have that any random time τ which has the property that {τ < t}
∈Ft for all t ≥ 0 must also be a stopping time. To see why, note that

{τ ≤ t} =
⋂

n≥1

{τ < t + 1/n} ∈
⋂

n≥1

Ft+1/n =Ft+ =Ft ,
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where in the last equality, we use the right-continuity of the filtration F. In other
words, for a Lévy process whose filtration is right-continuous, we may also say that
τ is a stopping time if and only if {τ < t} ∈Ft for all t ≥ 0.

Associated with a given stopping time τ is the sigma-algebra

Fτ :=
{
A ∈F :A∩ {τ ≤ t} ∈Ft for all t ≥ 0

}
.

(Note, it is a simple exercise to verify that Fτ is a sigma-algebra.) The process X is
said to satisfy the strong Markov property if, for each stopping time, τ ,

P(Xτ+s ∈ B|Fτ )= P
(
Xτ+s ∈ B|σ(Xτ )

)
on {τ <∞}.

The next theorem shows, in particular, that all Lévy processes satisfy the strong
Markov property.

Theorem 3.1 Suppose that τ is a stopping time. Define on {τ <∞} the process
X̃ = {X̃t : t ≥ 0} where

X̃t =Xτ+t −Xτ , t ≥ 0.

Then, on the event {τ <∞}, the process X̃ is independent of Fτ , has the same law
as X and hence in particular is a Lévy process.

Proof We need to check that X̃ has stationary and independent increments which
belong to the same family of infinite divisible distributions as X. (Note that X̃
clearly has paths that are right-continuous with left limits, issued from the origin.)
Referring to Exercise 1.1, we see that it would suffice to prove that, for any n ∈ N,
0≤ s1 ≤ t1 ≤ · · · ≤ sn ≤ tn <∞, H ∈Fτ and θ1, . . . , θn ∈R,

E

(
n∏

i=1

eiθi (Xτ+ti−Xτ+si );H ∩ {τ <∞}
)

=
n∏

i=1

e−Ψ (θi )(ti−si )P
(
H ∩ {τ <∞}),

where Ψ is the characteristic exponent of X.
To this end, define a sequence of stopping times {τ (n) : n≥ 1} by

τ (n) =
⎧
⎨

⎩

k2−n if (k − 1)2−n < τ ≤ k2−n for k = 1,2, . . .
0 if τ = 0
∞ if τ =∞.

(3.2)

Stationary independent increments and the fact that H ∩ {τ (n) = k2−n} ∈ Fk2−n
allow us to write

E

(
n∏

i=1

e
iθi (Xτ(n)+ti−Xτ(n)+si );H ∩ {τ (n) <∞}

)

=
∑

k≥0

E

(
n∏

i=1

e
iθi (Xτ(n)+ti−Xτ(n)+si );H ∩ {τ (n) = k2−n}

)
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=
∑

k≥0

E

[

E

(
n∏

i=1

eiθi (Xk2−n+ti−Xk2−n+si )|Fk2−n
)

;H ∩ {τ (n) = k2−n}
]

=
∑

k≥0

n∏

i=1

E
(
eiθiXti−si

)
P
(
H ∩ {τ (n) = k2−n})

=
n∏

i=1

e−Ψ (θi )(ti−si )P
(
H ∩ {τ (n) <∞})

.

The paths of X are almost surely right-continuous and τ (n) ↓ τ on {τ <∞} as n
tends to infinity. Hence, Xτ(n)+s→Xτ+s almost surely on {τ <∞}, for all s ≥ 0 as
n tends to infinity. It follows by the Dominated Convergence Theorem that

E

(
n∏

i=1

eiθi (Xτ+ti−Xτ+si );H ∩ {τ <∞}
)

= lim
n↑∞E

(
n∏

i=1

e
iθi (Xτ(n)+ti−Xτ(n)+si );H ∩ {τ (n) <∞}

)

= lim
n↑∞

n∏

i=1

e−Ψ (θi )(ti−si )P
(
H ∩ {τ (n) <∞})

=
n∏

i=1

e−Ψ (θi )(ti−si )P
(
H ∩ {τ <∞}).

This shows that X̃ is independent of Fτ on {τ <∞} and has the same law as X. �

Examples of F-stopping times which will repeatedly occur in the remaining text
are those of the first-entrance time and first-hitting time of a given open or closed
set B ⊆R. They are defined as

T B = inf{t ≥ 0 :Xt ∈ B} and τB = inf{t > 0 :Xt ∈ B},
respectively. We take the usual definition inf∅ =∞ here. At many places through-
out this book, we shall work with the special cases that B is equal to (x,∞), [x,∞),
(−∞, x), (−∞, x] and {x} where x ∈R. The two times T B and τB are very closely
related. They are equal when X0 /∈ B; but they may possibly differ in value when
X0 ∈ B . Consider for example the case that B = [0,∞) and X is a compound Pois-
son process with strictly negative drift. When X0 = 0, we have P(T B = 0) = 1
whereas P(τB > 0)= 1.1

1As we shall see later, this is a phenomenon which is not exclusive to compound Poisson processes
with strictly negative drift. The same behaviour is experienced by, for example, Lévy processes of
bounded variation with strictly negative drift.



74 3 More Distributional and Path-Related Properties

To some extent, it is intuitively obvious why T B and τB are stopping times.
Nonetheless, we complete this section by justifying this claim. The justification
comes in the form of a supporting lemma and a theorem establishing the claim. The
lemma illustrates that there exists a sense of left-continuity of Lévy processes when
appropriately sampling the path with an increasing sequence of stopping times; that
is, quasi-left-continuity. The proofs of the forthcoming lemma and theorem are quite
technical and it will do no harm if the reader chooses to bypass their proofs and con-
tinue reading on to the next section. The arguments given are rooted in the works of
Dellacherie and Meyer (1975–1993) and Blumenthal and Getoor (1968) who give
a comprehensive and highly detailed account of the theory of Markov processes in
general.

Lemma 3.2 (Quasi-Left-Continuity) If T is an F-stopping time and {Tn: n≥ 1} is
an increasing sequence of F-stopping times such that limn↑∞ Tn = T almost surely,
then limn↑∞XTn =XT on {T <∞}. Hence, if Tn < T almost surely for each n≥ 1,
then X is left-continuous at T on {T <∞}.

Note that for any fixed t > 0, P(N({t} × R) = 0) = 1, where N is the Pois-
son random measure describing the jumps of X, and hence t is a jump time with
probability zero. If {tn: n= 1,2, . . .} is a sequence of deterministic times satisfying
tn→ t as n ↑∞, then with probability one Xtn→Xt . In other words, t is a point of
continuity of X.2 The statement in the above lemma thus asserts that this property
extends to the case of increasing stopping times.

Proof of Lemma 3.2 First suppose that P(T <∞)= 1. As the sequence {Tn : n≥ 1}
is almost surely increasing, we can identify the limit of {XTn : n≥ 0} by

Z = 1AXT + 1AcXT−,

where A=⋃
n≥1

⋂
k≥n{Tk = T } = {Tk = T eventually}. Suppose that f and g are

two continuous functions, each with compact support. Appealing to bounded con-
vergence (twice), together with the right-continuity and left limits of paths, we have

lim
t↓0

lim
n↑∞E

(
f (XTn)g(XTn+t )

) = lim
t↓0

E
(
f (Z)g(X(T+t)−)

)

= E
(
f (Z)g(XT )

)
. (3.3)

Now write, for short, Ptg(x) = E(g(x + Xt)) = Ex(g(Xt )), which is uni-
formly bounded in x and t and, by bounded convergence, continuous in x. Note
that right-continuity of X, together with bounded convergence, also implies that

2It is worth reminding oneself, for the sake of clarity, that Xtn →Xt P-a.s. as n ↑∞ means that,
for all ε > 0, there exists an almost surely finite N > 0 such that |Xtn −Xt |< ε for all n >N . This
does not contradict the fact that there might be an infinite number of discontinuities in the path of
X in an arbitrary small neighbourhood of t .
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limt↓0Ptg(x)= g(x) for each x ∈ R. These facts, together with the Markov prop-
erty applied at time Tn and bounded convergence, imply that

lim
t↓0

lim
n↑∞E

(
f (XTn)g(XTn+t )

) = lim
t↓0

lim
n↑∞E

(
f (XTn)Ptg(XTn)

)

= lim
t↓0

E
(
f (Z)Ptg(Z)

)

= E
(
f (Z)g(Z)

)
. (3.4)

Equating (3.3) and (3.4), we see that, for all uniformly bounded continuous func-
tions f and g,

E
(
f (Z)g(XT )

)= E
(
f (Z)g(Z)

)
.

From this equality, we may deduce (by splitting into real and imaginary parts) that

E
(
eiθ1Z+iθ2XT

)= E
(
eiθ1Z+iθ2Z

)
,

where θ1, θ1 ∈R, and hence Z =XT almost surely.
When Tn < T almost surely for all n ≥ 1, it is clear that Z = XT− and

the concluding sentence in the statement of the lemma follows for the case that
P(T <∞)= 1.

To remove the requirement that P(T <∞)= 1, recall that for each t > 0, T ∧ t
is a finite stopping time. We have that Tn ∧ t ↑ T ∧ t as n ↑ ∞ and hence, from
the previous part of the proof, limn↑∞XTn∧t =XT∧t almost surely. In other words,
limn↑∞XTn = XT on {T ≤ t}. Since we may take t arbitrarily large the result fol-
lows. �

Theorem 3.3 Suppose that B is open or closed. Then,

(i) T B is a stopping time and XTB ∈ B on {T B <∞} and
(ii) τB is a stopping time and XτB ∈ B on {τB <∞}.

(Note that B = B when B is closed.)

Proof (i) First, we deal with the case that B is open. Since any Lévy process X =
{Xt : t ≥ 0} has right-continuous paths and B is open, we may describe the event
{T B < t} in terms of the path of X at rational times. That is to say,

{
T B < t

}=
⋃

s∈Q∩[0,t)
{Xs ∈ B}. (3.5)

Since each of the sets in the union is Ft -measurable and sigma-algebras are closed
under countable set operations, we have that {T B < t} is also Ft -measurable.
Recalling that F is right-continuous, we have that {T B < t} is Ft -measurable if
and only if {T B ≤ t} is Ft -measurable and hence T B fulfils the definition of an
F-stopping time. Now note that, on {T B <∞}, we have that either XTB ∈ B or that
at the time T B , X is at the boundary of B and at the next instant moves into B .
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That is to say, on {T B <∞}, there exists a sequence of (random) times {σn : n≥ 1},
such that σn ↓ T B with Xσn ∈ B for all n ≥ 1, in which case, right-continuity of
paths implies that XTB ∈ B . For illustrative purposes, consider the example where
B = (x,∞) for some x > 0 and X is any compound Poisson process with strictly
positive drift and negative jumps. It is clear that P(XT (x,∞) = x) > 0 as the process
may drift up to the boundary point {x} and then continue into (x,∞) before, for
example, the first jump occurs.

For the case of closed B , the argument given above is not subtle enough for
the proof. The reason why lies with the possibility that X may enter B simply by
touching its boundary, which is now included in B . Further, this may occur in a way
that cannot be described in terms of a countable sequence of events.

We thus employ another technique for the proof of (i) when B is closed. Suppose
that {Bn : n≥ 1} is a sequence of open sets given by

Bn =
{
x ∈R : |x − y|< 1/n for some y ∈ B}.

Note that B ⊂ Bn for all n≥ 1 and
⋂
n≥1Bn = B . From the previous paragraph, we

have that T Bn are F-stopping times and, clearly, they are increasing. Denote their
limit by T . Since, for all t ≥ 0,

{T ≤ t} =
{

sup
n≥1
T Bn ≤ t

}
=
⋂

n≥1

{
T Bn ≤ t} ∈Ft ,

we see that T is an F-stopping time. Obviously T Bn ≤ T B for all n and hence
T ≤ T B . On the other hand, according to quasi-left-continuity described in the pre-
vious lemma, limn↑∞XTBn =XT on the event {T <∞}, showing thatXT ∈ B = B
and hence that T ≥ T B on {T <∞}. In conclusion, we have that T = T B and
XTB ∈ B on {T B <∞}.

(ii) Suppose now that B is open. Let T Bε = inf{t ≥ ε : Xt ∈ B}. Note that
{T Bε < t} = ∅ ∈Ft for all t < ε and for t ≥ ε,

{
T Bε < t

}=
⋃

s∈Q∩[ε,t)
{Xs ∈ B},

which is Ft . Hence by right-continuity of F, T Bε is an F-stopping time. Now sup-
pose that B is closed. Following the arguments in part (i) but with T Bnε := inf{t ≥ ε :
Xt ∈ Bn}, we conclude for closed B that T Bε is again an F-stopping time. In both
cases, when B is open or closed, we also see, as in part (i), that XTBε ∈ B on

{T Bε <∞}.
Now suppose that B is open or closed. The sequence of stopping times

{T Bε : ε > 0} forms a decreasing sequence as ε ↓ 0 and hence has an almost sure
limit, which is equal to τB by definition. Note also that {T Bε <∞} increases to
{τB <∞} as ε ↓ 0. Since for all t ≥ 0 and decreasing sequences εn ↓ 0,

{
τB ≤ t}c =

{
inf
n≥1
T Bεn > t

}
=
⋂

n≥1

{
T Bεn > t

} ∈Ft ,
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we see that τB is an F-stopping time. Right-continuity of the paths of X tell us that
limε↓0XTBε

=XτB on {τB <∞}. Hence Xτ
B ∈ B whenever {τB <∞}. �

3.2 Duality

In this section, we discuss a simple feature of all Lévy processes, which follows as a
direct consequence of stationary independent increments. That is, when the path of
a Lévy process, taken over a finite time horizon, is time reversed (in an appropriate
sense), the new path is equal in law to the negative of the original process. This prop-
erty will prove to be of crucial importance in a number of fluctuation calculations
later on.

Lemma 3.4 (Duality Lemma) For each fixed t > 0, define the reversed process

{X(t−s)− −Xt : 0≤ s ≤ t}

and the dual process,

{−Xs : 0≤ s ≤ t}.
Then the two processes have the same law under P.

Proof Define the time reversed process Ys = X(t−s)− −Xt for 0 ≤ s ≤ t and note
that, under P, we have Y0 = 0 almost surely since t is a jump time with probability
zero. As can be seen from Fig. 3.1, the paths of Y are obtained from those of X
by a reflection about the vertical axis, with an adjustment of the continuity at the
jump times so that its paths are almost surely right-continuous with left limits. The
stationary independent increments of X imply directly that the same is true for Y .
Moreover, for each 0≤ s ≤ t , the distribution of X(t−s)− −Xt is identical to that of
−Xs and hence, since the finite time distributions of Y determine its law, the proof
is complete. �

The Duality Lemma is also well known for (and in fact originates from the theory
of) random walks, the discrete-time analogue of Lévy processes, and is justified
using an identical proof. See for example Sect. 2 of Chap. XII in Feller (1971).

One interesting feature that follows as a consequence of the Duality Lemma, is
the relationship between the running supremum, the running infimum, the process
reflected in its supremum and the process reflected in its infimum. The last four
objects are, respectively,

Xt := sup
0≤s≤t

Xs, Xt := inf
0≤s≤t Xs

{Xt −Xt : t ≥ 0} and {Xt −Xt : t ≥ 0}.
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Fig. 3.1 Duality of the processes X = {Xs : s ≤ t} and Y = {X(t−s)− −Xt : s ≤ t}. The path of Y
is a reflection of the path of X with an adjustment of continuity at jump times.

Lemma 3.5 For each fixed t > 0, the pairs (Xt ,Xt−Xt) and (Xt−Xt,−Xt) have
the same distribution under P.

Proof For 0≤ s ≤ t , define X̃s =Xt −X(t−s)− and write X̃t = inf0≤s≤t X̃s . Using
right-continuity and left limits of paths, we may deduce that

(Xt ,Xt −Xt)= (X̃t − X̃t ,−X̃t )
almost surely. One may visualise this in Fig. 3.2. By rotating the picture by 180◦
one sees the almost sure equality of the pairs (Xt ,Xt −Xt) and (X̃t − X̃t ,−X̃t ).
Now appealing to the Duality Lemma, we have that {X̃s : 0≤ s ≤ t} is equal in law
to {Xs : 0≤ s ≤ t} under P. The result now follows. �

3.3 Exponential Moments and Martingales

It is well known that the distribution of the position of a Brownian motion at a fixed
time has moments of all orders. It is natural therefore to cast an eye on similar issues
for Lévy processes. In general, the picture is not so straightforward. One needs only
to consider compound Poisson processes to see how things can differ. Suppose we
write the aforementioned process in the form

Xt =
Nt∑

i=1

ξi, t ≥ 0,

where N = {Nt : t ≥ 0} is a Poisson process and {ξi : i ≥ 0} are independent and
identically distributed. By choosing the jump distribution of each ξi in such a way
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Fig. 3.2 Duality of the pairs (Xt ,Xt −Xt) and (Xt −Xt ,−Xt).

that it has infinite first moment (for example any stable distribution on (0,∞) with
index α ∈ (0,1)), it is clear that

E(Xt )= λtE(ξ1)=∞,

for all t > 0.
As one might suspect, there is an intimate relationship between the moments of

the Lévy measure and the moments of the distribution of the associated Lévy process
at any fixed time. This is indeed the case and we have the following theorem.

Theorem 3.6 Let β ∈R, then

E
(
eβXt

)
<∞, for all t ≥ 0, if and only if

∫

|x|≥1
eβxΠ(dx) <∞.

Proof The statement of the theorem is obvious when β = 0. Therefore, we shall
always assume that β 	= 0. First suppose that E(eβXt ) <∞ for some t > 0. Recall
X(1), X(2) and X(3) given in the Lévy–Itô decomposition. Note, in particular, that
X(2) is a compound Poisson process with arrival rate λ :=Π(R\(−1,1)) and jump
distribution F(dx) := 1(|x|≥1)Π(dx)/Π(R\(−1,1)), andX(1)+X(3) is a Lévy pro-
cess with Lévy measure 1(|x|<1)Π(dx). Since

E
(
eβXt

)= E
(
eβX

(2)
t
)
E
(
eβ(X

(1)
t +X(3)t )),



80 3 More Distributional and Path-Related Properties

it follows that

E
(
eβX

(2)
t
)
<∞. (3.6)

Hence, as X(2) is a compound Poisson process,

E
(
eβX

(2)
t
) = e−λt

∑

k≥0

(λt)k

k!
∫

R

eβxF ∗k(dx)

= e−Π(R\(−1,1))t
∑

k≥0

tk

k!
∫

R

eβx(Π |R\(−1,1))
∗k(dx) <∞, (3.7)

where F ∗n and (Π |R\(−1,1))
∗n are the n-fold convolution of F and Π |R\(−1,1), the

restriction of Π to R\(−1,1), respectively. In particular, the summand correspond-
ing to k = 1 must be finite, and so

∫

|x|≥1
eβxΠ(dx) <∞.

Now suppose that
∫
R

eβx1(|x|≥1)Π(dx) <∞ for some β 	= 0. Without loss of
generality, it suffices to take β > 0. (The case that β < 0 can be dealt with by con-
sidering the forthcoming proof, but for the process −X.) Since, for all n ∈N,

∫

R

eβx(Π |R\(−1,1))
∗n(dx)=

(∫

|x|≥1
eβxΠ(dx)

)n
<∞,

one easily argues that (3.6) holds, for all t ≥ 0, through (3.7). The proof is thus
complete once we show that, for all t ≥ 0,

E
(
eβ(X

(1)
t +X(3)t ))<∞. (3.8)

However, since X(1) + X(3) is a Lévy process whose Lévy measure has bounded
support, it follows that its characteristic exponent,

−1

t
logE

(
eiθ(X(1)t +X(3)t ))

= iaθ + 1

2
σ 2θ2 +

∫

(−1,1)

(
1− eiθx + iθx

)
Π(dx), θ ∈R, (3.9)

can be extended to an entire function (analytic on the whole of C). To see why, note
that

∫

(−1,1)

(
1− eiθx + iθx

)
Π(dx)=−

∫

(−1,1)

∑

k≥0

(iθx)k+2

(k + 2)! Π(dx).



3.3 Exponential Moments and Martingales 81

The sum and the integral may be exchanged using Fubini’s Theorem and the esti-
mate

∑

k≥0

∫

(−1,1)

|θx|k+2

(k + 2)!Π(dx)≤
∑

k≥0

|θ |k+2

(k + 2)!
∫

(−1,1)
x2Π(dx) <∞.

Hence, the right-hand side of (3.9) can be written as a power series for all θ ∈C and
is thus entire. In turn this guarantees that μ̂t (θ) := exp{−Ψ (1)(θ)t − Ψ (3)(θ)t} is
also an entire function. Note that μ̂t (θ) is nothing more than the Fourier transform of
the measure μt(dx)= P(X

(1)
t +X(3)t ∈ dx), x ∈R. Since μ̂t (θ) is an entire function,

it follows that all the moments of μt exist with dnμ̂t (θ)/dθn|θ=0 = inmn(t), where
mn(t)=

∫
R
xnμt (dx) for n ∈N. Expanding μ̂t as a power series about 0, we have

μ̂t (θ)=
∑

n≥0

1

n! i
nmn(t)θ

n, θ ∈C. (3.10)

The entire nature of the previous sum implies, in particular, that it is absolutely
convergent for all θ ∈C.

Now define an(t)=
∫
R
|x|nμt (dx) for n ∈N. It is straightforward to note that, for

k ∈N, a2k(t)=m2k(t) and a2k+1(t)≤ (m2k+2(t)+m2k(t)) where the latter follows
on account of the fact that

|x|2k+1 ≤ |x|2k+2 + |x|2k = x2k+2 + x2k, x ∈R.
We thus have that

E
(
eβ(X

(1)
t +X(3)t ))≤ E

(
eβ|X

(1)
t +X(3)t |)=

∫

R

eβ|x|μt(dx)=
∑

n≥0

1

n!an(t)β
n <∞,

where the final equality is justified by writing eβ|x| as a power series and then in-
terchanging the operation of integration with summation using Fubini’s Theorem,
the estimates for an(t) and the absolute convergence of the series (3.10). This also
justifies the final inequality. �

The conclusion of the previous theorem can be extended to a larger class of func-
tions over and above the exponential functions.

Definition 3.7 A measurable function, g : R→[0,∞), is called submultiplicative
if there exists a constant c > 0 such that g(x + y)≤ cg(x)g(y) for all x, y ∈R.

It follows easily from this definition that, for example, the product of two sub-
multiplicative functions is submultiplicative. Again, working directly with the defi-
nition, it is also easy to show that, if g(x) is submultiplicative, then so is g(cx+γ )α ,
where c ∈ R, γ ∈ R and α > 0. An easy way to see this is first to prove the state-
ment for g(cx), then for g(x + γ ) and finally for g(x)α , and then to combine the
conclusions.
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Theorem 3.8 Suppose that g is submultiplicative and bounded on compacts. Then

∫

|x|≥1
g(x)Π(dx) <∞ if and only if E

(
g(Xt )

)
<∞ for all t > 0.

The proof is essentially the same once one has established that for each submul-
tiplicative function, g, which is bounded on compacts, there exist constants ag > 0
and bg > 0 such that g(x)≤ ag exp{bg|x|}, x ∈R. See Exercise 3.3 where examples
of submultiplicative functions, other than exponential functions, can be found.

Theorem 3.6 gives us a criterion under which we can perform an exponential
change of measure. Define the Laplace exponent

ψ(β)= 1

t
logE

(
eβXt

)=−Ψ (−iβ) (3.11)

whenever it exits. We now know that the Laplace exponent is finite if and only if∫
|x|≥1 eβxΠ(dx) <∞. Following Exercise 1.5, it is easy to deduce that, under this

assumption, E(β)= {Et (β): t ≥ 0} is a P-martingale with respect to F, where

Et (β)= eβXt−ψ(β)t , t ≥ 0. (3.12)

Since this martingale has unit mean, it may be used to perform a change of measure
via

dPβ

dP

∣
∣
∣
∣
Ft
= Et (β), t ≥ 0.

The change of measure above is known as the Esscher transform. As the next theo-
rem shows, it has the important property that the process X under Pβ is still a Lévy
process. This fact will play a crucial role in the analysis of spectrally negative Lévy
processes later on in this text.

Theorem 3.9 Suppose thatX is a Lévy process with characteristic triple (a, σ,Π),
and that β ∈R is such that

∫

|x|≥1
eβxΠ(dx) <∞.

Under the change of measure P
β , the process X is still a Lévy process with charac-

teristic triple (a∗, σ ∗,Π∗), where

a∗ = a−βσ 2+
∫

|x|<1

(
1−eβx

)
xΠ(dx), σ ∗ = σ and Π∗(dx)= eβxΠ(dx).
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Proof Suppose, without loss of generality, that β > 0.3 Begin by noting from
Hölder’s inequality that, for any θ ∈ [0, β] and all t ≥ 0,

E
(
eθXt

)≤ E
(
eβXt

)θ/β
<∞.

Hence, ψ(θ) <∞ for all θ ∈ [0, β]. (In fact, the above computation shows that ψ is
convex in this interval.) In turn, this implies that |E(eiθXt )|<∞, for all θ such that
−�θ ∈ [0, β] and t ≥ 0. By analytic extension, the characteristic exponent Ψ of X
is thus finite on the same region of the complex plane.

Fix a time horizon, t > 0, and note that the density exp{βXt −ψ(β)t} is almost
surely positive. Hence P and P

β are equivalent measures on Ft . For each t > 0, let

At =
{
∀s ∈ (0, t], ∃ lim

u↑s Xu and ∀s ∈ [0, t), lim
u↓s Xu =Xs

}
.

Then, since P(At )= 1 for all t > 0, it follows that Pβ(At )= 1 for all t > 0. That is
to say, under Pβ , the process X still has paths which are almost surely continuous
from the right with left limits.

Next, let 0 ≤ u ≤ s ≤ t <∞ and θ ∈ R. Write E
β for expectation with respect

to P
β . We have, for all A ∈Fu,

E
β
(
1Aeiθ1(Xt−Xs))

= E
(
1AeβXs−ψ(β)se(iθ1+β)(Xt−Xs)−ψ(β)(t−s)

)
.

Using the martingale property of the change of measure and stationary independent
increments of X under P, by first conditioning on Fs , and then on Fu, we find from
the previous equality that

E
β
(
1Aeiθ1(Xt−Xs))= e(Ψ (−iβ)−Ψ (θ1−iβ))(t−s)

P
β(A).

Hence, under P
β , we deduce that X has stationary independent increments, with

characteristic exponent given by

Ψβ(θ) := Ψ (θ − iβ)−Ψ (−iβ), θ ∈R.
By writing out the exponent in terms of the triple (a, σ,Π) associated with X un-
der P, it is a straightforward exercise to deduce that

Ψβ(θ) = iθ

(

a − βσ 2 +
∫

|x|<1

(
1− eβx

)
xΠ(dx)

)

+ 1

2
θ2σ 2

+
∫

R

(
1− eiθx + iθx1(|x|<1)

)
eβxΠ(dx), θ ∈R. (3.13)

We thus identify the triple (a∗, σ ∗,Π∗) as given in the statement of the theorem. �

3In the case that β < 0, simply consider the forthcoming argument for−X. For β = 0 the statement
of the theorem is trivial.
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The effect of the Esscher transform is to exponentially tilt the Lévy measure, to
introduce an additional linear drift and to leave the Gaussian contribution untouched.

Note that, in the case of a spectrally negative Lévy process, the Laplace expo-
nent satisfies |ψ(θ)|<∞ for θ ≥ 0. This follows as a consequence of Theorem 3.6
together with the fact that Π(0,∞)= 0.

Corollary 3.10 The Esscher transform may be applied for all β ≥ 0 when X is
a spectrally negative Lévy process. Further, under P

β , X remains within the class
of spectrally negative Lévy processes. The Laplace exponent, ψβ , of X under P

β

satisfies

ψβ(θ)=ψ(θ + β)−ψ(β),
for all θ ≥ −β .

Proof The Esscher transform has the effect of exponentially tilting the original Lévy
measure and therefore does not have any influence on the support of the Lévy mea-
sure. We have, as previously, that, for θ ≥ −β ,

eψβ(θ) = E
β
(
eθX1

)= E
(
e(θ+β)X1−ψ(β))= eψ(θ+β)−ψ(β),

which establishes the final statement of the corollary. �

Corollary 3.11 Under the conditions of Theorem 3.9, if τ is an F-stopping time,
then

dPβ

dP

∣
∣
∣
∣
Fτ
= Eτ (β) on {τ <∞}.

Proof By definition if A ∈Fτ , then A∩ {τ ≤ t} ∈Ft . Hence,

P
β
(
A∩ {τ ≤ t}) = E

(
Et (β)1(A,τ≤t)

)

= E
(
E
(
Et (β)1(A,τ≤t)|Fτ

))

= E
(
Eτ (β)1(A,τ≤t)

)
,

where in the third equality, we have used the strong Markov property as well as the
martingale property for E(β). Now taking limits, as t ↑∞, the result follows with
the help of the Monotone Convergence Theorem. �

Remaining with spectrally negative Lévy processes, we conclude this section by
giving another application of the exponential martingale E(β). Recall the stopping
times

τ+x = inf{t > 0 :Xt > x}, (3.14)

for x ≥ 0; also called first-passage times.
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Fig. 3.3 Two examples of ψ , the Laplace exponent of a spectrally negative Lévy process, and the
relation to Φ .

Theorem 3.12 For any spectrally negative Lévy process,

E
(
e−qτ+x 1(τ+x <∞)

)= e−Φ(q)x, (3.15)

where q ≥ 0 and Φ(q) is the largest root of the equation ψ(θ)= q .

Before proceeding to the proof, let us make some remarks about the function

Φ(q)= sup
{
θ ≥ 0 :ψ(θ)= q}, (3.16)

defined for all q ≥ 0, also known as the right inverse of ψ . Exercise 3.5 shows that,
on [0,∞), ψ is infinitely differentiable, strictly convex and that ψ(0) = 0, whilst
ψ(∞) =∞. As a particular consequence of these facts, it follows that E(X1) =
ψ ′(0+) ∈ [−∞,∞). In the case that E(X1) ≥ 0, Φ(q) is the unique solution to
ψ(θ) = q in [0,∞). When E(X1) < 0 the previous statement is true only when
q > 0. If E(X1) < 0 and q = 0, then there are two roots to the equation ψ(θ)= 0,
one of them being θ = 0 and the other being Φ(0) > 0. See Fig. 3.3 for further
clarification.

Proof of Theorem 3.12 Fix q > 0. Using spectral negativity to write x = Xτ+x on
{τ+x <∞}, the strong Markov property gives us

E
(
eΦ(q)Xt−qt |Fτ+x

)

= 1(τ+x ≥t)e
Φ(q)Xt−qt + 1(τ+x <t)e

Φ(q)x−qτ+x E
(
e
Φ(q)(Xt−Xτ+x )−q(t−τ

+
x )|Fτ+x

)

= e
Φ(q)X

t∧τ+x −q(t∧τ
+
x ),
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where, in the final equality, we have used the fact that E(Et (Φ(q)))= 1 for all t ≥ 0.
Taking expectations again, we have

E
(
e
Φ(q)X

t∧τ+x −q(t∧τ
+
x )
)= 1.

Noting that the expression in the above expectation is bounded above by eΦ(q)x , an
application of dominated convergence yields

E
(
eΦ(q)x−qτ+x 1(τ+x <∞)

)= 1,

which is equivalent to the statement of the theorem.
To cover the case q = 0, one may simply take limits as q ↓ 0 in (3.15), using

monotone convergence to deal with the expectation. �

The following two corollaries are worth recording for later.

Corollary 3.13 From the previous theorem, we have that P(τ+x <∞) = e−Φ(0)x ,
which is one if and only if Φ(0) = 0, if and only if ψ ′(0+) ≥ 0, if and only if
E(X1)≥ 0.

For the next corollary, we define a killed subordinator to be a subordinator which
is sent to an additional “cemetery” state at an independent and exponentially dis-
tributed time.

Corollary 3.14 If E(X1)≥ 0, then the process {τ+x : x ≥ 0} is a subordinator, and
otherwise it is equal in law to a subordinator killed at an independent exponential
time with parameter Φ(0).

Proof First, we claim that Φ(q)−Φ(0) is the Laplace exponent of a non-negative
infinitely divisible random variable. To see this, note that, for all x ≥ 0,

E
(
e−qτ+x |τ+x <∞

)= e−(Φ(q)−Φ(0))x = E
(
e−qτ

+
1 |τ+1 <∞

)x
,

and hence, in particular,

E
(
e−qτ

+
1 |τ+1 <∞

)= E
(
e−qτ

+
1/n |τ+1/n <∞

)n
,

showing that, for z ≥ 0, P(τ+1 ∈ dz|τ+1 <∞) is the law of an infinitely divisi-
ble random variable. Next, using the strong Markov property, spatial homogeneity
and, again, the special feature of spectral negativity that {Xτ+x = x} on the event
{τ+x <∞}, we have, for x, y ≥ 0 and q ≥ 0, that

E
(
e−q(τ

+
x+y−τ+x )1(τ+x+y<∞)|Fτ+x

)
1(τ+x <∞)

= E
(
e−qτ

+
y 1(τ+y <∞)

)
1(τ+x <∞)

= e−(Φ(q)−Φ(0))ye−Φ(0)y1(τ+x <∞).
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We see that the increment τ+x+y − τ+x is independent of Fτ+x on {τ+x <∞} and has
the same law as the subordinator with Laplace exponent Φ(q)−Φ(0), but killed at
an independent and exponentially distributed time with parameter Φ(0).

When E(X1) ≥ 0, we have that Φ(0) = 0 and hence the concluding statement
of the previous paragraph indicates that {τ+x : x ≥ 0} is a subordinator (without
killing). On the other hand, if E(X1) < 0, or equivalently Φ(0) > 0, then the second
statement of the corollary follows. �

Note that, embedded in the previous corollary is the same reasoning which lies
behind the justification that an inverse Gaussian process is a Lévy process. See
Sect. 1.2.5 and Exercise 1.6.

Exercises

3.1 For a general stochastic process on a filtered probability space, the operations
of completing the filtration and taking its right-continuous version must be treated
separately. However, for a Lévy process it turns out that completing the filtration is
already enough to make it right-continuous.

Suppose that X is a Lévy process defined on (Ω,F ,P) and that Ft is the sigma-
algebra obtained by completing σ(Xs : s ≤ t) by the null sets of P. We want to show
that, for all t ≥ 0,

Ft =
⋂

s>t

Fs .

(i) Fix t2 > t1 ≥ 0 and show that, for any t ≥ 0,

lim
u↓t E

(
eiθ1Xt1+iθ2Xt2 |Fu

)= E
(
eiθ1Xt1+iθ2Xt2 |Ft

)

almost surely, where θ1, θ2 ∈R.
(ii) Deduce that, for any sequence of times t1, . . . , tn ≥ 0,

E
(
g(Xt1, . . . ,Xtn)|Ft

)= E
(
g(Xt1, . . . ,Xtn)|Ft+

)

almost surely, for all functions g satisfying E(|g(Xt1 , . . . ,Xtn)|) <∞.
(iii) Conclude that for each A ∈Ft+, E(1A|Ft )= 1A almost surely, and hence that

Ft =Ft+.

3.2 Show that, for any x ≥ 0,

Y
(x)
t := (x ∨Xt)−Xt, t ≥ 0, and Z

(x)
t :=Xt −

(
Xt ∧ (−x)

)
, t ≥ 0,

are [0,∞)-valued strong Markov processes.
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Hint: following the original proof in Bingham (1975), it will be useful to show that,

for s, t ≥ 0, Yxt+s = Ỹ (Y
x
t )

s , where, for x ≥ 0, {Ỹ (x)s : s ≥ 0} is an independent copy

of {Y (x)s : s ≥ 0}.

3.3 (Proof of Theorem 3.8 and examples)

(i) Use the comments following Theorem 3.8 to prove it.
(ii) Prove that the following functions are submultiplicative: x ∨ 1, xα ∨ 1 |x| ∨ 1,
|x|α ∨ 1, exp(|x|β), log(|x| ∨ e), log log(|x| ∨ ee), where α > 0 and β ∈ (0,1].

(iii) Suppose thatX is a stable process of index α ∈ (0,2). Show that E(|Xt |η) <∞
for all t ≥ 0 if and only if η ∈ [0, α).

3.4 A generalised tempered stable process is a Lévy process with no Gaussian
component and Lévy measure given by

Π(dx)= 1(x>0)
c+

x1+α+ e−γ+x dx + 1(x<0)
c−

|x|1+α− eγ
−x dx,

where c± > 0, α± ∈ (−∞,2) and γ± > 0. Show that if X is a generalised tempered
stable process, then X may always be written in the form X = X+ − X− where
X+ = {X+t : t ≥ 0} and X− = {X−t : t ≥ 0} satisfy the following:

(i) If α± < 0 then X± is a compound Poisson process with drift.
(ii) If α± = 0 then X± is a gamma process with drift.

(iii) If α± ∈ (0,2), then up to the addition of a linear drift, X± has the same law
as a spectrally positive stable process with index α±, but considered under the
change of measure P

−γ± .

3.5 Suppose that ψ is the Laplace exponent of a spectrally negative Lévy process.
By considering the formula

ψ(β)=−aβ + 1

2
σ 2β2 +

∫

(−∞,0)
(
eβx − 1− βx1(x>−1)

)
Π(dx),

show that, on [0,∞), ψ is infinitely differentiable, strictly convex and that ψ(0)= 0
whilst ψ(∞)=∞.

3.6 Suppose thatX is a spectrally negative Lévy process with Lévy–Khintchine ex-
ponent Ψ . Here, we give another proof of the existence of a finite Laplace exponent
for all spectrally negative Lévy processes.

(i) Use spectral negativity, together with the lack-of-memory property to show
that, for x, y > 0,

P(Xeq > x + y)= P(Xeq > x)P(Xeq > y),
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where eq is an exponentially distributed random variable4 with parameter q ,
independent of X.

(ii) Deduce that Xeq is exponentially distributed and hence the Laplace exponent
ψ(β)=−Ψ (−iβ) exists and is finite for all β ≥ 0.

(iii) By considering the Laplace transform of the first-passage time τ+x as in
Sect. 3.3, show that one may also deduce via a different route that Xeq is ex-
ponentially distributed with parameter Φ(q). In particular show that X∞ is
either infinite with probability one or is exponentially distributed accordingly
as E(X1)≥ 0 or E(X1) < 0.
Hint: reconsider Exercise 3.5.

3.7 For this exercise, it will be useful to refer to Sect. 1.2.6. Suppose that X is a
stable Lévy process with index β = 1; in particular, there are no negative jumps.

(i) Show that, if α ∈ (0,1), then X is a driftless subordinator with Laplace expo-
nent satisfying

− log E
(
e−θX1

)= cθα, θ ≥ 0,

for some c > 0.
(ii) Show that, if α ∈ (1,2), then X has a Laplace exponent satisfying

− logE
(
e−θX1

)=−Cθα, θ ≥ 0,

for some C > 0. Confirm that X has no integer moments of order 2 and above.
Show, moreover, that X is a process with unbounded variation paths.

4As noted just after Definition 1.1, we are making an abuse of notation in the use of the measure
P here. Strictly speaking, we should work with the measure P × P , where P is the probability
measure on the space in which the random variable eq is defined. This abuse of notation will be
repeated at various points throughout this text.



Chapter 4
General Storage Models and Paths of Bounded
Variation

In this chapter, we return to the queueing and general storage models discussed in
Sects. 1.3.2 and 2.7.2. Predominantly, we shall concentrate on the asymptotic be-
haviour of the two quantities that correspond to the workload process and the idle
time in the M/G/1 queue, but now in the general setting described in Sect. 2.7.2.
Along the way, we will introduce some new tools, which will be of help both in this
chapter and in later chapters. Specifically, we shall spend some additional time look-
ing at the change of variable and compensation formulae. We also spend some time
discussing similarities between the mathematical description of the limiting distri-
bution of the workload process (when it is non-trivial) and the Pollaczek–Khintchine
formula. This requires a study of the small-scale behaviour of Lévy processes of
bounded variation. We start, however, by briefly recalling, and expanding a little on,
the mathematical background of general storage models.

4.1 General Storage Models

A general storage model consists of two processes: {At : t ≥ 0}, the volume of in-
coming work, and {Bt : t ≥ 0}, the total amount of work that can potentially exit
from the system as a result of processing work continuously. In the case of the
M/G/1 queue, we have At =∑Nt

i=1 ξi , t ≥ 0, where {Nt : t ≥ 0} is a Poisson pro-
cess and {ξi : i = 1,2, . . .} are the independent service times of the ordered cus-
tomers. Further, as the server processes at a constant unit rate, we have simply that
Bt = t . For all t ≥ 0, let Dt =At −Bt . The process D = {Dt : t ≥ 0} is clearly re-
lated to the workload of the system, although it is itself not a suitable candidate to
model the workload. Indeed, D may become negative and the workload is clearly a
non-negative quantity. The work stored in the system, W = {Wt : t ≥ 0}, is defined
instead by

Wt =Dt +Lt , t ≥ 0,

where L = {Lt : t ≥ 0} is increasing with paths that are right continuous (and left
limits are of course automatic by monotonicity), and is added to the process D to

A.E. Kyprianou, Fluctuations of Lévy Processes with Applications, Universitext,
DOI 10.1007/978-3-642-37632-0_4, © Springer-Verlag Berlin Heidelberg 2014
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ensure that Wt ≥ 0 for all t ≥ 0. The process L must only increase when W = 0, so
in particular

∫ ∞

0
1(Wt>0)dLt = 0.

It is easy to check that we may take Lt =−(infs≤t Ds ∧ 0), t ≥ 0. Indeed with this
choice of L, we have that {Wt = 0} if and only if Dt = infs≤t Ds ∧ 0 if and only if
t is in the support of the measure dL. It can also be proved that there is no other
choice of L fulfilling these requirements (see for example Kella and Whitt, 1996).

We are concerned with the case that the process A is a pure jump subordinator
and B is a linear trend. Specifically, Dt = w − Xt where w ≥ 0 is the workload
already in the system at time t = 0 and X is a spectrally negative Lévy process of
bounded variation. A little algebra with the given expressions for D and L shows
that

Wt = (w ∨Xt)−Xt, t ≥ 0,

where Xt = sups≤t Xs .
We know from the discussion in Sect. 3.3 (see also Exercise 3.6) that the process

X has Laplace exponent ψ(θ)= logE(eθX1), θ ≥ 0. Writing X in the form δt − St ,
t ≥ 0, where δ > 0 and S = {St : t ≥ 0} is a pure jump subordinator, it is convenient
to write the Laplace exponent of X in the form

ψ(θ)= δθ −
∫

(0,∞)
(
1− e−θx

)
ν(dx), θ ≥ 0,

where ν is the Lévy measure of the subordinator S, which satisfies
∫
(0,∞)(1 ∧

x)ν(dx) <∞.

4.2 Idle Times

We start by introducing the parameter

ρ := δ −ψ
′(0+)
δ

.

Note that regimes 0< ρ < 1, ρ = 1 and ρ > 1 correspond precisely to the regimes
ψ ′(0+) > 0, ψ ′(0+) = 0 and ψ ′(0+) < 0, respectively. For the first two of these
cases, we also have that Φ(0)= 0 and, in the third case, we have Φ(0) > 0, where
Φ is the right inverse of ψ , defined in (3.16). When δ = 1 and ν = λF , where F is
a distribution function and λ > 0 is the arrival rate, the process W is the workload
of an M/G/1 queue. In that case ρ = λE(ξ), where ξ is a random variable with
distribution F , and this constant is called the traffic intensity.

The main purpose of this section is to prove the following result, which includes
Theorem 1.11 as a corollary.
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Theorem 4.1 Suppose that ρ > 1. The total time that the storage process spends
idle,

I :=
∫ ∞

0
1(Wt=0)dt,

has the distribution

P(I ∈ dx|W0 =w)=
(
1− e−Φ(0)w

)
δ0(dx)+ δΦ(0)e−Φ(0)(w+xδ)dx, x ≥ 0.

Otherwise, if 0< ρ ≤ 1, then I is infinite with probability one.

Proof Essentially the proof mimics the steps of Exercise 1.9. As one sees for the
case of theM/G/1 queue, a key ingredient to the proof is that one may identify the
processes {δ ∫ t0 1(Ws=0)ds : t ≥ 0} and {Xt : t ≥ 0} as one and the same. To see why
this is true in the general storage model, recall from the Lévy–Itô decomposition that
X has a countable number of jumps over finite intervals of time, hence the same is
true of W . Further, since X has negative jumps, Ws = 0 only if there is no jump
at time s. Hence, given that X is the difference of a linear drift with rate δ and a
subordinator S, it follows that, for each t ≥ 0,

Xt =
∫ t

0
1(Xs=Xs)dXs

= δ
∫ t

0
1(Xs=Xs)ds −

∫ t

0
1(Xs=Xs)dSs

= δ
∫ t

0
1(Xs=Xs)ds

almost surely, where the final equality follows as a consequence of the fact that
∫ t

0
1(Xs=Xs)dSs ≤

∫ t

0
1(ΔSs=0)dSs = 0, t ≥ 0.

It is important to note that this calculation only works for spectrally negative Lévy
processes of bounded variation on account of the particular form of the Lévy–Itô
decomposition.

Now, following Exercise 3.6 (iii), we can use the equivalence of the events
{X∞ > x} and {τ+x <∞}, where τ+x is the first-hitting time of (x,∞) defined in
(3.14), to deduce that X∞ is exponentially distributed with parameter Φ(0). When
Φ(0) = 0, the previous statement is understood to mean that P(X∞ = ∞) = 1.
When w = 0, we have that

X∞
δ
=
∫ ∞

0
1(Xs=Xs)ds =

∫ ∞

0
1(Ws=0)ds. (4.1)

Hence, we see that I is exponentially distributed with parameter δΦ(0). Recalling
the values of ρ which imply that Φ(0) > 0, we see that the statement of the theorem
follows for the case w = 0.
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In general, when w > 0, the equality (4.1) is not valid. Instead, we have that

∫ ∞

0
1(Ws=0)ds =

∫ τ+w

0
1(Ws=0)ds +

∫ ∞

τ+w
1(Ws=0)ds

= 1(τ+w <∞)
∫ ∞

τ+w
1(Ws=0)ds

= 1(X∞≥w)I
∗, (4.2)

where I ∗ is independent of Fτ+w on {τ+w < ∞} and equal in distribution to
∫∞

0 1(Ws=0)ds with w = 0. Note that the first integral in the right-hand side of the
first equality disappears on account of the fact thatWs > 0 for all s < τ+w . The state-
ment of the theorem now follows for 0< ρ ≤ 1 by once again recalling that, in this
regime, Φ(0)= 0 and hence, from (4.2), X∞ =∞ with probability one, which, in
turn, implies that I = I ∗. This quantity has previously been shown to be infinite with
probability one. On the other hand, when ρ > 1, we see from (4.2) that there is an
atom at zero, corresponding to the event {X∞ <w}, with probability 1− e−Φ(0)w .
Otherwise, with probability e−Φ(0)w , the integral I has the same distribution as I ∗.
Again, from previous calculations for the case w = 0, we have seen that this is ex-
ponential with parameter δΦ(0), and the proof is complete. �

4.3 Change of Variable and Compensation Formulae

Next, we spend a little time introducing the change of variable formula and the
compensation formula. Both formulae pertain to a form of stochastic calculus. The
theory of stochastic calculus is an avenue which we choose not to pursue in full
generality over and above making some brief remarks. Our exposition will suffice
to study in more detail the storage processes discussed in Chap. 1, as well as a
number of other applications in later chapters.

4.3.1 The Change of Variable Formula

We assume that X = {Xt : t ≥ 0} is a Lévy process of bounded variation. Referring
back to Chap. 2, (2.21) and (2.22), we recall that we may always write its Lévy–
Khintchine exponent as

Ψ (θ)=−iδθ +
∫

R

(
1− eiθx)Π(dx),

where δ ∈ R and
∫
R
(1 ∧ |x|)Π(dx) <∞. Accordingly, we identify X pathwise in

the form

Xt = δt +
∫

[0,t]

∫

R

xN(ds × dx), t ≥ 0,
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where, as usual, N is the Poisson random measure associated with the jumps of X.
Our goal in this section is to prove the following change of variable formula.

Theorem 4.2 Let C1,1([0,∞)×R) be the space of functions f : [0,∞)×R→R

which are continuously differentiable in each variable (in the case of the deriva-
tive in the first variable at the origin, a right derivative is understood). If f ∈
C1,1([0,∞)×R) then, for t ≥ 0,

f (t,Xt ) = f (0,X0)+
∫ t

0

∂f

∂t
(s,Xs)ds + δ

∫ t

0

∂f

∂x
(s,Xs)ds

+
∫

[0,t]

∫

R

(
f (s,Xs− + x)− f (s,Xs−)

)
N(ds × dx).

It will become apparent from the proof of this theorem that the final integral with
respect to N is well defined.

It is worth mentioning that the change of variable formula exists in a much more
general form. For example, it is known (cf. Sect. 7 of Chap. II of Protter 2004) that
if V = {Vt : t ≥ 0} is any right-continuous mapping from [0,∞) to R (random or
deterministic) of bounded variation and f (s, x) ∈ C1,1([0,∞)×R), then {f (t,Vt ) :
t ≥ 0} is a mapping from [0,∞) to R of bounded variation which satisfies, for t ≥ 0,

f (t,Vt ) = f (0,V0)+
∫ t

0

∂f

∂t
(s,Vs)ds +

∫

(0,t]
∂f

∂x
(s,Vs−)dVs

+
∑

0<s≤t

{

f (s,Vs)− f (s,Vs−)−ΔVs ∂f
∂x
(s,Vs−)

}

, (4.3)

where ΔVs = Vs − Vs−. Note also that since V is of bounded variation, it has a de-
composition as the difference of two increasing functions mapping [0,∞) to [0,∞).
Hence, the existence of left-limits in the paths of V is automatically guaranteed. This
means that V has a countable number of discontinuities (see Exercise 2.4). One may,
therefore, understand the final term on the right-hand side of (4.3) as a convergent
sum over the discontinuities of V . In the case that V is a Lévy process of bounded
variation, it is a straightforward exercise to deduce that when one represents the
discontinuities of V via a Poisson random measure, Eq. (4.3) and the conclusion of
Theorem 4.2 agree.

Proof of Theorem 4.2 Define, for all ε > 0,

Xεt = δt +
∫

[0,t]

∫

{|x|≥ε}
xN(ds × dx), t ≥ 0.

As Π(R\(−ε, ε)) < ∞, it follows that N counts an almost surely finite num-
ber of jumps over [0, t] × {R\(−ε, ε)}. Moreover, Xε = {Xεt : t ≥ 0} is a com-
pound Poisson process with drift. Suppose the collection of jumps of Xε up to
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time t ≥ 0 are described by the time-space points {(Ti, ξi) : i = 1, . . . ,N}, where
N=N([0, t] × {R\(−ε, ε)}). Let T0 = 0. Then a telescopic sum gives

f
(
t,Xεt

) = f (0,Xε0
)+

N∑

i=1

(
f
(
Ti,X

ε
Ti

)− f (Ti−1,X
ε
Ti−1

))

+ (
f
(
t,Xεt

)− f (TN,XεTN
))
.

Now noting that Xε is piecewise linear, we have

f
(
t,Xεt

)

= f (0,Xε0
)

+
N∑

i=1

(∫ Ti

Ti−1

∂f

∂t

(
s,Xεs

)+ δ ∂f
∂x

(
s,Xεs

)
ds + (

f
(
Ti,X

ε
Ti− + ξi

)− f (Ti,XεTi−
))
)

+
∫ t

TN

∂f

∂t

(
s,Xεs

)+ δ ∂f
∂x

(
s,Xεs

)
ds

= f (0,Xε0
)+

∫ t

0

∂f

∂t

(
s,Xεs

)+ δ ∂f
∂x

(
s,Xεs

)
ds

+
∫

[0,t]

∫

R\{0}
(
f
(
s,Xεs− + x

)− f (s,Xεs−
))

1(|x|≥ε)N(ds × dx). (4.4)

(Note that the smoothness of f has been used here.)
From Exercise 2.8, we know that any Lévy process of bounded variation may

be written as the difference of two independent subordinators. In this spirit, write
Xt =X(+)t −X(−)t , where

X
(+)
t = (δ ∨ 0)t +

∫

[0,t]

∫

(0,∞)
xN(ds × dx), t ≥ 0,

and

X
(−)
t = |δ ∧ 0|t −

∫

[0,t]

∫

(−∞,0)
xN(ds × dx), t ≥ 0.

Now let

X
(+,ε)
t = (δ ∨ 0)t +

∫

[0,t]

∫

[ε,∞)
xN(ds × dx) t ≥ 0,

and

X
(−,ε)
t = |δ ∧ 0|t −

∫

[0,t]

∫

(−∞,−ε]
xN(ds × dx), t ≥ 0,

and note, by almost sure monotone convergence, that as ε ↓ 0, for each fixed t ≥ 0,
X
(±,ε)
t ↑ X(±)t , for i = 1,2. Since Xεt = X(+,ε)t − X(−,ε)t , we see that, for each
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fixed t > 0, we have limε↓0X
ε
t = Xt almost surely. By replacing [0, t] by [0, t)

in the delimiters of the definitions above it is also clear that, for each fixed t > 0,
limε↓0X

ε
t− =Xt− almost surely.

Now define the random region B = {0 ≤ x ≤ |Xεs | : s ≤ t and ε > 0}. Note that
B is almost surely bounded in R since it is contained in

{
0≤ x ≤X(+)s : s ≤ t

}∪ {0≥ x ≥−X(−)s : s ≤ t
}
,

which is the union of two almost surely bounded sets, thanks to the right-continuity
of paths. Due to the assumed smoothness of f , both derivatives of f are uniformly
bounded (by a random value) on [0, t] × B , where B is the closure of the set B .
Using the limiting behaviour of Xε in ε and boundedness of the derivatives of f on
[0, t] ×B together with almost sure dominated convergence, we see that

lim
ε↓0

∫ t

0

∂f

∂t

(
s,Xεs

)+ δ ∂f
∂x

(
s,Xεs

)
ds =

∫ t

0

∂f

∂t
(s,Xs)+ δ ∂f

∂x
(s,Xs)ds.

Again, using uniform boundedness of ∂f/∂x, but this time on [0, t] × {x + B :
|x| ≤ 1}, we note, with the help of the Mean Value Theorem, that, for all ε > 0 and
s ∈ [0, t],

∣
∣
(
f
(
s,Xεs− + x

)− f (s,Xεs−
))

1(ε≤|x|<1)
∣
∣≤ C|x|1(|x|<1),

where C > 0 is some random variable, independent of s, ε and x. The function
|x| integrates against N on [0, t] × (−1,1), thanks to the assumption that X has
bounded variation. Now appealing to almost sure dominated convergence again, we
have that

lim
ε↓0

∫

[0,t]

∫

(−1,1)

(
f
(
s,Xεs− + x

)− f (s,Xεs−
))

1(|x|≥ε)N(ds × dx)

=
∫

[0,t]

∫

(−1,1)
f (s,Xs− + x)− f (s,Xs−)N(ds × dx).

A similar limit holds when the delimiters in the double integrals above are replaced
by [0, t]× {R\(−1,1)} as there are, at most, a finite number of atoms in the support
of N in this domain. Now taking limits on both sides of (4.4), the statement of the
theorem follows. �

It is clear from the above proof that one could not expect such a formula to
be valid for a general Lévy process. In order to write down a change of variable
formula for a general Lévy process, X, one must first have an understanding of
stochastic integrals with respect to X. At the very least, we need to have a definition
for integrals of the form

∫ t

0
g(s,Xs−)dXs, (4.5)
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for continuous functions g. Roughly speaking, this integral may be understood as
the limit

lim
‖P‖↓0

∑

i≥1

g(ti−1,Xti−1)(Xt∧ti −Xt∧ti−1),

where P = {0= t0 ≤ t1 ≤ t2 ≤ · · · } is a partition of [0,∞), ‖P‖ = supi≥1(ti − ti−1)

and the limit is taken in probability, uniformly in t on [0, T ], where T > 0 is some
finite time horizon. This is not the only way to make sense of (4.5), although all
definitions must be equivalent; see for example Exercise 4.4. In the case that X has
bounded variation, the integral (4.5) takes the recognisable form

∫ t

0
g(s,Xs−)dXs = δ

∫ t

0
g(s,Xs)ds +

∫

[0,t]

∫

R

g(s,Xs−)xN(ds × dx). (4.6)

Establishing these facts is of course non-trivial, and, taking account of the main
theme of this book (fluctuation theory), we shy away from their proofs. The reader
is otherwise directed to Applebaum (2004) for a focused account of the necessary
calculations. Protter (2004) also gives the much broader picture for integration with
respect to a general semi-martingale. A Lévy process is an example of a broader
family of stochastic processes, called semi-martingales, which form a natural class
from which to construct a theory of stochastic integration. We finish this section by
simply stating Itô’s formula for a general Lévy process,1 which serves as a change
of variable for the cases not covered by Theorem 4.2.

Theorem 4.3 Let C1,2([0,∞) × R) be the space of functions f : [0,∞) × R

which are continuously differentiable in the first variable (understood as the right-
derivative at the origin) and twice continuously differentiable in the second vari-
able. Then, for a general Lévy process, X, with Gaussian coefficient σ ∈ R and
f ∈ C1,2([0,∞)×R), we have, for t ≥ 0,

f (t,Xt ) = f (0,X0)+
∫ t

0

∂f

∂t
(s,Xs)ds +

∫ t

0

∂f

∂x
(s,Xs−)dXs

+
∫ t

0

1

2
σ 2 ∂

2f

∂x2
(s,Xs)ds

+
∫

[0,t]

∫

R

(

f (s,Xs− + x)− f (s,Xs−)− x ∂f
∂x
(s,Xs−)

)

N(ds × dx).

1As with the change of variable formula, a more general form of Itô’s formula exists which includes
the statement of Theorem 4.3. The natural setting as indicated above is the case that X is a semi-
martingale.
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4.3.2 The Compensation Formula

Although it was indicated that this chapter principally concerns processes of
bounded variation, the compensation formula, which we will shortly discuss, is
applicable to all Lévy processes. Suppose that X is a general Lévy process with
Lévy measure Π . Recall our running assumption that X is defined on the filtered
probability space (Ω,F ,F,P), where F = {Ft : t ≥ 0} is assumed to satisfy les
conditions habituelles. As usual, N will denote Poisson random measure with in-
tensity dt ×Π(dx) describing the jumps of X. The main result of this section may
be considered as a generalisation of the results in Theorem 2.7.

Theorem 4.4 Suppose φ : [0,∞)×R×Ω→[0,∞) is a random time-space func-
tion such that

(i) as a trivariate function φ = φ(t, x)[ω] is measurable,
(ii) for each t ≥ 0, φ(t, x)[ω] is B(R)×Ft -measurable and

(iii) for each x ∈ R, with probability one, {φ(t, x) : t ≥ 0} is a left continuous pro-
cess.

Then, for all t ≥ 0,

E

(∫

[0,t]

∫

R

φ(s, x)N(ds × dx)

)

= E

(∫ t

0

∫

R

φ(s, x)Π(dx)ds

)

(4.7)

with the understanding that the right-hand side is infinite if and only if the left-hand
side is.

Note that, for each t, ε > 0,
∫

[0,t]

∫

R\(−ε,ε)
φ(s, x)N(ds × dx)

is nothing but the sum over a finite number of terms of positive random objects
and hence, under the first assumption on φ, is measurable in ω. By (almost sure)
monotone convergence, the integral

∫
[0,t]

∫
R
φ(s, x)N(ds × dx) is well defined as

lim
ε↓0

∫

[0,t]

∫

R\(−ε,ε)
φ(s, x)N(ds × dx),

and is measurable in ω (recall when the limit of a sequence of measurable functions
exists it is also measurable). Hence the left-hand side of (4.7) is well defined, even
if infinite in value.

On the other hand, under the first assumption on φ, Fubini’s Theorem implies
that,

∫ t

0

∫

R

φ(s, x)[ω]Π(dx)ds
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is measurable in ω. Hence, the expression on the right-hand side of (4.7) is also well
defined, even when infinite in value.

Proof of Theorem 4.4 Suppose initially that, in addition to the assumptions of the
theorem, φ is uniformly bounded by C(1 ∧ x2), for some C > 0. This ensures the
finiteness of the expressions on the left-hand and right-hand sides of (4.7). Write,
for t ≥ 0 and x ∈R,

φn(t, x)= φ(0, x)1(t=0) +
∑

k≥0

φ
(
k/2n, x

)
1(t∈(k/2n,(k+1)/2n]), (4.8)

noting that φn also satisfies the assumptions (i)–(iii) of the theorem. Hence, as re-
marked above, for each ε > 0,

∫

[0,t]

∫

R\(−ε,ε)
φn(s, x)N(ds × dx)

is well defined and measurable in ω. We have, for t, ε > 0,

E

(∫

[0,t]

∫

R\(−ε,ε)
φn(s, x)N(ds × dx)

)

= E

(∑

k≥0

∫

( k2n ∧t, k+1
2n ∧t]

∫

R\(−ε,ε)
φ
(
k/2n, x

)
N(ds × dx)

)

= E

(∑

k≥0

E

(∫

( k2n ∧t, k+1
2n ∧t]

∫

R\(−ε,ε)
φ
(
k/2n, x

)
N(ds × dx)

∣
∣
∣
∣F k

2n ∧t
))

= E

(∑

k≥0

∫

( k2n ∧t, k+1
2n ∧t]

∫

R\(−ε,ε)
φ
(
k/2n, x

)
Π(dx)ds

)

= E

(∫

[0,t]

∫

R\(−ε,ε)
φn(s, x)Π(dx)ds

)

, (4.9)

where, in the third equality, we have used the fact that N has independent counts
on disjoint domains, the measurability of φn(k/2n, x) and an application of The-
orem 2.7 (iii). Since it is assumed that φ is uniformly bounded by C(1 ∧ x2), we
may apply dominated convergence on both sides of (4.9) as n ↑ ∞, together with
the fact that limn↑∞ φn(t, x) = φ(t−, x) = φ(t, x) almost surely (by the assumed
left continuity of φ), to conclude that

E

(∫

[0,t]

∫

R\(−ε,ε)
φ(s, x)N(ds × dx)

)

= E

(∫ t

0

∫

R\(−ε,ε)
φ(s, x)Π(dx)ds

)

,

for all t, ε > 0. Now take limits as ε ↓ 0 and apply the Monotone Convergence
Theorem on each side of the above equality to deduce (4.7), for the case that φ is
uniformly bounded by C(1∧ x2).
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To remove the aforementioned condition, note that it has been established that
(4.7) holds for φ ∧C(1∧ x2), where φ is given in the statement of the theorem. By
taking limits as C ↑ ∞ in the aforementioned equality, again with the help of the
Monotone Convergence Theorem, the required result follows. �

Reviewing the proof of this result, there is a rather obvious corollary which fol-
lows. We leave its proof to the reader as an exercise.

Corollary 4.5 Under the same conditions as Theorem 4.4, we have for all 0≤ u≤
t <∞,

E

(∫

(u,t]

∫

R

φ(s, x)N(ds × dx)

∣
∣
∣
∣Fu

)

= E

(∫ t

u

∫

R

φ(s, x)Π(dx)ds

∣
∣
∣
∣Fu

)

.

The last corollary also implies the martingale result below.

Corollary 4.6 Assuming the same conditions as Theorem 4.4 and that, for all
t ≥ 0,

E

(∫

[0,t]

∫

R

φ(s, x)dsΠ(dx)

)

<∞,

we have that

Mt :=
∫

[0,t]

∫

R

φ(s, x)N(ds × dx)−
∫

[0,t]

∫

R

φ(s, x)Π(dx)ds, t ≥ 0,

is a martingale.

Proof The additional integrability condition on φ and Theorem 4.4 implies that, for
each t ≥ 0,

E|Mt | ≤ 2E

(∫

[0,t]

∫

R

φ(s, x)dsΠ(dx)

)

<∞.

For 0≤ u≤ t , we see that

E(Mt |Fu) =Mu +E

(∫

(u,t]

∫

R

φ(s, x)N(ds × dx)

∣
∣
∣
∣Fu

)

−E

(∫ t

u

∫

R

φ(s, x)Π(dx)ds

∣
∣
∣
∣Fu

)

=Mu,

where the last equality is a consequence of Corollary 4.5. �
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4.4 The Kella–Whitt Martingale

In this section, we introduce a martingale, the Kella–Whitt martingale, which will
prove to be useful for the analysis concerning the existence of a stationary distri-
bution of the workload process W . The martingale itself is of implicit interest as
far as fluctuation theory of general spectrally negative Lévy processes is concerned,
since one may derive a number of important identities from it. These identities also
appear later in this text as a consequence of other techniques, centred around the
Wiener–Hopf factorisation. See in particular Exercise 4.7.

The Kella–Whitt martingale takes its name from Kella and Whitt (1992) and is
presented in the theorem below.

Theorem 4.7 Suppose that X is a spectrally negative Lévy process of bounded
variation. For each α ≥ 0, the process

ψ(α)

∫ t

0
e−α(Xs−Xs)ds + 1− e−α(Xt−Xt ) − αXt , t ≥ 0,

is a zero-mean P-martingale with respect to F.

Proof The proof of this theorem will rely on the change of variable and compensa-
tion formulae. To be more precise, we will make use of the slightly more general
version of the change of variable formula, given in Exercise 4.2, which takes the
form:

f (Xt ,Xt ) = f (X0,X0)+ δ
∫ t

0

∂f

∂x
(Xs,Xs)ds +

∫ t

0

∂f

∂y
(Xs,Xs)dXs

+
∫

[0,t]

∫

(−∞,0)
(
f (Xs,Xs− + x)− f (Xs,Xs−)

)
N(ds × dx)

for f (y, x) ∈ C1,1([0,∞)×R) and t ≥ 0. From this, we have that

e−α(Xt−Xt ) = 1+ αδ
∫ t

0
e−α(Xs−Xs)ds − α

∫ t

0
e−α(Xs−Xs)dXs

+
∫

[0,t]

∫

(−∞,0)
(
e−α(Xs−Xs−−x) − e−α(Xs−Xs−)

)
N(ds × dx)

= 1+ αδ
∫ t

0
e−α(Xs−Xs)ds − α

∫ t

0
e−α(Xs−Xs)dXs

+
∫ t

0

∫

(0,∞)
(
e−α(Xs−Xs−+x) − e−α(Xs−Xs−)

)
ν(dx)ds

+Mt, (4.10)
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(recall that ν is the Lévy measure of −X, defined at the end of Sect. 4.1), where, for
each t ≥ 0,

Mt =
∫

[0,t]

∫

(−∞,0)
(
e−α(Xs−Xs−−x) − e−α(Xs−Xs−)

)
N(ds × dx)

−
∫ t

0

∫

(0,∞)
(
e−α(Xs−Xs−+x) − e−α(Xs−Xs−)

)
ν(dx)ds. (4.11)

Note that the second integral on the right-hand side of (4.10) can be replaced by
Xt since the process X increases if and only if the integrand is equal to one. Note
also that the final double integral on the right-hand side of (4.10) combines with the
first integral to give

αδ

∫ t

0
e−α(Xs−Xs)ds +

∫ t

0
e−α(Xs−Xs)ds

∫

(0,∞)
(
e−αx − 1

)
ν(dx)

=ψ(α)
∫ t

0
e−α(Xs−Xs)ds.

The theorem is thus proved once we show that M = {Mt : t ≥ 0} is a martingale.
However, this is a consequence of Corollary 4.6. �

For the reader who is more familiar with stochastic calculus and Itô’s formula
for a general Lévy process, the conclusion of the previous theorem is still valid
when we replace X by a general spectrally negative Lévy process. See Exercise 4.6.
The interested reader is also encouraged to consult Kella and Whitt (1992), where
general complex-valued martingales of this type are derived, as well as Kennedy
(1976), Jacod and Shiryaev (1987) and Nguyen-Ngoc and Yor (2005).

The theorem below, taken from Kyprianou and Palmowski (2005), is an example
of how one may use the Kella–Whitt martingale to study the distribution of the
running infimum X = {Xt : t ≥ 0} where Xt := infs≤t Xs .

Theorem 4.8 Suppose that X is a general spectrally negative Lévy process with
Laplace exponent ψ and that eq is a random variable which is exponentially dis-
tributed with parameter q and independent of X. Then, for all β ≥ 0 and q > 0,

E
(
e−β(Xeq−Xeq )

)= q

Φ(q)

β −Φ(q)
ψ(β)− q . (4.12)

Proof As indicated in the remarks following its proof, Theorem 4.7 is still valid
when X is a general spectrally negative Lévy process. We will assume this fact
without proof here (otherwise refer to Exercise 4.6).

SinceM , defined in (4.11), is a martingale, it follows that E(Meq )= 0. That is to
say, for all α ≥ 0,

ψ(α)E

(∫ eq

0
e−α(Xs−Xs)ds

)

+ 1−E
(
e−α(Xeq−Xeq )

)− αE(Xeq )= 0. (4.13)
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Taking the first of the three expectations, note that

E

(∫ eq

0
e−α(Xs−Xs)ds

)

= E

(∫ ∞

0
du · qe−qu

∫ ∞

0
1(s≤u)e−α(Xs−Xs)ds

)

= 1

q
E

(∫ ∞

0
qe−qse−α(Xs−Xs)ds

)

= 1

q
E
(
e−α(Xeq−Xeq )

)
.

To compute the third expectation of (4.13), we recall from Exercise 3.6 that Xeq is
exponentially distributed with parameter Φ(q). Hence, the aforesaid expectation is
equal to 1/Φ(q). Now returning to (4.13), we may rewrite it as (4.12). �

Corollary 4.9 For all β ≥ 0,

E
(
eβX∞

)= (
0∨ψ ′(0+)) β

ψ(β)
. (4.14)

In particular, this shows that −Xt , and then by duality Xt −Xt , has a non-defective
limiting distribution if and only if ψ ′(0+) > 0.

Proof By monotonicity,−Xt has an almost sure limit as t ↑∞. Recalling that−Xt
is equal in distribution to Xt −Xt , its limiting distribution is characterised by tak-
ing limits in (4.12) as q ↓ 0. To this end, note that when Φ(0) = 0, equivalently
ψ ′(0+)≥ 0,

ψ ′(0+)= lim
θ↓0

ψ(θ)

θ
= lim
q↓0

q

Φ(q)
.

On the other hand, when Φ(0) > 0, equivalently ψ ′(0+) < 0,

lim
q↓0

q

Φ(q)
= 0.

Using these limits, the Final Value Theorem for Laplace transforms gives us (4.14).
The limiting distribution is clearly defective when ψ ′(0+)≤ 0. When ψ ′(0+) > 0,
non-defectiveness can be seen by taking β ↓ 0. �

4.5 Stationary Distribution of the Workload

In this section, we turn to the stationary distribution of the workload process W ,
making use of the conclusion in Corollary 4.9, which itself is drawn from the Kella–
Whitt martingale. The setting is as in the introduction to this chapter.
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Theorem 4.10 Suppose that 0 < ρ < 1. Then, for all w ≥ 0, the workload has a
stationary distribution,

lim
t↑∞P(Wt ∈ dx|W0 =w)= (1− ρ)

∞∑

k=0

ρkη∗k(dx), (4.15)

where

η(dx)= 1

δρ
ν(x,∞)dx. (4.16)

Here, we understand η∗0(dx)= δ0(dx), so that the limiting distribution has an atom
at zero. Otherwise, when ρ ≥ 1, there is no stationary distribution.

Proof First suppose that ρ ≥ 1. In this case, we know that ψ ′(0+)≤ 0. SinceWt =
(w ∨Xt)−Xt ≥Xt −Xt , it follows that, for allM > 0,

lim
t↑∞P(Wt >M)≥ lim

t↑∞P(Xt −Xt >M)= 1,

where the final equality follows from Corollary 4.9. This shows that Wt does not
converge in distribution.

Now suppose that 0 < ρ < 1. In this case ψ ′(0+) > 0 and hence, from Corol-
lary 3.13, we know that P(τ+w <∞) = 1. It follows that, for all t ≥ τ+w , Wt =
Xt −Xt and so, from Corollary 4.9, we see that, for all β > 0,

lim
t↑∞E

(
e−βWt

)=ψ ′(0+) β

ψ(β)
. (4.17)

The remainder of the proof thus requires us to show that the right-hand side of (4.15)
has Laplace–Stieltjes transform equal to the right-hand side of (4.17).

To this end, using integration by parts in the definition of ψ , note that

ψ(β)

β
= δ−

∫ ∞

0
e−βxν(x,∞)dx. (4.18)

As ψ ′(0+) > 0, we have that δ−1
∫∞

0 ν(x,∞)dx < 1; indeed, for all β ≥ 0, we have
that δ−1

∫∞
0 e−βxν(x,∞)dx < 1. We may thus develop the right-hand side of (4.17)

as follows:

ψ ′(0+) β

ψ(β)
= ψ

′(0+)
δ

∑

k≥0

(
1

δ

∫ ∞

0
e−βxν(x,∞)dx

)k
, β ≥ 0.

Now define the measure η(dx)= (δρ)−1ν(x,∞)dx. We have

ψ ′(0+) β

ψ(β)
= ψ

′(0+)
δ

∑

k≥0

ρk
∫ ∞

0
e−βxη∗k(dx), β ≥ 0, (4.19)



106 4 General Storage Models and Paths of Bounded Variation

with the understanding that η∗0(dx) = δ0(dx). Note that ψ ′(0+)/δ = 1 − ρ. The
result now follows by comparing (4.19) against (4.17). Note in particular that the
stationary distribution, as one would expect, is independent of the initial value of
the workload. �

Theorem 4.10 contains Theorem 1.12. To see this, simply set δ = 1, ν = λF ,
where F is the distribution with mean μ.

As noted earlier in Sect. 1.3.2, for the case of theM/G/1 queue with 0< ρ < 1,
the expression for the stationary distribution, given in statement of Theorem 4.10, is
remarkably similar to the expression for the Pollaczek–Khintchine formula, given in
Theorem 1.8. The similarity of these two can be explained in a simple way using the
Duality Lemma 3.4. Duality implies that, for each fixed t ≥ 0, Xt −Xt is equal in
distribution to −Xt . As was noted in the proof of Theorem 4.10, when 0< ρ < 1,
the limit in distribution of W is independent of w and equal to the distributional
limit of Xt −Xt and hence by the previous remarks, is also equal to the distribution
of −X∞. Noting further that

P(−X∞ ≤ x)= Px

(
τ−0 =∞

)
,

where τ−0 = inf{t > 0 :Xt < 0}, we see that Theorem 4.10 also reads: For all x > 0,

Px

(
τ−0 =∞

)= (1− ρ)
∞∑

k=0

ρkη∗k(x), (4.20)

where, now, η∗0(x) = 1. However, this is precisely the combined statements of
Theorems 1.8 and 1.9, but now for a general spectrally negative Lévy process of
bounded variation.

4.6 Small-Time Behaviour and the Pollaczek–Khintchine
Formula

Within the context of either the stationary distribution of the workload process or the
ruin problem, the reason for the appearance of a geometric-type sum in both cases
is related to how spectrally negative Lévy processes of bounded variation behave
at arbitrarily small times, and consequently how the entire path of the process X
decomposes into objects called excursions. This section is dedicated to explaining
this phenomenon.

We start the discussion with a lemma, essentially due to Shtatland (1965); see
also Chap. IV of Gikhman and Skorokhod (1975).

Lemma 4.11 Suppose that X is a spectrally negative Lévy process of bounded
variation. Then

lim
t↓0

Xt

t
= δ

almost surely.
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Proof Recall from the Lévy–Itô decomposition that jumps of Lévy processes are
described by a Poisson random measure with intensity dt × ν(dx). From this, it fol-
lows that the first jump of X of magnitude greater than ε appears after a length of
time which is exponentially distributed with parameter ν(ε,∞). Since we are inter-
ested in small-time behaviour, it therefore is of no consequence if we assume that ν
is concentrated on (0, ε). That is to say, there are no negative jumps of magnitude
greater than ε.

Recall thatX is written in the formXt = δt−St , for t ≥ 0, where S = {St : t ≥ 0}
is a pure jump subordinator with Lévy measure ν. The proof is then completed by
showing that

lim
t↓0

St

t
= 0.

To this end, setMn = S2−n/2
−n and note that, on the one hand,

E(Mn+1|M1, . . . ,Mn)= 2Mn − 2n+1
E(S2−n − S2−(n+1) |M1, . . . ,Mn). (4.21)

On the other hand, time reversing the path {St : t ≤ 2−n} and using the sta-
tionarity and independence of increments, we have that the law of S2−(n+1) −
S0 given {S2−n , S2−(n−1) , . . . , S1/2} is equal to the law of S2−n − S2−(n+1) given
{S2−n , S2−(n−1) , . . . , S1/2}. Hence,

E(S2−n − S2−(n+1) |M1, . . . ,Mn)= E(S2−(n+1) |M1, . . . ,Mn).

Substituting back into (4.21), we see that E(Mn+1|M1, . . . ,Mn) =Mn and hence
the sequence M = {Mn : n≥ 1} is a positive P-martingale. The Martingale Conver-
gence Theorem implies that M∞ := limn↑∞Mn exists and Fatou’s Lemma implies
that

E(M∞)≤ E(M1)=
∫

(0,ε)
xν(dx).

Note that for the last equality, we have appealed to Exercise 2.11. Since for t ∈
[2−(n+1),2−n),

St

t
≤ S2−n

2−(n+1)
= 2Mn,

we thus have that

E

(

lim sup
t↓0

St

t

)

≤ 2E
(

lim sup
n↑∞

Mn

)
= 2E(M∞)≤ 2

∫

(0,ε)
xν(dx). (4.22)

Since
∫
(0,1) xν(dx) <∞, the right-hand side above can be made arbitrarily small by

letting ε ↓ 0. This shows that the expectation on the left-hand side of (4.22) is equal
to zero, and hence so is the limsup in the expectation in the almost sure sense. �

The lemma shows that, for all sufficiently small times, Xt > 0 and hence
P(τ−0 > 0)= 1. That is to say, when starting from zero, it takes a strictly positive
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amount of time before X visits (−∞,0). Compare this with, for example, the sit-
uation for Brownian motion. It is intuitively clear that it will visit both sides of
the origin immediately. To be rigorous about this, recall from Exercise 1.7 that the
first-passage process of a Brownian motion is a stable- 1

2 subordinator. Since this
subordinator is not a compound Poisson process, and hence does not remain at the
origin for an almost surely strictly positive period of time, first passage strictly above
level zero of B occurs immediately. By symmetry, the same can be said about first
passage strictly below the level zero.

In order to complete our explanation of the geometric-type sum appearing
in (4.20), let us proceed by showing that P(σ+x = ∞) takes the form given in
the right-hand side of (4.15), where, now, we take Y = −X and, for each x ≥ 0,
σ+x = inf{t > 0 : Yt > x}. Lemma 4.11 shows that P(σ+0 > 0)= 1. This information
allows us to make the following path decomposition.

Define T0 = 0 and H0 = 0. Let T1 := σ+0 and

H1 =
{
YT1 if T1 <∞
∞ if T1 =∞.

Next, we construct iteratively the variables T1, T2, . . . and H1,H2, . . . in such a way
that

Tn :=
{

inf{t > Tn−1 : Yt > Hn−1} if Tn−1 <∞
∞ if Tn−1 =∞

and

Hn :=
{
YTn if Tn <∞
∞ if Tn =∞.

Note in particular, T1 = σ+0 is a stopping time and, for each n ≥ 1, Tn+1 − Tn is
equal in distribution to T1. The strong Markov property and stationary independent
increments imply that, on {Tn−1 <∞}, the path

εn = {Yt − YTn−1 : Tn−1 < t ≤ Tn}, (4.23)

also known as an excursion of Y from its maximum (equiv. an excursion of X from
its minimum), is independent of FTn−1 and has the same law as

{
Yt : 0< t ≤ σ+0

}
.

In particular, on the event {Tn−1 <∞}, the pair (Tn − Tn−1,Hn −Hn−1) is inde-
pendent of FTn−1 and has the same distribution as (σ+0 , Yσ+0 ) under P.

The sequence of pairs {(Tn,Hn) : n ≥ 1} are nothing more than the jump times
and the consecutive heights of the new maxima of Y , so long as they are finite.
The assumption that X drifts to infinity (equivalently Y drifts to −∞) implies that
the distribution of σ+0 under P is defective. To see this, recall that, by duality, the
limiting distribution of Xt −Xt is equal to that of the limiting distribution of −Xt ,
which, in turn, is equal to the limiting distribution of Y t . Note that Y t =−Xt has an
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Fig. 4.1 A symbolic sketch of the decomposition of the path of Y when it fails to cross the level x.

almost sure limiting distribution on account of it being monotone in t . From (4.18),
we see that limβ↑∞ψ(β)/β = δ. Hence, when it is assumed that 0 < ρ < 1, or
equivalently that ψ ′(0+) > 0, we see from Corollary 4.9 that

1− ρ = ψ
′(0+)
δ

= lim
β↑∞E

(
e−βY∞

)= P(Y∞ = 0)= P
(
σ+0 =∞

)
.

It follows that there exists an almost surely finite N ∈ {0,1,2, . . .} such that each
member of the pair (Tn,Hn) is finite for all n ≤ N , and infinite for all n > N . We
say that the excursion εn is finite if Tn − Tn−1 <∞ and otherwise, at the first in-
dex, n, for which Tn − Tn−1 =∞, we say that the n-th excursion is infinite. The
total number of excursions, N + 1, is the first time to success in a sequence of
Bernoulli trials, where “success” means the occurrence of an infinite excursion and,
as noted above, “success” has probability 1− ρ. That is to say, N + 1 is geomet-
rically distributed with parameter 1 − ρ. As the process Y is assumed to drift to
∞, the structure of the path of Y must correspond to the juxtaposition of N i.i.d.
excursions conditioned to be finite, followed by a final infinite excursion. Figure 4.1
gives a symbolic impression of this decomposition, leaving out details of the path
within excursions.

Using the above decomposition, it is now clear that the event {σ+x =∞} corre-
sponds to the event that there are N i.i.d. finite excursions of Y which, when pasted
end to end, have a right end point which is no higher than x, followed by an infinite
excursion. As N + 1 is geometrically distributed with parameter 1− ρ, it follows
that

P
(
σ+x =∞

)=
∑

n≥0

(1− ρ)ρnP(Hn ≤ x|ε1, . . . , εn are finite),
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where the probabilities in the sum are each equal to μ∗n(x), with

μ(dx)= P(H1 ∈ dx|T1 <∞)= P
(−Xτ−0 ∈ dx|τ−0 <∞

)
, x ≥ 0.

This explains the form of the Pollaczek–Khintchine formula.
Note that in our reasoning above, we have not proved that μ(dx) =

(δρ)−1ν(x,∞)dx. However, by comparing the conclusions of the previous discus-
sion with the conclusion of Theorem 4.10, we obtain the following corollary.

Corollary 4.12 Suppose that X is a spectrally negative Lévy process of bounded
variation such that ψ ′(0+) > 0. Then P(τ−0 <∞)= ρ and

P
(−Xτ−0 ≤ x|τ

−
0 <∞

)= 1

δρ

∫ x

0
ν(y,∞)dy, x ≥ 0.

Exercises

4.1 Suppose that X = {Xt : t ≥ 0} is a spectrally negative process of bounded
variation with drift δ (see the discussion following Lemma 2.14). Define, for each
t ≥ 0,

L0
t = #{0< s ≤ t :Xs = 0}.

(i) Show that the process {L0
t : t ≥ 0} is almost surely integer-valued with paths

that are right-continuous with left limits.
(ii) Suppose now that f is a function which is equal to a C1(R) function2 on

(−∞,0) and equal to another C1(R) function on (0,∞) but may have a dis-
continuity at 0. Its derivative at 0 may also be undefined. Show that for each
t ≥ 0,

f (Xt ) = f (X0)+ δ
∫ t

0
f ′(Xs)ds

+
∫

(0,t]

∫

(−∞,0)
(
f (Xs− + x)− f (Xs−)

)
N(ds × dx)

+
∫

(0,t]
(
f (Xs)− f (Xs−)

)
dL0
s .

4.2 Suppose that X = {Xt : t ≥ 0} is a spectrally negative Lévy process of bounded
variation with drift δ. Show that, for f (y, x) ∈ C1,1([0,∞)×R) and t > 0,

f (Xt ,Xt ) = f (X0,X0)+ δ
∫ t

0

∂f

∂x
(Xs,Xs)ds +

∫ t

0

∂f

∂y
(Xs,Xs)dXs

2A C1(R) function is a continuously differentiable mapping from R to R.
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+
∫

[0,t]

∫

(−∞,0)
f (Xs,Xs− + x)− f (Xs,Xs−)N(ds × dx).

4.3 Suppose that φ fulfils the conditions of Theorem 4.4 and that, for each
t > 0, E(

∫
[0,t]

∫
R
φ(s, x)Π(dx)ds) < ∞. If M = {Mt : t ≥ 0} is the martin-

gale given in Corollary 4.6 and, further, it is assumed that, for all t ≥ 0,
E(
∫
[0,t]

∫
R
φ(s, x)2Π(dx)ds) <∞ show that

E
(
M2
t

)= E

(∫

[0,t]

∫

R

φ(s, x)2dsΠ(dx)

)

, t ≥ 0.

4.4 In this exercise, we use ideas coming from the proof of the Lévy–Itô decom-
position to prove Itô’s formula in Theorem 4.3 for the case that σ = 0. Hence-
forth, we will assume that X is a Lévy process with no Gaussian component and
f (t, x) ∈ C1,2([0,∞)× R) is uniformly bounded, along with its first derivative in
s and first two derivatives in x.

(i) Suppose that X has characteristic exponent

Ψ (θ)= iθa +
∫

R

(
1− eiθx + iθx1(|x|<1)

)
Π(dx), θ ∈R.

For each 1> ε > 0, let X(ε) = {X(ε)t : t ≥ 0} be the Lévy process with charac-
teristic exponent

Ψ (ε)(θ)= iθa +
∫

R\(−ε,ε)
(
1− eiθx + iθx1(|x|<1)

)
Π(dx).

Show that

f
(
t,X

(ε)
t

)

= f (0,X0)+
∫ t

0

∂f

∂t

(
s,X(ε)s

)
ds

+
∫

[0,t]

∫

|x|≥ε

(

f
(
s,X

(ε)
s− + x

)− f (s,X(ε)s−
)− x ∂f

∂x

(
s,X

(ε)
s−
)
)

N(ds × dx)

+
∫ t

0

∂f

∂x

(
s,X

(ε)
s−
)
dX∗s +M(ε)

t ,

(4.24)

where X∗ is a Lévy process with characteristic exponent aiθ + ∫
|x|≥1(1 −

eiθx)Π(dx) and M(ε) = {M(ε)
t : t ≥ 0} is a right-continuous, square-integrable

martingale.
(ii) Fix T > 0. Show that {M(ε) : 0< ε < 1} is a Cauchy family in the martingale

space M2
T (see Definition 2.11).
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(iii) Denote the limiting martingale in part (ii) byM . By taking limits as ε ↓ 0 along
a suitable subsequence, show that the Itô formula holds, where

∫ t

0

∂f

∂x
(s,Xs−)dXs :=

∫ t

0

∂f

∂x
(s,Xs−)dX∗ +Mt.

Explain why the left-hand side above is a suitable choice of notation.
(iv) Show that if the restrictions of uniform boundedness of f and its derivatives

are removed, then the same conclusion may be drawn as in (iii), except now
there exists an increasing sequence of stopping times tending to infinity, say
{Tn : n ≥ 1} , such that, for each n ≥ 1, the process M is a martingale when
stopped at time Tn. In other words,M is a local martingale and not necessarily
a martingale.

4.5 Consider the workload process W of an M/G/1 queue as described in
Sect. 1.3.2. Suppose that W0 = w = 0 and the service distribution F has Laplace
transform F̂ (β)= ∫

(0,∞) e−βxF (dx), β ≥ 0.

(i) Show that the first busy period (the time from the moment of first service to the
first moment thereafter that the queue is again empty), denoted B , fulfils

E
(
e−βB

)= F̂ (Φ(β))

where Φ(β) is the largest solution to the equation

θ −
∫

(0,∞)
(
1− e−θx

)
λF(dx)= β.

(ii) When ρ > 1, show that there are a geometrically distributed number of busy
periods. Hence, give another proof of the first part of Theorem 4.1 when w = 0
by using this fact.

(iii) Suppose further that the service distribution F is that of an exponential random
variable with parameter μ> λ. This is the case of anM/M/1 queue. Show that
the workload process has limiting distribution given by

(

1− λ
μ

)
(
δ0(dx)+ 1(x>0)λe−(μ−λ)xdx

)
.

4.6 This exercise is only for the reader familiar with the general theory of stochastic
calculus with respect to semi-martingales. Suppose that X is a general spectrally
negative Lévy process. Recall the notation Et (α)= exp{αXt −ψ(α)t}, for t ≥ 0.

(i) IfM is the Kella–Whitt martingale, show that

dMt =−e−Xt+ψ(α)tdEt (α), t ≥ 0,

and hence deduce thatM is a local martingale.
(ii) Show that E(Xt ) <∞ for all t > 0.
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(iii) Deduce that E(sups≤t |Ms |) <∞, and hence thatM is a martingale.

4.7 Suppose that X is a spectrally negative Lévy process of bounded variation with
characteristic exponent Ψ .

(i) Show that, for each α,β ∈R,

Mt = −Ψ (α)
∫ t

0
eiα(Xs−Xs)+iβXsds + 1− eiα(Xt−Xt )+iβXt

− i(α − β)
∫ t

0
eiα(Xs−Xs)+iβXsdXs, t ≥ 0

is a martingale. Note, for the reader familiar with general stochastic calculus
for semi-martingales, one may equally prove that {Mt : t ≥ 0} is a martingale
for a general spectrally negative Lévy process.

(ii) Use the fact that E(Meq ) = 0, where eq is an independent exponentially dis-
tributed random variable with parameter q , to show that, for α,β ≥ 0,

E
(
eiα(Xeq−Xeq )+iβXeq

)= q(Φ(q)− iα)

(Ψ (α)+ q)(iβ −Φ(q)) , (4.25)

where Φ is the right inverse of the Laplace exponent ψ(β)=−Ψ (−iβ).
(iii) Deduce that Xeq −Xeq and Xeq are independent.

4.8 Suppose that X is any Lévy process of bounded variation with drift δ > 0
(excluding the case of a subordinator or the negative of a subordinator).

(i) Show that

lim
t↓0

Xt

t
= δ

almost surely.
(ii) Define τ−0 = inf{t > 0 :Xt < 0}. By reasoning along similar lines for the case

of a spectrally negative process, show that P(τ−0 > 0) > 0.
(iii) Suppose now that limt↑∞Xt = ∞. Let η(dx) = P(−Xτ−0 ∈ dx|τ−0 < ∞),

x ≥ 0. Conclude that the Pollaczek–Khintchine formula,

Px

(
τ−0 =∞

)= (1− ρ)
∞∑

k=0

ρkη∗k(x), x ≥ 0,

is still valid under these circumstances.



Chapter 5
Subordinators at First Passage
and Renewal Measures

In this chapter, we look at subordinators. Recall that these are Lévy processes which
have paths that are non-decreasing. In addition, we consider killed subordinators,
that is, subordinators which are sent to a “cemetery state” (in other words an addi-
tional point that is not in [0,∞)) at an independent time that is exponentially dis-
tributed. Principally, we are interested in first passage over a fixed level, and some
asymptotic features thereof, as the level tends to infinity. In particular, we will study
the (asymptotic) law of the overshoot and undershoot, as well as the phenomenon
of crossing a level by hitting it. These three points of interest turn out to be very
closely related to renewal measures. The results obtained in this chapter will be of
significance later on when we consider first passage over a fixed level of a general
Lévy process. As part of the presentation on asymptotic first passage, we will review
some basic facts about regular variation. Regular variation will also be of use in later
chapters. We conclude with a brief introduction to the theory of special subordina-
tors which, amongst other things, permits the construction of a number of concrete
examples of some of the theory discussed earlier in the chapter.

5.1 Killed Subordinators and Renewal Measures

In the setting of Sect. 2.6.1 a subordinator is a Lévy process of bounded variation,
drift δ ≥ 0 and jump measure concentrated on (0,∞). In this section we shall con-
sider a slightly more general class of processes, killed subordinators. Let Y be a
subordinator and eη an independent exponentially distributed random variable with
rate η > 0. Then a killed subordinator is the process

Xt =
{
Yt if t < eη
∂ if t ≥ eη,

where ∂ is a “cemetery state”. We shall also refer to X as “Y killed at rate η”.
If we agree that eη =∞ when η = 0, then the definition of a killed subordinator

A.E. Kyprianou, Fluctuations of Lévy Processes with Applications, Universitext,
DOI 10.1007/978-3-642-37632-0_5, © Springer-Verlag Berlin Heidelberg 2014
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includes the class of regular subordinators.1 This will prove to be useful for making
general statements. The Laplace exponent of a killed subordinator X is defined, for
all θ ≥ 0, by the formula

Φ(θ)=− logE
(
e−θX1

)=− logE
(
e−θY11(1<eη)

)= η− logE
(
e−θY1

)= η+Ψ (iθ),
where Ψ is the Lévy–Khintchine exponent of Y . From the Lévy–Khintchine for-
mula given in the form (2.21), we easily deduce that

Φ(θ)= η+ δθ +
∫

(0,∞)
(
1− e−θx

)
Π(dx), (5.1)

where δ ≥ 0 and
∫
(0,∞)(1∧ x)Π(dx) <∞; recall Exercise 2.11.

With each killed subordinator, we associate a family of potential measures. De-
fine for each q ≥ 0 the q-potential measure on [0,∞) by

U(q)(dx)= E

(∫ ∞

0
e−qt1(Xt∈dx)dt

)

=
∫ ∞

0
e−qtP(Xt ∈ dx)dt. (5.2)

For notational ease, we shall simply write U(0) = U and call it the potential mea-
sure. Note that the q-potential measure of a killed subordinator with killing at rate
η > 0 is equal to the (q + η)-potential measure of the same subordinator with-
out killing. Note also that, for each q > 0, (q + η)U(q) is a probability measure
on [0,∞) and also that, for each q ≥ 0, U(q)(x) := U(q)[0, x] is right-continuous.
Roughly speaking, a q-potential measure is a discounted measure of how long the
process X occupies different regions of space on average.2

These potential measures will play an important role in the study of how sub-
ordinators cross fixed levels. For this reason, we will devote the remainder of this
section to studying some of their analytical properties. One of the most important
facts about q-potential measures is that they are closely related to renewal measures.

We recall briefly that a renewal process, N = {Nx : x ≥ 0}, counts the num-
ber of points in [0, x], for x ≥ 0, of an arrival process on [0,∞) in which points
are laid down as follows. Let F be a distribution function on (0,∞) and suppose
that {ξi : i = 1,2, . . .} is a sequence of independent random variables with com-
mon distribution F . Points are positioned at {T1, T2, . . .}, where, for each k ≥ 1,
Tk =∑k

i=1 ξi . In other words, the underlying arrival process is nothing more than
the range of a random walk with jump distribution F . For each x ≥ 0, we may
now identify Nx = sup{i ≥ 1 : Ti ≤ x}, where we use the notational convention
sup∅ = 0. Note that if F is an exponential distribution, then N is nothing more than
a Poisson process.

1A killed subordinator is only a Lévy process when η = 0, but it is still a Markov process even
when η > 0.
2From the general theory of Markov processes, U(q) also comes under the name of resolvent
measure or Green’s measure.
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The associated renewal measure is defined by

V (dx)=
∑

k≥0

F ∗k(dx), x ≥ 0,

where we understand F ∗0(dx) := δ0(dx). As with potential measures, we work with
the notation V (x) := V [0, x], x ≥ 0. For future reference, let us recall some of the
classical renewal theorems.

Theorem 5.1 (Renewal Theorem) Suppose that V is the renewal function given
above and let μ := ∫

(0,∞) xF (dx) ∈ (0,∞].
(i) 3If F does not have lattice support, then, for all y > 0,

lim
x↑∞

{
V (x + y)− V (x)}= y

μ
.

(ii) 4If F does not have lattice support and h : [0,∞)→ R is directly Riemann
integrable, then

lim
x↑∞

∫ x

0
h(x − y)V (dy)= 1

μ

∫ ∞

0
h(y)dy.

(iii) Without restriction on the support of F ,

lim
x↑∞

V (x)

x
= 1

μ
.

Here, we understand μ−1 = 0 if μ=∞.

The reader may find more on the different aspects of the Renewal Theorem in
Chap. XI of Feller (1971). See also Chap. 4 of Durrett (2004).

The precise relationship between q-potential measures of subordinators and re-
newal measures is given in the following lemma.

Lemma 5.2 Suppose that X is a subordinator (no killing). Let F =U(1) and let V
be the renewal measure associated with the distribution F . Then V (dx) is equal to
the measure δ0(dx)+U(dx) on [0,∞).

Proof First note that, for all θ > 0,
∫

[0,∞)
e−θxU(1)(dx) =

∫ ∞

0
dt · e−t

∫

[0,∞)
e−θxP(Xt ∈ dx)

3This part of the theorem is known as Blackwell’s Renewal Theorem.
4This part of the theorem is also known on its own as the Key Renewal Theorem.
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=
∫ ∞

0
dt · e−(1+Φ(θ))t

= 1

1+Φ(θ) ,

where Φ is the Laplace exponent of the underlying subordinator. In the final equal-
ity, we have used the fact that Φ(θ) > 0.

Next compute the Laplace transform of V for all θ > 0 as follows:

∫

[0,∞)
e−θxV (dx) =

∑

k≥0

(∫

[0,∞)
e−θxU(1)(dx)

)k

=
∑

k≥0

(
1

1+Φ(θ)
)k

= 1

1− (1+Φ(θ))−1

= 1+ 1

Φ(θ)
. (5.3)

In the third equality, we have used the fact that |1/(1+Φ(θ))|< 1.
On the other hand, a similar computation to the one in the first paragraph of this

proof shows us that the Laplace transform of δ0(dx)+U(dx) equals the right-hand
side of (5.3). Since distinct measures have distinct Laplace transforms, the proof is
complete. �

The conclusion of the previous lemma means that the Renewal Theorem can be
employed to understand the asymptotic behaviour of U . Specifically, we have the
following two asymptotics.

Corollary 5.3 Suppose thatX is a subordinator (no killing) such that μ := E(X1).

(i) If U does not have lattice support, then for all y > 0,

lim
x↑∞

{
U(x + y)−U(x)}= y

μ
.

(ii) Without restriction on the support of U ,

lim
x↑∞

U(x)

x
= 1

μ
.

As before, we understand μ−1 = 0 when μ=∞.
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Proof The proof is a direct consequence of Theorem 5.1, as soon as one notes that

μ=
∫

[0,∞)
xU(1)(dx)=

∫ ∞

0
e−tE(Xt )dt =

∫ ∞

0
te−tE(X1)dt = E(X1)

and that U(1) has the same support as U . �

The requirement that U does not have a lattice support is not a serious restric-
tion as there are analogues to Corollary 5.3 (i); see for example Chap. XI of Feller
(1971). The following theorem, for (killed) subordinators, shows that the only exam-
ples of potential measures with lattice support occur when X is a (killed) compound
Poisson subordinator whose jump distribution has lattice support.

Theorem 5.4 Suppose that X is a (killed) subordinator with Lévy measure Π and
drift δ ≥ 0.

(i) If δ > 0 or Π(0,∞)=∞, then for any q ≥ 0, U(q) has no atoms.
(ii) If δ = 0, Π(0,∞) <∞ and Π has a non-lattice support, then for all q ≥ 0,

U(q) does not have a lattice support.
(iii) If δ = 0, Π(0,∞) <∞ and Π has a lattice support, then for all q ≥ 0, U(q)

has the same lattice support in (0,∞).

Proof (i) Recall the definition

U(q)(dx)= E

(∫ ∞

0
e−qt1(Xt∈dx)dt

)

, x ≥ 0

and note that, on account of monotonicity of the paths ofX, an atom at x > 0 occurs
only if, with positive probability, the path of X remains at level x over some interval
of time (a, b), where 0≤ a < b <∞. However, since Π(0,∞)=∞, we know that
this behaviour is impossible; see Exercise 2.7. This is also the case when δ > 0.
In that case, all increments of X are almost surely strictly positive and hence X is
almost surely strictly increasing.

(ii)–(iii) Now suppose thatX is equal in law to a compound Poisson subordinator,
with jump distribution F and arrival rate λ > 0, which is killed at rate η ≥ 0. (Note
λF =Π .) By conditioning on the number of jumps up to time t > 0, we have

P(Xt ∈ dx)= e−ηt
∑

k≥0

e−λt (λt)
k

k! F
∗k(dx), x ≥ 0,

where, as usual, we understand F ∗0 = δ0(dx). Using this representation of the tran-
sition measure, we compute, for x ≥ 0,

U(q)(dx)=
∑

k≥0

1

k!F
∗k(dx)

∫ ∞

0
e−(λ+q+η)t (λt)kdt

= ρ
λ

∑

k≥0

ρkF ∗k(dx), (5.4)
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where ρ = λ/(λ + η + q). The second and third statements of the theorem now
follow from the last equality. If F does not have a lattice support in (0,∞), then
neither does F ∗k for any k ≥ 1, and hence neither does U(q). On the other hand,
if F has a lattice support in (0,∞), then so does F ∗k for any k ≥ 1 (the sum of k
independent and identically distributed lattice valued random variables is also lattice
valued). �

Note that the above theorem also shows that rescaling the Lévy measure of a
subordinator by a constant (i.e. Π �→ cΠ for some c > 0) has no effect on the
presence of atoms in the potential measure.

In addition to the close association of the potential measure, U , with classical
renewal measures, the connection of a subordinator with renewal processes can be
seen in a pathwise sense when X is a compound Poisson subordinator with arrival
rate λ > 0 and non-negative jumps with distribution F . In this case, it is clear that
the range of the process X, i.e. the projection of the graph of {Xt : t ≥ 0} onto
the spatial axis, is nothing more than a renewal process. Note that, in this renewal
process, the spatial domain of X plays the role of time and the inter-arrival times are
distributed according to F . See Fig. 5.1.

As in Sect. 5.1, denote this renewal process by N = {Nx : x ≥ 0} and let {Ti :
i ≥ 0} be the renewal epochs, starting with T0 = 0. Then the excess lifetime of N at
time x > 0 is defined by TNx+1 − x, and the current lifetime is defined by x − TNx .
On the other hand, recall the stopping time (first-passage time)

τ+x = inf{t > 0 :Xt > x}.
Then the overshoot and undershoot at first passage of level x are given by Xτ+x − x
and x−Xτ+x −, respectively. Excess and current lifetimes and overshoots and under-
shoots are thus related by

Xτ+x − x = TNx+1 − x and x −Xτ+x − = x − TNx . (5.5)

See Fig. 5.1.
Classical renewal theory presents the following result for the excess and current

lifetime; see for example Chap. XI of Feller (1971) or Dynkin (1961). We give the
proof for the sake of later reference.

Lemma 5.5 Suppose that N is a renewal process with F as the distribution for the
spacings. Then the following hold.

(i) For x,u > 0 and y ∈ (0, x],
P(TNx+1 − x ∈ du,x − TNx ∈ dy)= V (x − dy)F (du+ y), (5.6)

where V is the renewal measure constructed from F .
(ii) Suppose that F has mean μ<∞ and is non-lattice, then, for u > 0 and y > 0,

lim
x↑∞P(TNx+1 − x > u,x − TNx > y)=

1

μ

∫ ∞

u+y
F (z)dz,

where F(x)= 1− F(x).
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Fig. 5.1 A realisation of a compound Poisson subordinator. The range of the process, projected
onto the vertical axis, forms a renewal process thus relating overshoot and undershoot to excess
and current lifetimes.

Proof (i) The key to the proof of the first part is to partition the event of interest by
the number of renewal epochs at time x. We have, for k ≥ 0,

P(TNx+1 − x > u,x − TNx > y,Nx = k)=
∫

[0,x−y)
F ∗k(dv)F (x − v+ u).

The event in the probability on the left-hand side requires that the k-th renewal epoch
occurs sometime before x − y. Further, this epoch occurs in dv with probability
F ∗k(dv) and, hence, the probability that the excess exceeds u requires that the next
inter-arrival time exceeds x − v + u. This occurs with probability F(x − v + u).
Summing over k and changing variable in the integral via z= x − v, we have

P(TNx+1 − x > u,x − TNx > y)=
∫

(y,x]
V (x − dz)F (z+ u).

In differential form, this gives the distribution given in the statement of part (i).
(ii) From part (i), we may write, for u > 0 and y ∈ [0, x),

P(TNx+1 − x > u,x − TNx ≥ y)

=
∫

(u,∞)

∫

[0,x−y]
V (dv)F (x − v+ dθ)
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=
∫

(0,∞)
F (dt)

∫

[0,x]
V (dv)1(t>u+x−v)1(v∈[0,x−y])

=
∫

(0,∞)
F (dt)

∫

[0,x]
V (dv)1(v>u+x−t)1(v∈[0,x−y]),

where we have applied the change of variables t = θ + x− v in the second equality.
The indicators and integral delimiters require that

x − y ≥ v > u+ x − t if u+ x ≥ t,
x − y ≥ v ≥ 0 if u+ x < t,

and u+ x − t < x − y implies that t > u+ y. Hence, for u > 0 and y ∈ [0, x),
P(TNx+1 − x > u,x − TNx > y)

=
∫

(u+y,∞)
F (dt)

{
V (x − y)− V (u+ x − t)}1(t≤u+x)

+
∫

(u+x,∞)
F (dt)V (x − y). (5.7)

To deal with the second term on the right-hand side of (5.7), we may use the Renewal
Theorem 5.1 (iii) to show that, for some ε > 0 and x sufficiently large,

∫

(u+x,∞)
F (dt)V (x − y)≤ 1+ ε

μ

∫

(u+x,∞)
tF (dt).

The right-hand side above tends to zero as x tends to infinity, since μ =∫
(0,∞) tF (dt) <∞.

For the first term on the right-hand side of (5.7), suppose that X is a compound
Poisson subordinator whose jump distribution is F and arrival rate is 1. For this
subordinator,

E
(
τ+x

)=
∫ ∞

0
P
(
τ+x > t

)
dt =

∫ ∞

0
P(Xt ≤ x)dt = V (x),

where the final equality follows from (5.4), with q = η= 0 and λ= 1. Now applying
the strong Markov property, we can establish that

V (x + y) = E
(
τ+x+y

)

= E
(
τ+x +EX

τ
+
x

(
τ+x+y

))

≤ E
(
τ+x

)+E
(
τ+y

)

= V (x)+ V (y).
Using the bound V (x − y) − V (u + x − t) ≤ V (t − u − y) ≤ V (t), the right-
continuity of V and the Renewal Theorem 5.1 (iii), we know that the integrand
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in the first term on the right-hand side of (5.7) is bounded by a multiple of t . Hence,
as
∫
(0,∞) tF (dt) <∞, dominated convergence, together with Theorem 5.1 (i), gives

us

lim
x↑∞

∫

(u+y,∞)
F (dt)

{
V (x − y)− V (u+ x − t)}1(t<u+x)

= 1

μ

∫

(u+y,∞)
(t − u− y)F (dt)

= 1

μ

∫ ∞

u+y
F (t)dt,

where the final equality follows after an integration by parts. �

In light of (5.5), we see that Lemma 5.5 gives the exact and asymptotic dis-
tribution of the overshoot and undershoot at first passage of a compound Poisson
subordinator with jump distribution F (with finite mean and non-lattice support in
the case of the asymptotic behaviour). In this spirit, we shall proceed to study the
exact and asymptotic joint distributions of the overshoot and undershoot of a killed
subordinator at first passage.

There are a number of differences concerning the range of a killed subordinator
when compared to the range of a compound Poisson subordinator. Firstly, in the
case of a killed subordinator, the process may be killed before reaching a specified
fixed level. Hence one should expect an atom in the distribution of the overshoot
at∞. Secondly, the number of jumps over a finite time horizon may be infinite, in
which case the analysis in the proof of Lemma 5.5 (i) is no longer valid. Finally,
in the case of a compound Poisson subordinator, when F has no atoms, it is clear
that the probability that there is first passage over a given level by hitting the level is
zero. However, for a killed subordinator, for which either Π(0,∞)=∞ or there is
a drift present, one should not exclude the possibility that first passage over a fixed
level occurs by hitting the level with positive probability. This behaviour is called
creeping over a fixed level and is equivalent to there being an atom at zero in the
distribution of the overshoot at that level. As one might intuitively expect, creeping
over a specified fixed level turns out to occur only in the presence of a drift, in which
case, by spatial homogeneity, it is possible to creep over all fixed levels. These points
will be dealt with in more detail in Sect. 5.3.

5.2 Overshoots and Undershoots

We begin with the following theorem, which gives a generalisation of Lemma 5.5 (i),
in the sense that it contains it as a corollary. Weaker versions of this theorem can be
found in Kesten (1969) and Horowitz (1972). The format we give is from Bertoin
(1996a).
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Theorem 5.6 Suppose that X is a killed subordinator. Then for u > 0 and y ∈
[0, x],

P(Xτ+x − x ∈ du,x −Xτ+x − ∈ dy)=U(x − dy)Π(y + du). (5.8)

Proof The proof makes use of the compensation formula. Suppose that f and g are
two strictly positive, bounded, continuous functions satisfying f (0) = f (∞) = 0.
This last requirement ensures that the product f (Xτ+x − x)g(x−Xτ+x −) is non-zero
only if X jumps strictly above x when first crossing x before killing occurs. We
may write its expectation in terms of the Poisson random measure associated with
the jumps of X whilst avoiding the issue of creeping. To this end, let us assume that
X is equal in law to a subordinator Y killed at rate η ≥ 0. Then

E
(
f (Xτ+x − x)g(x −Xτ+x −)

)= E

(∫

[0,∞)

∫

(0,∞)
e−ηtφ(t, θ)N(dt × dθ)

)

,

where

φ(t, θ)= 1(Yt−≤x)1(Yt−+θ>x)f (Yt− + θ − x)g(x − Yt−),
and N is the Poisson random measure associated with the jumps of Y . It is straight-
forward to see that φ satisfies the conditions of Theorem 4.4; in particular, it is
left-continuous in t . Then, with the help of the aforementioned theorem,

∫

[0,x]
g(y)

∫

(0,∞)
f (u)P(Xτ+x − x ∈ du,x −Xτ+x − ∈ dy)

= E

(∫ ∞

0
dt · e−ηt1(Yt−≤x)g(x − Yt−)

∫

(x−Yt−,∞)
f (Yt− + θ − x)Π(dθ)

)

= E

(∫ ∞

0
dt · e−ηt1(Yt≤x)g(x − Yt )

∫

(x−Yt ,∞)
f (Yt + θ − x)Π(dθ)

)

=
∫

[0,x]
g(x − z)

∫

(x−z,∞)
f (z+ θ − x)Π(dθ)

∫ ∞

0
dt · e−ηtP(Yt ∈ dz)

=
∫

[0,x]
g(x − z)

∫

(x−z,∞)
f (z+ θ − x)Π(dθ)U(dz)

=
∫

[0,x]
g(y)

∫

(0,∞)
f (u)Π(du+ y)U(x − dy), (5.9)

where the final equality follows by changing variables, first with y = x− z and then
with u= θ − y. (Note also that U is the potential measure of X and not Y .) As f
and g are arbitrary within their prescribed classes (which themselves are sufficient
to characterise the desired law), we read off from the left- and right-hand sides of
(5.9) the required distributional identity. �

Intuitively speaking, the proof of Theorem 5.6 follows the logic of the proof of
Lemma 5.5 (i). The compensation formula serves as a way of “decomposing” the
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event of first passage by a jump over level x according to the position of X prior
to its first passage, even when there are an unbounded number of jumps over finite
time horizons.

To make the connection with the expression given for renewal processes in
Lemma 5.5 (i), recall from (5.4) that U(dx) = λ−1V (dx) on (0,∞), where U
is the potential measure associated with a compound Poisson subordinator with
jump distribution F and arrival rate λ > 0, and V is the renewal measure as-
sociated with the distribution F . For this compound Poisson subordinator, we
also know that Π(dx) = λF(dx), so that U(x − dy)Π(du + y) = V (x − dy)
F (du+ y).

As (5.8) is the analogue of the statement in Lemma 5.5 (i), it is now natural to
reconsider the proof of part (ii) of the same lemma in the current, more general
context. The following result is lifted from Bertoin et al. (1999).

Theorem 5.7 Suppose that X is a subordinator (no killing) with finite mean μ :=
E(X1), such that U does not have lattice support (cf. Theorem 5.4). Then for u > 0
and y ≥ 0, in the sense of weak convergence

lim
x↑∞P(Xτ+x − x ∈ du,x −Xτ+x − ∈ dy)= 1

μ
dyΠ(y + du).

In particular, by integrating out u and y in the above limit, it follows that the asymp-
totic probability of creeping satisfies

lim
x↑∞P(Xτ+x = x)=

δ

μ
.

The proof of this result is a straightforward adaptation of the proof of Lemma 5.5
(ii) taking advantage of Corollary 5.3 and is left to the reader to verify in Exer-
cise 5.3.

5.3 Creeping

Now let us turn to the issue of creeping. Although τ+x is the first time that X strictly
exceeds the level x > 0, it is possible that P(Xτ+x = x) > 0; recall the statement and
proof of Theorem 3.3. The following conclusion, found for example in Horowitz
(1972), shows that, in the case where the jump measure is infinite or that X has a
drift, crossing the level x > 0 by hitting it cannot occur by jumping onto it from
a position strictly below x. In other words, if our killed subordinator makes first
passage above x with a jump, then it must do so by jumping it clear, so {Xτ+x =
x} = {Xτ+x − x = 0, x −Xτ+x − = 0}. This is of implicit relevance when computing
the atom at zero in the overshoot distribution.
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Lemma 5.8 Let X be any killed subordinator with Π(0,∞) =∞ or δ > 0. For
all x > 0, we have

P(Xτ+x − x = 0, x −Xτ+x − > 0)= 0. (5.10)

Proof Suppose, for a given x > 0, that

P(Xτ+x − x = 0, x −Xτ+x − > 0) > 0.

Then this implies that there exists a y < x such that

P(Xτ+y = x) > 0.

However, this cannot happen because of the combined conclusions of Theorem 5.6
and Theorem 5.4 (i). (It is also useful to note that Π can have at most a countable
number of atoms.) Hence, by contradiction (5.10) holds. �

Although one may write, with the help of Theorem 5.6 and Lemma 5.8,

P(Xτ+x = x)= 1− P(Xτ+x > x)= 1−
∫

(0,x]
U(x − dy)Π(y,∞),

this does not necessarily bring one closer to understanding when the probability
on the left-hand side above is strictly positive. In fact, although the answer to this
question is intuitively obvious, namely that a drift term must be present, it turns
out to be difficult to prove. It was resolved by Kesten (1969); see also Bretagnolle
(1971). The result is given below.

Theorem 5.9 For any killed subordinator such that Π(0,∞) =∞ or δ > 0, we
have the following:

(i) If δ = 0, then P(Xτ+x = x)= 0 for all x > 0.
(ii) If δ > 0, then U has a strictly positive and continuous density on (0,∞), say u,

satisfying

P(Xτ+x = x)= δu(x).

The version of the proof we give here follows the reasoning in Andrew (2006)
(see also Sect. III.2 of Bertoin (1996a)) and first requires two auxiliary lemmas,
given below. In the proof of both, we shall make use of the following two key esti-
mates for the probabilities px := P(Xτ+x = x), x ≥ 0. For all 0< y < x,

px ≤ pypx−y + (1− px−y) (5.11)

and

px ≥ pypx−y. (5.12)
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The upper bound is a direct consequence of the fact that

P(Xτ+x = x) = P(Xτ+x−y = x − y, Xτ+x = x)
+ P(Xτ+x−y > x − y, Xτ+x = x)

≤ P(Xτ+x−y = x − y)P(Xτ+x = x|X0 = x − y)
+ P(Xτ+x−y > x − y),

where in the last line the strong Markov property has been used. In a similar way,
the lower bound is a consequence of the fact that

P(Xτ+x = x)≥ P(Xτ+x−y = x − y)P(Xτ+x = x|X0 = x − y).

Lemma 5.10 Assume the setting of Theorem 5.9.

(i) If, for some x > 0, we have px > 0, then limε↓0 supη∈(0,ε) pη = 1.
(ii) If, for some x > 0, we have px > 3/4, then

py ≥ 1/2+√
px − 3/4

for all y ∈ (0, x).

Proof (i) From Lemma 5.8, we know that X cannot jump onto x. In other words,
we have

P(Xτ+x = x >Xτ+x −)= 0.

This implies that

{Xτ+x = x} ⊆
⋂

n≥1

{
X visits (x − 1/n, x)

}

almost surely. On the other hand, on the event
⋂
n≥1{X visits (x − 1/n, x)}, we

also have by quasi-left-continuity (cf. Lemma 3.2) that Xσ = x, where σ =
limn↑∞ τ+x−1/n (the limit exists because of monotonicity). Note that, on the one
hand, by its definition, σ ≤ τ+x . Since

{σ ≤ t} =
⋂

n≥1

{
τ+x−1/n ≤ t

}

almost surely, it follows that σ is a stopping time with respect to F. Since Xσ = x
on

⋂
n≥1{X visits (x − 1/n, x)} and X is not a compound Poisson subordinator,

applying the strong Markov property at time σ , we have that Xt > x for all t > σ .
This shows that, on

⋂
n≥1{X visits (x − 1/n, x)}, we have σ = τ+x . In conclusion,

σ = τ+x on
⋂
n≥1{X visits (x − 1/n, x)} and hence
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{Xτ+x = x} =
⋂

n≥1

{
X visits (x − 1/n, x)

}

almost surely.
We may now write

px = lim
n↑∞P

(
X visits (x − 1/n, x)

)
. (5.13)

Also, we have the upper estimate

px ≤ P
(
X visits (x − 1/n, x)

)
sup

z∈(0,1/n)
pz.

Letting n ↑ ∞ in the above inequality and taking (5.13) into account, we see that
limε↓0 supη∈(0,ε) pη = 1.

(ii) Suppose that 0 < y < x. We may assume without loss of generality that
py < px , otherwise it is clear that py ≥ px ≥ 1/2+√px − 3/4, when px > 3/4.

From (5.11) it is a simple algebraic manipulation, replacing y by x − y, to show
that

py ≤ 1− px
1− px−y .

Again, replacing y by x − y in the above inequality, we obtain that

1− px−y ≥ px − py
1− py .

Combining the last two inequalities, we therefore have

py ≤ (1− px)(1− py)
px − py

and hence the quadratic inequality p2
y − py + 1− px ≥ 0. This in turn implies that

py ∈
[
0,1/2−√

px − 3/4
]∪ [1/2+√

px − 3/4,1
]
. (5.14)

The remainder of the proof is thus dedicated to showing that the inclusion of py in
the first of the two intervals in (5.14) cannot happen.

Suppose, for contradiction, that (5.14) holds for all y ∈ (0, x) and, moreover, that
there exists a y ∈ (0, x) such that py ≤ 1/2−√px − 3/4. Now define

g = sup
{
z ∈ [0, y);pz ≥ 1/2+√

px − 3/4
}
,

which is well defined since p0 = 1. From this definition, it could be the case that
g = y. Reconsidering the definition of g and (5.14), we see that either there exists an
ε > 0 such that pz ≤ 1/2−√px − 3/4 for all z ∈ (g − ε, g) or, for all ε > 0, there
exists a sequence of z ∈ (g − ε, g) such that pz ≥ 1/2+√px − 3/4. In the former
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case, it is clear by the definition of g that pg ≥ 1/2+√px − 3/4. In the latter case,
we have with the help of (5.13) that

pg = lim
z↑g P

(
X visits (z, g)

)≥ lim
ε↓0

sup
η∈(0,ε)

pg−η,

and hence pg ≥ 1/2 + √px − 3/4. For both cases, we have the implication that
g < y. On the other hand, using (5.12) and the conclusion of part (i), we see that

lim
ε↓0

sup
η∈(0,ε)

pg+η ≥ pg × lim
ε↓0

sup
η∈(0,ε)

pη = pg ≥ 1/2+√
px − 3/4.

Since (5.14) is in force for all y < x and g < y, this implies that there exists a
g′ > g such that pg′ ≥ 1/2 + √px − 3/4, which contradicts the definition of g.
The consequence of this contradiction is that there does not exist a y ∈ (0, x) for
which py < 1/2+√px − 3/4, and hence, from (5.14), it necessarily follows that
py ≥ 1/2+√px − 3/4, for all y ∈ (0, x). �

Lemma 5.11 Assume the setting of Theorem 5.9. If there exists an x > 0 such that
px > 0, then

(i) limε↓0 pε = 1 and
(ii) x �→ px is strictly positive and continuous on [0,∞).

Proof (i) The first part is a direct consequence of parts (i) and (ii) of Lemma 5.10.
(ii) Positivity follows from a repeated use of the lower estimate in (5.12) to obtain

px ≥ (px/n)n and, hence, the conclusion of part (i).
To show continuity, note, with the help of (5.11), that

lim sup
ε↓0

px+ε ≤ lim sup
ε↓0
{pεpx + 1− pε} = px,

and from (5.12) and part (i),

lim inf
ε↓0

px+ε ≥ lim inf
ε↓0

pxpε = px.

Further, arguing in a similar manner,

lim sup
ε↓0

px−ε ≤ lim sup
ε↓0

px

pε
= px,

and

lim inf
ε↓0

px−ε ≥ lim inf
ε↓0

px + pε − 1

pε
= px.

Thus, continuity is confirmed. �

Finally, we return to the proof of Theorem 5.9.
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Proof of Theorem 5.9 Consider the function

M(a) := E

(∫ a

0
1(X

τ
+
x
=x)dx

)

=
∫ a

0
pxdx

for all a ≥ 0.
For convenience, suppose further that X is equal in law to a subordinator Y ,

killed at rate η. Let N be the Poisson random measure associated with the jumps of
X (or equivalently Y ). Then we may write, with the help of the Lévy–Itô decompo-
sition for subordinators,

M(a)= E

(

Y(τ+a ∧eη)− −
∫

[0,τ+a ∧eη)

∫

(0,∞)
xN(ds × dx)

)

= δE(τ+a ∧ eη
)
.

(i) If δ = 0, then px = 0 for Lebesgue almost every x. Lemma 5.11 now implies
that px = 0 for all x > 0.

(ii) If δ > 0, then there exists an x > 0 such that px > 0. Hence, from
Lemma 5.11, x �→ px is strictly positive and continuous. Further, we see that

M(a)= δ
∫ ∞

0
P
(
τ+a ∧ eη > t

)
dt = δ

∫ ∞

0
P(Xt ≤ a)dt = δU(a).

The above implies that U has a density, which may be taken as equal to δ−1px for
all x ≥ 0. �

Theorem 5.9 excludes the possibility that Π(0,∞) <∞ when δ = 0. Here, one
may easily envisage a scenario where a given x0 > 0 is in the range of the subor-
dinator with positive probability. Indeed, it suffices to consider the case that Π has
an atom at x0. Note, however, that, because of the strict inequality in the definition
of τ+x0

, it is not the case that Xτ+x0
= x0. In general, creeping for compound Poisson

processes cannot occur.

5.4 Regular Variation and Tauberian Theorems

The inclusion of the forthcoming discussion on regular variation and Tauberian the-
orems is a prerequisite to Sect. 5.5, which gives the Dynkin–Lamperti asymptotics
for the joint law of the overshoot and undershoot of a subordinator at a threshold.
However, the necessary facts concerning regular variation will also appear in later
sections and chapters.

Suppose that U : [0,∞)→ [0,∞) is a non-decreasing, right-continuous func-
tion. Denote by U(dx), x ≥ 0, its associated measure, with the convention that there
is an atom of size U(0) at x = 0. For its Laplace–transform, write

Λ(θ)=
∫

[0,∞)
e−θxU(dx), θ ≥ 0.
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If there exists a θ0 such thatΛ(θ0) <∞, thenΛ(θ) <∞ for all θ ≥ θ0. The point of
this section is to present some classic results which equivalently relate certain types
of tail behaviour of the measure U to a similar type of behaviour of Λ. Our pre-
sentation will only offer the bare essentials based on Karamata’s theory of regularly
varying functions. Aside from their intrinsic analytic curiosity, regularly varying
functions have proved to be of great practical value within probability theory, not
least in the current context. The highly readable account given in Chap. VIII.8 of
Feller (1971) is an important bridging text, embedding into probability theory the
classic work of Karamata and his collaborators, which dates back to the period be-
tween 1930 and the 1960s. For a complete account, the reader is referred to Bingham
et al. (1987) or Embrechts et al. (1997). The presentation here is principally based
on these books.

Definition 5.12 A measurable function f : [0,∞)→ (0,∞) is said to be regularly
varying at zero with index ρ ∈R (written f ∈R0(ρ)) if, for all λ > 0,

lim
x↓0

f (λx)

f (x)
= λρ.

If the above limit holds as x tends to infinity, then f is said to be regularly varying
at infinity with index ρ (written f ∈R∞(ρ)). The case that ρ = 0 is referred to as
slow variation (written for short as just R0 and R∞, respectively).

Note that any regularly varying function, f , may always be written in the form

f (x)= xρL(x),
where L is a slowly varying function. Any function which has a strictly positive and
finite limit at infinity (resp. zero) belongs to R∞ (resp. R0), so the class of slowly
(and hence regularly) varying functions is clearly non-empty due to this trivial ex-
ample. There are, however, many non-trivial examples of slowly varying functions.
Examples in R∞ include (for x sufficiently large) L(x)= logx, L(x)= logk x (the
k-th iterate of logx) and L(x)= exp{(logx)/ log logx}. All of these examples have
the property that they are functions which tend to infinity at infinity. The function

L(x)= exp
{
(logx)

1
3 cos

[
(logx)

1
3
]}

is an example in R∞ which oscillates, that is to say, lim infx↑∞L(x) = 0 and
lim supx↑∞L(x)=∞.

The main concerns of this section are the following remarkable results.

Theorem 5.13 Suppose that L ∈R∞, ρ ∈ [0,∞). Then the following two state-
ments are equivalent:

(i) Λ(θ)∼ θ−ρL(1/θ) as θ→ 0,
(ii) U(x)∼ xρL(x)/Γ (1+ ρ) as x→∞.
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In the above theorem, we are using the notation f ∼ g for functions f and g to
mean that limf (x)/g(x)= 1.

Theorem 5.14 Suppose that L ∈ R∞, ρ ∈ (0,∞) and U(dx) = u(x)dx, x ≥ 0,
where the density, u, is ultimately monotone. Then the following two statements are
equivalent:

(i) Λ(θ)∼ θ−ρL(1/θ) as θ→ 0,
(ii) u(x)∼ xρ−1L(x)/Γ (ρ) as x→∞.

Recalling that Γ (1 + ρ) = ρΓ (ρ), Theorem 5.14 is a natural statement next
to Theorem 5.13. It says that, up to a slowly varying function, the asymptotic be-
haviour of the derivative of U(x) behaves like the derivative of the polynomial that
U(x) asymptotically mimics; providing, of course, the density u exists and is ulti-
mately monotone. The methods used to prove these results also produce the follow-
ing corollary with virtually no change at all.

Corollary 5.15 The statements of Theorems 5.13 and 5.14 are still valid when,
instead, R∞ is replaced by R0 and the limits in parts (i) and (ii) are simultaneously
changed to θ→∞ and x→ 0.

We now give the proof of Theorem 5.13, which, in addition to the assumed reg-
ular variation, uses little more than the Continuity Theorem for Laplace transforms
of positive random variables.

Proof of Theorem 5.13 It will be helpful for this proof to record the well-known fact
that, for any∞> ρ ≥ 0 and λ > 0,

∫ ∞

0
xρe−λxdx = Γ (1+ ρ)

λ1+ρ . (5.15)

In addition, we will also use the fact that, for all λ > 0 and θ > 0,
∫

[0,∞)
e−λxU(dx/θ)=Λ(λθ). (5.16)

First, we prove that (i) implies (ii). Fix λ0 > 0. From (5.16), we have, for θ > 0,
that e−λ0xU(dx/θ)/Λ(λ0θ) is a probability distribution. Again, from (5.16), we
can compute its Laplace transform as Λ((λ+ λ0)θ)/Λ(λ0θ). The regular variation
assumed in (i), together with (5.15), implies that

lim
θ↓0

∫

[0,∞)
e−(λ+λ0)x

U(dx/θ)

Λ(λ0θ)
= λ

ρ
0

(λ0 + λ)ρ =
λ
ρ
0

Γ (ρ)

∫ ∞

0
xρ−1e−(λ+λ0)xdx,

where the right-hand side is the Laplace transform of a gamma distribution. It fol-
lows from the Continuity Theorem for Laplace transforms (cf. Theorem XIII.1.2a
of Feller (1971)) that the measure e−λ0xU(dx/θ)/Λ(λ0θ) converges vaguely to
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e−λ0xλ
ρ
0x
ρ−1/Γ (ρ)dx, as θ tends to zero. Using the regular variation of Λ again,

this implies that, for all y > 0,

lim
θ↓0

U(y/θ)

L(1/θ)
λ
ρ
0θ
ρ = λ

ρ
0y
ρ

ρΓ (ρ)
.

Now setting y = 1, rewriting x = 1/θ and recalling that Γ (1+ ρ)= ρΓ (ρ), state-
ment (ii) follows.

Now we prove that (ii) implies (i). The assumption in (ii) expressed in terms of
vague convergence implies that, on bounded intervals of [0,∞),

lim
x↑∞

U(x dy)

U(x)
= ρyρ−1dy.

In particular, for any t > 0 and λ > 0,

lim
x↑∞

∫ t

0
e−λy U(x dy)

U(x)
= ρ

∫ t

0
y(ρ−1)e−λydy. (5.17)

In view of (5.16), the Laplace transform of the measure U(x dy)/U(x) is given by
Λ(λ/x)/U(x), for λ > 0. Now suppose that, for some 0< λ0 < 1 and x0 > 0, the
sequence {Λ(λ0/x)/U(x) : x > x0} is uniformly bounded by some C > 0. With this
additional assumption in place, we may pick a sufficiently large t > 0 such that

∫ ∞

t

e−y U(x dy)

U(x)
< e−(1−λ0)t

∫ ∞

t

e−λ0y
U(x dy)

U(x)
< Ce−(1−λ0)t .

Together with (5.17), the above estimate is sufficient to deduce that

lim
x↑∞

Λ(1/x)

U(x)
= lim
x↑∞

∫ ∞

0
e−y U(x dy)

U(x)
= ρ

∫ ∞

0
y(ρ−1)e−ydy = Γ (1+ ρ).

Choosing λ= 1 and writing θ = 1/x, the statement in (i) follows.
It remains then to show that, for some 0 < λ0 < 1 and x0 > 0, the sequence

{Λ(λ0/x)/U(x) : x > x0} is uniformly bounded. This is done by partitioning the
domain of integration in (5.16) over the lattice {2kx : k ≥ 0}, for some x > 0. The
assumed regular variation of U implies that, for all x sufficiently large, U(2x) <
2ρ+1U(x). This can be iterated to deduce that, for x sufficiently large, U(2nx) <
2n(1+ρ)U(x) for each n ≥ 1. With this inequality in hand, we may quite coarsely
estimate, for all sufficiently large x,

Λ(λ0/x)

U(x)
≤
∑

n≥1

e−λ02n−1 U(2nx)

U(x)
<
∑

n≥1

2n(1+ρ)e−λ02n−1
<∞,

and the proof is complete. �

Next, we turn to the proof of Theorem 5.14, which implicitly uses the statement
of Theorem 5.13.
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Proof of Theorem 5.14 First, we prove that (ii) implies (i). It suffices to prove that
(ii) implies Theorem 5.13 (ii). However this is a simple issue of weak convergence
and regular variation, since, for any y > 0,

ρU(x dy)

xu(x)
= ρu(xy)x

xu(x)
dy→ ρyρ−1dy

as x tends to infinity, in the sense of weak convergence. This implies that

ρU(xy)

xu(x)
∼ yρ.

Now choose y = 1. Taking account of the fact that xu(x)/ρ ∼ xρL(x)/Γ (1+ ρ)
(here we use that Γ (1+ ρ)= ρΓ (ρ)), the result thus follows.

Next, we prove that (i) implies (ii). From Theorem 5.13, we see that U(x) ∼
xρL(x)/Γ (1+ρ) for some L ∈R∞. Let us temporarily assume that u is eventually
non-decreasing. For any 0< a < b <∞, we have

U(bx)−U(ax)=
∫ bx

ax

u(y)dy,

and hence, for x large enough,

(b− a)xu(ax)
xρL(x)/Γ (1+ ρ) ≤

U(bx)−U(ax)
xρL(x)/Γ (1+ ρ) ≤

(b− a)xu(bx)
xρL(x)/Γ (1+ ρ) . (5.18)

Using the regular variation of U , we also have that

lim
x↑∞

U(bx)−U(ax)
xρL(x)/Γ (1+ ρ) =

(
bρ − aρ).

Hence, from the left inequality of (5.18), we have

lim sup
x↑∞

u(ax)

xρ−1L(x)/Γ (1+ ρ) ≤
(bρ − aρ)
(b− a) .

Now taking a = 1 and letting b ↓ 1, it follows that

lim sup
x↑∞

u(x)

xρ−1L(x)
≤ ρ

Γ (1+ ρ) .

A similar treatment for the right inequality in (5.18), taking b= 1 and letting a ↑ 1,
shows that

lim inf
x↑∞

u(x)

xρ−1L(x)
≥ ρ

Γ (1+ ρ) .

Recalling that Γ (1+ ρ)= ρΓ (ρ), the statement of the theorem follows.
The proof when u is eventually non-increasing is essentially the same with minor

adjustments. �
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5.5 Dynkin–Lamperti Asymptotics

Let us return to the issue of the asymptotic behaviour of overshoots and under-
shoots of subordinators. The following theorem is due to Dynkin (1961) and Lam-
perti (1962). It shows that obtaining an asymptotic bivariate limit distribution of the
overshoot and undershoot, when rescaling by the level of the barrier, is equivalent
to an assumption of regular variation on the Laplace exponent of the subordinator.

Theorem 5.16 Suppose that X is any subordinator with Laplace exponent Φ ,
which belongs to R0(α) (resp. R∞(α)), where α ∈ (0,1). Then, in the sense of
weak convergence, for u > 0 and y ∈ [0,1),

P

(
Xτ+x − x
x

∈ du,
x −Xτ+x −

x
∈ dy

)

→ α sinπα

π
(1− y)α−1(y + u)−α−1dy du, (5.19)

as x tends to infinity (resp. zero).

The statement of the theorem is not empty as any stable subordinator fulfils the
assumptions. Recall from Exercise 3.7 that a stable subordinator necessarily has
Laplace exponent on [0,∞) given by Φ(θ)= cθα , for some c > 0 and α ∈ (0,1).

We may take the result in the above theorem a little further. For example, one
may conversely prove that the pair

(
Xτ+x − x
x

,
x −Xτ+x −

x

)

has a non-degenerate limit in distribution, as x ↑ ∞, only if Φ ∈ R0(α) for
α ∈ (0,1). See Exercise 5.9 or Bingham (1973a).

It is also possible to calculate the marginal laws of (5.19) as follows:

P

(
Xτ+x − x
x

∈ du

)

→ sinπα

π
u−α(1+ u)−1du, u≥ 0,

and

P

(
x −Xτ+x −

x
∈ dy

)

→ sinπα

π
y−α(1− y)α−1dy, y ≥ 0,

in the sense of weak convergence, as x ↑∞ or x ↓ 0. These limits are known as the
generalised arcsine laws. The classical arcsine law is a special case when α = 1/2.5

5In that case, the density (π
√
y(1− y))−1 is related (via a linear transform) to the derivative of the

arcsine function.
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Fig. 5.2 Examples of the shape of the Laplace exponent Φ(θ). The solid concave curve cor-
responds to the case of a compound Poisson process with infinite mean (Φ ′(0+) = ∞ and
Φ(∞) <∞). The dashed concave curve corresponds to the case of a finite mean subordinator
with strictly positive linear drift (Φ ′(0+) <∞ and limθ↑∞Φ(θ)/θ = δ).

Before moving to the proof of Theorem 5.16, let us make some remarks about
regular variation of the Laplace exponent Φ of a subordinator. It is easy to de-
duce, with the help of dominated convergence, that Φ is infinitely differentiable and
strictly concave. In addition, Φ ′(0+) = E(X1) ∈ (0,∞], Φ(0) = 0 and Φ(∞) =
− logP(X1 = 0) (which is only finite in the case that X is a compound Poisson sub-
ordinator). Finally, recall again from Exercise 2.11 that limθ↑∞Φ(θ)/θ = δ. See
Fig. 5.2 for a visualisation of these facts.

Suppose now that Φ ∈R0(α) with α ∈ R, so that Φ(θ) ∼ θαL(θ) as θ ↓ 0, for
some slowly varying function L. As Φ(0) = 0, we necessarily have that α ≥ 0. If
E(X1) <∞ then clearly Φ(θ)/θ ∼ E(X1) as θ ↓ 0 forcing α = 1. On the other
hand, if E(X1)=∞, then Φ(θ)/θ explodes as θ ↓ 0, forcing α ≤ 1. In conclusion,
Φ ∈R0(α) implies that α ∈ [0,1].

Now suppose that Φ ∈R∞(α), with α ∈ R. Since Φ(∞) > 0 (actually
Φ(∞)=∞ in the case that X is not a compound Poisson subordinator), we have
that α ≥ 0. On the other hand, the fact that Φ(θ)/θ tends to the constant δ at infinity
also dictates that α ≤ 1. Hence, Φ ∈R∞(α), again, implies that α ∈ [0,1].

We now turn to the proof of Theorem 5.16, beginning with the following prepara-
tory lemma. Recall that U is the potential measure of the given subordinator.

Lemma 5.17 Suppose that the Laplace exponent of a subordinator, Φ , belongs to
R0(α) (resp. R∞(α)), where α ∈ [0,1]. Then, for all λ > 0,

(i) U(λx)Φ(1/x)→ λα/Γ (1+ α) as x ↑∞ (resp. x ↓ 0) and
(ii) when α is further restricted to [0,1),Π(λx,∞)/Φ(1/x)→ λ−α/Γ (1−α) as

x ↑∞ (resp. x ↓ 0).
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Proof (i) Recall that
∫

[0,∞)
e−qxU(dx)= 1

Φ(q)
.

The assumption on Φ means that Φ(θ) ∼ θαL(1/θ) as θ tends to zero, where
L ∈R∞. That is to say, 1/Φ(1/x) ∼ xα/L(x) as x tends to infinity. Noting that
1/L ∈R∞, Theorem 5.13 implies that U(x)∼ xα/L(x)Γ (1+ α), as x ↑∞. Reg-
ular variation now implies the statement in part (i). The same argument works when
Φ is regularly varying at infinity, rather than at zero.

(ii) Now recall from Exercise 2.11 that

Φ(θ)

θ
= δ+

∫ ∞

0
e−θxΠ(x,∞)dx,

showing that Φ(θ)/θ is a Laplace transform. The assumed regular variation on Φ
implies that Φ(θ)/θ ∼ θ−(1−α)L(1/θ), as θ ↓ 0, for some L ∈R∞. Theorem 5.14
now dictates that Π(x,∞) ∼ x−αL(x)/Γ (1 − α) and regular variation gives the
statement in part (ii). As usual, the same argument works when, instead, it is as-
sumed that Φ is regularly varying at infinity. Note also, in this case, the assumption
that α ∈ [0,1) implies that δ = 0 as, otherwise, if δ > 0, then necessarily α = 1. �

Finally, we are ready for the proof of the Dynkin–Lamperti Theorem.

Proof of Theorem 5.16 We give the proof for the case that x ↑ ∞. The proof for
x ↓ 0 requires minor modification.

Starting from the conclusion of Theorem 5.6, we have, for θ ∈ [0,1) and φ > 0,
that

P

(
Xτ+x − x
x

∈ dφ,
x −Xτ+x −

x
∈ dθ

)

=U(x(1− dθ)
)
Π
(
x(θ + dφ)

)

and hence, for 0< a < b < 1 and c > 0,

P

(
Xτ+x − x
x

> c,
x −Xτ+x −

x
∈ (a, b)

)

=
∫

(a,b)

Π
(
x(θ + c),∞)

U
(
x(1− dθ)

)

=
∫

(1−b,1−a)
Π(x(1− η+ c),∞)

Φ(1/x)
U(x dη)Φ(1/x), (5.20)

where in the last equality, we have changed variables. From Lemma 5.17 (i), we see,
on the one hand, that U(x dη)Φ(1/x) converges weakly to ηα−1dη/Γ (α) (we have
used that Γ (1+α)= αΓ (α)). On the other hand, we have seen from part (ii) of the
same lemma that

lim
x↓0

Π(x(1− η+ c),∞)
Φ(1/x)

= (1− η+ c)
−α

Γ (1− α) .
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Thanks to a general technical result for regularly varying functions, it turns out that
this convergence is uniform in η on compacts. We refrain from giving the details
here, referring instead to Theorem 1.5.2 of Bingham et al. (1987). The right-hand
side of (5.20) thus converges to

∫

(1−b,1−a)
(1− η+ c)−α
Γ (1− α)

ηα−1

Γ (α)
dη

= 1

Γ (α)Γ (1− α)
∫

(a,b)

(θ + c)−α(1− θ)α−1dθ,

as x ↑∞, which is tantamount to saying

lim
x↑∞P

(
Xτ+x − x
x

∈ du,
x −Xτ+x −

x
∈ dy

)

= α

Γ (α)Γ (1− α)(y + u)
−α−1(1− y)α−1dy du,

for u > 0 and y ∈ [0,1), in the sense of weak convergence. Finally, Euler’s reflection
formula for gamma functions gives us that 1/(Γ (α)Γ (1 − α)) = (sinπα)/π and
hence the proof is complete. �

5.6 Special and Complete Subordinators

We close this chapter by looking at subclasses of killed subordinators which offer a
greater degree of mathematical tractability with regard to the analysis of their poten-
tial measures. In particular, this will allow us to construct some concrete examples
of subordinators with explicit potential measures. Moreover, later on in Chap. 9, we
shall see how this plays an important role in the theory of so-called scale functions.

Recall that any killed subordinator, X = {Xt : t ≥ 0}, can be uniquely identified
by its Laplace exponent

Φ(θ)=−1

t
logE

(
e−θXt

)= η+ δθ +
∫

(0,∞)
(
1− e−θx

)
Π(dx), θ ≥ 0, (5.21)

where η ≥ 0 is the killing rate, δ ≥ 0 is the drift coefficient and the Lévy measure
Π is concentrated on (0,∞) and satisfies

∫
(0,∞)(1∧x)Π(dx) <∞. Such functions

are also known as Bernstein functions.

Definition 5.18 (Special and conjugate subordinators) A killed subordinator, X, is
said to be special if, for θ ≥ 0, the conjugate Φ∗(θ) := θ/Φ(θ) is also the Laplace
exponent of a killed subordinator (also referred to as the conjugate killed subordi-
nator).
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Let us make some additional notational remarks to accompany this definition.
For convenience, we shall often say that “Φ is a special Bernstein function” rather
than “the killed subordinator corresponding to Φ is special”. If Φ is special, then so
is its conjugate. Moreover, we shall write its conjugate in the form

Φ∗(θ)= η∗ + δ∗θ +
∫

(0,∞)
(
1− e−θx

)
Π∗(dx), θ ≥ 0,

where η∗ ≥ 0, δ∗ ≥ 0 and Π∗ is a measure concentrated on (0,∞), satisfying∫
(0,∞)(1∧ x)Π∗(dx) <∞.

The family of special subordinators was introduced by Song and Vondraček
(2006), although the same notion can also be found in the earlier work of Bertoin
(1997c) and Steutel and van Harn (1977). The theory we shall discuss here is largely
based on the first of these three references. The reader is directed to the recent mono-
graph of Schilling et al. (2010) for a global perspective on the theory of special sub-
ordinators. One of the most important consequences of this definition is that special
subordinators can be equivalently characterised through their potential measures.

Theorem 5.19 Suppose that X is a killed subordinator with potential measure U .
Then X is a special subordinator if and only if

U(dx)= cδ0(dx)+ u(x)dx, x ≥ 0,

where c ≥ 0 and u : (0,∞) �→ (0,∞) is a non-increasing function, satisfying
∫ 1

0 u(x)dx <∞. Moreover, c= δ∗ and u(x)= η∗ +Π∗(x,∞).

Proof Let us first suppose that Φ is a special Bernstein function. Appealing to Ex-
ercise 2.11 (ii), we may now write, for θ ≥ 0,

1

Φ(θ)
= Φ

∗(θ)
θ

= η
∗

θ
+ δ∗ +

∫ ∞

0
e−θxΠ∗(x,∞)dx

= δ∗ +
∫ ∞

0
e−θx

(
η∗ +Π∗(x,∞))dx. (5.22)

Recalling that the potential measure associated with Φ satisfies
∫

[0,∞)
e−θxU(dx)= 1

Φ(θ)
, (5.23)

it follows directly from (5.22) that, for x ≥ 0,

U(dx)= cδ0(dx)+ u(x)dx, (5.24)

where c= δ∗ and u(x)= η∗ +Π∗(x,∞).
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Now suppose that (5.24) holds such that the pair c and u satisfy the conditions in
the statement of the theorem. Again, making use of (5.23), we have6

θ

Φ(θ)
= cθ +

∫ ∞

0
θe−θxu(x)dx

= cθ + u(x)(1− e−θx
)∣
∣∞
0 −

∫

(0,∞)
(
1− e−θx

)
u(dx)

= cθ + u(∞)+
∫

(0,∞)
(
1− e−θx

)[−u(dx)]. (5.25)

Note that the assumption
∫ 1

0 u(x)dx <∞ implies that limx↓0 u(x)(1− e−θx)= 0
and, after a straightforward integration by parts, it also implies that the in-
tegral on the right-hand side of (5.25) is finite. In particular,

∫
(0,∞)(1 ∧ x)[−u(dx)] <∞. Note also that −u(dx) has positive increments on account of the

fact that u is decreasing, in other words, it is a positive measure. Hence, writing
η∗ = u(∞), δ∗ = c and Π∗(dx)=−u(dx), it follows that Φ is special with conju-
gate triple given by (η∗, δ∗,Π∗). �

We can also identify the constants η∗ and δ∗ in terms of the original triple
(η, δ,Π). Indeed, recall that η∗ = Φ∗(0+) = limθ↓0 θΦ(θ)

−1 and, from Exer-
cise 2.11 (ii), δ∗ = limθ↑∞Φ∗(θ)/θ = limθ↑∞Φ(θ)−1. Hence, appealing to Ex-
ercise 2.11 (iii), we have that

η∗ =
{

0 if η > 0
(δ + ∫

(0,∞) xΠ(dx))
−1 if η= 0, (5.26)

where we interpret the right-hand side to be zero when
∫
(0,∞) xΠ(dx)=∞, and

δ∗ =
{

0 if δ > 0 or Π(0,∞)=∞
(η+Π(0,∞))−1 if δ = 0 and Π(0,∞) <∞. (5.27)

It is now straightforward to deduce, from (5.26) and (5.27), that ηη∗ = δδ∗ = 0.
Moreover, δ = 0 and Π(0,∞)=∞ if and only if δ∗ = 0 and Π∗(0,∞)=∞.

We shall shortly give some concrete examples of special subordinators. How-
ever, before doing so, it is natural to ask where one should look to find such exam-
ples. Otherwise said, we are interested in sufficient conditions to ensure that a given
subordinator is special. The next result, taken from Song and Vondraček (2010),
requires a rather technical proof and hence, we omit it in favour of illustrating the
result by example.

6Note also that u is right-continuous and non-increasing so that we may make sense of the measure
−u(dx).
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Theorem 5.20 Suppose that X is a killed subordinator with Lévy measure Π ,
which has the property that x �→ logΠ(x,∞) is a convex function on (0,∞). Then
X is a special subordinator.

As a first example, consider the function

u(x)=
{
x−α for 0< x < 1
1 for x ≥ 1,

where 0 < α < 1. Note that u is decreasing and log-convex. Suppose we define a
measureΠ∗ on (0,∞) by its tail, so thatΠ∗(x,∞)= u(x)− 1, for x > 0. It is also
straightforward to check that

∫
(0,∞)(1∧ x)Π∗(dx) <∞.

Now define, for θ ≥ 0,

Φ∗(θ)= 1+
∫

(0,∞)
(
1− e−θx

)
Π∗(dx).

In terms of our earlier notation, η∗ = 1 and δ∗ = 0. According to Theorem 5.20, Φ∗
is a special Bernstein function, in which case it has a conjugate, which we shall de-
note by Φ . As Φ is also a special Bernstein function, it follows from Theorem 5.19
that its potential measure, U , can be identified in the form U(dx)= u(x)dx, x ≥ 0.

From the discussion preceding the proof of Theorem 5.19, since η∗ > 0, we may
conclude that η = 0. Since Π∗(0,∞) =∞, it follows from (5.27), applied to Φ∗
instead ofΦ , that δ = 0. Finally, by Theorem 5.19, to computeΠ , it suffices to com-
pute the potential measure U∗ associated withΦ∗. This is tantamount to performing
a Laplace inverse of 1/Φ∗(θ), but this is not analytically tractable.

It turns out that there is a subclass of special subordinators, known as complete
subordinators, amongst which it is much easier to find tractable examples of conju-
gate subordinators. By “tractable”, we mean here that it is possible to compute both
triples (η, δ,Π) and (η∗, δ∗,Π∗). The vast majority of known tractable examples
of special subordinators fall into the class of complete subordinators.

In order to formally state the definition of a complete subordinator, let us recall
the definition of complete monotonicity. The reader is referred to Schilling et al.
(2010) and Widder (2010) for a detailed modern and classical account, respectively.
A function f : [0,∞)→[0,∞) is called completely monotone if

(−1)nf (n)(x)≥ 0 for all x ∈ (0,∞) and n= 0,1,2, . . . , (5.28)

where f (n) denotes the n-th derivative of f . Perhaps the most straightforward exam-
ples of completely monotone functions are the exponential functions f (x)= e−θx ,
where θ ≥ 0. As a simple generalisation of this family, it is also true that, for any
finite Borel measure μ on [0,∞),

∫

[0,∞)
e−θxμ(dθ) (5.29)
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is also a completely monotone function. Indeed, this follows by dominated conver-
gence (which justifies differentiating through the integral) and the complete mono-
tonicity of the exponential functions. It turns out that every completely monotone
function can be represented in the form (5.29). The equivalence of completely
monotone functions with the representation (5.29) is known as Bernstein’s Theo-
rem.7

Remarkably, there is also a deep connection between Bernstein functions and
completely monotone functions.

Theorem 5.21 The class of Bernstein functions agrees with the class of non-
negative functions whose first derivative is completely monotone.

We can now give the definition of a complete subordinator.

Definition 5.22 (Complete subordinators) A subordinator is said to be complete
if it has a Lévy measure which is absolutely continuous with respect to Lebesgue
measure and has a completely monotone density.

In a similar spirit to previously, we shall refer to the Laplace exponent of a com-
plete subordinator as a complete Bernstein function. The following theorem reiter-
ates what we have already alluded to above, namely that complete subordinators
are a subclass of special subordinators. However, it also exposes some interesting
symmetric properties with regard to conjugate pairs. Again, we omit the proof for
the same reasons as above.

Theorem 5.23 A complete subordinator is also a special subordinator. Moreover,
its conjugate is also a complete subordinator.

The following corollary is a direct consequence of Theorems 5.19 and 5.23.

Corollary 5.24 Every complete subordinator has a potential measure whose den-
sity on (0,∞) is completely monotone.

The class of complete subordinators is strictly contained in the class of special
subordinators. That is to say, they are not identical classes. One only needs to con-
sider the example of a special subordinator following Theorem 5.20 to verify this
fact. Nonetheless, almost all known examples of special subordinators turn out to
be complete subordinators.

We conclude this section, and this chapter, with two tractable examples of com-
plete subordinators. More examples can be found in the exercises and even more
can be found in Schilling et al. (2010), together with the proof of Theorem 5.23. In
addition, many complete subordinators can be found by considering inverse local
times of diffusions. See for example Borodin and Salminen (2002).

7This result is also attributed to Hausdorff and Widder.
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Example 5.25 For the first example, let 0 < α ≤ β ≤ 1, a, b > 0 and let Φ be the
Bernstein function defined by

Φ(θ)= aθβ−α + bθβ, θ ≥ 0.

Hence, when 0 < α < β < 1, Φ is the Laplace exponent of the sum of two inde-
pendent stable subordinators, one of parameter β − α and the other of parameter β ,
respectively. In terms of the notation in (5.21), η= δ = 0, and

Π(dx)=
(

a(β − α)
Γ (1− β + α)x

−(1+β−α) + bβ

Γ (1− β)x
−(1+β)

)

dx, x > 0,

see for example Exercise 5.8. If α = β < 1, then Φ is the Laplace exponent of a
stable subordinator killed at rate a. When α < β = 1, Φ is the Laplace exponent of
a stable subordinator with positive drift b. Finally, in the case where α = 1= β , Φ
is simply the Laplace exponent of a pure drift subordinator killed at rate a. This last
case will be excluded and left for the reader to explore in Exercise 5.12. In all cases,
the underlying Lévy measure has a density which is completely monotone, and thus
its potential density is completely monotone.

In the remainder of this example, as well as subsequent examples, we shall make
heavy use of the two-parameter Mittag–Leffler function, defined by

Eα,β(x)=
∑

n≥0

xn

Γ (nα+ β) , x ∈R, (5.30)

where α,β > 0. This function is characterised via a Laplace transform. Namely, for
λ ∈R, θ ∈C and |θα/λ|> 1, we have

∫ ∞

0
e−θxxβ−1Eα,β

(
λxα

)
dx = θα−β

θα − λ. (5.31)

Recall from (5.27) that, since Π(0,∞) =∞, we have δ∗ = 0 and, hence, Theo-
rem 5.19 predicts that, on [0,∞), U(dx) = u(x)dx for some density u. However,
using the above pseudo-Laplace transform it is not difficult to confirm using (5.23)
that

u(x)= 1

b
xβ−1Eα,β

(−axα/b), x > 0. (5.32)

Taking account of Exercise 5.11, we may note that this is a completely monotone
function because it is the product of the completely monotone functions xβ−1 and
Eα,β(−xα). Moreover the latter of these two is completely monotone because it is
the composition of the completely monotone function t �→ Eα,β(−t) for t ≥ 0, with
the Bernstein function xα ; see Schneider (1996).

With the potential of Φ in hand, we can now apply Theorem 5.19, again to the
conjugate, to recover the complete picture for its triple and its potential measure.
The conjugate Bernstein function is given by

Φ∗(θ)= θ

aθβ−α + bθβ , θ ≥ 0.



144 5 Subordinators at First Passage and Renewal Measures

From this, it is easy to check that η∗ = Φ∗(0) = 0, which can also be recovered
from (5.26) by noting that δ = 0 and

∫
(0,∞) xΠ(dx) =∞. In that case, we have

U∗(dx)=Π(x,∞)dx, x ≥ 0, and hence

U∗(x)= a

Γ (2− β + α)x
1−β+α + b

Γ (2− β)x
1−β, x ≥ 0.

Finally, to recover the Lévy measure of the conjugate subordinator, recall again from
Theorem 5.19, that u(x)=Π∗(x,∞), x > 0.

Example 5.26 For the second example, let c > 0, ν ≥ 0 and λ ∈ (0,1). We claim
that

Φ(θ)= cθΓ (ν + θ)
Γ (ν + θ + λ), θ ≥ 0,

is a Bernstein function, where Γ (u) denotes the usual gamma function with parame-
ter u > 0. In order to determine its triple (η, δ,Π), let us recall that the beta function
is related to the gamma function by Euler’s beta integral formula: For a, b > 0,

B(a, b) :=
∫ 1

0
xb−1(1− x)a−1dx = Γ (a)Γ (b)

Γ (a + b) .

We thus have that

Φ(θ)= cθ

Γ (λ)
B(θ + ν,λ), θ ≥ 0.

Making a change of variable in the expression for the beta function, we reach the
identity

Φ(θ)

θ
= c

Γ (λ)

∫ ∞

0
e−θze−zν

(
1− e−z

)λ−1dz, θ ≥ 0. (5.33)

Recalling the computations in Exercise 2.11, this shows that η= δ = 0 and

Π(x,∞)= c e−x(ν+λ−1)

Γ (λ)

(
ex − 1

)λ−1
, x > 0.

It is a straightforward computation, with the help of Exercise 5.11, to show that Π
has a completely monotone density. Hence, Φ is a complete Bernstein function.

In order to determine the potential measure associated with this subordinator,
observe the following elementary identity:

θ

Φ(θ)
= Γ (ν + θ + λ)Γ (1− λ)

cΓ (ν + θ + 1)

ν + θ
Γ (1− λ) , θ ≥ 0. (5.34)

Therefore, we have that
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θ

Φ(θ)
= ν + θ
cΓ (1− λ)

∫ 1

0
xν+θ−1xλ(1− x)−λdx

= λ

cΓ (1− λ)
∫ 1

0

1

x2

(
1− xν+θ )

(
1

x
− 1

)−λ−1

dx

= λ

cΓ (1− λ)
∫ ∞

0

(
1− e−(ν+θ)z

)(
ez − 1

)−λ−1ezdz

= λ

cΓ (1− λ)
∫ ∞

0

(
1− e−νz

) ez

(ez − 1)λ+1
dz

+ λ

cΓ (1− λ)
∫ ∞

0

(
1− e−θz

) ez(1−ν)

(ez − 1)λ+1
dz

= Γ (ν + λ)
cΓ (ν)

+ λ

cΓ (1− λ)
∫ ∞

0

(
1− e−θz

) ez(1−ν)

(ez − 1)λ+1
dz. (5.35)

Note the second equality above is obtained by using integration by parts, splitting the
integrand into the product of the functions 1−xν+θ and (x−1−1)−λ, for x ∈ (0,1).
Moreover, the fifth equality follows also by an integration by parts and the change
of variables u= e−z as follows,

λ

∫ ∞

0

(
1− e−νz

) ez

(ez − 1)λ+1
dz=− (1− e−νz)

(ez − 1)λ

∣
∣
∣
∣

∞

0
+
∫ ∞

0

νe−(ν+1)zez

(ez − 1)λ
dz

= ν
∫ ∞

0

e−(ν+λ−1)ze−z

(1− e−z)λ
dz

= ν
∫ 1

0
uλ+ν−1(1− u)1−λ−1du

= Γ (λ+ ν)Γ (1− λ)
Γ (ν)

.

The right-hand side of (5.35) shows that Φ is a special Bernstein function whose
conjugate, Φ∗, has triple (η∗, δ∗,Π∗), where η∗ = Γ (ν + λ)/cΓ (ν), δ∗ = 0 and

Π∗(dx)= λ

cΓ (1− λ)
ex(1−ν)

(ex − 1)λ+1
dx.

Theorem 5.19 again allows us to identify the potential measures. The potential
measure of Φ is given by

U(dx)= Γ (ν + λ)
cΓ (ν)

δ0(dx)+
{∫ ∞

x

λ

cΓ (1− λ)
ez(1−ν)

(ez − 1)λ+1
dz

}

dx,
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for x ≥ 0. The potential measure of Φ∗ is given by

U∗(dx)= c e−x(ν+λ−1)

Γ (λ)

(
ex − 1

)λ−1dx, (5.36)

for x ≥ 0.

Exercises

5.1 In this exercise, we shall derive the form of the Laplace exponent of a killed
subordinator given in (5.1), without appealing to the Lévy–Itô decomposition. To
this end, suppose that X = {Xt : t ≥ 0} is a [0,∞]-valued stochastic process which
has non-decreasing, right-continuous paths with left limits. Here, +∞ serves as a
cemetery state. Denote its lifetime by

ζ = inf{t > 0 :Xt =∞}.
Suppose that under measure P, X has the property that, for all s, t ≥ 0, on the event
{t < ζ }, the increment Xt+s −Xt is independent of {Xu : u≤ t} and equal in distri-
bution to Xs .

(i) By agreeing to write e−∞ = 0, show that

E
(
e−θXt+s

)= E
(
e−θXt

)
E
(
e−θXs

)
,

where θ, s, t ≥ 0 and E denotes expectation with respect to P. Hence, deduce
that, for θ, t ≥ 0,

E
(
e−θXt

)= e−Φ(θ)t ,

where Φ(θ)=− logE(e−θX1).
(ii) Prove that, for θ ≥ 0,

Φ(θ)

θ
= lim
n↑∞

∫ ∞

0
e−θxnP(X1/n ≥ x)dx.

(iii) Hence, deduce that, for θ ≥ 0,

Φ(θ)= η+ δθ +
∫

(0,∞)
(
1− e−θx

)
Π(dx),

where Π(dx)=−Π(dx), δ ≥ 0 and η ≥ 0 are uniquely identified.
(iv) Explain why

∫
(0,∞)(1∧ x)Π(dx) <∞.

5.2 Suppose that, under P, X = {Xt : t ≥ 0} is a (killed) subordinator with Laplace
exponent Φ , just as in part (iii) of Exercise 5.1. Define for q ≥ 0,

dPq

dP

∣
∣
∣
∣
Ft
:= exp

{−qXt +Φ(q)t
}
, t ≥ 0,
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where, as usual, {Ft : t ≥ 0} is the natural filtration generated by X. Show that
(X,Pq) is a subordinator without killing, the same drift coefficient as (X,P) and
Lévy measure given by e−qxΠ(dx), x > 0, whereΠ is the Lévy measure of (X,P).

5.3 Prove Theorem 5.7.

5.4 Suppose that Y is a spectrally positive Lévy process of bounded variation drift-
ing to −∞, with Laplace exponent written in the usual form

logE
(
e−θY1

)=ψ(θ)= δθ −
∫

(0,∞)
(
1− e−θx

)
ν(dx),

where necessarily δ > 0,
∫
(0,∞)(1 ∧ x)ν(dx) <∞ and ψ ′(0+) > 0. Define σ+x =

inf{t > 0 : Yt > x} and Y t = sups≤t Ys .
(i) Suppose that X = {Xt : t ≥ 0} is a compound Poisson subordinator with jump

distribution (δ −ψ ′(0+))−1ν(x,∞)dx. By following similar reasoning to the
explanation of the Pollaczek–Khintchine formula in Chap. 4, show that

P
(
Yσ+x − x ∈ du,x − Yσ+x − ∈ dy |σ+x <∞

)

= P(Xτ+x − x ∈ du,x −Xτ+x − ∈ dy).

(ii) Deduce that if
∫∞

0 xν(x,∞)dx <∞, then, for u,y > 0, in the sense of weak
convergence,

lim
x↑∞P

(
Yσ+x − x ∈ du,x − Yσ+x − ∈ dy|σ+x <∞

)

= 1
∫∞

0 xν(x,∞)dx ν(u+ y,∞)dudy.

(iii) Give an interpretation of the result in (ii) in the context of modelling insurance
claims.

5.5 Suppose that X is a finite mean subordinator and that its associated potential
measure U does not have lattice support. Suppose that Z is a random variable whose
distribution is equal to that of the limiting distribution of Xτ+x − Xτ+x − as x ↑ ∞.
Suppose further that (V ,W) is a bivariate random variable whose distribution is
equal to the limiting distribution of (Xτ+x − x, x −Xτ+x −) as x ↑∞, and that U is
independent of V,W,Z and uniformly distributed on [0,1]. Show that (V ,W) is
equal in distribution to ((1−U)Z,UZ).
5.6 Let X and Y be two (possibly correlated) subordinators killed independently at
the rate η ≥ 0. Denote their bivariate jump measure by �(·, ·). Define their bivariate
renewal function

U(dx,dy)=
∫ ∞

0
dt · P(Xt ∈ dx,Yt ∈ dy), x, y ≥ 0,
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and suppose, as usual, that

τ+x = inf{t > 0 :Xt > x}, x ≥ 0.

Use a generalised version of the compensation formula to establish the following
quadruple law

P(ΔXτ+x ∈ dt,Xτ+x − ∈ ds, x − Yτ+x − ∈ dy,Yτ+x − x ∈ du)

= U(ds, x − dy)�(dt,du+ y),
for u > 0, y ∈ [0, x] and s, t ≥ 0. This formula will be of use later on when consid-
ering the first passage of a general Lévy process over a fixed level.

5.7 LetX be any subordinator with Laplace exponentΦ , drift coefficient δ ≥ 0 and
recall that τ+x = inf{t > 0 :Xt > x}. Let eα be an exponentially distributed random
variable with rate α, which is independent of X.

(i) By applying the strong Markov property at time τ+x in the expectation
E(e−βXeα 1(Xeα>x)), show that, for all α,β, x ≥ 0, we have

E
(
e
−ατ+x −βXτ+x )= (

α +Φ(β))
∫

(x,∞)
e−βzU(α)(dz), (5.37)

for all x > 0.
(ii) Show further, with the help of the identity in (i), that, when q > 0 and β ≥ 0,

∫ ∞

0
e−qxE

(
e
−ατ+x −β(Xτ+x −x))dx = 1

q − β
(

1− α+Φ(β)
α+Φ(q)

)

.

(iii) Deduce, with the help of Theorem 5.9, that

E
(
e−ατ+x 1(X

τ
+
x
=x)

)= δu(α)(x),

where, if δ = 0, the term u(α)(x) may be taken as equal to zero and, otherwise,
the potential measure U(α) has a density such that u(α) is a continuous and
strictly positive version thereof.

(iv) Show that for this version of the density, u(α)(0+)= 1/δ, where δ is the drift
of X.

5.8 Suppose that X is a stable subordinator with parameter α ∈ (0,1), thus having
Laplace exponent Φ(θ)= cθα , for θ ≥ 0 and some c > 0. In this exercise, we will
take c= 1.

(i) Show from Exercise 1.4 that the precise expression for the jump measure is

Π(dx)= x−(1+α)

−Γ (−α)dx, x > 0.
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(ii) By considering the Laplace transform of the potential measure U , show that

U(dx)= x
α−1

Γ (α)
dx, x ≥ 0.

(iii) Hence deduce that

P(Xτ+x − x ∈ du,x −Xτ+x − ∈ dy)

= α sinαπ

π
(x − y)α−1(y + u)−(α+1)dudy,

for u > 0 and y ∈ [0, x]. Note further that the distribution of the pair
(
x −Xτ+x −

x
,
Xτ+x − x
x

)

(5.38)

is independent of x.
(iv) Show directly that stable subordinators do not creep.

5.9 Suppose that X is any subordinator.

(i) Use the joint law of the overshoot and undershoot to deduce that, for β,γ ≥ 0
and q > 0,

∫ ∞

0
dx · e−qxE(e−βXτ+x −−γ (Xτ+x −x)1(X

τ
+
x
>x)

)

= 1

q − γ
(
Φ(q)−Φ(γ )
Φ(q + β)

)

− δ

Φ(q + β) .

(ii) Taking account of creeping, use part (i) to deduce that
∫ ∞

0
dx · e−qxE(e−β(Xτ+tx−/t)−γ (Xτ+tx−tx)/t)= 1

(q − γ )
Φ(q/t)−Φ(γ/t)
Φ((q + β)/t) ,

for β,γ ≥ 0 and q > 0.
(iii) Show that if Φ ∈R0(α) (resp. Φ ∈R∞(α)) with α equal to 0 or 1, then the

limiting distribution of the pair in (5.38) is trivial as x tends to infinity (resp.
zero).

(iv) It is possible to show that, if for a given measurable function f : [0,∞)→
(0,∞), there exists a g : (0, λ)→ (0,∞) such that

lim
f (λt)

f (t)
= g(λ),

for all λ > 0, as t tends to zero (resp. infinity), then f must be regularly varying.
Roughly speaking, the reason for this is that, for λ,μ > 0,

g(λμ)= lim
f (μλt)

f (λt)

f (λt)

f (t)
= g(μ)g(λ)
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showing that g is a multiplicative function. With a little measure theory, one
can show that g(λ) = λρ , for some ρ ∈ R. See Theorem 1.4.1 of Bingham et
al. (1987) for the full details.
Use the above remarks to deduce that, if (5.38) has a limiting distribution as x
tends to infinity (resp. zero), then necessarily Φ ∈R0(α) (resp. Φ ∈R∞(α))
with α ∈ [0,1]. Hence conclude that (5.38) has a non-trivial limiting distribu-
tion if and only if α ∈ (0,1).

5.10 Suppose that F is a probability distribution function. Write F(x)= 1−F(x).
Then F belongs to L(α), where α ≥ 0, if the support of F is non-lattice in [0,∞),
F(x) > 0 for all x ≥ 0 and, for all y > 0,

lim
x↑∞

F(x + y)
F (x)

= e−αy.

Note that the requirement that F is a probability measure can be weakened to a
finite measure, as one may always normalise by its total mass to fulfil the conditions
given earlier.

We are interested in establishing an asymptotic conditional distribution for the
overshoot of a killed subordinator. To this end, we assume that X is a killed subor-
dinator with killing rate η > 0, Laplace exponent Φ , jump measure Π , drift δ ≥ 0
and potential measure U which is assumed to belong to class L(α), for some α ≥ 0
such that Φ(−α) <∞.

(i) Show that, for x > 0,

P
(
τ+x <∞

)= ηU(x,∞),
where τ+x = inf{t > 0 :Xt > x}.

(ii) Show that, for all β ≥ 0,

E
(
e
−β(X

τ
+
x
−x)|τ+x <∞

)= Φ(β)

ηU(x,∞)
∫

(x,∞)
e−β(y−x)U(dy).

(iii) Applying integration by parts, deduce that

lim
x↑∞E

(
e
−β(X

τ
+
x
−x)|τ+x <∞

)= Φ(β)
η

(
α

α+ β
)

.

(iv) Now take the distribution G on [0,∞), defined by its tail

G(x,∞)= e−αx

η

{

Φ(−α)+
∫

(x,∞)
(
eαy − eαx

)
Π(dy)

}

.

Show that G has an atom at zero and
∫

(0,∞)
e−βyG(dy)= Φ(β)

η

(
α

α + β
)

− δα
η
.
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(v) Deduce that, for all u > 0,

lim
x↑∞P

(
Xτ+x − x > u|τ+x <∞

)=G(u,∞)

and

lim
x↑∞P

(
Xτ+x = x|τ+x <∞

)= δα
η
.

5.11 Suppose that f is a completely monotone function.

(i) If f is another completely monotone function show that αf +βg is completely
monotone for all α,β ≥ 0 as well as fg.

(ii) Suppose that Φ is a Bernstein function. Show that f ◦Φ is completely mono-
tone.

5.12 This exercise gives two more examples of complete subordinators for which
the analysis in Sect. 5.6 is completely tractable.

(i) Consider the, apparently trivial, Bernstein function

Φ(θ)= η+ δθ, θ ≥ 0,

where δ, η > 0. This corresponds to the subordinator which is a deterministic
linear drift killed at rate η. Show that

U(x)= 1

η

(
1− e−xη/δ

)
, x ≥ 0,

and hence deduce that δ∗ = η∗ = 0, Π∗(x,∞) = δ−1e−xη/δ and U∗(x) =
δ+ ηx for x ≥ 0.

(ii) Now consider, for ν ∈ (0,1) and γ > 0,

Φ(θ) := η+ λ
(

1−
(

γ

γ + θ
)ν)

, θ ≥ 0,

where η,λ > 0. Show that Φ is a complete Bernstein with components δ = 0,
the killing rate is η,

Π(dx)= λγ ν

Γ (ν)
xν−1e−γ xdx, x > 0,

and

U(x)= 1

λ+ η +
ργ ν

λ+ η
∫ x

0
e−γyyν−1Eν,ν

(
ργ νyν

)
dy,

where ρ = λ/(λ+ η).
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Hence deduce that η∗ = 0, δ∗ = 1/(η+ λ),

Π∗(x,∞)= ργ ν

λ+ η e−γ xxν−1Eν,ν
(
ργ νxν

)

and

U∗(x)= ηx + λγ ν

Γ (ν)

∫ x

0

{∫ ∞

y

zν−1e−γ zdz
}

dy.

5.13 This exercise concerns another transformation for Bernstein functions which
produces again a Bernstein function. The origins and more details of this transfor-
mation can be found in Urbanik (2005), Gnedin (2010) and Chazal et al. (2012).

(i) Suppose that Φ is the Laplace exponent of a subordinator with triple (η, δ,Π).
Show that, for θ,β ≥ 0,

φ(θ) := θ

θ + βΦ(θ + β), θ ≥ 0,

is the Laplace exponent of a subordinator.
(ii) Show moreover that the triple of φ is equal to (0, δ, ν), where

ν(dx)= βe−βxΠ(x,∞)dx + e−βxΠ(dx)+ ηβe−βxdx,

for x > 0.

5.14 In this exercise, we show that the proof of Theorem 5.9 is relatively straight-
forward for special subordinators. To this end, suppose that Φ is a special Bernstein
function with representation (5.1). Assume that Π(0,∞) =∞. Recall from The-
orem 5.19 that its conjugate has a potential density on (0,∞), denoted by u∗(x),
which satisfies u∗(x)= η+Π(x,∞).

(i) By considering the factorisation θ−1 =Φ(θ)−1×Φ(θ)/θ for θ > 0, show that,
for all x > 0,

1= δu(x)+
∫ x

0
u(x − y)u∗(y)dy.

(ii) Deduce with the help of Theorem 5.6 that, for the killed subordinator X with
Laplace exponent Φ ,

P(Xτ+x = x)= δu(x), x > 0.



Chapter 6
The Wiener–Hopf Factorisation

This chapter gives an account of the theory of excursions of a Lévy process from its
maximum and the Wiener–Hopf factorisation that follows as a consequence.

In Sect. 4.6, the analytical form of the Pollaczek–Khintchine formula was ex-
plained through a decomposition of the path of the underlying Lévy process into
independent and identically distributed sections of path, called excursions from the
supremum. The decomposition made heavy use of the fact that, for the particular
class of Lévy processes considered, namely spectrally positive processes of bounded
variation, the times of new maxima form a discrete set.

For a general Lévy process, it is still possible to decompose its path into “ex-
cursions from the running maximum”. Conceptually, this decomposition is a priori
somewhat more tricky as, in principle, a general Lévy process may exhibit an infinite
number of excursions from its maximum over any finite period of time. Nonetheless,
when considered in the right mathematical framework, excursions from the maxi-
mum can be given a sensible definition in terms of a Poisson random measure. The
theory of excursions presents one of the more mathematically challenging aspects
of the theory of Lévy processes. This means that in order to keep to the level out-
lined in the preface of this text, there will be a number of proofs in the forthcoming
sections which are excluded or discussed only at an intuitive level.

Within a very broad spectrum of probabilistic literature, the Wiener–Hopf factori-
sation may be found as a common reference to a multitude of statements concerning
the distributional decomposition of the path of any Lévy process, when sampled at
an independent and exponentially distributed time, in terms of its excursions from
the maximum. (We devote a little time later in this text to explain the origin of the
name “Wiener–Hopf factorisation”.) The collection of conclusions which fall un-
der the umbrella of the Wiener–Hopf factorisation turns out to provide a robust tool
with which one may analyse a number of problems concerning the fluctuations of
Lévy processes, in particular, problems which have relevance to the applications we
shall consider in later chapters. This chapter concludes with some special classes
of Lévy processes for which the Wiener–Hopf factorisation may be exemplified in
more detail.

A.E. Kyprianou, Fluctuations of Lévy Processes with Applications, Universitext,
DOI 10.1007/978-3-642-37632-0_6, © Springer-Verlag Berlin Heidelberg 2014
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6.1 Local Time at the Maximum

Unlike the Lévy processes presented in Sect. 4.6, a general Lévy process may have
an infinite number of new maxima over any given finite period of time. As one of
our goals is to show how to decompose events according to the behaviour of the path
in individual excursions, we need a way of indexing them. To this end we introduce
the notion of local time at the maximum.

To avoid trivialities, we shall assume throughout this section that neither X nor
−X is a subordinator. Recall, moreover, the definition Xt = sups≤t Xs . We shall
repeatedly refer to the process X − X = {Xt − Xt : t ≥ 0}, which we also recall,
from Exercise 3.2, can be shown to be a strong Markov process.

Definition 6.1 (Local time at the maximum) A continuous, non-decreasing,
[0,∞)-valued, F-adapted process, L = {Lt : t ≥ 0}, is called a local time at the
maximum (or just local time for short) if the following hold.

(i) The support of the Stieltjes measure dL is the closure of the (random) set of
times {t ≥ 0 :Xt =Xt }.

(ii) For every F-stopping time T such that XT = XT on {T <∞} almost surely,
the shifted process

{LT+t −LT : t ≥ 0}
is independent of FT on {T <∞} and has the same law as L under P.

Let us make some remarks about the above definition. Firstly, note that since X
and X − X are strong Markov processes, it also follows, from the requirement in
part (ii) of the above definition, that the shifted trivariate process

{
(XT+t −XT ,XT+t −XT+t ,LT+t −LT ) : t ≥ 0

}

is independent of FT on {T <∞} and has the same law as (X,X−X,L) under P.
Next, note that if L is a local time, then so is kL for any constant k > 0. Hence,
local times can at best be defined uniquely up to a multiplicative constant. On oc-
casion, we shall need to talk about both local time and the time scale on which the
Lévy process itself is defined. In such cases, we shall refer to the latter as real time.
Finally, by applying this definition of local time to −X, it is clear that one may talk
of a local time at the minimum. This will always be referred to as L̂.

Local times, as defined above, do not always exist on account of the requirement
of continuity. Nonetheless, in such cases, it turns out that one may construct right-
continuous processes which satisfy conditions (i) and (ii) of Definition 6.1, and
which serve their purpose equally well in the forthcoming analysis of the Wiener–
Hopf factorisation. We provide more details shortly. We first give some examples
for which a continuous local time can be identified explicitly.

Example 6.2 (Spectrally negative processes) Recall that a spectrally negative pro-
cess has the properties that Π(0,∞) = 0 and that its paths are not monotone. As
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there are no positive jumps, the process X must therefore be continuous. It is easy
to check that L :=X fulfils Definition 6.1.

Example 6.3 (Compound Poisson processes with drift δ ≥ 0) By considering the
piecewise linearity of the paths of these processes, one has obviously that, over any
finite time horizon, the time spent at the maximum has strictly positive Lebesgue
measure with probability one. Hence, the quantity

Lt :=
∫ t

0
1(Xs=Xs)ds, t ≥ 0, (6.1)

is almost surely positive and may be taken as a candidate for local time. Indeed
it increases on {t : Xt = Xt }, is continuous, non-decreasing and is an F-adapted
process. Taking T as in part (ii) of Definition 6.1, we also see that on {T <∞},

LT+t −LT =
∫ T+t

T

1(Xs−Xs=0)ds, (6.2)

which is independent of FT (because {XT+t −XT+t : t ≥ 0} is) and has the same
law as L (by the strong Markov property applied to the process X−X and the fact
that XT −XT = 0).

If we allow only negative jumps and δ > 0, then, according to the previous ex-
ample, X also fulfils the definition of local time. However, as we have seen in the
proof of Theorem 4.1,

Xt = δ
∫ t

0
1(Xs=Xs)ds,

for all t ≥ 0.

Next, we would like to identify the class of Lévy processes for which a contin-
uous local time cannot be constructed, and for which a right-continuous alternative
can be used instead. In a nutshell, the aforementioned class consists of those Lévy
processes whose times of new maxima form a discrete set. The qualifying criterion
for this turns out to be related to the behaviour of the Lévy process at arbitrarily
small times. A sense of this has already been given in the discussion of Sect. 4.6.
We spend a little time developing the relevant notions, namely regularity of points,
in order to complete the discussion on local time.

Definition 6.4 For a Lévy process X, the point x ∈ R is said to be regular (resp.
irregular) for an open or closed set B if

Px

(
τB = 0

)= 1 (resp. 0),

where τB = inf{t > 0 : Xt ∈ B}. Intuitively speaking, x is regular for B if, when
starting from x, the Lévy process hits B immediately.
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Note that, as τB is a stopping time, it follows that

1(τB=0) = Px

(
τB = 0|F0

)
.

On the other hand, since F0 is generated by null sets, Kolmogorov’s definition of
conditional expectation implies

Px

(
τB = 0|F0

)= Px

(
τB = 0

)
,

and hence Px(τ
B = 0) is either zero or one. In fact, one may replace {τB = 0} by

any event A ∈ F0 and reach the same conclusion about P(A). This is nothing but
Blumenthal’s zero-one law. See, for example, Proposition 40.4 in Sato (1999).

We know from the Lévy–Itô decomposition that the range of a Lévy process over
any finite time horizon is almost surely bounded and, thanks to right-continuity,
limt↓0 max{−Xt,Xt } = 0. Hence, for any given open or closed B , the points x ∈R
for which Px(τ

B = 0) = 1 necessarily belong to B ∪ ∂B . However, x ∈ ∂B is not
a sufficient condition for Px(τB = 0) = 1. To see why, consider the case that B =
(0,∞) and X is any compound Poisson process. Another example for the same B is
the case when X is the difference of a driftless subordinator and a pure linear drift;
cf. Sect. 4.6.

Finally note that the notion of regularity can be asserted for any Markov process,
with an analogous definition to the one given earlier. However, for the special case of
a Lévy process, stationary independent increments allow us to reduce the discussion
of regularity of x for open and closed sets to simply the regularity of 0 for open and
closed sets. Indeed, for any Lévy process, x is regular for B if and only if 0 is regular
for B − x.

As we shall shortly see, it is regularity of 0 for [0,∞) which dictates whether
one may find a continuous local time. The following result, collectively due to Ro-
gozin (1968), Shtatland (1965) and Bertoin (1997a), gives precise conditions for the
slightly different issue of regularity of 0 for (0,∞).

Theorem 6.5 For any Lévy process, X, excluding the case of a compound Poisson
process, the point 0 is regular for (0,∞) if and only if

∫ 1

0

1

t
P(Xt > 0)dt =∞, (6.3)

and this holds if and only if one of the following three conditions holds:

(i) X is a process of unbounded variation,
(ii) X is a process of bounded variation and δ > 0,

(iii) X is a process of bounded variation, δ = 0 and
∫

(0,1)

xΠ(dx)
∫ x

0 Π(−∞,−y)dy
=∞.

Here, δ is the drift coefficient in the representation (2.21) of a Lévy process of
bounded variation.
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Recall that if N is the Poisson random measure associated with the jumps of X,
then the time of arrival of a jump of size ε > 0 or greater, say T (ε), is exponentially
distributed since

P
(
T (ε) > t

)= P
(
N
([0, t] × {

R\(−ε, ε)})= 0
)= exp

{−tΠ(
R\(−ε, ε))}.

This tells us that jumps of size greater than ε become less and less probable as t ↓ 0.
Hence, the jumps that have any influence over the initial behaviour of the path of X,
if at all, will necessarily be arbitrarily small. With this in mind, one may intuitively
see the conditions (i)–(iii) in Theorem 6.5 in the following way.

In case (i), when σ 2 > 0, regularity follows as a consequence of the presence
of Brownian motion, whose behaviour on the small time scale always dominates
the path of the Lévy process. If on the other hand σ = 0, then the high intensity of
small jumps causes behaviour on the small time scale to be similar to the case when a
Brownian component is present. (We use the words “high intensity” here in the sense
that

∫
(−1,1) |x|Π(dx) =∞.) Case (ii) says that when the Poisson random measure

describing jumps fulfils the condition
∫
(−1,1) |x|Π(dx) <∞, over small time scales,

the sum of the jumps grows sub-linearly in time almost surely. Therefore if a drift
is present, this dominates the initial motion of the path. In case (iii) when there is
no dominant drift, the integral test may be thought of as a statement about what the
“relative weight” of the small positive jumps needs to be, when compared to the
small negative jumps, in order for regularity to occur.

In the case of bounded variation, the integral
∫ x

0 Π(−∞,−y)dy is finite
for all x > 0. This can be deduced by taking the (necessarily) finite integral∫
(−1,0) |x|Π(dx) and then integrating by parts.

Theorem 6.5 also implies that processes of unbounded variation are such that 0 is
regular for both (0,∞) and (−∞,0) and that processes of bounded variation with
δ > 0 have the property that 0 is irregular for (−∞,0). For processes of bounded
variation with δ = 0 it is possible to find examples where 0 is regular for both (0,∞)
and (−∞,0). See Exercise 6.1.

We offer no proof of Theorem 6.5 here. However, it is worth recalling that, from
Lemma 4.11 and the follow-up Exercise 4.8 (i), we know that, for any Lévy process,
X, of bounded variation,

lim
t↓0

Xt

t
= δ

almost surely, where δ is the drift coefficient. This shows that if δ > 0 (resp. δ < 0),
then for all t > 0 sufficiently small, Xt must be strictly positive
(resp. negative). That is to say, 0 is regular for (0,∞) and irregular for (−∞,0] if
δ > 0 (resp. regular for (−∞,0) and irregular for [0,∞) if δ < 0). For the case of a
spectrally negative Lévy process of unbounded variation, Exercise 6.2 deduces reg-
ularity properties in agreement with Theorem 6.5. In addition, Exercise 6.8 shows
how to establish criterion (6.3).

There is a slight difference between regularity of 0 for (0,∞) and regularity of
0 for [0,∞). Consider for example the case of a compound Poisson process. This
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process is such that 0 is regular for [0,∞) but not for (0,∞) due to the initial
exponentially distributed period of time during which the process remains at the
origin. It turns out that these are the only processes for which 0 is regular for [0,∞)
but not (0,∞).

By definition, when 0 is irregular for [0,∞), the Lévy process takes a strictly
positive period of time to reach a new maximum when starting at the origin. Hence,
applying the strong Markov property at the time of first entry into [0,∞), we see
that, in a finite interval of time, there are almost surely a finite number of new max-
ima. In other words, {0 < s ≤ t : Xs = Xs} is a finite set. (Recall that this type of
behaviour has been observed for spectrally positive Lévy process of bounded vari-
ation in Chap. 4.) In this case, we may then define the counting process {nt : t ≥ 0}
by

nt = #{0< s ≤ t :Xs =Xs}. (6.4)

We are now ready to make the distinction between those processes which admit
continuous local times in Definition 6.1 and those that do not.

Theorem 6.6 Let X be any Lévy process.

(i) There exists a continuous version of L if and only if 0 is regular for [0,∞).
When it exists, it is unique up to a multiplicative constant.

(ii) If 0 is irregular for [0,∞), then we can take as our definition of local time

Lt =
nt∑

i=0

e(i)λ , t ≥ 0, (6.5)

satisfying (i) and (ii) of Definition 6.1, where {e(i)λ : i ≥ 0} are independent
and exponentially distributed random variables with parameter λ > 0 (chosen
arbitrarily).

We offer no proof for case (i). It is a particular example of a classic result from
potential theory of stochastic processes, a general account of which can be found in
Blumenthal and Getoor (1968). See also Greenwood and Pitman (1980c). The proof
of part (ii) is quite accessible and we leave it as an exercise. Note that one slight
problem occurring in the definition of L in (6.5), aside from the fact that it is no
longer a continuous process, is that it is not adapted to the filtration of X. However,
this is easily resolved by simply enlarging the filtration, before completing it with
null sets, to include σ(e(i)λ : i ≥ 0). Also, the unspecified value of the parameter λ,
used in (6.5), is of no effective consequence. In principle, one could always work
with the definition

L′t =
nt∑

i=0

e(i)1 .

Scaling properties of exponential distributions would then allow us to construct the
e(i)λ and e(i)1 on the same probability space via the relation λe(i)λ := e(i)1 for each
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i = 0,1,2, . . . , and this would imply that L′ = λL where L is local time constructed
using exponential distributions with parameter λ. Hence, within the specified class
of local times in part (ii) of the above theorem, the only effective difference is a
multiplicative constant. The reason why we do not define Lt = nt has to do with the
fact that we shall require some special properties of the inverse L−1. This will be
discussed in Sect. 6.2.

In accordance with the conclusion of Theorem 6.6, in the case that 0 is regular
for [0,∞), we shall henceforth work with a continuous version of L and in the case
that 0 is irregular for [0,∞), we shall work with the definition (6.5) for L, assuming
that the filtration F is sufficiently enlarged so that L is adapted.

In Example 6.3, we saw that we may use a multiple of the Lebesgue measure of
the real time spent at the maximum to give a continuous version of local time. The
fact that the aforesaid is non-zero is a clear consequence of piecewise linearity of
the process. Although compound Poisson processes (with drift) are the only Lévy
processes which are piecewise linear, it is nonetheless natural to investigate to what
extent one may work with the Lebesgue measure of the time spent at the maximum
for local time in the case that 0 is regular for [0,∞). Rubinovitch (1971) supplies
us with the following characterisation of such processes.

Theorem 6.7 Suppose that X is a Lévy process for which 0 is regular for [0,∞).
Let L be some continuous version of local time. Then there exists a constant a≥ 0,
such that

∫ t

0
1(Xs=Xs)ds = aLt , t ≥ 0.

This constant is strictly positive if and only if X is a Lévy process of bounded vari-
ation and 0 is irregular for (−∞,0).

Proof Note that
∫∞

0 1(Xt=Xt )dt > 0 with positive probability if and only if

E

(∫ ∞

0
1(Xt−Xt=0)dt

)

> 0.

By Fubini’s Theorem and Lemma 3.5, this occurs if and only if
∫∞

0 P(Xt = 0)dt =
E(
∫∞

0 1(Xt=0)dt) > 0 (recall that Xt := infs≤t Xs ). Due to the fact that X has paths
that are right-continuous and non-increasing, the strict positivity of the last expec-
tation happens if and only if it takes an almost surely strictly positive time for X to
visit (−∞,0). In short, we have that

∫∞
0 1(Xt=Xt )dt > 0 with positive probability if

and only if 0 is irregular for (−∞,0). By Theorem 6.5, this can only occur when X
has bounded variation.

Following the same reasoning as used in Example 6.3, it is straightforward to
deduce that

∫ t

0
1(Xs=Xs)ds, t ≥ 0,
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may be used as a local time. Theorem 6.6 (i) now gives us the existence of a constant
a> 0 so that for a given local time L,

aLt =
∫ t

0
1(Xs=Xs)ds.

When 0 is regular for (−∞,0) the reasoning above also shows that, for all t ≥ 0,∫ t
0 1(Xs=Xs)ds = 0 almost surely and hence it is clear that the constant a= 0. �

We can now summarise the discussion on local times as follows. There are three
types of Lévy processes which are associated with three types of local times.

1. Processes of bounded variation for which 0 is irregular for [0,∞). The set of
maxima forms a discrete set and we take a right-continuous version of local
time in the form

Lt =
nt∑

i=0

e(i)1 , t ≥ 0,

where nt is the count of the number of maxima up to time t and {e(i)1 : i =
0,1, . . .} are independent and exponentially distributed random variables with
parameter 1. To make the process L adapted, we assume that the filtration F is
sufficiently enlarged.

2. Processes of bounded variation for which 0 is irregular for (−∞,0). There
exists a continuous version of local time given by

Lt = a−1
∫ t

0
1(Xs=Xs)ds, t ≥ 0,

for some arbitrary 0 < a <∞. In the case that X is spectrally negative, we
have that L is equal to a multiplicative constant times X.

3. Processes of unbounded variation. For all such processes, 0 is regular for
[0,∞). A continuous version of local time exists but cannot be identified ex-
plicitly as a functional of the path of X in general. However, if X is a spectrally
negative Lévy process, then this local time may be taken as X.

6.2 The Ladder Process

Define the inverse local time process, L−1 := {L−1
t : t ≥ 0}, by

L−1
t :=

{
inf{s > 0 : Ls > t} if t < L∞
∞ otherwise.

Next, define the process H = {Ht : t ≥ 0} where

Ht :=
{
X
L−1
t

if t < L∞
∞ otherwise.
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The range of the inverse local time,L−1, corresponds to the set of real times at which
new maxima occur. The elements of this set are called the ascending ladder times.
The range of the process H corresponds to the set of new maxima. Similarly, the
elements of this set are called the ascending ladder heights. The bivariate process
(L−1,H) := {(L−1

t ,Ht ) : t ≥ 0}, called the ascending ladder process, is the main
object of study of this section. It is implicit from their definition that L−1 and H are
processes with paths that are right-continuous with left limits.

The word “ascending” distinguishes the process (L−1,H) from the analogous
object (L̂−1, Ĥ ), which is constructed from−X and is called the descending ladder
process (note that local time at the maximum of−X is the local time at the minimum
of X and was previously referred to as L̂). When the context is obvious, we shall
drop the use of the words “ascending” or “descending”.

The ladder processes we have defined here are the continuous-time analogue of
the processes with the same name for random walks. In the case of random walks,
one defines Ln to be the number of times a maxima is reached during the first n
steps, Tn = min{k ≥ 1 : Lk = n} as the number of steps required to achieve n new
maxima (if L∞ ≥ n) and Hn as the n-th new maximum (if it exists).

An additional subtlety for random walks is that the count Ln may be taken to in-
clude visits to previous maxima (consider for example a simple random walk which
may visit an existing maximum several times before generating a strictly greater
maximum). In that case, the associated ascending ladder process is called weak.
When {Ln : n≥ 0} only counts the number of new maxima which exceed all previ-
ous maxima, the associated ascending ladder process is called strict.

The same subtlety appears in the definition of L for Lévy processes when 0 is
irregular for [0,∞), and our definition of the process {nt : t ≥ 0} is then analogous
to a count of weak ascending ladder heights. This is of no consequence in the forth-
coming discussion since, as we shall see, with probability one, no two maxima can
be equal. (This will be discussed in greater detail just before Theorem 6.15 ahead.)
When 0 is regular for [0,∞) but X is not a compound Poisson process, we shall
again see in due course that ladder heights at different ladder times are distinct. Fi-
nally, when X is a compound Poisson process, the distinction between weak and
strict maxima will become an issue at some point in later discussion. Indeed, the
choice of local time

Lt = a−1
∫ t

0
1(Xs=Xs)ds, t ≥ 0,

is analogous to the count of weak ascending ladder heights in a random walk. Con-
sider, for example, the continuous-time version of a simple random walk; that is a
compound Poisson process with jump distribution supported on {−1,1}.

Our task in this section will be to characterise the ladder process (L−1,H). We
start with the following lemma, which will be used in several places later on.

Lemma 6.8 For each t ≥ 0, both L−1
t and L−1

t− are F-stopping times.
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Proof From Sect. 3.1, thanks to the assumed right-continuity of F, it suffices to
prove that, for each s > 0, {L−1

t < s} ∈ Fs and that a similar notion holds for L−1
t− .

For all s, t ≥ 0, {L−1
t < s} = {Ls− > t}. Moreover, this event belongs to Fs as the

process L is F-adapted. To prove that L−1
t− is a stopping time, note that, for t ≥ 0,

{
L−1
t− < s

}=
⋂

n≥1

{
L−1
t−1/n < s

} ∈Fs .
�

In the next theorem, we shall link the process (L−1,H) to a bivariate subor-
dinator. With Exercise 2.10 in mind, recall that a bivariate subordinator is a two-
dimensional [0,∞)2-valued stochastic processes, X= {Xt : t ≥ 0}, with paths that
are right-continuous with left limits, as well as having stationary independent incre-
ments and, further, each component is non-decreasing. It is important to note that,
in general, it is not correct to think of a bivariate subordinator simply as a vector
process composed of two independent subordinators. Correlation between the sub-
ordinators in each of the co-ordinates may be represented pathwise in the form

Xt = dt +
∫

[0,t]

∫

(0,∞)2
xN(ds × dx), t ≥ 0,

where d ∈ [0,∞)2 and N is a Poisson random measure describing the jumps of X.
Moreover, the intensity measure ofN is given by dt×Λ(dx,dy), for some bivariate
measure Λ concentrated on (0,∞)2 satisfying

∫

(0,∞)2

(
1∧

√

x2 + y2
)
Λ(dx,dy) <∞.

Independence of the two individual co-ordinate processes corresponds to the case
that Λ takes the form Λ(dx,dy)=Λ1(dx)δ0(dy)+Λ2(dy)δ0(dx), x, y ≥ 0.

For a general bivariate subordinator, positivity allows us to talk about its Laplace
exponent φ(α,β), α,β ≥ 0, where

E

(

exp

{

−
(
α

β

)

·Xt
})

= exp
{−φ(α,β)t}, t ≥ 0.

Referring back to Chap. 2, it is a straightforward exercise to deduce that

φ(α,β)= d ·
(
α

β

)

+
∫

(0,∞)2
(
1− e−(

α
β)·(xy))Λ(dx,dy).

Theorem 6.9 Let X be a Lévy process and eq an independent and exponentially
distributed random variable with parameter q ≥ 0. Then

P

(
lim sup
t↑∞

Xt <∞
)
= 0 or 1

and the ladder process (L−1,H) satisfies the following properties:
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(i) If P(lim supt↑∞Xt =∞)= 1, then (L−1,H) has the law of a bivariate subor-
dinator.

(ii) If P(lim supt↑∞Xt <∞)= 1, then, for some q > 0, L∞
d= eq and {(L−1

t ,Ht ) :
t < L∞} has the same law as (L−1,H) := {(L−1

t ,Ht ) : t < eq}, where
(L−1,H) is a bivariate subordinator independent of eq .

Proof Since
{

lim sup
t↑∞

Xt <∞
}
=
{

lim sup
Q∩[0,∞)�t↑∞

Xt <∞
}

and this event is in the tail sigma-algebra
⋂
t∈Q∩[0,∞) σ (Xs : s ≥ t), Kolmogorov’s

zero-one law for tail events tells us that P(lim supt↑∞Xt <∞)= 0 or 1.
To deal with (i) and (ii) in the case that 0 is irregular for [0,∞), the analysis

proceeds in the spirit of the discussion around the Pollaczek–Khintchine formula in
Chap. 4. We give a brief outline of the arguments again.

If we agree that a geometric distribution with parameter 1 is infinite with prob-
ability one, then the total number of excursions from the maximum, n∞, defined
in (6.4), is geometrically distributed with parameter 1 − ρ = P(τ+0 =∞), where
τ+0 = inf{t > 0 :Xt > 0}. Now define the sequence of times T0 = 0,

Tn+1 = inf{t > Tn :Xt >XTn}
= inf{t > Tn :ΔLt > 0}
= inf{t > Tn :Δnt = 1},

for n = 0,1, . . . , n∞, where �Lt = Lt − Lt−, �nt = nt − nt− and inf∅ = ∞.
It is easy to verify that these times form an increasing sequence of almost surely
finite stopping times. Further, by the strong Markov property for Lévy processes, if
n∞ <∞, then the successive excursions of X from its maximum,

εn :=
{
Xt −XTn−1 : t ∈ (Tn−1, Tn]

}
,

for n = 1, . . . , n∞, are equal in law to an independent sample of n∞ − 1 copies
of the first excursion from the maximum conditioned to be finite, followed by a
final independent copy conditioned to be infinite in length. If n∞ =∞, then the
sequence {εn : n = 1,2, . . .} is equal in law to an independent sample of the first
excursion from the maximum.

By considering Fig. 6.1, we see that L−1 (the reflection of L about the diagonal)
is a step function and its successive jumps (the flat sections of L) correspond pre-
cisely to the sequence {Tn+1− Tn : n= 0, . . . , n∞}. From the previous paragraph, it
follows that L−1 has independent and identically distributed jumps and is indepen-
dently sent to infinity (which we may consider as a “cemetery” state) on the n∞-th
jump, in accordance with the arrival of the first infinite excursion. As the jumps of
L are independent and exponentially distributed, it also follows that the periods be-
tween jumps of L−1 are independent and exponentially distributed. According to
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Fig. 6.1 A realisation of local time and inverse local time for a Lévy process for which 0 is
irregular for [0,∞). The upper graph plots the paths of L and the lower graph symbolically plots
the path of X in terms of the excursions from the maximum.

Exercise 6.3, the process L−1 is now equal in law to a compound Poisson subor-
dinator killed independently after an exponentially distributed time with parameter
λ(1− ρ). (Again, we work with the notion that an exponential distribution with pa-
rameter 0 is infinite with probability one.) It follows by construction that H is also
a compound Poisson subordinator killed at the same rate.

Next, we prove (i) and (ii) for the case that 0 is regular for [0,∞), so that the
version of local time we work with has continuous paths. From Lemma 6.8, we
know that L−1

t is a stopping time. Hence, according to Definition 6.1, on the event
{L−1
t <∞}, or equivalently on the event {t < L∞}, the process L̃ := {L̃s : s ≥ 0},

where

L̃s := LL−1
t +s − t, s ≥ 0,
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is the local time at the maximum of X̃ := {X̃s : s ≥ 0}, where

X̃s =XL−1
t +s −XL−1

t
, s ≥ 0.

From Theorem 3.1 and Definition 6.1, we have that X̃ and L̃ are independent
of F

L−1
t

. It is clear that, on {t < L∞},

L̃−1
s = L−1

t+s −L−1
t (6.6)

and

H̃s := X̃L̃−1
s
=X

L−1
t+s
−X

L−1
t
=Ht+s −Ht . (6.7)

In conclusion, we have established that, on t < L∞,
{(
L−1
t+s −L−1

t ,Ht+s −Ht
) : s ≥ 0

}

is independent of F
L−1
t

and equal in law to (L−1,H). With this in hand, note that,
for any α,β ≥ 0,

E
(
e−αL

−1
t+s−βHt+s1(t+s<L∞)

)

= E
(
e−αL

−1
t −βHt 1(t<L∞)E

(
e−αL̃−1

s −βH̃s1(s<L̃∞)|FL−1
t

))

= E
(
e−αL

−1
t −βHt 1(t<L∞)

)
E
(
e−αL−1

s −βHs1(s<L∞)
)
.

As the expectation on the left-hand side above is also right-continuous in t (on
account of the same being true of L−1 and H ), a standard argument shows that this
multiplicative decomposition implies that

E
(
e−αL

−1
t −βHt 1(t<L∞)

)= e−κ(α,β)t , t ≥ 0, (6.8)

where κ(α,β) = −logE(e−αL
−1
1 −βH1 1(1<L∞)) ≥ 0. In particular, we see that L∞

must follow an exponential distribution with parameter κ(0,0) if
κ(0,0) > 0, and P(L∞ =∞)= 1 otherwise. For each α,β , write

κ(α,β)= κ(0,0)+ φ(α,β). (6.9)

Formula (6.8) shows that, for all t ≥ 0,

e−φ(α,β) = E
(
e−αL

−1
1 −βH1 |1<L∞

)

= {
E
(
e−αL

−1
t −βHt |t < L∞

)}1/t
, (6.10)

thus illustrating that φ(α,β) is the Laplace exponent of the bivariate, infinitely di-
visible distribution

η(dx,dy)= P
(
L−1

1 ∈ dx,H1 ∈ dy|1<L∞
)
, x, y > 0.
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(Consider (6.10) for t = 1/n where n is a positive integer.) In the spirit of the
Lévy–Itô decomposition, there exists a bivariate subordinator, say (L−1,H), whose
Laplace exponent is φ(α,β). We now see from (6.8) and (6.9) that (L−1,H) is equal
in law to (L−1,H) killed independently (with “cemetery” state (∞,∞)) after an
exponentially distributed time with parameter q = κ(0,0). In particular, X∞ =∞
almost surely if and only if q = 0, and otherwise X∞ is equal in distribution to Heq
which itself is almost surely finite. �

Corollary 6.10 In the previous theorem, the subordinator associated with L−1 has
drift a, where a is the constant appearing in Theorem 6.7.

Proof Let�L−1
t = L−1

t −L−1
t− , t ≥ 0. Note that, for any ε > 0,�L−1

t > ε whenever
the path of X moves away from its maximum for a period of real time exceeding ε.
That is to say, individual jumps of L−1 correspond to individual excursions lengths
of X from X. Let us denote by NL−1 the Poisson random measure associated with
the jumps of L−1. Then the time it takes to accumulate t < L∞ units of local time
is the sum of the periods of time that X has spent away from its maximum plus the
real time that X has spent at its maximum (if any). The last qualification is only of
significance when X is of bounded variation with 0 irregular for (−∞,0), in which
case the constant a in Theorem 6.7 is strictly positive; then the local time is taken
as the Lebesgue measure of the time spent at the maximum. We have, on {t < L∞},

L−1
t =

∫ L−1
t

0
1(Xs=Xs)ds +

∫

[0,t]

∫

(0,∞)
xNL−1(ds × dx).

From Theorem 6.7, we know that the integral is equal to aL
L−1
t
= at and hence

a is the drift of the subordinator L−1. �

Finally, we look at compound Poisson processes. For some processes in this
class, with positive probability, the same maximum may be visited over two inter-
vals of time separated by at least one excursion. Hence, it is possible that �Ht = 0
when �L−1

t > 0; in other words, the jump measure of H may have an atom at
zero. This would be the case for the earlier given example of a compound Poisson
process with jumps in {−1,1}. Strictly speaking this violates our definition of a sub-
ordinator. However, this does not present a serious problem since H is necessarily
a compound Poisson subordinator and, hence, its paths are well defined with the
presence of this atom. Further, this does not affect the forthcoming analysis, unless
otherwise mentioned.

Example 6.11 (Spectrally negative processes) Suppose that X is a spectrally nega-
tive Lévy process with Laplace exponent ψ having right inverse Φ; see Sect. 3.3
for a reminder of what this means. As noted earlier, we may work with local
time given by L = X. It follows that L−1

x is nothing more than the first-passage
time above x > 0. (Note that, in general, it is not true that L−1

x is the first-
passage time above x.) As X is spectrally negative, we have, in particular, that
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Hx =XL−1
x
= x on {x < L∞}. Recalling Corollary 3.14, we already know that L−1

is a subordinator killed at rate Φ(0). Hence, we may easily identify, for α,β ≥ 0,
κ(α,β)=Φ(0)+ φ(α,β), where

φ(α,β)= [
Φ(α)−Φ(0)]+ β

is the Laplace exponent of a bivariate subordinator. Note in particular that L∞ <∞
if and only if Φ(0) > 0 if and only if ψ ′(0+) = E(X1) ∈ [−∞,0). Moreover, on
account of the fact that L−1 is the first-passage process, this occurs if and only if
P(lim supt↑∞Xt <∞)= 1.

In the special case that X is a Brownian motion with drift ρ, we know explicitly
that ψ(θ)= ρθ + 1

2θ
2, θ ≥ 0, and hence Φ(α)=−ρ +√

ρ2 + 2α, α ≥ 0. Inverse
local time can then be identified precisely as an inverse Gaussian process (killed at
rate 2|ρ| if ρ < 0).

We close this section by making the important remark that the brief introduction
to excursion theory offered here has not paid fair dues to its general setting. Founda-
tional work on excursion theory can be found in Itô (1970) and Maisonneuve (1975).
This theory can be applied to a much more general class of Markov processes than
just Lévy processes. Recall that X − X is a Markov process and hence one may
consider L as the local time at 0 of this process. In general, it is possible to identify
excursions of well-defined Markov processes from individual points in their state
space with the help of local time. The reader interested in a comprehensive account
should refer to the detailed but nonetheless approachable account given in Chap. IV
of Bertoin (1996a) or Blumenthal (1992).

6.3 Excursions

In Sect. 4.6, we gave an explanation of the Pollaczek–Khintchine formula by de-
composing the dual of the path of the Lévy processes considered there in terms of
excursions from the maximum. Clearly, this decomposition relied heavily on the
fact that the number of new maxima over any finite time horizon is finite. That is
to say, 0 is irregular for [0,∞) and the local time at the maximum is a step func-
tion, as in case 1 listed at the end of Sect. 6.1. Now that we have established the
concept of local time at the maximum for any Lévy process, we can give the gen-
eral decomposition of the path of a Lévy process in terms of its excursions from the
maximum.

Definition 6.12 For each moment of local time t > 0, we define

εt =
{
{X
L−1
t−+s −XL−1

t−
: 0< s ≤ L−1

t −L−1
t− } if L−1

t− <L−1
t

∂ if L−1
t− = L−1

t ,
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where we take L−1
0− = 0 and ∂ is some “dummy” state. Note that, for each fixed

t > 0, when L−1
t− < L−1

t , the object εt is a stochastic process and hence is double
indexed with εt (s) = XL−1

t−+s − XL−1
t−

for 0 < s ≤ L−1
t − L−1

t− . When εt 	= ∂ , we

refer to it as the excursion (from the maximum) associated with local time t .

Note also that, for t such that εt 	= ∂ , εt has paths that are right-continuous with left
limits and, with the exception of its terminal value (in the case that L−1

t <∞), is
valued in (−∞,0).

Definition 6.13 Let E be the space of excursions of X from its running supremum,
that is, the space of mappings which are right-continuous with left limits satisfying

ε : (0, ζ )→ (−∞,0) for some ζ ∈ (0,∞]
ε : {ζ }→ [0,∞) if ζ <∞,

where ζ = ζ(ε) is the excursion length. Write h= h(ε) for the terminal value of the
excursion, so that h(ε) = ε(ζ ). Finally, let ε = − infs∈(0,ζ ) ε(s) for the excursion
height.

We will shortly state the fundamental result of excursion theory, which relates the
process {(t, εt ) : t ≤ L∞ and εt 	= ∂} to a Poisson point process on [0,∞)× E . This
process has not yet been discussed in this text and so we devote a little time to its
definition first. Recall that, in Chap. 2, the existence of a Poisson random measure
on an arbitrary sigma-finite measure space (S,S, η) was proved in Theorem 2.4. If
we reconsider the proof of Theorem 2.4, what was in fact shown was the existence in
S of a random set of points, each of which is assigned a unit mass, thereby defining
the Poisson random measure N . It is the supporting random set of points that we
call a Poisson point process on (S,S, η) (or sometimes the Poisson point process on
S with intensity η). In the case that S = [0,∞)× E , we may think of the associated
Poisson point process as a process of E -valued points appearing in time.

Theorem 6.14 There exists a sigma-algebra Σ and σ -finite measure n such that
(E,Σ,n) is a measure space and Σ is rich enough to contain sets of the form

{
ε ∈ E : ζ(ε) ∈A, ε ∈ B, h(ε) ∈ C},

where, for a given ε ∈ E , ζ(ε), ε and h(ε) were all given in Definition 6.13, and
A,B and C are Borel sets in [0,∞].

(i) If P(lim supt↑∞Xt = ∞) = 1, then {(t, εt ) : t ≥ 0 and εt 	= ∂} is a Poisson
point process on ([0,∞)× E,B[0,∞)×Σ,dt × dn).

(ii) If P(lim supt↑∞Xt <∞) = 1, then {(t, εt ) : t ≤ L∞ and εt 	= ∂} is a Poisson
point process on ([0,∞)×E,B[0,∞)×Σ,dt×dn) stopped at the first arrival
of an excursion in E∞ := {ε ∈ E : ζ(ε)=∞}.
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We offer no proof for this result as it goes beyond the scope of this book. We refer
instead to Chap. VI in Bertoin (1996a), where a rigorous treatment is given. How-
ever, the intuition behind this theorem lies with the observation that, for each t > 0,
by Lemma 6.8, L−1

t− is a stopping time and hence, by Theorem 3.1, the evolution of
X
L−1
t−+s
−X

L−1
t−

in the time interval (L−1
t− ,L−1

t ] is independent of F
L−1
t−

. As alluded

to earlier, this means that the paths of X may be decomposed into the juxtaposition
of independent excursions from the maximum. The case that the drift coefficient, a,
of L−1 is strictly positive is the case of a bounded variation Lévy process with 0
irregular for (−∞,0). Hence L is a local time that is proportional to the Lebesgue
measure of the time that X = X. In this case, excursions from the maximum are
interlaced by moments of real time where X can be described as drifting at its max-
imum. If there is a last maximum, then the process of excursions is stopped at the
first arrival of an excursion with infinite length; i.e. stopped at the first arrival of an
excursion in E∞.

Theorem 6.14 generalises the statement of Theorem 6.9. To see why, suppose
that we write

Λ(dx,dy)= n(ζ(ε) ∈ dx,h(ε) ∈ dy
)
, x, y > 0. (6.11)

On {t < L∞}, the jumps of the ladder process (L−1,H) form a Poisson point pro-
cess on [0,∞) × (0,∞)2, with intensity measure dt × Λ(dx,dy). We can write
L−1
t as the sum of the Lebesgue measure of the time X spends drifting at the max-

imum (if at all) together with the jumps L−1 makes (due to excursions from the
maximum). Hence, if N is the counting measure associated with the Poisson point
process of excursions, then, on {L∞ > t},

L−1
t =

∫ L−1
t

0
1(εs=∂)ds +

∫

[0,t]

∫

E
ζ(ε)N(ds × dε)

=
∫ L−1

t

0
1(Xs=Xs)ds +

∫

[0,t]

∫

E
ζ(ε)N(ds × dε)

= at +
∫

[0,t]

∫

(0,∞)
xNL−1(ds × dx). (6.12)

We can also write the ladder height process, H , in terms of a drift, say b≥ 0, and its
jumps, which are given by the terminal values of excursions. Hence, on {t < L∞},

Ht = bt +
∫

[0,t]

∫

E
h(ε)N(ds × dε). (6.13)

Also, we can see that P(L∞ > t) is the probability that, in the process of excursions,
the first arrival in E∞ is after time t . Written in terms of the Poisson point process
of excursions, we see that

P(L∞ > t)= P
(
N
([0, t] × E∞

)= 0
)= e−n(E∞)t , t ≥ 0.
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This reinforces the earlier conclusion that L∞ is exponentially distributed and we
equate the parameters

κ(0,0)= n(E∞). (6.14)

6.4 The Wiener–Hopf Factorisation

A fundamental aspect of the theory of Lévy processes is a set of conclusions which,
in modern times, are loosely referred to as the Wiener–Hopf factorisation. Histori-
cally, the identities around which the Wiener–Hopf factorisation is centred are the
culmination of a number of works, initiated from within the theory of random walks.
These include Baxter (1958), Spitzer (1956, 1957, 1960a, 1960b, 1964), Port (1963),
Feller (1971), Borovkov (1976), Percheskii and Rogozin (1969), Gusak and Ko-
rolyuk (1969), Greenwood and Pitman (1980b), Fristedt (1974) and many others.
The analytical roots of the so-called Wiener–Hopf method go much further back
than these probabilistic references (see Sect. 6.7). The importance of the Wiener–
Hopf factorisation is that it gives us information concerning the characteristics of
the ascending and descending ladder processes. As indicated earlier, we shall use
this knowledge in later chapters to consider a number of applications, as well as
to extract some generic results concerning coarse and fine path properties of Lévy
process.

In this section, we treat the Wiener–Hopf factorisation following closely the pre-
sentation of Greenwood and Pitman (1980a, 1980b), which relies heavily on the
decomposition of the path of a Lévy process in terms of excursions from the maxi-
mum. Examples of the Wiener–Hopf factorisation will be treated in Sect. 6.5.

We begin by recalling that, for α,β ≥ 0, the Laplace exponents κ(α,β) and
κ̂(α,β) are defined, respectively, by,

E
(
e−αL

−1
1 −βH1 1(1<L∞)

)= e−κ(α,β) and E
(
e−αL̂

−1
1 −βĤ1 1(1<L̂∞)

)= e−κ̂(α,β).

Further, on account of Theorems 6.9 and 6.14,

κ(α,β)= q + φ(α,β), α,β ≥ 0, (6.15)

where φ is the Laplace exponent of a bivariate subordinator and q = n(E∞) ≥ 0.
The exponent φ can be written in the form

φ(α,β)= αa+ βb+
∫

(0,∞)2
(
1− e−αx−βy

)
Λ(dx,dy), (6.16)

where the constant a was identified in Corollary 6.7, b is some non-negative con-
stant representing the drift of H and Λ(dx,dy) is given in terms of the excursion
measure n in (6.11). It is also important to remark that both κ(α,β) and κ̂(α,β) can
be analytically extended in α and β to C

+ := {z ∈C : �z≥ 0}.
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The next theorem gives the collection of statements which are known as the
Wiener–Hopf factorisation. We need to introduce some additional notation first. As
in earlier chapters, we shall understand ep to be an independent random variable
which is exponentially distributed with mean 1/p. Further, we define

Gt = sup{s < t :Xs =Xs}
and

Gt = sup{s < t :Xs =Xs}.
An important fact concerning the definition of Gt , which is responsible for the

first sentence in the statement of the Wiener–Hopf factorisation (Theorem 6.15 be-
low), is the following: If X is not a compound Poisson process, then its maxima are
obtained at unique times. To see this, first suppose that 0 is regular for [0,∞). Since
we have excluded compound Poisson processes, then this implies that 0 is regular
for (0,∞). In this case, for any stopping time T such that XT =XT , it follows by
the strong Markov property and regularity that XT+u > XT for all u > 0. In par-
ticular, we may consider the stopping times L−1

t , for t ≥ 0, which run through all
the times when X visits its maximum. If the aforementioned regularity fails, then
since X is assumed not to be a compound Poisson process, 0 must be regular for
(−∞,0). Hence, the conclusions of the previous case apply to −X. However, over
finite time horizons −X has the same law as X time reversed. In particular, the path
of X over any finite time horizon when time reversed has new maxima which are
obtained at unique times. This implies thatX itself cannot touch the same maximum
at two different times.

As mentioned earlier, if X is a compound Poisson process with an appropriate
jump distribution, then it is possible that X visits the same maxima at distinct ladder
times.

Theorem 6.15 (The Wiener–Hopf factorisation) Suppose that X is any Lévy pro-
cess other than a compound Poisson process. As usual, denote by ep an independent
and exponentially distributed random variable with parameter p > 0.

(i) The pairs

(Gep ,Xep ) and (ep −Gep ,Xep −Xep )

are independent and infinitely divisible, yielding the factorisation

p

p− iϑ +Ψ (θ) = Ψ
+
p (ϑ, θ) ·Ψ−p (ϑ, θ), (6.17)

where θ,ϑ ∈R,

Ψ+p (ϑ, θ)= E
(
eiϑGep+iθXep

)
and Ψ−p (ϑ, θ)= E

(
eiϑGep+iθXep

)
.

Here, the pair Ψ+p (ϑ, θ) and Ψ−p (ϑ, θ) are called the Wiener–Hopf factors.
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(ii) Via analytical extension, the Wiener–Hopf factors may be identified from the
Laplace transforms

E
(
e−αGep−βXep

)= κ(p,0)

κ(p+ α,β) and E
(
e−αGep+βXep

)= κ̂(p,0)

κ̂(p+ α,β)
(6.18)

for α,β ∈C+.
(iii) The Laplace exponents κ(α,β) and κ̂(α,β) may also be identified in terms of

the law of X by:

κ(α,β)= k exp

(∫ ∞

0

∫

(0,∞)
(
e−t − e−αt−βx

)1

t
P(Xt ∈ dx)dt

)

(6.19)

and

κ̂(α,β)= k̂ exp

(∫ ∞

0

∫

(−∞,0)
(
e−t − e−αt+βx

)1

t
P(Xt ∈ dx)dt

)

, (6.20)

where α,β ≥ 0 and k and k̂ are strictly positive constants.
(iv) By setting ϑ = 0 and taking limits as p tends to zero in (6.17), we obtain

kk̂Ψ (θ)= κ(0,−iθ )̂κ(0, iθ). (6.21)

Let us now make some notes concerning this theorem. Firstly, there are a number
of unidentified constants in the given expressions. To some extent, these constants
are meaningless since they are dependent on the normalisation chosen in the defini-
tion of local time (cf. Definition 6.1). In this context, local time is nothing other than
an artificial clock to measure the intrinsic time spent at the maximum. Naturally, a
different choice of local time will induce a different inverse local time and, hence,
a different ladder height process. Nonetheless the range of the bivariate ladder pro-
cess will be the same as it will always correspond to the range of the real times and
positions of the new maxima of the underlying Lévy process. In this respect, we
may always normalise the choice of k and k̂ so that, for example kk̂ = 1.

Secondly, the exclusion of the compound Poisson processes from the statement
of the theorem is not to say that a Wiener–Hopf factorisation for this class of Lévy
processes does not exist. The case of the compound Poisson process is essentially
the case of the random walk and has some subtle differences which we shall come
back to later on.

The proof of Theorem 6.15 we shall give makes use of a simple fact about in-
finitely divisible distributions, as well as the fundamental properties of the Poisson
point processes describing the excursions of X. We give these facts in the following
two preparatory lemmas. For the first, it may be useful to recall Exercise 2.10.

Lemma 6.16 Suppose that X = {Xt : t ≥ 0} is any d-dimensional Lévy process
with characteristic exponent Ψ (θ) = −logE(eiθ ·X1), for θ ∈ R

d . Then the pair
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(ep,Xep ) has a (d + 1)-dimensional infinitely divisible distribution with Lévy–
Khintchine exponent given by

E
(
eiϑep+iθXep

) = exp

{

−
∫ ∞

0

∫

Rd

(
1− eiϑt+iθ ·x)1

t
e−ptP(Xt ∈ dx)dt

}

= p

p− iϑ +Ψ (θ) ,

for θ ∈Rd and ϑ ∈R.

Proof Recall from the Lévy–Khintchine formula (cf. Exercise 2.10) that �Ψ (θ)=
θ ·Aθ/2+∫

Rd
(1−cos θ ·x)Π(dx), where A is a d×d Gaussian correlation matrix,

Π is the Lévy measure on R
d and θ ∈Rd . Hence �Ψ (θ)≥ 0 for all θ ∈Rd and we

have

E
(
eiϑep+iθXep

)=
∫ ∞

0
pe−pt+iϑt−Ψ (θ)tdt = p

p− iϑ +Ψ (θ) ,

for all θ ∈ R
d and ϑ ∈ R. On the other hand, using the Frullani integral in

Lemma 1.7, we see that

exp

{

−
∫ ∞

0

∫

Rd

(
1− eiϑt+iθ ·x)1

t
e−ptP(Xt ∈ dx)dt

}

= exp

{

−
∫ ∞

0

(
1− e−(Ψ (θ)−iϑ)t)1

t
e−ptdt

}

= p

p− iϑ +Ψ (θ) ,

for θ ∈Rd and ϑ ∈R. The result now follows. �

Although the next result is stated for the Poisson point process of excursions,
{(t, εt ) : t ≥ 0 and εt 	= ∂}, the measure space (E,Σ,n) can be replaced by any
σ -finite measure space.

Lemma 6.17 Suppose that {(t, εt )} is a Poisson point process on ([0,∞) × E,
B[0,∞)×Σ,dt × dn). Choose A ∈Σ such that n(A) <∞ and define

σA = inf{t > 0 : εt ∈A}.
(i) The random time σA is exponentially distributed with parameter n(A).

(ii) The process {(t, εt ) : t < σA} is equal in law to a Poisson point process on
[0,∞)× E\A with intensity dt × dn′, where n′(dε)= n(dε ∩ E\A), which is
stopped at an independent exponential time with parameter n(A).

(iii) The process {(t, εt ) : t < σA} is independent of εσA .
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Proof Let S1 = [0,∞)×A and S2 = [0,∞)×(E\A). Suppose thatN is the Poisson
random measure associated with the given Poisson point process. All three conclu-
sions follow from Corollary 2.5 applied to the restriction of N to the disjoint sets S1
and S2, say N(1) and N(2), respectively.

Specifically, for (i), note that P(σA > t)= P(N(1)([0, t] ×A)= 0)= e−n(A)t as
N(1) has intensity dt × n(dε ∩A). For (ii) and (iii), it suffices to note that N(2) has
intensity dt × n(dε ∩ E\A), that

{
(t, εt ) ∈ [0,∞)× E : t < σA}= {

(t, εt ) ∈ [0,∞)× (E\A) : t < σA
}

and that the first arrival in A is a point belonging to the process N(1), which is
independent of N(2). �

Since {σA ≤ t} = {N([0, t]×A)≥ 1}, it is easily seen that σA is a stopping time
with respect to the filtration G= {Gt : t ≥ 0}, where

Gt = σ
(
N(U × V ) : U ∈ B[0, t] and V ∈Σ)

.

In the case that E is the space of excursions, one may take G= F.
Now we are ready to give the proof of the Wiener–Hopf factorisation.

Proof of Theorem 6.15 (i) The crux of the first part of the Wiener–Hopf factorisation
lies with the following important observation. Consider the Poisson point process of
marked excursions on

([0,∞)× E × [0,∞),B[0,∞)×Σ ×B[0,∞),dt × dn× dη
)
,

where η(dx)= pe−pxdx for x ≥ 0. That is to say, consider a Poisson point process
whose points are described by {(t, εt , e(t)p ) : t ≤ L∞ and εt 	= ∂}, where e(t)p is an
independent copy of an exponentially distributed random variable if t is such that
εt 	= ∂ , and otherwise, e(t)p := ∂ . The Poisson point process of unmarked excursions
is then obtained as a projection on to [0,∞) × E . Sampling the Lévy process X
up to an independent exponentially distributed random time ep corresponds to sam-
pling the Poisson process of excursions up to time Lep ; that is, {(t, εt ) : t ≤ Lep and
εt 	= ∂}. In turn, we claim that this process is equal in law to the projection on to
[0,∞)× E of

{(
t, εt , e(t)p

) : t ≤ σ1 ∧ σ2 and εt 	= ∂
}
, (6.22)

where

σ1 := inf

{

t > 0 :
∫ L−1

t

0
1(Xs=Xs)ds > ep

}

(with the usual understanding that inf∅ =∞) and

σ2 := inf
{
t > 0 : ζ(εt ) > e(t)p

}
.
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Fig. 6.2 A symbolic sketch of the decomposition of the path of a compound Poisson process
with strictly positive drift over an independent and exponentially distributed period of time. The
situation for bounded variation Lévy processes for which 0 is irregular for (−∞,0) is analogous
to the case in this sketch, in the sense that the Lebesgue measure of the time spent at the maximum
over any finite time horizon is strictly positive.

(Recall that ζ(εt ) is the duration of the excursion indexed by local time t .) A formal
proof of this claim would require the use of some additional mathematical tools.
However, for the sake of brevity, we shall lean instead on an intuitive explanation.

We recall that the path of the Lévy process up to time ep is the independent jux-
taposition of excursions interlaced with moments of real time when X =X (which
accumulate positive Lebesgue measure when a > 0). The event {t < Lep } corre-
sponds to the event that there are at least t units of local time for ep units of real
time. By the lack-of-memory property, this is equivalent to the intersection of two
events. The first is that the total amount of real time spent at the maximum, when
the local time at the maximum is equal to t , has survived independent exponential
killing at rate p. The second is that, when the local time at the maximum is equal
to t , each of the excursion lengths have survived independent exponential killing at
rate p. This idea is easier to visualise when one considers the case that X is a com-
pound Poisson process with strictly positive or strictly negative drift; see Figs. 6.2
and 6.3.

The times σ1 and σ2 are independent and, further, σ2 is of the type of stopping
time considered in Lemma 6.17, with A = {ζ(ε) > ep}, for the Poisson point pro-
cess (6.22). From each of the three statements given in Lemma 6.17, we respectively
deduce three facts concerning the Poisson point process (6.22).
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Fig. 6.3 A symbolic sketch of the decomposition of the path of a compound Poisson process
with strictly negative drift over an independent and exponentially distributed period of time. The
situation for a Lévy process of unbounded variation or a Lévy process of bounded variation for
which 0 is irregular for [0,∞) is analogous to the case in this sketch, in the sense that the Lebesgue
measure of the time spent at the maximum is zero.

(1) Since
∫ L−1

t

0 1(Xs=Xs)ds = at , we have

P(σ1 > t)= P

(∫ L−1
t

0
1(Xs=Xs)ds < ep

)

= e−apt , t ≥ 0.

As mentioned earlier, if the constant a= 0, then we have that σ1 =∞. Further,
with the help of Lemma 6.17 (i), we also have that

P(σ2 > t)

= exp

{

−t
∫ ∞

0
pe−pxdx · n(ζ(ε) > x)

}

= exp

{

−t
∫ ∞

0
pe−pxdx · [n(∞> ζ(ε) > x)+ n(ζ(ε)=∞)]

}

= exp

{

−n(E∞)t − t
∫

(0,∞)
(
1− e−px

)
n
(
ζ(ε) ∈ dx

)
}

,

where we recall that E∞ = {ε ∈ E : ζ(ε)=∞}. As σ1 and σ2 are independent
and exponentially distributed, it follows1 that

P(σ1 ∧ σ2 > t)= exp

{

−t
(

n(E∞)+ ap+
∫

(0,∞)
(
1− e−px

)
n
(
ζ(ε) ∈ dx

)
)}

.

1Recall that the minimum of two independent exponential random variables is again exponentially
distributed with the sum of their rates.
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However, recall from (6.11) and (6.14) that κ(0,0) = n(E∞) and Λ(dx,
[0,∞)) = n(ζ(ε) ∈ dx), and hence the exponent above is equal to κ(p,0),
where κ is given by (6.15) and (6.16).

(2) From Lemma 6.17 (ii) and the observation (1) above, we see that the Poisson
point process (6.22) is equal in law to a Poisson point process on [0,∞)× E ×
[0,∞) with intensity

dt × n(dε; ζ(ε) < x)× η(dx), (6.23)

which is stopped at an independent time which is exponentially distributed with
parameter κ(p,0).

(3) Lemma 6.17 (iii) tells us that, on the event {σ2 < σ1}, the process
{(
t, εt , e(t)p

) : t < σ1 ∧ σ2 and εt 	= ∂
}

(6.24)

is independent of εσ2 = εσ1∧σ2 . On the other hand, when σ1 < σ2, since ∂ =
εσ1 = εσ1∧σ2 , we conclude that εσ1∧σ2 , and indeed e(σ1∧σ2)

p , are independent
of (6.24).

Now note, with the help of (6.12) and (6.13), that

(Gep ,Xep )
d= (
L−1
(σ1∧σ2)−,H(σ1∧σ2)−

)
, (6.25)

where

L−1
(σ1∧σ2)− = a(σ1 ∧ σ2)+

∫

[0,σ1∧σ2)

∫

E
ζ(εt )N(dt × dε) (6.26)

and

H(σ1∧σ2)− = b(σ1 ∧ σ2)+
∫

[0,σ1∧σ2)

∫

E
h(εt )N(dt × dε). (6.27)

From point (3) above, the right-hand sides of (6.26) and (6.27) are independent
of the excursion εσ1∧σ2 . Moreover, simultaneously on the same probability spaces
referred to in (6.25), the pair (ep −Gep ,Xep −Xep ) is equal in law to

(
e(σ1∧σ2)
p , εσ1∧σ2

(
e(σ1∧σ2)
p

))
1(σ2<σ1) + (0,0)1(σ1<σ2).

See Figs. 6.2 and 6.3. In conclusion, (Gep ,Xep ) is independent of (ep − Gep ,

Xep −Xep ).

From point (2), the process {(L−1
t ,Ht ) : t < σ1∧σ2} behaves like a subordinator

with characteristic measure
∫ ∞

0
pe−ptdt · n(ζ(ε) ∈ dx,h(ε) ∈ dy, x < t

)= e−pxΛ(dx,dy)

and drift (a,b), which is stopped at an independent exponentially distributed time
with parameter κ(p,0). Suppose that we denote this subordinator (L−1,H) =
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{(L−1
t ,Ht ) : t ≥ 0}. Then

(
L
−1
eχ ,Heχ

) d= (Gep ,Xep ),

where eχ is an independent exponential random variable with parameter χ =
κ(p,0). From Lemma 6.16, we also see that (Gep ,Xep ) is infinitely divisible. Now
note that, by appealing to the Duality Lemma and the fact that maxima are attained
at unique times (recall the discussion preceding the statement of Theorem 6.15), one
sees that

(ep −Gep ,Xep −Xep )
d= (Gep ,−Xep ). (6.28)

(This is also seen, for example, in Figs. 6.2 and 6.3 by rotating them about 180◦.) For
reasons similar to those given above, the pair (Gep ,−Xep ) must also be infinitely
divisible. The factorisation (6.17) now follows. �

Proof of Theorem 6.15 (ii) From the proof of part (i), the bivariate subordinator
(L−1,H) has Laplace exponent equal to

aα + bβ +
∫

(0,∞)2
(
1− e−αx−βy

)
e−pxΛ(dx,dy)= κ(α + p,β)− κ(p,0),

for α,β ≥ 0, where the equality follows from (6.15) and (6.16). Hence, from the
second equality in the statement of Lemma 6.16,

E
(
e−αGep−βXep

) = E
(
e−αL

−1
eχ −βHeχ

)

= χ

κ(α + p,β)− κ(p,0)+ χ
= κ(p,0)

κ(α + p,β) . (6.29)

Part (ii) follows from (6.29) by analytically extending the identity from α,β ≥ 0
to C

+. �

Proof of Theorem 6.15 (iii) According to Lemma 6.16, the bivariate random vari-
able (ep,Xep ) is infinitely divisible and has Lévy measure on (0,∞) × R given
by

π(dt,dx)= 1

t
e−ptP(Xt ∈ dx)dt.

Since, by part (i), we can write (ep,Xep ) as the independent sum

(Gep ,Xep )+ (ep −Gep ,Xep −Xep ),

it follows that π = π+ + π− where π+ and π− are the Lévy measures of
(Gep ,Xep ), and (ep − Gep ,Xep − Xep ), respectively. Further, the support of π+
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must be contained in [0,∞)× [0,∞) and the support of π− must be contained in
[0,∞) × (−∞,0], since these are the supports of the distributions of (Gep ,Xep )

and (ep −Gep ,Xep −Xep ), respectively.
As X is not a compound Poisson process, we have that P(Xt = 0) = 0 for

Lebesgue almost all t > 0.2 We can now identify π+ as the restriction of π to
[0,∞) × (0,∞) and π− as the restriction of π to [0,∞) × (−∞,0). Using the
Lévy–Khintchine formula (2.29) for a bivariate pair of infinitely divisible random
variables (cf. Exercise 2.10), we can identify the Wiener–Hopf factors in the form

Ψ+p (ϑ, θ)= exp

{

ikϑ + ikθ +
∫ ∞

0

∫

(0,∞)
(
eiϑt+iθx − 1

)1

t
e−ptP(Xt ∈ dx)dt

}

and

Ψ−p (ϑ, θ)=exp

{

−ikϑ−ikθ+
∫ ∞

0

∫

(−∞,0)
(
eiϑt+iθx − 1

)1

t
e−ptP(Xt ∈ dx)dt

}

,

for some constants k ≥ 0 and k ≥ 0, where θ,ϑ ≥ 0. The identification of Ψ+ and
Ψ− should also take account of the fact that Ψ+ extends analytically to the upper
half of the complex plane in θ and Ψ− extends to the lower half of the complex
plane in θ . Since ep can take arbitrarily small values, then so can Gep and Xep . In
that case, the Lévy–Khintchine exponent of (Gep ,Xep ) should not contain the drift
term ikϑ + ikθ , i.e. k = k = 0 (otherwise the distributions of Gep and Xep would
have supports bounded strictly away from the origin).

From (6.29), we can now identify κ(α,β) up to a constant and formula (6.19)
follows. Similarly, we may identify the formula given for κ̂(α,β). �

Proof of Theorem 6.15 (iv) From the expressions established in part (iii) and
Lemma 1.7 for the Frullani integral,

κ(p,0)̂κ(p,0)

= k′ exp

{∫ ∞

0

(
e−t − e−pt

)1

t
dt

}

= k′ exp

{∫ ∞

0

(
1− e−pt

)
e−t 1
t

dt −
∫ ∞

0

(
1− e−t

)
e−pt 1

t
dt

}

= k′p, (6.30)

2This statement is intuitively appealing; however it requires a rigorous proof. We refrain from giv-
ing it here in order to avoid distraction from the proof at hand. The basic idea is to prove, in the spirit
of Theorem 5.4, that, for each q > 0, the potential measure U(q)(dx) := E(

∫∞
0 e−qt1(Xt∈dx)dt) has

no atoms. See for example Proposition I.15 of Bertoin (1996a).
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where k′ = kk̂. Equation (6.17) now reads

1

p− iϑ +Ψ (θ) =
k′

κ(p− iϑ,−iθ) · κ̂(p− iϑ, iθ)
.

Setting ϑ = p = 0 delivers the required result. �

Let us mention the following corollary, merely as a curiosity in light of the dis-
cussion on special subordinators in Sect. 5.6. Its proof is an immediate consequence
of (6.30).

Corollary 6.18 The ascending inverse local time process L−1 and the descending
inverse local time process L̂−1 are conjugate special subordinators.

We conclude this section with some remarks about the case thatX is a compound
Poisson process. In this case, most of the proof of Theorem 6.15 goes through as
stated. However, the following subtleties need to be taken account of.

In the proof of the part (i) of Theorem 6.15, it is no longer true that (6.28) holds.
One needs to be more careful concerning the definition ofGt andGt . For compound
Poisson processes, it is necessary to work with the new definitions

Gt = sup{s < t :Xs =Xt } and G∗t = inf{s < t :Xs =Xt }, (6.31)

instead. It was shown in the case that X is not a compound Poisson process that
maxima are obtained at distinct times. Hence, the above definitions are consistent
with the original definitions of Gt and Gt outside the class of compound Poisson
processes.

Appealing to duality, the statement (6.28) should now be replaced by

(ep −Gep ,Xep −Xep )
d= (
G∗ep ,−Xep

)
, (6.32)

and the factorisation (6.17) requires redefining so that

Ψ−p (ϑ, θ)= E
(
eiϑG∗ep+iθXep

)
,

for θ,ϑ ∈ R. Further, in the proof of parts (ii) and (iii) of Theorem 6.15, an ad-
justment is required in the definitions of κ and κ̂ . Recall that in the decompo-
sition π = π+ + π−, the respective supports of π+ and π− are contained in
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[0,∞)× (0,∞) and [0,∞)× (−∞,0). Unlike earlier, we are now faced with the
difficulty of assigning the mass given by the probabilities P(Xt = 0) for t ≥ 0 to one
or the other of the integrals that, respectively, define κ and κ̂ . The way to do this is
to first consider the process Xε = {Xεt : t ≥ 0}, where

Xεt :=Xt + εt, t ≥ 0,

and ε ∈ R. A little thought reveals that, for each fixed t ≥ 0, limε↓0G
ε

t = Gt ,
where G

ε

t is given by (6.31) applied to Xε and Gt is also given by (6.31). Simi-
larly, limε↓0X

ε

t =Xt , where X
ε = sups≤t Xεs . Next note that, in the sense of weak

convergence of measures,

lim
ε↓0

1

t
e−ptP

(
Xεt ∈ dx

)
dt1(x>0) = 1

t
e−ptP(Xt ∈ dx)dt1(x≥0)

whilst

lim
ε↓0

1

t
e−ptP

(
Xεt ∈ dx

)
dt1(x<0) = 1

t
e−ptP(Xt ∈ dx)dt1(x<0).

Hence, applying Theorem 6.15 to Xε and taking limits as ε ↓ 0 in (6.18) and (6.19),
one recovers statements (ii), (iii) and (iv) of Theorem 6.15 for compound Poisson
processes, but now with

κ(α,β)= k exp

(∫ ∞

0

∫

[0,∞)
(
e−t − e−αt−βx

)1

t
P(Xt ∈ dx)dt

)

(there is now closure of the interval at zero on the delimiter of the inner integral).
The reader may be curious about what would happen if we considered applying

the conclusion of Theorem 6.15 toX−ε as ε ↓ 0. In this case, using obvious notation
for G

−ε
t , it would follow that limε↓0G

−ε
t =G∗t , where, now,

G
∗
t = inf{s < t :Xs =Xt }.

This pertains to another version of the Wiener–Hopf factorisation for compound
Poisson processes, which states that

(
ep −G∗ep ,Xep −Xep

) d= (Gep ,−Xep ),

with the new definition

Gt = sup{s < t :Xs =Xt }.
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Further, we would also have that κ satisfies (6.19) but κ̂ satisfies (6.20), with the
delimiter (−∞,0) replaced by (−∞,0].

6.5 Examples of the Wiener–Hopf Factorisation

We finish this chapter by describing some examples for which the Wiener–Hopf
factorisation is explicit. Before doing so, let us note that, until renewed interest in
this topic around the turn of the millennium, there were frustratingly few known
examples of the Wiener–Hopf factorisation for which anything concrete could be
said.

6.5.1 Brownian Motion

The simplest example of the Wiener–Hopf factorisation is for a standard Brownian
motion B = {Bt : t ≥ 0}. In this case, Ψ (θ)= θ2/2, for θ ∈R, and

p

p− iϑ + θ2/2
=

√
2p√

2p− 2iϑ − iθ
·

√
2p√

2p− 2iϑ + iθ
.

From the factorisation (6.17) and the transforms given in (6.18), we can identify

κ(α,β)= κ̂(α,β)=√2α+ β, (6.33)

for α,β ≥ 0. The fact that both κ and κ̂ have the same expression is obvious by
symmetry. Further, (6.33) tells us that L−1 is a 1

2 -stable subordinator and H is a
unit-rate linear drift. This is to be expected when one reconsiders Example 6.11. In
particular, it was shown there that L−1 has Laplace exponent Φ(α)−Φ(0), where
Φ is the inverse of the Lévy–Khintchine exponent of B . For Brownian motion

Φ(q)=√
2q =

∫ ∞

0

(
1− e−qx

)
(2π)−1/2x−3/2dx, q ≥ 0,

where the second equality uses Exercise 1.4.

6.5.2 Spectrally Negative Lévy Processes

The previous example could also be seen as a consequence of the following more
general analysis for spectrally negative Lévy processes. For such processes, recall
that we defined ψ(θ) = logE(exp{θX1}), θ ≥ 0 to be its Laplace exponent, with
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right inverse Φ; see Sect. 3.3 and Exercise 3.6. Moreover, we know, from Exam-
ple 6.2, that we may work with the definition L = X. We also know, from Exam-
ple 6.11, that

L−1
x = inf{s > 0 :Xs > x} = inf{s > 0 :Xs > x} = τ+x , x ≥ 0,

and

Hx =XL−1
x
= x, x ≥ 0,

on {x < L∞}. Hence,

E
(
e−αL

−1
1 −βH1 1(1<L∞)

)= e−Φ(α)−β, α,β ≥ 0,

showing that we may take

κ(α,β)=Φ(α)+ β. (6.34)

In that case, taking account of (6.18), for p ≥ 0 and θ,ϑ ∈ R, one of the Wiener–
Hopf factors must be

Φ(p)

Φ(p− iϑ)− iθ
,

and hence, by (6.17), the other factor must be

p

Φ(p)

Φ(p− iϑ)− iθ

p− iϑ +Ψ (θ) .

By inspection of the second of the two Laplace transforms in (6.18), we see that

κ̂(α,β)= α+Ψ (−iβ)

Φ(α)− β = α −ψ(β)
Φ(α)− β , α,β ≥ 0, (6.35)

where in the second equality, we have used the relation ψ(θ) = −Ψ (−iθ), θ ≥ 0,
between the Laplace exponent and the Lévy–Khintchine exponent. Given this ex-
pression for κ̂ , there is nothing immediate we can say about the descending ladder
process (L̂−1, Ĥ ). Nonetheless, as we shall see in later chapters, the identification
of the Wiener–Hopf factors does form the basis of a semi-explicit account of a num-
ber of fluctuation identities for spectrally negative processes. Accordingly the case
of spectrally negative Lévy processes turns out to be of significant practical value
in a variety of applications, some of which we shall pursue in the remainder of this
book.

6.5.3 Stable Processes

Suppose that X is an α-stable process, so that, for each t > 0, Xt is equal in distri-
bution to t1/αX1. This has the immediate consequence that for all t > 0,

P(Xt ≥ 0)= ρ,
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for some ρ ∈ [0,1] known as the positivity parameter. It is possible to compute ρ in
terms of the original parameters; see Zolotarev (1986), who showed that

ρ = 1

2
+ 1

πα
arctan

(

β tan
πα

2

)

,

for α ∈ (0,1) ∪ (1,2) and β ∈ [−1,1]. For α = 1 and η = 0, we have ρ = 1/2. We
exclude the cases ρ = 1 and ρ = 0 in the subsequent discussion as these correspond,
respectively, to the cases that X and −X are subordinators with α ∈ (0,1).

Note now from (6.19) that, for λ≥ 0,

κ(λ,0) = k exp

(∫ ∞

0

∫

[0,∞)
(
e−t − e−λt

)1

t
P(Xt ∈ dx)dt

)

= k exp

(∫ ∞

0

(
e−t − e−λt

)ρ

t
dt

)

= kλρ, (6.36)

where in the final equality, we have used the Frullani integral from Lemma 1.7. This
tells us directly that the process L−1 is a stable subordinator. We can proceed further
and calculate, for λ≥ 0,

κ(0, λ) = k exp

(∫ ∞

0

∫

[0,∞)
(
e−t − e−λx

)1

t
P(Xt ∈ dx)dt

)

= k exp

(∫ ∞

0

1

t
E
((

e−t − e−λXt
)
1(Xt≥0)

)
dt

)

= k exp

(∫ ∞

0

1

t
E
((

e−t − e−λt1/αX1
)
1(X1≥0)

)
dt

)

= k exp

(∫ ∞

0

1

s
E
((

e−sλ−α − e−s1/αX1
)
1(X1≥0)

)
ds

)

= k exp

(∫ ∞

0

1

s
E
((

e−s − e−Xs
)
1(Xs≥0)

)
ds

)

× exp

(

−
∫ ∞

0

ρ

s

(
e−s − e−sλ−α

)
ds

)

= κ(0,1)× exp

(

−
∫ ∞

0

ρ

s

(
e−s − e−sλ−α

)
ds

)

= κ(0,1)λαρ, (6.37)

where in the third and fifth equality, we have used the fact that s1/αX1 is equal in
distribution to Xs . In the final equality, we have again used the Frullani integral.
The term κ(0,1) is just a constant and, hence, we deduce that the ascending lad-
der height process is also a stable subordinator of index αρ. It is now immediate,
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from (6.21), that the descending ladder height process is a stable subordinator of
index α(1− ρ), which is consistent with the fact that P(Xt ≤ 0)= 1− ρ. This nec-
essarily implies that 0< αρ ≤ 1 and 0< α(1−ρ)≤ 1 when ρ ∈ (0,1). The extreme
cases αρ = 1 and α(1−ρ)= 1 correspond to spectrally negative and spectrally pos-
itive processes, respectively. For example, when β =−1 and α ∈ (1,2), we have a
spectrally negative process of unbounded variation. It is easily checked in this situa-
tion that ρ = 1/α and hence, from the calculation above, κ(0, λ)= const.× λ. This
is consistent with earlier established facts for spectrally negative Lévy processes.
Note that κ(0,0)= κ̂(0,0)= 0, showing that the killing rates in the ascending and
descending ladder height processes are equal to zero. Hence,

lim sup
t↑∞

Xt =− lim inf
t↑∞Xt =∞

almost surely.
Unfortunately, it is not as easy to establish a convenient closed form expression

for the bivariate exponent κ . The only known results in this direction are lead by the
work of Doney (1987), who deals with a set of parameter values of α and β which
are dense in the full parameter range (0,2) and [−1,1], respectively.3 More recently
Bernyk et al. (2008), Doney and Savov (2010), Kuznetsov (2011) and Graczyk and
Jakubowski (2011) have made some significant improvements on Doney’s original
contribution. The expressions involved are quite complicated and we refrain from
including them here.

6.5.4 Meromorphic Lévy Processes

One example where one would expect to be able develop the Wiener–Hopf factors
is the case that X is the difference of two independent compound Poisson processes
with exponentially distributed jumps. The reason why this example should be, up to
a certain point, analytically tractable boils down to the fact that the ladder height pro-
cesses must be a (possibly-killed) compound Poisson subordinators with exponen-
tially distributed jumps. Moreover, the ladder height processes must be independent
of their corresponding ladder time process. This is obvious when one considers that
if a new maximum occurs then it is achieved by an exponentially distributed jump
and then, by the lack-of-memory property, the overshoot beyond the previous maxi-
mum must again be exponentially distributed and independent of when it happens.4

This heuristic reasoning is still valid even if we add in an independent Gaussian
component or a linear drift. However, in that case, there is also the possibility that,
for example, a new maximum is achieved continuously. This would result in the as-
cending ladder height gaining an additional linear drift. This information would be
sufficient to develop further the factors Ψ+p (0, θ) and Ψ−p (0, θ).

3For related results see Bingham (1971, 1972, 1973b).
4The details can be found in Example (c), Chap. XVIII.3 of Feller (1971).
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From an analytical point of view, the reason why this special class of processes
can be handled is because the characteristic exponent necessarily takes a rational
form, namely the ratio of two polynomials of finite degree, from which a factori-
sation can be forced. Starting with the early work of Borovkov (1976) and Feller
(1971), various authors have tried to generalise this idea by replacing the exponen-
tially distributed jumps by jumps whose common distribution have a Laplace trans-
form which is rational, or indeed, by jumps whose distribution belongs to the so-
called phase-type class; cf. Asmussen et al. (2004), Pistorius (2006) and Mordecki
(2008). Contained in both of the aforementioned families of distributions are jump
distributions that are finite mixtures of exponential densities.

In this section, we shall present another possible generalisation which has
some overlap with all of the aforementioned families of Lévy processes; the so-
called meromorphic Lévy processes. These processes were introduced by Kuznetsov
(2010a, 2010b) and Kuznetsov et al. (2012).

Definition 6.19 A Lévy process is said to belong to the meromorphic class if its
Lévy measure Π is absolutely continuous, with density given by

π(x)=
∞∑

i=1

aiρie
−ρix1{x>0} +

∞∑

i=1

âi ρ̂ie
ρ̂ix1{x<0}. (6.38)

Here, the constants ai, âi , ρi, ρ̂i are non-negative, ρi and ρ̂i are arranged in increas-
ing order with limn↑∞ ρn = limn↑∞ ρ̂n =∞ and they satisfy the summability con-
dition

∞∑

i=1

aiρ
−2
i +

∞∑

i=1

âi ρ̂
−2
i <∞. (6.39)

Let us pursue a number of remarks concerning this definition. First note that
the summability condition (6.39) is sufficient to ensure the integrability condition∫
R
(1 ∧ x2)π(x)dx <∞ is satisfied. In fact it is easily confirmed, with the help of

Fubini’s Theorem, that it guarantees the stronger condition
∫
R
x2π(x)dx <∞. It

is not automatic that π is the density of a finite measure and, hence, not all mero-
morphic Lévy processes have a compound Poisson jump structure. Finite activity
does occur, however, if the number of summands in both sums of (6.38) are finite.
Next, note that the non-negativity of the constants ai and âi allows for the possibil-
ity that one or both of the sums in the density π have a finite number of summands.
The following theorem, lifted from Kuznetsov et al. (2012), shows some convenient
properties that follow from this definition.

Theorem 6.20 Any meromorphic Lévy process, X, has the following properties:

(i) The characteristic exponent Ψ (z) is a meromorphic function which has poles
at points {−iρn, iρ̂n}n≥1, where ρn and ρ̂n are positive real numbers.
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(ii) For p ≥ 0, the function p + Ψ (z) has roots at points {−iζn(p), iζ̂n(p)}n≥1

where ζn(p) and ζ̂n(p) are non-negative real numbers (strictly positive if
p > 0).

(iii) The roots and poles of p+Ψ (iz) satisfy the interlacing condition

· · ·<−ρ2 <−ζ2(p) <−ρ1 <−ζ1(p) < 0< ζ̂1(p) < ρ̂1 < ζ̂2(p) < ρ̂2 < · · ·
(iv) The spatial Wiener–Hopf factors are expressed as convergent infinite products,

Ψ+p (0, iz)= E
[
e−zXep

]=
∏

n≥1

1+ z
ρn

1+ z
ζn(p)

and

Ψ−p (0,−iz)= E
[
ezXep

]=
∏

n≥1

1+ z
ρ̂n

1+ z

ζ̂n(p)

,

for z≥ 0.

Conversely, any Lévy process with the above properties belongs to the meromorphic
class.

As one might expect, the proof is somewhat technical, relying predominantly on
complex analytic techniques. We omit it for the sake of brevity. Part (iv) of the above
theorem leads quickly to the following corollary with the help of straightforward
residue calculus or a partial fraction expansion.

Corollary 6.21 For all x ≥ 0,

P(Xep ∈ dx)= c0δ0(dx)+
∑

n≥1

cnζn(p)e
−ζn(p)x, (6.40)

where

c0 :=
∞∏

n=1

ζn(p)

ρn
and cn :=

(

1− ζn(p)
ρn

)∏

k≥1
k 	=n

1− ζn(p)
ρk

1− ζn(p)
ζk(p)

.

From this corollary, it is straightforward to deduce a similar expression for the
law of −Xep using duality.

This corollary also exemplifies a numerical point of interest concerning mero-
morphic Lévy processes. Knowing the numerical values of even a finite number
of the roots and poles would be sufficient to approximate the products and sums
in (6.40) by making obvious truncations in the sums and products. The reader is
referred to Kuznetsov (2010a) for further details of numerical methods.

There are a number of specific examples of meromorphic Lévy processes (found
in the above-mentioned works of Kuznetsov and co-authors) for which the Lévy
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density and/or the characteristic exponent can be expressed in a more suitable closed
form. The most notable of these is the so-called β-class5 of Lévy processes, found
in the landmark paper of Kuznetsov (2010a).

The characteristic exponent is given by

Ψ (θ) = iaθ + 1

2
σ 2θ2 + c1

β1

{

B(α1,1− λ1)−B

(

α1 − iθ

β1
,1− λ1

)}

+ c2

β2

{

B(α2,1− λ2)−B

(

α2 + iθ

β2
,1− λ2

)}

, θ ∈R,

where B(x, y) = Γ (x)Γ (y)/Γ (x + y) is the beta function, with parameter ranges
a ∈R, σ 2 ≥ 0, ci ≥ 0, αi > 0, βi > 0 and λi ∈ (0,3) \ {1,2}, for i = 1,2. The corre-
sponding Lévy measure, Π , has density

π(x)= c1
e−α1β1x

(1− e−β1x)λ1
1{x>0} + c2

eα2β2x

(1− eβ2x)λ2
1{x<0}.

To see why a Lévy process in the β-class is also a meromorphic Lévy process, one
may expand the expression for the Lévy density above on the positive and negative
half-lines using the generalised binomial formula. The large number of parameters
allows one to choose Lévy processes within the β-class that have paths that are
both of unbounded variation (when at least one of the conditions σ 	= 0, λ1 ∈ (2,3)
or λ2 ∈ (2,3) holds) and bounded variation (when all of the conditions σ = 0,
λ1 ∈ (0,2) and λ2 ∈ (0,2) hold) as well as having infinite and finite activity in the
jump component (accordingly as both λ1, λ2 ∈ (1,2)∪ (2,3) or λ1, λ2 ∈ (0,1)).

6.6 Vigon’s Theory of Philanthropy and More Examples

At the level of a spatial decomposition, the Wiener–Hopf factorisation expresses a
fundamental relationship between the underlying Lévy process, its ascending ladder
height processes and its descending ladder height processes. In his seminal Ph.D.
thesis, Vigon (2002a) gives a remarkably simple and precise characterisation of what
kind of ladder height processes belong together in a Wiener–Hopf factorisation. This
is what Vigon colourfully calls the problem of friends.6 In this section, we give a
brief outline of his solution to this problem using so-called philanthropy. A direct
consequence of Vigon’s theory of philanthropy is that it gives a simple recipe for
generating countless examples of explicit Wiener–Hopf factorisations.

5The β-class of Lévy processes is also referred to as the β-family of Lévy processes. Processes in
this class are also called β-processes or β-Lévy processes.
6Le problème des amis.
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Consider any two (killed) subordinators H and Ĥ . Let us write the Laplace ex-
ponent of the (killed) subordinator H in the form

ϕ(u)= η+ δu+
∫

(0,∞)
(
1− e−ux

)
Υ (dx), u≥ 0,

where η ≥ 0, δ ≥ 0 and the measure Υ satisfies
∫
(0,∞)(1 ∧ x)Υ (dx) <∞. Recall

that H is killed if and only if η > 0. Moreover, we shall use the symbols ϕ̂, η̂, δ̂ and
Υ̂ in the obvious way for the process Ĥ .

Vigon says that H and Ĥ are friends if there exists a Lévy process with charac-
teristic exponent Ψ and a constant p ≥ 0 such that, for θ ∈R,

p+Ψ (θ)= ϕ(−iθ)ϕ̂(iθ).

In particular, if H and Ĥ are friends, then necessarily p = ηη̂. Moreover, if at most
one of the two friends is killed (i.e. ηη̂= 0), then their friendship constitutes a spatial
Wiener–Hopf factorisation (in the sense of part (iv) of Theorem 6.15). The following
theorem, given without proof, characterisesΠ , the Lévy measure associated withΨ .

Theorem 6.22 (Vigon’s theorem of friends) Suppose that H and Ĥ are friends.
Then Υ (resp. Υ̂ ) is absolutely continuous with density υ (resp. υ̂) if δ̂ > 0 (resp.
δ > 0), in which case, it has a version that is right-continuous with left limits. More-
over, for all x > 0,

Π(x,∞)=
∫

(0,∞)
Υ̂ (u,∞)Υ (x + du)+ δ̂υ(x)+ η̂Υ (x,∞) (6.41)

and similarly,

Π(−∞,−x)=
∫

(0,∞)
Υ (u,∞)Υ̂ (x + du)+ δυ̂(x)+ ηΥ̂ (x,∞). (6.42)

Here, we understand the term δ̂υ(x)= 0 (resp. δυ̂(x)= 0) when δ̂ = 0 (resp. δ = 0).
Conversely, suppose that Υ (resp. Υ̂ ) is absolutely continuous with density υ

(resp. υ̂) whenever δ̂ > 0 (resp. δ > 0). If the expressions given on the right-hand
side of (6.41) and (6.42) are both non-increasing, then H and Ĥ are friends.

The “converse” part of this theorem is particularly interesting as it gives crite-
ria with which one could potentially engineer a spatial Wiener–Hopf factorisation,
by first choosing the factors and then characterising the associated Lévy process.
The criterion to check for any two factors ϕ and ϕ̂, namely the non-increasingness
of (6.41) and (6.42), is not particularly convenient. With a view to a more conve-
nient criteria, Vigon introduces the concept of philanthropy. A (killed) subordinator
is called a philanthropist if its Lévy measure is absolutely continuous with non-
increasing density. Vigon’s strange choice of terminology now becomes clear with
the following mathematically and linguistically elegant result.
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Theorem 6.23 (Vigon’s theorem of philanthropy) Any two philanthropists are
friends.

On a final note, it is obvious from this last theorem that if at most one of the philan-
thropists is killed, then their friendship constitutes a spatial Wiener–Hopf factorisa-
tion.

We conclude with two examples, the second of which will prove to be of partic-
ular pertinence later on when considering the theory of so-called scale functions for
spectrally negative Lévy processes, in Chap. 9.

6.6.1 Hypergeometric Lévy Processes

Kyprianou et al. (2010a) and Kuznetsov et al. (2011) propose choosing the two
philanthropists ϕ and ϕ̂ from the family of subordinators which belong to the class
of β-Lévy processes. The resulting friendship defines a class of processes which are
called hypergeometric Lévy processes. In particular, we have

ϕ(u)= η+ δu+ c
β

{

B(1− α + γ,−γ )−B

(

1− α + γ + u
β
,−γ

)}

,

for u≥ 0, where

Υ (dx)= c eαβx

(eβx − 1)1+γ
dx on (0,∞),

with γ ∈ (−∞,0) ∪ (0,1), β, c > 0 and 1 − α + γ > 0. A similar expression
may be taken for ϕ̂ but with the parameters (η, δ,α,β, γ, c) replaced by different
parameters, (̂η, δ̂, α̂, β̂, γ̂ , ĉ), satisfying the same constraints. Recall that the case
p = ηη̂ > 0 corresponds to the case that the Lévy process is killed at an indepen-
dent and exponentially distributed random time, with rate p.

By appealing to a special set of parameters, Kuznetsov and Pardo (2012) showed
that

Ψ (θ)= Γ (1− a+ γ − iθ)

Γ (1− a− iθ)

Γ (̂a+ γ̂ + iθ)

Γ (̂a+ iθ)
, θ ∈R,

where

a≤ 1, γ ∈ (0,1), â≥ 0, γ̂ ∈ (0,1),
is a convenient subclass of hypergeometric Lévy processes, for which the associated
Lévy measure can be computed precisely. Indeed, setting

k= 1− a+ γ + â+ γ̂ ,
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they showed that the Lévy measure is absolutely continuous with density

π(x)=
⎧
⎨

⎩

− Γ (k)
Γ (k−γ̂ )Γ (−γ )e

−(1−a+γ )x
2F1(1+ γ,k;k− γ̂ ; e−x) if x > 0

− Γ (k)
Γ (k−γ )Γ (−γ̂ )e

(̂a+γ̂ )x
2F1(1+ γ̂ ,k;k− γ ; ex) if x < 0.

(6.43)

Here, 2F1 is the Gauss hypergeometric function, satisfying

2F1(a, b; c; z)=
∑

n≥0

(a)n(b)n

(c)n

zn

n! ,

where z ∈C such that |z|< 1 and (x)n = Γ (x + n)/Γ (x).
More can be said about a given Lévy process, X, chosen from this subclass. If

a< 1 and â> 0, then X is killed at rate

p = Ψ (0)= Γ (1− a+ γ )
Γ (1− a)

Γ (̂a+ γ̂ )
Γ (̂a)

.

When a = 1 and â > 0 (resp. a < 1 and â = 0), the process X drifts to ∞ (resp.
−∞). Moreover, when a= 1 and â= 0, then X is oscillating. Finally, the process X
has no Gaussian component and it has paths of bounded variation (resp. unbounded
variation) when γ + γ̂ < 1 (resp. 1≤ γ + γ̂ ≤ 2).

6.6.2 Spectrally Negative Lévy Processes Revisited

From Sect. 6.5.2, we know that the ascending ladder height process of a spectrally
negative Lévy process, X, must be a (possibly-killed) linear drift. In the language of
Vigon, this means that one of the two friends involved in the Wiener–Hopf factori-
sation of a spectrally negative Lévy process necessarily satisfies

ϕ(u)=Φ(0)+ u, u≥ 0,

where Φ is the right inverse of the Laplace exponent of X. Vigon’s theorem of
friends thus tells us that the descending ladder height process has a Lévy measure
Υ̂ which is absolutely continuous and, together with its density υ̂ , satisfies

Π(−∞,−x)= υ̂(x)+Φ(0)Υ̂ (x,∞), (6.44)

for x > 0. Noting that υ̂(x) = −dΥ̂ (x,∞)/dx, we can treat (6.44) as a first or-
der differential equation. Using standard techniques, we can solve this differential
equation and obtain

Υ̂ (x,∞)= eΦ(0)x
∫ ∞

x

e−Φ(0)yΠ(−∞,−y)dy.

Conversely, Vigon’s theorem of philanthropy says that we may always choose the
descending ladder height process so that Υ̂ is absolutely continuous with non-
increasing density, say υ̂ . In that case, (6.44) must follow.
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6.7 Brief Remarks on the Term “Wiener–Hopf”

Having now completed our exposition of the Wiener–Hopf factorisation, the reader
may feel somewhat confused as to the association of the name “Wiener–Hopf” with
Theorem 6.15. Indeed, in our presentation, we have made no reference to works of
Wiener or Hopf. The connection between Theorem 6.15 and these two mathemati-
cians lies in their analytic study of the solutions to integral equations of the form

Q(x)=
∫ ∞

0
Q(y)f (x − y)dy, x > 0, (6.45)

where f :R→[0,∞) is a pre-specified kernel; see Wiener and Hopf (1931), Payley
and Wiener (1934) and Hopf (1934). If one considers a compound Poisson process
X which has the property that lim supt↑∞Xt <∞, then the strong Markov property

implies that X∞ is equal in distribution to (ξ +X∞)∨ 0, where ξ is independent of
X∞ and has the same distribution as the jumps of X. If the aforesaid jump distribu-
tion has density f , then one shows easily that H(x)= P(X∞ ≤ x) satisfies

H(x)=
∫ x

−∞
H(x − y)f (y)dy =

∫ ∞

0
f (x − y)H(y)dy,

and hence one obtains immediately the existence of a solution to (6.45) for the
given f . This observation dates back to the work of Spitzer (1957).

Embedded in the complex analytic techniques used to analyse (6.45) and gener-
alisations thereof by Wiener, Hopf and many others that followed are factorisations
of operators (which can take the form of Fourier transforms). In the probabilistic set-
ting here, this is manifested in the form of the independence seen in Theorem 6.15
(i) and the way this is used to identify the factors Ψ+ and Ψ−, in conjunction with
analytic extension, in the proof of part (iii) of the same theorem. The full extent of
the analytic Wiener–Hopf factorisation technique goes far beyond the current setting
and we make no attempt to expose it here.7 The name “Wiener–Hopf” factorisation
thus honours the somewhat obscure analytical origins of what may, otherwise, be
considered as a sophisticated path decomposition of a Lévy process.

Exercises

6.1 Give an example of a Lévy process which has bounded variation with zero
drift for which 0 is regular for both (0,∞) and (−∞,0). Give an example of a
Lévy process of bounded variation and zero drift for which 0 is only regular for
(0,∞).

7The interested reader may consider looking up Noble (1958), Busbridge (1960) and Chan-
drasekhar (1960).
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6.2 Suppose that X is a spectrally negative Lévy process of unbounded variation
with Laplace exponent ψ and recall the definition τ+x = inf{t > 0 :Xt > x}. Recall
also that the process τ+ := {τ+x : x ≥ 0} is a (possibly-killed) subordinator (see
Corollary 3.14) with Laplace exponent Φ , the right inverse of ψ .

(i) Suppose that δ is the drift of the process τ+. Show that δ = 0.
(ii) Deduce that

lim
x↓0

τ+x
x
= 0

almost surely, and hence that

lim sup
t↓0

Xt

t
=∞

almost surely. Conclude that 0 is regular for (0,∞) and hence that the jump
measure of τ+ cannot be finite.

(iii) From the Wiener–Hopf factorisation of X show that

lim
θ↑∞E

(
eθXeq

)= 0,

and hence use this to give an alternative proof that 0 is regular for (0,∞).

6.3 Fix ρ ∈ (0,1]. Show that a compound Poisson subordinator with jump rate λρ,
killed at an independent and exponentially distributed time with parameter λ(1−ρ),
is equal in law to a compound Poisson subordinator killed after an independent
number of jumps, which is distributed geometrically with parameter 1− ρ.

6.4 Show that the only processes for which

∫ ∞

0
1(Xt=Xt )dt > 0 and

∫ ∞

0
1(Xt=Xt )dt > 0

almost surely are compound Poisson processes.

6.5 Suppose that X is spectrally negative with characteristic triple (a, σ,Π) and
that E(Xt ) > 0. (Recall that, in general, E(Xt ) ∈ [−∞,∞).)

(i) Show that
∫ −1

−∞
Π(−∞, x)dx <∞.

(ii) Using Theorem 6.15 (iv), deduce that, up to a constant,

κ̂(0, iθ) =
(

−a +
∫

(−∞,−1)
xΠ(dx)

)
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− 1

2
iθσ 2 +

∫

(−∞,0)
(
1− eiθx)Π(−∞, x)dx.

Hence deduce that there exists a choice of local time at the maximum for
which the descending ladder height process has jump measure given by
Π(−∞,−x)dx on (0,∞), drift σ 2/2 and is killed at rate E(X1).

6.6 Suppose that X is a spectrally negative stable process of index 1< α < 2.

(i) Deduce, with the help of Theorem 3.12, that up to a multiplicative constant

κ(θ,0)= θ1/α, θ ≥ 0,

and hence that P(Xt ≥ 0)= 1/α for all t ≥ 0.
(ii) By reconsidering the Wiener–Hopf factorisation, show that, for each t ≥ 0 and

θ ≥ 0,

E
(
e−θXt

)=
∞∑

n=0

(−θt1/α)n
Γ (1+ n/α) .

This identity is taken from Bingham (1971, 1972).

6.7 (The second factorisation identity) In this exercise, we derive what is com-
monly called the second factorisation identity, which is due to Percheskii and Ro-
gozin (1969). It uses the Laplace exponents κ and κ̂ to give an identity concerning
the problem of first passage above a fixed level x ∈ R. The derivation we use here
makes use of calculations in Darling et al. (1972) and Alili and Kyprianou (2005).
We shall use the derivation of this identity later to solve some optimal stopping
problems.

Define as usual

τ+x = inf{t > 0 :Xt > x}, x ≥ 0,

where X is any Lévy process.

(i) Using the same technique as in Exercise 5.7, prove that, for all α > 0, β ≥ 0
and x ∈R, we have

E
(
e
−ατ+x −βXτ+x 1(τ+x <∞)

)=
E(e−βXeα 1(Xeα>x)

)

E(e−βXeα )
. (6.46)

Note that the identity is still true when α = 0 if P(X∞ <∞)= 1.
(ii) Establish the second factorisation identity as follows: IfX is not a subordinator

then, for α,β ≥ 0,

∫ ∞

0
e−qxE

(
e
−ατ+x −β(Xτ+x −x)1(τ+x <∞)

)
dx = κ(α, q)− κ(α,β)

(q − β)κ(α, q) .
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6.8 Suppose that X is any Lévy process which is not a subordinator and ep is
an independent random variable which is exponentially distributed with parameter
p > 0. Note that 0 is regular for (0,∞) if and only if P(Xep = 0)= 0.

(i) Use the Wiener–Hopf factorisation to show that 0 is regular for (0,∞) if and
only if

∫ 1

0

1

t
P(Xt > 0)dt =∞.

(ii) Now noting that 0 is irregular for [0,∞) if and only if P(Gep = 0) > 0, show
that 0 is regular for [0,∞) if and only if

∫ 1

0

1

t
P(Xt ≥ 0)dt =∞.

6.9 This exercise gives the random walk analogue of the Wiener–Hopf factorisa-
tion. In fact, this is the original setting of the Wiener–Hopf factorisation. We give
the formulation in Greenwood and Pitman (1980a). However, one may also consult
Feller (1971) and Borovkov (1976) for other accounts.

Suppose that, under P , S = {Sn : n≥ 0} is a random walk with S0 = 0 and incre-
ment distribution F . We assume that S can jump both upwards and downwards, in
other words min{F(−∞,0),F (0,∞)}> 0 and that F has no atoms. Denote by �p
an independent random variable which has a geometric distribution with parameter
p ∈ (0,1) and let

G=min
{
k = 0,1, . . . ,�p : Sk = max

j=1,...,�p
Sj

}
.

Note that SG is the last maximum over times {0,1, . . . ,�p}. Define N = inf{n >
0 : Sn > 0} the first-passage time into (0,∞), or equivalently the first strict ladder
time. Our aim is to characterise the joint laws (G,SG) and (N,SN) in terms of F ,
the basic data of the random walk.

(i) Show that (even without the restriction that min{F(0,∞),F (−∞,0)}> 0),

E
(
s�peiθS�p

)= exp

{

−
∫

R

∞∑

n=1

(
1− sneiθx)qn

1

n
F ∗n(dx)

}

where 0< s ≤ 1, θ ∈R, q = 1− p and E is expectation under P . Deduce that
the pair (�p,S�p ) is infinitely divisible.

(ii) Let ν be an independent random variable which is geometrically distributed
on {0,1,2, . . .} with parameter P(N > �p). Using a path decomposition in
terms of excursions from the maximum, show that the pair (G,SG) is equal
in distribution to the component-wise sum of ν independent copies of (N,SN)
conditioned on the event {N ≤ �p}, and hence it is an infinitely divisible two-
dimensional random variable.
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(iii) Show that (G,SG) and (�p − G,S�p − SG) are independent. Further, show
that the latter pair is equal in distribution to (D,SD), where

D =max
{
k = 0,1, . . . ,�p : Sk = min

j=1,...,�p
Sj

}
.

(iv) Deduce that

E
(
sGeiθSG

)= exp

{

−
∫

(0,∞)

∞∑

n=1

(
1− sneiθx)qn

1

n
F ∗n(dx)

}

,

for 0 < s ≤ 1 and θ ∈ R. Note, when s = 1, this identity was established by
Spitzer (1956).

(v) Show that

E
(
sGeiθSG

)= P(Γp <N)

1−E((qs)NeiθSN )

and hence deduce the Spitzer–Baxter identity

1

1−E(sNeiθSN )
= exp

{∫

(0,∞)

∞∑

n=1

sneiθx 1

n
F ∗n(dx)

}

.

See, for example, Bingham (2001).

6.10 Suppose that X is a spectrally negative Lévy process with Laplace exponent
ψ whose right inverse is denoted by Φ .

(i) Use the Frullani integral to show that, for λ,q > 0,

Φ(q)

Φ(q)+ λ = exp

{∫ ∞

0
dx

∫

[0,∞)
(
e−λx − 1

)e−qt

x
P
(
τ+x ∈ dt

)
}

,

where τ+x = inf{t > 0 :Xt > x}.
(ii) Next use Theorem 6.15 to show that, for q,λ≥ 0,

Φ(q)

Φ(q)+ λ = exp

{∫ ∞

0
dt
∫

[0,∞)
(
e−λx − 1

)e−qt

t
P(Xt ∈ dx)

}

.

(iii) Hence deduce Kendall’s identity, that

tP
(
τ+x ∈ dt

)
dx = xP(Xt ∈ dx)dt

on [0,∞)× [0,∞).



Chapter 7
Lévy Processes at First Passage

This chapter is devoted to studying how the Wiener–Hopf factorisation can be used
to characterise the behaviour of any Lévy process at first passage over a fixed level.
The case of a subordinator will be excluded throughout this chapter, as this has been
dealt with in Chap. 5. Nonetheless, the analysis of how subordinators make first
passage will play a crucial role in understanding the case of a general Lévy process.

To some extent, the results we present on the first-passage problem suffer from a
lack of analytical explicitness. This is due to the same symptoms present in our un-
derstanding of the Wiener–Hopf factorisation. Nonetheless there is sufficient math-
ematical structure to establish qualitative statements concerning the characterisation
of the first-passage problem. This becomes more apparent when looking at asymp-
totic properties of the established characterisations.

7.1 Drifting and Oscillating

For any Lévy process, X, define as usual

τ+x = inf{t > 0 :Xt > x},
for x ∈ R. In this section, we shall establish precisely when P(τ+x <∞) is strictly
less than one. Further, we shall give sufficient conditions under which the first-
passage probability decays exponentially as x ↑ ∞; that is to say, we handle the
case of Cramér’s estimate.

Suppose now that H = {Ht : t ≥ 0} is the ascending ladder height process of X.
If

T +x = inf{t > 0 :Ht > x},
then quite clearly

P
(
τ+x <∞

)= P
(
T +x <∞

)
. (7.1)

Recall from Theorem 6.9 that the process H has the law of a subordinator, possibly
killed at an independent and exponentially distributed time. The criterion for killing
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DOI 10.1007/978-3-642-37632-0_7, © Springer-Verlag Berlin Heidelberg 2014
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is that P(limsupt↑∞Xt <∞)= 1. Suppose this equality fails. Then the probability
on the right-hand side of (7.1) is equal to 1. If on the other hand there is killing,
then, since killing can occur at arbitrarily small times with positive probability, we
have P(T +x <∞) < 1 for all x > 0. In conclusion, we know that

P
(
τ+x <∞

)
< 1 for all x > 0 ⇔ P

(
lim sup
t↑∞

Xt <∞
)
= 1. (7.2)

We devote the remainder of this section to establishing conditions under which
P(lim supt↑∞Xt <∞)= 1.

Theorem 7.1 Suppose that X is a Lévy process.

(i) If
∫∞

1 t−1
P(Xt ≥ 0)dt <∞, then

lim
t↑∞Xt =−∞

almost surely and X is said to drift to −∞.
(ii) If

∫∞
1 t−1

P(Xt ≤ 0)dt <∞, then

lim
t↑∞Xt =∞

almost surely and X is said to drift to∞.
(iii) If both the integral tests in (i) and (ii) fail,1 then

lim sup
t↑∞

Xt =− lim sup
t↑∞

Xt =∞

almost surely and X is said to oscillate.

Proof We follow a similar proof to the one given in Bertoin (1996a).
(i) From Theorem 6.15 (see also the discussion at the end of Sect. 6.4 concerning

the adjusted definitions of G∞ and G∞ for the case of compound Poisson pro-
cesses), we have, for all α ≥ 0,

E
(
e−αGep

)= exp

{

−
∫ ∞

0

(
1− e−αt

)1

t
e−ptP(Xt ≥ 0)dt

}

. (7.3)

Letting p tend to zero in (7.3), and applying the Dominated Convergence Theorem
on the left-hand side and the Monotone Convergence Theorem on the right-hand
side, we see that

E
(
e−αG∞

)= exp

{

−
∫ ∞

0

(
1− e−αt

)1

t
P(Xt ≥ 0)dt

}

. (7.4)

1Note that
∫∞

1 t−1
P(Xt ≥ 0)dt + ∫∞

1 t−1
P(Xt ≤ 0)dt ≥ ∫∞

1 t−1dt =∞ and hence at least one of
the integral tests in (i) or (ii) fails.
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If
∫∞

1 t−1
P(Xt ≥ 0)dt <∞, then since 0 ≤ (1− e−αt ) ≤ 1 ∧ t for all sufficiently

small α, we see that, for the same range of α,

∫ ∞

0

(
1− e−αt

)1

t
P(Xt ≥ 0)dt ≤

∫ ∞

0
(1∧ t)1

t
P(Xt ≥ 0)dt

≤
∫ ∞

1

1

t
P(Xt ≥ 0)dt +

∫ 1

0
P(Xt ≥ 0)dt <∞.

Hence, once again appealing to the Dominated Convergence Theorem, taking α to
zero in (7.4), it follows that

lim
α↓0

∫ ∞

0

(
1− e−αt

)1

t
P(Xt ≥ 0)dt = 0,

and, therefore, that P(G∞ <∞)= 1. This implies that P(X∞ <∞)= 1.
Now noting that

∫∞
1 t−1

P(Xt ≥ 0)dt = ∫∞
1 t−1(1 − P(Xt < 0))dt <∞, since

∫∞
1 t−1dt =∞, we are forced to conclude that

∫ ∞

1

1

t
P(Xt < 0)dt =∞.

The Wiener–Hopf factorisation also gives us

E
(
e−αGep

)= exp

{

−
∫ ∞

0

(
1− e−αt

)1

t
e−ptP(Xt ≤ 0)dt

}

.

Taking limits as p ↓ 0 and noting that

∫ ∞

0

(
1− e−αt

)1

t
P(Xt ≤ 0)dt ≥ k

∫ ∞

1

1

t
P(Xt ≤ 0)dt =∞,

for some appropriate constant k > 0, we get P(G∞ = ∞) = 1. Equivalently, we
have P(X∞ =−∞)= 1.

We have proved that lim supt↑∞Xt <∞ and lim inft↑∞Xt =−∞ almost surely.
This means that

τ−−x := inf{t > 0 :Xt <−x}
is almost surely finite, for each x > 0. Note that

{Xt > x/2 for some t > 0} = {X∞ > x/2},

and hence, since P(X∞ <∞)= 1, for each 1> ε > 0, there exists an xε > 0 such
that, for all x > xε ,

P(Xt > x/2 for some t > 0) < ε.
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Since τ−−x is a stopping time which is almost surely finite, we can use the previous
estimate together with the strong Markov property and conclude that, for all x > xε ,

P
(
Xt >−x/2 for some t > τ−−x

)

≤ P(Xt > x/2 for some t > 0) < ε.

This gives us the uniform estimate for x > xε ,

P

(
lim sup
t↑∞

Xt ≤−x/2
)
≥ P

(
Xt ≤−x/2 for all t > τ−−x

)≥ 1− ε.

Since both x may be taken arbitrarily large and ε may be taken arbitrarily close to 0,
the proof of part (i) is complete.

(ii) The second part follows from the first part applied to −X.
(iii) The argument in (i) shows that if

∫ ∞

1
t−1

P(Xt ≤ 0)dt =
∫ ∞

1
t−1

P(Xt ≥ 0)dt =∞,

then −X∞ =X∞ =∞ almost surely and the assertion follows. �

Whilst the last theorem shows that there are only three types of asymptotic be-
haviour, the integral tests which help to distinguish between the three cases are not
particularly user friendly. What would be more appropriate is a criterion in terms
of the triple (a, σ,Π). This was provided by Chung and Fuchs (1951) and Erickson
(1973) for random walks; see also Bertoin (1997a). To state their criteria, recall with
the help of Theorem 3.8 and Exercise 3.3 that the mean of X1 is well defined if and
only if E(X+1 ) <∞ or E(X−1 ) <∞ which occurs if and only if

∫

(1,∞)
xΠ(dx) <∞ or

∫

(−∞,−1)
|x|Π(dx) <∞.

When both the above integrals are infinite the mean E(X1) is undefined.

Theorem 7.2 Suppose that X is a Lévy process with characteristic measure Π .

(i) If E(X1) is defined and valued in [−∞,0), or if E(X1) is undefined and
∫

(1,∞)
xΠ(dx)

∫ x
0 Π(−∞,−y)dy

<∞,

then limt↑∞Xt/t = c−, where c− = E(X1) in the first case and c− = −∞ in
the second case. In particular, in both cases,

lim
t↑∞Xt =−∞.

(ii) If E(X1) is defined and valued in (0,∞], or if E(X1) is undefined and
∫

(−∞,−1)

|x|Π(dx)
∫ |x|

0 Π(y,∞)dy
<∞,
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then limt↑∞Xt/t = c+, where c+ = E(X1) in the first case and c+ =∞ in the
second case. In particular, in both cases,

lim
t↑∞Xt =∞.

(iii) If E(X1) is defined and equal to zero, or if E(X1) is undefined and both of
the integral tests in part (i) and (ii) fail, then limt↑∞Xt/t = 0 in the first case
and lim supt↑∞Xt/t =− lim inft↑∞Xt/t =∞ in the second case. Moreover,
in both cases,

lim sup
t↑∞

Xt =− lim inf
t↑∞ Xt =∞.

We give no proof here of this important result, although one may consult Exer-
cise 7.2 for related results, which lean on the classical Strong Law of Large Num-
bers.

It is interesting to compare the integral tests in the above theorem with those of
Theorem 6.5. It would seem that the issue of regularity of 0 for the half-line may
be seen as the “small time” analogue of drifting or oscillating. There is no known
formal path-wise connection, however.

In the case that X is spectrally negative, thanks to the finiteness and convexity of
its Laplace exponent, ψ(θ) := logE(eθX1) on θ ≥ 0 (see Exercise 3.5), one always
has that E(X1) ∈ [−∞,∞). Hence, the asymptotic behaviour of a spectrally neg-
ative Lévy process can always be determined from its mean, or equivalently from
ψ ′(0+). See Exercise 7.3, which shows how to derive this conclusion from Theo-
rem 7.1 and the Wiener–Hopf factorisation.

On account of the dichotomy of drifting to ±∞ and oscillating, we may now
revise the statement (7.2) to

P
(
τ+x <∞

)
< 1 for all x > 0 ⇔ P

(
lim
t↑∞Xt =−∞

)
= 1.

We close this section by making some brief remarks on the link between drifting
and oscillating, and another closely related dichotomy known as transience and re-
currence. The latter dichotomy is often discussed within the more general context
of potential theory for Markov processes. See for example Sect. I.4 and Chap. II of
Bertoin (1996a).

Definition 7.3 A Lévy process, X, is said to be transient if, for all a > 0,

P

(∫ ∞

0
1(|Xt |<a)dt <∞

)

= 1,

and recurrent if, for all a > 0,

P

(∫ ∞

0
1(|Xt |<a)dt =∞

)

= 1.
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In the previous definition, the requirements for transience and recurrence may
appear quite strong as, in principle, the relevant probabilities could be valued
in (0,1). However, the events in the definition belong to the tail sigma-algebra⋂
t∈Q∩[0,∞) σ (Xs : s ≥ t). Hence, according to Kolmogorov’s zero-one law, they

can only have probabilities equal to zero or one. Nonetheless, we could argue
that P(

∫∞
0 1(|Xt |<a)dt =∞) = 0 for small a, but P(

∫∞
0 1(|Xt |<a)dt =∞) = 1 for

large a. It turns out that Lévy processes always adhere to one of the two cases given
in the definition above, as is confirmed by the following classic analytic dichotomy,
due to Port and Stone (1971a, 1971b).2

Theorem 7.4 Suppose that X is a Lévy process with characteristic exponent Ψ ,
then it is transient if and only if, for some sufficiently small ε > 0,

∫

(−ε,ε)
�
(

1

Ψ (θ)

)

dθ <∞,

and otherwise it is recurrent.

Probabilistic reasoning also leads to the following interpretation of the di-
chotomy.

Theorem 7.5 Let X be any Lévy process.

(i) We have transience if and only if

lim
t↑∞ |Xt | =∞

almost surely.
(ii) If X is not a compound Poisson process, then we have recurrence if and only

if, for all x ∈R,

lim inf
t↑∞ |Xt − x| = 0 (7.5)

almost surely.

The reason for the exclusion of compound Poisson processes in part (ii) can be
seen when one considers the following example. Take X to be a compound Poisson
process, where the jump distribution is supported on a lattice, say δZ for some δ > 0.
In that case, it is clear that the set of points visited will be a subset of δZ and (7.5)
no longer makes sense.

By definition, a process which is recurrent cannot drift to∞ or −∞, and there-
fore must oscillate. Whilst it is clear that a process drifting to ∞ or −∞ is tran-
sient, an oscillating process may not necessarily be recurrent. Indeed, it is pos-
sible to construct an example of a transient process which oscillates. Inspired by

2Theorem 7.4 is built on the foundational, but weaker, result of Chung and Fuchs (1951). See also
Kingman (1964).
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similar remarks for random walks in Feller (1971), one finds such an example in
the form of a symmetric stable process of index 0 < α < 1. Note that symme-
try dictates that the parameter β in the definition of a stable process is necessar-
ily equal to zero. Up to a multiplicative constant, the characteristic exponent for
this process is simply Ψ (θ) = |θ |α . According to the integral test in Theorem 7.4,
members of this class of processes are transient. Nonetheless, since by symmetry
P(Xt ≥ 0) = 1/2 = P(Xt ≤ 0), it is clear from Theorem 7.1 that X oscillates. In
contrast, note that for a one-dimensional linear Brownian motion, the conditions of
oscillation and recurrence coincide as do the definitions of transience and drifting
to ±∞. Intuitively speaking, the reason for this difference is because symmetric
stable processes with α ∈ (0,1) do not have a well-defined mean at each fixed time,
whereas Brownian motion has zero mean at each fixed time.

7.2 Cramér’s Estimate

In this section, we extend the classical result of Cramér that was presented ear-
lier in Theorem 1.10 for the case of a general Lévy process. The Lévy process we
consider may have a relatively general jump structure (in particular, positive jumps
are permitted). We follow the treatment of Bertoin and Doney (1994a). Roughly
speaking, our aim is to show that, under suitable conditions, there exists a constant
ν > 0 so that eνxP(τ+x <∞) has a limit as x ↑ ∞. The result is formulated as
follows.

Theorem 7.6 Suppose that X is a Lévy process which does not have monotone
paths. Assume that

(i) limt↑∞Xt =−∞,
(ii) there exists a ν ∈ (0,∞) such that ψ(ν)= 0, where ψ(θ)= logE(exp{θX1})

is the Laplace exponent of X and
(iii) the support of Π is not lattice if Π(R) <∞.

Then

lim
x↑∞ eνxP

(
τ+x <∞

)= κ(0,0)
(

ν
∂κ(0, β)

∂β

∣
∣
∣
∣
β=−ν

)−1

, (7.6)

where the limit is interpreted to be zero if the derivative on the right-hand side is
infinite.

Note that condition (ii) implies the existence of E(X1) and, on account of the
conclusion in Theorem 7.2, condition (i) implies, further, that E(X1) < 0. We know
that if the moment generating function of X1 exists in the positive half-line, then it
must be convex there (this may be shown using arguments similar to those in Exer-
cise 3.5, or alternatively note the remarks in the proof of Theorem 3.9). Conditions
(i) and (ii) therefore also imply that the function ψ(θ) is negative for θ ∈ (0, ν) and
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equal to zero at the end points of this interval. Condition (ii) is known as Cramér’s
condition. Essentially Theorem 7.6, known as Cramér’s estimate, says that the ex-
istence of exponential moments of a Lévy process which drifts to −∞ implies an
exponentially decaying tail of the distribution of its global maximum. Indeed, note
that P(τ+x <∞)= P(X∞ > x). Since renewal theory will play a predominant role
in the proof, the third condition of Theorem 7.6 is simply for convenience, allowing
the use of the Renewal Theorem without running into the special case of lattice sup-
ports. Nonetheless, it is possible to remove condition (iii). See Bertoin and Doney
(1994a) for further details.

Proof of Theorem 7.6 The proof is long and we break it into steps.

Step 1. Define the potential measure for the ascending ladder height process on
Borel sets A ∈ [0,∞) by

U(A)= E

(∫ ∞

0
1(Ht∈A)dt

)

,

where H = {Ht : t ≥ 0} is the ascending ladder height process. Let L= {Lt : t ≥ 0}
be the local time of X at its running maximum and define T +x = inf{t > 0 :Ht > x}.
Applying the strong Markov property at this stopping time, we get

U(x,∞) = E

(∫ ∞

0
1(Ht>x)dt;T +x < L∞

)

= P
(
T +x < L∞

)
E

(∫ L∞

T +x
1(Ht>x)dt

∣
∣
∣
∣Hs : s ≤ T +x

)

= P
(
T +x < L∞

)
E

(∫ L∞

0
1(Ht≥0)dt

)

= P
(
T +x < L∞

)
E(L∞). (7.7)

Since limt↑∞Xt =−∞, we know that L∞ is exponentially distributed with some
parameter which is recovered from the joint Laplace exponent κ(α,β) by setting
α = β = 0. Note also that P(T +x < L∞)= P(X∞ > x)= P(τ+x <∞). Hence, (7.7)
now takes the form

κ(0,0)U(x,∞)= P
(
τ+x <∞

)
. (7.8)

Step 2. In order to complete the proof, we need to establish a precise asymp-
totic for eνxU(x,∞). To this end, we shall show, via a change of measure, that in
fact Uν(dx) := eνxU(dx) on (0,∞) is a potential measure.3 In that case, the Key
Renewal Theorem 5.1 (ii) will help us clarify the required asymptotic.

3Recall the definition in (5.2).
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Since ψ(ν) = 0, we know (cf. Chap. 3) that {exp{νXt } : t ≥ 0} is a martingale
with unit mean. Hence, it can be used to define a change of measure via

dPν

dP

∣
∣
∣
∣
Ft
= eνXt , t ≥ 0,

which, by Theorem 3.9, keeps the process X within the class of Lévy processes.
From Theorem 6.8, we know that L−1

t is a stopping time and, hence, we have, with
the help of Corollary 3.11, that for all x ≥ 0,

P
ν
(
Ht ∈ dx,L−1

t < s
) = E

(
e
νX

L
−1
t ;Ht ∈ dx,L−1

t < s
)

= eνxP
(
Ht ∈ dx,L−1

t < s
)
.

Appealing to monotone convergence and taking s ↑∞,

P
ν(Ht ∈ dx)= eνxP(Ht ∈ dx). (7.9)

Now note that, on [0,∞),
Uν(dx)= eνxU(dx)=

∫ ∞

0
P
ν(Ht ∈ dx)dt.

The final equality shows that Uν(dx) is equal to the potential measure of the ascend-
ing ladder height process H under Pν . According to Lemma 5.2, Uν(dx) is equal
to a renewal measure providing that H is a subordinator under Pν (as opposed to a
killed subordinator). This is proved in the next step.

Step 3. A similar argument to the one above yields

P
ν(Ĥt ∈ dx)= e−νxP(Ĥt ∈ dx),

where, now, Ĥ is the descending ladder height process. From the last two equali-
ties, we can easily deduce that the Laplace exponent, κ̂ν , of the descending ladder
process under the measure P

ν satisfies

κ̂ν(0, β)= κ̂(0, β + ν).
This shows, in particular, that κ̂ν(0,0) = κ̂(0, ν) > 0. This is the exponen-
tial rate with which the local time L̂∞ is distributed under P

ν . We there-
fore have P

ν(lim inft↑∞Xt > −∞) = 1. By Theorem 7.1, this is equivalent to
P
ν(limt↑∞Xt =∞) = 1. We now have, as required in the previous step, that H ,

under Pν , is a subordinator without killing.

Step 4. We would like to use the Renewal Theorem in conjunction with Uν(dx).
Note from Lemma 5.2 that the underlying distribution of this renewal measure is
given by F(dx) = U(1)ν (dx) on [0,∞). In order to calculate its mean, we need to
reconsider briefly some properties of κν .
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From (7.9), we deduce that κ(0, β) <∞, for β ≥ −ν. Recall that convexity of
ψ on (0,∞) (see the proof of Theorem 3.9) implies that it is also finite on [0, ν].
We may now appeal to analytic extension and conclude from Theorem 6.15 (iv) that

Ψ (θ − iβ)=−ψ(β + iθ)= k′κ(0,−β − iθ )̂κ(0, β + iθ),

for some k′ > 0, any β ∈ [0, ν] and θ ∈R. Now setting β = ν and θ = 0, we deduce
further that

−ψ(ν)= 0= k′κ(0,−ν)̂κ(0, ν).
Since k ′̂κ(0, ν) > 0, we conclude that κ(0,−ν)= 0.

We may now compute the mean of the distribution F :

μ =
∫

[0,∞)
xU(1)ν (dx)

=
∫ ∞

0
dt · e−t

∫

[0,∞)
xPν(Ht ∈ dx)

=
∫ ∞

0
dt · e−tE(HteνHt

)

=
∫ ∞

0
dt · e−t−κ(0,−ν)t ∂κ(0, β)

∂β

∣
∣
∣
∣
β=−ν

= ∂κ(0, β)
∂β

∣
∣
∣
∣
β=−ν

,

which is possibly infinite in value.
Finally, appealing to the Key Renewal Theorem 5.1 (ii), we have that Uν(dx)

converges weakly as a measure to μ−1dx. Hence, it now follows from (7.8) that

lim
x↑∞ eνxP

(
τ+x <∞

) = κ(0,0) lim
x↑∞

∫ ∞

x

e−ν(y−x)Uν(dy)

= κ(0,0) lim
x↑∞

∫ ∞

0
e−νzUν(x + dz)

= κ(0,0)
μ

∫ ∞

0
e−νzdz

= κ(0,0)
νμ

,

where the limit is understood to be zero if μ=∞. �

Let us close this section by making a couple of remarks. Firstly, in the case
where X is spectrally negative, the Laplace exponent ψ(θ) is finite on θ ≥ 0. When
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ψ ′(0+) < 0, condition (i) of Theorem 7.6 holds. In that case, we know already from
Theorem 3.12 that

E
(
eΦ(q)x−qτ+x 1(τ+x <∞)

)= 1,

where Φ is the right inverse of ψ . Taking q ↓ 0, we recover

eΦ(0)xP
(
τ+x <∞

)= 1,

for all x ≥ 0, which is a stronger statement than that of Theorem 7.6. Taking ac-
count of the fact that the Wiener–Hopf factorisation gives κ(α,β)= β +Φ(α), for
α,β ≥ 0, one may also check for consistency that the constant on the right-hand side
of (7.6) is equal to 1.

Secondly, when X is any spectrally positive Lévy process of bounded variation,
it is a straightforward exercise to show that formula (7.8) can be rewritten to give the
Pollaczek–Khintchine formula, consistently with the one given in (4.20). The point
here is that, by irregularity of the upper half-line, the ascending ladder height pro-
cess H , whose potential measure is U , is equal in law to a killed compound Poisson
subordinator whose jumps have the integrated tail distribution given in (4.16).

7.3 A Quintuple Law at First Passage

In this section, we shall give a quantitative account of how a general Lévy process
undergoes first passage over a fixed barrier on the event that it jumps clear over it.
There will be a number of parallels between the analysis here and the analysis in
Chap. 5 concerning first passage of a subordinator. Since subordinators have already
been dealt with, they are excluded from the following discussion.

Recall the notation from Chap. 6

Gt = sup{s < t :Xs =Xs}
and our standard notation, already used in this chapter,

τ+x = inf{t > 0 :Xt > x}.
The centrepiece of this section will concern a quintuple law at first passage, involv-
ing

Gτ+x − : the time of the last maximum prior to first passage,
τ+x −Gτ+x − : the length of the excursion making first passage,
Xτ+x − x : the overshoot at first passage,
x −Xτ+x − : the undershoot at first passage,
x −Xτ+x − : the undershoot of the last maximum at first passage.

In order to state the main result of this section, let us introduce some more no-
tation. Recall from Chap. 6 that, for α,β ≥ 0, κ(α,β) is the Laplace exponent of



208 7 Lévy Processes at First Passage

the ascending ladder process (L−1,H); see (6.8). Associated with κ(α,β) is the
bivariate potential measure

U(ds,dx)=
∫ ∞

0
dt · P(L−1

t ∈ ds,Ht ∈ dx
)
, x, s ≥ 0.

On taking a bivariate Laplace transform, we find, with the help of Fubini’s Theorem,
that

∫

[0,∞)2
e−αs−βxU(ds,dx)=

∫ ∞

0
dt ·E(e−αL−1

t −βHt )= 1

κ(α,β)
, (7.10)

for α,β ≥ 0. Since L can only be defined up to a multiplicative constant, this affects
the exponent κ , which in turn affects the measure U . To see precisely how, suppose
that L= cL, where L is some choice of local time at the maximum (and hence so
is L). It is easily checked that L−1

t = L−1
t/c and if H is the ladder height process

associated with L, then Ht =XL−1
t
=X

L−1
t/c
=Ht/c. If U∗ is the measure associated

with L instead of L, then we see that

U∗(ds,dx)=
∫ ∞

0
dt · P(L−1

t/c ∈ ds,Ht/c ∈ dx
)= cU(ds,dx), s, x ≥ 0,

where the final equality follows by the substitution u= t/c in the integral.
We shall define the bivariate measure Û on [0,∞)2 in the obvious way, using the

descending ladder process (L̂−1, Ĥ ).
The following main result is due to Doney and Kyprianou (2005), although simi-

lar ideas to those used in the proof can be found in Spitzer (1964), Borovkov (1976)
and Bertoin (1996a).

Theorem 7.7 Suppose thatX is not a compound Poisson process. Then there exists
a normalisation of local time at the maximum such that, for each x > 0, we have on
u > 0, v ≥ y, y ∈ [0, x], s, t ≥ 0,

P
(
τ+x −Gτ+x − ∈ dt,Gτ+x − ∈ ds,Xτ+x − x ∈ du,x −Xτ+x − ∈ dv, x −Xτ+x − ∈ dy

)

= U(ds, x − dy)Û(dt,dv − y)Π(du+ v),
where Π is the Lévy measure of X.

Before going to the proof, let us give some intuition behind the statement of this
result with the help of Fig. 7.1. Roughly speaking the event on the left-hand side of
the quintuple law requires that the time-space point (s, x − y) belongs to the range
of the ascending ladder process, before going into the final excursion that crosses
the level x. Recall that excursions, when indexed by local time at the maximum,
form a Poisson point process. This means that the behaviour of the last excursion
is independent of the preceding ones, and hence the quintuple law factorises ac-
cording the laws of the last excursion and the preceding excursions. The first factor,
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Fig. 7.1 A symbolic description of the quantities involved in the quintuple law.

U(ds, x − dy), thus measures the aforementioned event for the ascending ladder
process. To measure the behaviour of the final excursion, one should look at it ro-
tated about 180◦. In the rotated excursion, one starts with a jump of size u + v,
which is measured byΠ(du+ v). The remaining path of the rotated excursion must
meet the last ascending ladder height with one of its own descending ladder points.
By the Duality Lemma 3.4, 180◦ rotation of a finite segment of path of a Lévy
process produces a path with the same law as the original process. Hence in the
rotated excursion, independently of the initial jump of size u+ v, the path descends
to time-space ladder point (t, v − y), and this has measure Û(dt,dv − y).

Proof of Theorem 7.7 We prove the result in three steps.

Step 1. Let us suppose that m,k,f, g and h are all positive, continuous functions
with compact support satisfying f (0)= g(0)= h(0)= 0. We prove in this step that

E
(
m
(
τ+x −Gτ+x −

)
k(Gτ+x −)f (Xτ+x − x)g(x −Xτ+x −)h(x −Xτ+x −)

)

= Êx

(∫ τ−0

0
m(t −Gt)k(Gt )h(Xt )w(Xt)dt

)

, (7.11)

where w(z)= g(z) ∫
(z,∞) Π(du)f (u− z) and Êx is expectation under the law, P̂x ,

of −X initiated from position −X0 = x.
The proof of (7.11) follows by an application of the compensation formula (cf.

Theorem 4.4) applied to the Poisson random measure, N (with intensity measure
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dtΠ(dx)) associated with the jumps of X. We have

E
(
m
(
τ+x −Gτ+x −

)
k(Gτ+x −)f (Xτ+x − x)g(x −Xτ+x −)h(x −Xτ+x −)

)

= E

(∫

[0,∞)

∫

R

m(t −Gt−)k(Gt−)g(x −Xt−)h(x −Xt−)

× 1(x−Xt−>0)f (Xt− + z− x)1(z>x−Xt−)N(dt × dz)

)

= E

(∫ ∞

0
dt ·m(t −Gt−)k(Gt−)g(x −Xt−)h(x −Xt−)

× 1(x−Xt−>0)

∫

(x−Xt−,∞)
Π(dφ)f (Xt− + φ − x)

)

= E

(∫ ∞

0
dt ·m(t −Gt−)k(Gt−)h(x −Xt−)1(x−Xt−>0)w(x −Xt−)

)

= Êx

(∫ ∞

0
dt · 1(t<τ−0 )m(t −Gt)k(Gt )h(Xt )w(Xt)

)

,

which is equal to the right-hand side of (7.11). In the last equality, we have rewritten
the previous expectation in terms of the path of −X. Note that the condition f (0)=
g(0)= h(0)= 0 has been used implicitly to exclude from the calculation averaging
over the event {Xτ+x = x}.

Step 2. Next, we prove that

Ex

(∫ τ−0

0
m(t −Gt)k(Gt )h(Xt )w(Xt)dt

)

=
∫

[0,∞)

∫

[0,∞)
U(dt,dφ)

·
∫

[0,∞)

∫

[0,x]
Û(ds,dθ)m(t)k(s)h(x − θ)w(x + φ − θ). (7.12)

(In the next step, we will apply this identity to the process −X, which amounts to
swapping throughout the roles of Ex and Êx , and U and Û .)

For q > 0,

Ex

(∫ τ−0

0
dt ·m(t −Gt)k(Gt )h(Xt )w(Xt )e−qt

)

= q−1
Ex

(
m(eq −Geq )k(Geq )h(Xeq )w(Xeq −Xeq +Xeq ); eq < τ−0

)

= q−1
∫

[0,∞)

∫

[0,x]
P(Geq ∈ ds,−Xeq ∈ dθ)k(s)
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·
∫

[0,∞)

∫

[0,∞)
P(eq −Geq ∈ dt,Xeq −Xeq ∈ dφ)m(t)h(x − θ)w(x + φ − θ)

= q−1
∫

[0,∞)

∫

[0,x]
P(Geq ∈ ds,−Xeq ∈ dθ)k(s)

·
∫

[0,∞)

∫

[0,∞)
P(Geq ∈ dt,Xeq ∈ dφ)m(t)h(x − θ)w(x + φ − θ), (7.13)

where the Wiener–Hopf factorisation4 and duality have been used in the second
and third equalities, respectively. Further, it is also known from the Wiener–Hopf
factorisation, Theorem 6.15, that, for q > 0 and α,β ≥ 0,

1

κ(q,0)
E
(
e−αGeq−βXeq

)= 1

κ(α + q,β) ,

and hence, recalling (7.10), it follows from the Continuity Theorem for Laplace
transforms (cf. Theorem 2a in Chap. XIII.1 of Feller (1971)) that, for t, φ ≥ 0,

lim
q↓0

1

κ(q,0)
P(Geq ∈ dt,Xeq ∈ dφ)= U(dt,dφ), (7.14)

in the sense of vague convergence. A similar convergence holds for

P(Geq ∈ ds,−Xeq ∈ dθ)/̂κ(q,0), s, θ ≥ 0.

Equality (7.12) thus follows by splitting the divisor q into the product κ(q,0) ×
κ̂(q,0) (this factorisation was observed in the proof of Theorem 6.15 (iv)) and tak-
ing limits in (7.13). In general, q = kκ(q,0)̂κ(q,0) for some k > 0, which depends
on the normalisation of local time (at the maximum). It is thus at this point in the
argument that we require a suitable normalisation of local time at the maximum in
order to have k = 1.

Step 3. We combine the conclusions of steps 1 and 2 (where step 2 is applied to
−X) to conclude that

E
(
m
(
τ+x −Gτ+x −

)
k(Gτ+x −)f (Xτ+x − x)g(x −Xτ+x −)h(x −Xτ+x −)

)

=
∫

u>0,y∈[0,x],0<y≤v,s≥0,t≥0
m(t)k(s)f (u)g(v)h(y)

P
(
τ+x −Gτ+x − ∈ dt,Gτ+x − ∈ ds,Xτ+x − x ∈ du,x −Xτ+x − ∈ dv, x −Xτ+x − ∈ dy

)

=
∫

[0,∞)

∫

[0,∞)
Û(dt,dφ)

∫

[0,∞)

∫

[0,x]
U(ds,dθ)m(t)k(s)

· h(x − θ)g(x + φ − θ)
∫

(x+φ−θ,∞)
Π(dη)f

(
η− (x + φ − θ)).

4Specifically we use the independence of the pairs (Geq ,Xeq ) and (eq −Geq ,Xeq −Xeq ).
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Substituting y = x − θ , then y + φ = v and finally η= v + u in the right-hand side
above yields

E
(
m
(
τ+x −Gτ+x −

)
k(Gτ+x −)f (Xτ+x − x)g(x −Xτ+x −)h(x −Xτ+x −)

)

=
∫

[0,∞)

∫

[0,x]
U(ds, x − dy)

∫

[0,∞)

∫

[y,∞)
Û(dt,dv− y)

·
∫

(0,∞)
Π(du+ v)m(t)k(s)f (u)g(v)h(y),

and the statement of the theorem follows. �

The case of a compound Poisson process has been excluded from the statement
of the theorem on account of the additional subtleties that occur in connection with
the ascending and descending ladder height processes and their definitions in the
weak or strict sense. (Recall the discussion of weak and strict ladder processes in
Sect. 6.1.) Nonetheless, the result is still valid, provided one takes the bivariate re-
newal measure U as that of the weak (resp. strict) ascending ladder process and Û is
taken as the bivariate renewal measure of the strict (resp. weak) descending ladder
process.

To be realistic, the quintuple law in general does not necessarily bring us closer
to explicit formulae for special examples of Lévy processes. Indeed, for this to be
the case, we would need to know some explicit examples of the pairs U and Û . Ulti-
mately, this boils down to knowing explicit examples of the Wiener–Hopf factorisa-
tion. Nonetheless, there are examples where one may make reasonable progress in
making these formulae more explicit. We consider here two cases: stable processes,
dealt with in Exercise 7.4, and spectrally positive processes.

For any spectrally positive Lévy process X, let U(dx)= ∫
[0,∞) U(ds,dx). Using

the Wiener–Hopf factorisation in Sect. 6.5.2, which gives an expression for κ(α,β),
we can deduce from the Laplace transform (7.10) that

∫

[0,∞)
e−βxU(dx)= β −Φ(0)

ψ(β)
, (7.15)

where Φ is the right inverse of the Laplace exponent ψ of −X. Using obvious
notation, it is also clear from (7.10) that since κ̂(0, β)=Φ(0)+ β , β ≥ 0, we may
identify Û(dx)= e−Φ(0)xdx, x ≥ 0.

The quintuple law for spectrally positive Lévy processes marginalises to the triple
law

P(Xτ+x − x ∈ du,x −Xτ+x − ∈ dv, x −Xτ+x − ∈ dy)

= e−Φ(0)(v−y)U(x − dy)Π(du+ v)dv (7.16)

for y ∈ [0, x], v ≥ y and u > 0. If we assume further that lim inft↑∞Xt =−∞, then
we know that Φ(0) = 0 and the right-hand side of (7.16) is written in terms of Π
and the inverse Laplace transform of β/ψ(β).
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7.4 The Jump Measure of the Ascending Ladder Height Process

Recall that basic information concerning the ladder height process, H , is captured
from its Laplace exponent κ(0, β), which itself is embedded in the Wiener–Hopf
factorisation. In this section, we shall show that the quintuple law (which heuris-
tically contains a similar amount of information to the Wiener–Hopf factorisation)
allows us to gain some additional insight into the analytical form of the jump mea-
sure of the ascending ladder height. The next result is due to Vigon (2002b).

Theorem 7.8 Suppose that X is a Lévy process which is not a compound Poisson
process and whose Lévy measure is denoted by Π . Suppose, further, that ΠH is the
jump measure associated with the ascending ladder height process of X. Then, for
all y > 0 and a suitable normalisation of local time at the maximum,

ΠH(y,∞)=
∫

[0,∞)
Û (dz)Π(z+ y,∞), y > 0,

where Û (dz)= ∫
[0,∞) Û(ds,dz)= E(

∫∞
0 1(Ĥt∈dz)dt), z≥ 0.

Proof The result follows from the joint law of the overshoot and undershoot of the
maximum of X at first passage over some x > 0, as given by the quintuple law, by
comparing it against the overshoot and undershoot of the process H at the same
level.

Recall T +x = inf{t > 0 : Ht > x} and use again the definition U(dx) =∫
[0,∞) U(ds,dx). Note that since the range of X is the same as the range of H ,

it follows that HT +x − =Xτ+x −. Hence, from Theorem 5.6, we have

P(Xτ+x − x ∈ du,x −Xτ+x − ∈ dy)

= P(HT +x − x ∈ du,x −HT +x − ∈ dy)

=U(x − dy)ΠH (du+ y), (7.17)

for u > 0 and y ∈ [0, x]. On the other hand, the quintuple law gives

P(Xτ+x − x ∈ du,x −Xτ+x − ∈ dy)

=U(x − dy)
∫

[y,∞)
Û (dv − y)Π(du+ v), (7.18)

for u > 0 and y ∈ [0, x]. Equating the right-hand sides of (7.17) and (7.18) implies
that

ΠH(du+ y)=
∫

[y,∞)
Û (dv− y)Π(du+ v), u > 0.

Integrating over u > 0, the statement of the theorem easily follows. �
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Similar techniques allow one to make a more general statement concerning the
bivariate jump measure of the ascending ladder process (L−1,H). This is done
in Exercise 7.5. As in the previous theorem, the expression for this jump measure
still suffers from a lack of explicitness due to the involvement of the quantity Û .
If one considers the case of a spectrally positive Lévy process then the situation in
Theorem 7.8 becomes somewhat more favourable for ΠH .

Corollary 7.9 Under the conditions of Theorem 7.8, ifX is spectrally positive, then

ΠH(y,∞)=
∫ ∞

0
e−Φ(0)zΠ(z+ y,∞)dz, y > 0

where Φ is the right inverse of the Laplace exponent ψ of −X.

Proof Taking into account the remarks in the final paragraph of Sect. 7.3 the result
follows easily. �

Note in particular that if the spectrally positive process in the above corollary has
the property that lim inft↑∞Xt =−∞, then Φ(0)= 0 and hence, for x > 0,

ΠH(dx)=Π(x,∞)dx. (7.19)

The same conclusion was drawn in Sect. 6.6.2 and Exercise 6.5, appealing there to
the Wiener–Hopf factorisation.

7.5 Creeping

As with the case of a subordinator, one may talk of a Lévy process creeping over
a fixed level x > 0. To be precise, a Lévy process creeps upwards over the level x
when

P(Xτ+x = x) > 0. (7.20)

The class of Lévy processes which creep upwards over (at least) one point can easily
be seen to be non-empty by simply considering any spectrally negative Lévy pro-
cess. By definition, any spectrally negative Lévy process has the property that, for
all x ≥ 0,

P
(
Xτ+x = x|τ+x <∞

)= 1.

From the above, (7.20) easily follows when we recall from Theorem 3.12 that
P(τ+x <∞) = e−Φ(0)x > 0, where Φ is the right inverse of the Laplace exponent
of X.
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Lemma 7.10 Suppose that X is a Lévy process but not a compound Poisson pro-
cess. Then X creeps upwards over some (and then all) x > 0 if and only if

lim
β↑∞

κ(0, β)

β
> 0. (7.21)

Proof The key to understanding when an arbitrary Lévy process creeps upwards is
embedded within the problem of whether a subordinator creeps upwards. Indeed,
since the range of {Xt : t ≥ 0} agrees with the range of the ascending ladder process
H := {Ht : t ≥ 0}, it follows that X creeps across x > 0 if and only if H does. For
this reason, it also follows that if a Lévy process creeps over some x > 0, then it
will creep over all x > 0, provided H has the same behaviour. Let us now split the
discussion into two cases, according to the regularity of 0 for (0,∞).

Suppose that 0 is regular for (0,∞). The (possibly-killed) subordinatorH cannot
have a compound Poisson process jump structure by the assumption of regularity.
We are then within the scope of Theorem 5.9, which tells us that there is creeping
if and only if the underlying subordinator has a strictly positive drift. The pres-
ence of a strictly positive drift coefficient is identified from the Laplace exponent
of H , κ(0, β), by taking the limit given in the statement of the lemma (recall Exer-
cise 2.11). In other words, there is creeping if and only if (7.21) holds.

Suppose now that 0 is irregular for (0,∞). This has the consequence that the
ascending ladder height must be a (possibly-killed) compound Poisson process sub-
ordinator. Creeping of H (and hence X) is therefore ruled out. �

In the final case of the proof above, it is interesting to ask whether the ascending
ladder height process has atoms in its Lévy measure. Indeed, if such an atom were
present at, say, x0 > 0, then H (and hence X) would ascend to level x0 with positive
probability.5 It turns out that no such atoms can exist. To see why, recall that it was
assumed that X is not a compound Poisson process. Hence, when 0 is irregular for
(0,∞), we must have that 0 is regular for (−∞,0), and the descending ladder height
process, Ĥ , cannot be a compound Poisson subordinator. According to Theorem 7.8,
we know that

ΠH(dx)=
∫

[0,∞)
Û (dv)Π(dx + v).

Theorem 5.4 (i) shows that Û has no atoms on (0,∞), as Ĥ is not a compound
Poisson process. It follows that ΠH has no atoms. In conclusion, whilst H is a
compound Poisson process, its Lévy measure has no atoms and therefore H cannot
hit specified points.

5Recall from the discussion at the end of Sect. 5.3 that, formally speaking, a compound Poisson
subordinator cannot creep, despite the fact that a given point may lie in its range with positive
probability.
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The criterion given in Lemma 7.10 is not particularly useful for determining
whether a process can creep upwards or not. Ideally, we would like to establish a
criterion in terms of the components of the Lévy–Khintchine exponent. The follow-
ing result does precisely this.

Theorem 7.11 Suppose that X is a Lévy process which is not a compound Poisson
process and not a Lévy process having no positive jumps. Then X creeps upwards if
and only if one of the following three situations occurs:

(i) X has bounded variation with Lévy–Khintchine exponent

Ψ (θ)=−iθδ+
∫

R\{0}
(
1− eiθx)Π(dx)

and δ > 0,
(ii) X has a Gaussian component,

(iii) X has unbounded variation, has no Gaussian component and its Lévy measure
Π satisfies

∫ 1

0

xΠ(x,∞)
∫ x

0

∫ 1
y
Π(−1,−u)dudy

dx <∞.

Note that spectrally negative Lévy processes are excluded as they obviously creep
upwards, as discussed earlier.

Elements of the proof of parts (i) and (ii) appear in Exercise 7.6. The precise
formulation and proof of part (iii) remained a challenging open problem until re-
cently, when it was resolved by Vigon (2002b). We do not give details of the proof,
which requires a deep analytical understanding of the Wiener–Hopf factorisation
and goes far beyond the scope of this text. A recent, more probabilistic proof is
given in Chap. 6 of Doney (2007).

We close this section by making some remarks on the difference between a Lévy
process X creeping over x and hitting the point x. Formally speaking, we say that
X hits the point x if P(τ {x} <∞) > 0, where

τ {x} = inf{t > 0 :Xt = x},
with the usual convention that inf∅ =∞. Clearly, ifX creeps over x (either upwards
or downwards), then it must hit x. When X is a subordinator, the converse is also
obviously true, providing the Lévy measure has infinite mass. However, if X is not
a subordinator, then it can be shown that the converse is not necessarily true. The
following result, due to Kesten (1969) and Bretagnolle (1971), gives a complete
characterisation of the range of a Lévy process.

Theorem 7.12 Suppose that X is not a compound Poisson process. Let

C := {
x ∈R : P(τ {x} <∞)

> 0
}
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be the set of points that a Lévy process can hit. Then C 	= ∅ if and only if

∫

R

�
(

1

1+Ψ (u)
)

du <∞. (7.22)

Moreover,

(i) If σ > 0, then (7.22) is satisfied and C =R.
(ii) If σ = 0, X is of unbounded variation and (7.22) is satisfied, then C =R.

(iii) If X is of bounded variation, then (7.22) is satisfied if and only if δ 	= 0, where
δ is the drift in the representation (2.22) of its Lévy–Khintchine exponent Ψ . In
that case, C = R, unless X or −X is a subordinator, and then C = (0,∞) or
C = (−∞,0), respectively.

From this characterisation, one may deduce that, for example, a symmetric α-
stable process where α ∈ (1,2) cannot creep and yet C = R. In order to hit a given
point, say x ∈ R, a stable process in this class must approach the point by crossing
above and below it infinitely often in such a way that x is an accumulation point in
its range. See Exercise 7.6 for details.

7.6 Regular Variation and Infinite Divisibility

It has been pointed out at several points earlier in this chapter that, to some extent,
the quintuple law lacks a degree of explicitness which would otherwise give it far
greater practical value. In Sect. 7.7, we shall give some indication of how the quin-
tuple law gives some analytical advantage when studying the asymptotic behaviour
of the first-passage problem, as the crossing threshold tends to infinity. We need to
make a short digression first into the behaviour of infinitely divisible random vari-
ables whose Lévy measures have regularly varying tails.

Recall from Definition 5.12 that a measurable function f : [0,∞)→ (0,∞) is
regularly varying at infinity with index ρ ∈R (written f ∈R∞(ρ)) if, for all λ > 0,

lim
x↑∞

f (λx)

f (x)
= λρ.

Moreover, when ρ = 0, we say that f is slowly varying at infinity (written f ∈R∞).
Let us suppose that H is a random variable valued on [0,∞) which is infinitely
divisible with Lévy measure ΠH .

Throughout this section, we shall suppose that ΠH(·,∞) ∈R∞(−α) for some
α > 0.

Our interest here is to understand how this assumed tail behaviour ofΠH reflects
on the tail behaviour of the distribution of the random variable H . We do this with



218 7 Lévy Processes at First Passage

a sequence of lemmas. The reader may skip their proofs at no cost to the under-
standing of their application in Sect. 7.7. The first of these lemmas is taken from
Chap. VIII.8 of Feller (1971).

Lemma 7.13 Define the probability measure

ν(dx)= ΠH(dx)

ΠH (1,∞)1(x>1).

Then using the usual notation ν∗n for the n-fold convolution of ν with itself, we have
that

ν∗n(x,∞)∼ nν(x,∞) (7.23)

as x ↑∞ for each n= 2,3, . . . .

Proof The result follows by proving a slightly more general result. Suppose that
F1 and F2 are distribution functions on [0,∞), such that Fi(x,∞)∼ x−αLi(x) for
i = 1,2, as x ↑∞, where L1 and L2 are slowly varying at infinity. Then

(F1 ∗ F2)(x,∞)∼ x−α
(
L1(x)+L2(x)

)
(7.24)

as x ↑ ∞. One may then argue that (7.23) clearly holds for n = 2 and hence, by
induction, it holds for all integers n≥ 2.

To prove (7.24), let Y1 and Y2 be independent random variables with distributions
F1 and F2. Fix δ > 0 and write x′ = x(1+ δ). The event {Y1+ Y2 > x} contains the
event {Y1 > x

′} ∪ {Y2 > x
′}, and hence

F1 ∗ F2(x,∞)≥ F1
(
x′,∞)+ F2

(
x′,∞)

.

On the other hand, set 1/2> δ > 0. If x′′ = (1− δ)x, then the event {Y1 + Y2 > x}
is a subset of the event {Y1 > x

′′} ∪ {Y2 > x
′′} ∪ {min(Y1, Y2) > δx}. On account

of the assumptions made on F1 and F2, it is clear that, as x ↑∞, P(min(Y1, Y2) >

δx)= P(Y1 > δx)
2 and the latter is of considerably smaller order than P(Yi > x

′′),
for each i = 1,2. It follows that, as x ↑∞,

F1 ∗ F2(x,∞)≤ (1+ ε)
(
F1
(
x′′,∞)+ F2

(
x′′,∞))

,

for all small ε > 0. The two inequalities for F1 ∗ F2 together with the assumed
regular variation imply that

(1+ δ)−α ≤ lim inf
x↑∞

F1 ∗ F2(x,∞)
x−α(L1(x)+L2(x))

≤ lim sup
x↑∞

F1 ∗ F2(x,∞)
x−α(L1(x)+L2(x))

≤ (1+ ε)(1− δ)−α.

Since δ and ε may be made arbitrarily small, the required result follows. �
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Any distribution on [0,∞) which fulfils the condition (7.23) belongs to a larger
class of distributions known as subexponential.6 This class was introduced by
Chistyakov (1964) within the context of branching processes. The following lemma,
due to Kesten, thus gives a general property of all subexponential distributions.

Lemma 7.14 Suppose that Y is any random variable whose distribution G, sat-
isfying G(x) > 0 for all x > 0, has the same asymptotic convolution properties
as (7.23). Then, given any ε > 0, there exists a constant C > 0 (which depends on ε)
such that

G∗n(x,∞)
G(x,∞) ≤ C(1+ ε)

n,

for all n ∈ {1,2, . . .} and x > 0.

Proof The proof is by induction. Suppose that for each n= 1,2, . . . ,

ξn := sup
x≥0

G∗n(x,∞)
G(x,∞) .

It is clear that ξ1 ≤ 1. Next note that 1−G∗(n+1) = 1−G+G ∗ (1−G∗n). Then,
for any 0< T <∞ and x > 0,

ξn+1 ≤ 1+ sup
0≤x≤T

∫ x

0

1−G∗n(x − y)
1−G(x) G(dy)

+ sup
x>T

∫ x

0

1−G∗n(x − y)
1−G(x − y)

1−G(x − y)
1−G(x) G(dy)

≤ 1+ 1

1−G(T ) + ξn sup
x>T

G(x)−G∗2(x)
1−G(x) .

Since G satisfies (7.23), given any ε > 0, we can choose T > 0 such that

ξn+1 ≤ 1+ 1

1−G(T ) + ξn(1+ ε).

Iterating, we find, after some straightforward algebra, that

ξn+1 ≤
(

2−G(T )
1−G(T )

)
1

ε
(1+ ε)n+1,

which establishes the claim with the obvious choice of C. �

In the next lemma, we use the asymptotic behaviour in Lemma 7.13 and the
uniform bounds in Lemma 7.14 to show that the distribution of H must also have

6Formally speaking, any distribution F on [0,∞) is subexponential if, when X1 and X2 are inde-
pendent random variables with distribution F , P(X1 +Xn > x)∼ 2P(X1 > x), as x ↑∞.
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regularly varying tails. The result is due to Embrechts et al. (1979). Recall that we
are assuming throughout that ΠH(·,∞) ∈R∞(−α) for some α > 0.

Lemma 7.15 As x ↑∞, we have

P(H > x)∼ΠH(x,∞),
which implies that the tail of the distribution of H belongs to R∞(−α).

Proof The relationship between the distribution of H and ΠH is expressed via the
Lévy–Khintchine formula. In this case, since H is [0,∞)-valued, we may con-
sider instead its Laplace exponent Φ(θ) := − logE(e−θH ), which, from the Lévy–
Khintchine formula, satisfies

Φ(θ) = δθ +
∫

(0,∞)
(
1− e−θx

)
ΠH(dx)

= δθ +
∫

(0,1]
(
1− e−θx

)
ΠH(dx) (7.25)

+
∫

(1,∞)
(
1− e−θx

)
ΠH(dx), θ ≥ 0. (7.26)

The second equality above allows the random variable H to be seen as equal in
distribution to the independent sum of two infinitely divisible random variables, say
H1 and H2, where H1 has Laplace exponent given by (7.25) and H2 has Laplace
exponent given by (7.26). According to Theorem 3.6, E(eλH1) <∞ for any λ > 0,
because, trivially,

∫
(1,∞) eλxΠH1(dx) <∞ where ΠH1(dx) =ΠH(dx)1(x∈(0,1]). It

follows that one may upper estimate the tail of H1 by any exponentially decay-
ing function. Specifically, with the help of the Markov inequality, P(H1 > x) ≤
E(eλH1)e−λx , for any λ > 0.

On the other hand, by assumption, the tail of the measure ΠH2(dx) =
ΠH(dx)1(x>1) belongs to R∞(−α). Since ΠH2 necessarily has finite total mass,
we may consider H2 as the distribution at time 1 of a compound Poisson process
with rate η := ΠH(1,∞) and jump distribution ν (defined in Lemma 7.13). We
know that

P(H2 > x)= e−η
∑

k≥0

ηk

k! ν
∗k(x,∞), x > 0,

where, as usual, we interpret ν∗0(dx)= δ0(dx) (so in fact the first term of the above
sum is equal to zero). Next, use the conclusion of Lemma 7.14 with dominated
convergence to establish that the limits

lim
x↑∞

P(H2 > x)

ΠH(x,∞)/η = lim
x↑∞ e−η

∑

k≥1

ηk

k!
ν∗k(x,∞)
ν(x,∞)
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exist. The conclusion of Lemma 7.13 allows the computation of the limiting sum
explicitly. That is to say

∑
k≥1 η

k/(k − 1)! = ηeη. In conclusion, we have

lim
x↑∞

P(H2 > x)

ΠH(x,∞) = 1.

The proof of this lemma is thus completed once we show that

lim
x↑∞

P(H1 +H2 > x)

P(H2 > x)
= 1. (7.27)

However, this fact follows by reconsidering the proof of Lemma 7.13. If in this proof
one takes Fi as the distribution ofHi for i = 1,2, then with the slight difference that
F1 has exponentially decaying tails, one may follow the proof step by step to deduce
that the above limit holds. Intuitively speaking, the tails of H1 are considerably
lighter than those of H2 and hence, for large x, the event whose probability is in the
numerator of (7.27) occurs due to a large observation of H2. The details are left as
an exercise to the reader. �

7.7 Asymptotic Behaviour at First Passage

In this section, we give the promised example of how to use the quintuple law to
obtain precise analytic statements concerning the asymptotic behaviour of the first-
passage problem, under assumptions of regular variation. The following theorem,
due to Asmussen and Klüppelberg (1996) and Klüppelberg and Kyprianou (2006),
is our main objective.

Theorem 7.16 If X is any spectrally positive Lévy process with mean E(X1) < 0
and Π(·,∞) ∈ R∞(−(α + 1)), for some α ∈ (0,∞), then we have the following
asymptotic behaviour:

(i) As x ↑∞, we have

P
(
τ+x <∞

)∼ 1

|E(X1)|
∫ ∞

x

Π(y,∞)dy,

and consequently, the first-passage probability belongs to R∞(−α). (Note that
convexity of the Laplace exponent of −X dictates that |E(X1)| <∞ when
E(X1) < 0.)

(ii) For all u,v >0,

lim
x↑∞P

(
Xτ+x − x
x/α

> u,
−Xτ+x −
x/α

> v

∣
∣
∣
∣τ
+
x <∞

)

=
(

1+ v + u
α

)−α
. (7.28)

Part (i) of the above theorem shows that when the so-called Cramér condition
appearing in Theorem 7.6 fails, conditions may exist where one may still gain in-
formation about the asymptotic behaviour of the first-passage probability. Part (ii)
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shows that, with rescaling, the joint law of the overshoot and undershoot converges
to a non-trivial distribution. In fact, the limiting distribution takes the form of a
bivariate generalised Pareto distribution (cf. Definition 3.4.9 in Embrechts et al.
(1997)). The result in part (ii) is also reminiscent of the following extraction from
extreme value theory. It is known that a distribution, F , is in the domain of attraction
of a generalised Pareto distribution if F(·,∞) is regularly varying at infinity with
index −α, for some α > 0. In that case, we have

lim
x↑∞

F(x + xu/α,∞)
F (x,∞) =

(

1+ u
α

)−α
,

for α > 0 and u > 0.
Generalised Pareto distributions have heavy tails in the sense that their moment

generating functions do not exist on the positive half of the real axis. Roughly speak-
ing, this means that there is a good chance to observe relatively large values when
sampling from this distribution.

Proof of Theorem 7.16 (i) Following the logic that leads to (7.8), we have that

P
(
τ+x <∞

)= qU(x,∞)= q
∫ ∞

0
P(Ht > x)dt,

where q = κ(0,0) > 0 is the killing rate of the ascending ladder process. Write [t]
for the integer part of t and note, with the help of Lemma 7.14, that, for x > 0,

P(Ht > x)

P(H1 > x)
≤ P(H[t]+1 > x)

P(H1 > x)
≤ C(1+ ε)[t]+1e−q[t].

(To see where the exponential term on the right-hand side comes from, recall that
H is equal in law to a subordinator killed independently at rate q .) Now appealing
to the Dominated Convergence Theorem, we have

lim
x↑∞

P(τ+x <∞)
P(H1 > x)

= q
∫ ∞

0
dt · lim

x↑∞
P(Ht > x)

P(H1 > x)
. (7.29)

In order to deal with the limit on the right-hand side above, we shall use the fact that
P(Ht > x) = e−qtP(Ht > x), where Ht is an infinitely divisible random variable.
To be more specific, one may think of {Ht : t ≥ 0} as a subordinator which, when
killed at an independent and exponentially distributed time with parameter q , has the
same law as {Ht : t ≥ 0}. Associated to the random variable Ht is its Lévy measure,
which necessarily takes the form tΠH . By Lemma 7.15, it follows that

lim
x↑∞

P(Ht > x)

P(H1 > x)
= te−q(t−1).

Hence, referring back to (7.29) and Lemma 7.15, we have that

lim
x↑∞

P(τ+x <∞)
ΠH (x,∞) = q

∫ ∞

0
te−qtdt = 1

q
. (7.30)
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On the other hand, taking account of exponential killing, one easily computes

U(∞)=
∫ ∞

0
P(Ht <∞)dt =

∫ ∞

0
e−qtdt = 1

q
.

Since ψ ′(0+) > 0, we have Φ(0) = 0, where Φ is the right inverse of ψ .
From (7.15), we may thus identify U(∞) = limβ↓0 β/ψ(β) = 1/ψ ′(0+), where
ψ(β) = logE(e−βX1). In particular, this implies q = |E(X1)|. Moreover, from
Corollary 7.9, we have that ΠH(dx) = Π(x,∞)dx, x > 0. Putting the pieces to-
gether in (7.30) completes the proof of part (i).

(ii) Applying the quintuple law in marginalised form, we have

P
(
Xτ+x − x > u∗, x −Xτ+x − > v∗

)

=
∫ x

0
U(x − dy)

∫

[v∗∨y,∞)
dzΠ

(
u∗ + z,∞)

(7.31)

for u∗, v∗ > 0. As noted in the proof of part (i), we also have

ΠH(u,∞)=
∫ ∞

u

Π(z,∞)dz.

Choosing u∗ = ux/α and v∗ = x + vx/α, we find that

P

(
Xτ+x − x
x/α

> u,
−Xτ+x −
x/α

> v

)

=U(x)ΠH
(
x + x(v+ u)/α,∞)

. (7.32)

From part (i), if the limit exists then it holds that

lim
x↑∞P

(
Xτ+x − x
x/α

> u,
−Xτ+x −
x/α

> v

∣
∣
∣
∣τx <∞

)

= lim
x↑∞

U(x)

U(∞)
ΠH (x + x(v + u)/α,∞)

ΠH (x,∞) . (7.33)

Since, by assumption, Π(·,∞) ∈ R∞(−(α + 1)), the Monotone Density Theo-
rem 5.14 implies that ΠH(·,∞) is regularly varying with index −α. Hence, the
limit in (7.33) exists and, in particular, (7.28) holds, thus concluding the proof. �

Exercises

7.1 (Moments of the supremum) Fix n= 1,2, . . . and suppose that
∫

(1,∞)
xnΠ(dx) <∞ (7.34)

(or equivalently E((max{X1,0})n) <∞ by Exercise 3.3).
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(i) Suppose that XK is the Lévy process with the same characteristics as X except
that the measure Π is replaced by ΠK , where, for some K > 0,

ΠK(dx)=Π(dx)1(x>−K) + δ−K(dx)Π(−∞,−K).
In other words, the paths of XK are an adjustment of the paths of X in that all
negative jumps of magnitude K or greater are replaced by a negative jump of
magnitude precisely K .

Deduce that E(|XKt |n) <∞ for all t ≥ 0 and that the descending ladder
height process of XK has moments of all orders.

(ii) Use the Wiener–Hopf factorisation, together with a Maclaurin expansion up to
order n, to deduce that

E
(
X
n

eq

)
<∞

holds for any q > 0.
(iii) Now suppose that q = 0, lim supt↑∞Xt <∞ and that, for n= 2,3, . . . , (7.34)

holds. By adapting the arguments above, show that

E
(
X
n−1
∞

)
<∞.

(iv) Suppose now that X is a spectrally positive Lévy process which has paths of
bounded variation and which drifts to −∞. Use the Pollaczek-Khintchine for-
mula discussed in Sect. 4.6 to deduce that, even if

∫

(1,∞)
x2Π(dx) <∞,

it is not necessarily the case that E(X
2
∞) <∞.

7.2 (The Strong Law of Large Numbers for Lévy processes) Suppose that X is
a Lévy process such that E|X1| <∞. For n ≥ 0, let Yn = supt∈[n,n+1] |Xt − Xn|.
Clearly, this is a sequence of independent and identically distributed random vari-
ables.

(i) Use the previous exercise to show that E(Yn) <∞.
(ii) Use the classical Strong Law of Large Numbers to deduce that limn↑∞ n−1

Yn = 0 almost surely.
(iii) Prove that

lim
t↑∞

Xt

t
= E(X1)

almost surely.
(iv) Now suppose that E(X1)=∞. Show that

lim
t↑∞

Xt

t
=∞.
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(v) Finally, suppose that E(X1) is undefined but limt↑∞Xt =∞. Show that the
same conclusion as in part (iv) holds.

Hint: in the last two parts, consider truncating the Lévy measure on (0,∞).

7.3 The idea of this exercise is to recover the conclusion of Theorem 7.2 for a
spectrally negative Lévy process, X, using Theorem 7.1 and the Wiener–Hopf fac-
torisation. As usual, the Laplace exponent of X is denoted ψ and its right inverse
is Φ .

(i) Using one of the Wiener–Hopf factors, show that

E
(
eβX∞1(−X∞<∞)

)=
{

0 if ψ ′(0) < 0
ψ ′(0+)β/ψ(β) if ψ ′(0)≥ 0.

(ii) Using the other Wiener–Hopf factor, show that

E
(
e−βX∞1(X∞<∞)

)=
{
Φ(0)/(β +Φ(0)) if ψ ′(0) < 0
0 if ψ ′(0)≥ 0.

(iii) Deduce from Theorem 7.1 that limt↑∞Xt =∞ when E(X1) > 0, limt↑∞Xt =
−∞ when E(X1) < 0, and lim supt↑∞Xt = − lim inft↑∞Xt = ∞ when
E(X1)= 0.

(iv) Show that a spectrally negative stable process of index α ∈ (1,2) necessarily
oscillates.

7.4 Let X be a stable process with index α ∈ (0,2) which has both positive and
negative jumps. Let ρ = P(Xt ≥ 0).

(i) Explain why such processes cannot creep upwards. If, further, it experiences
negative jumps, explain why it cannot creep downwards either.

(ii) Suppose that U(dx) = ∫
[0,∞) U(dx,ds) for x ≥ 0. Show that (up to a multi-

plicative constant)

U(dx)= x
αρ−1

Γ (αρ)
dx,

for x ≥ 0.
Hint: reconsider Exercise 5.8.

(iii) Show that, for y ∈ [0, x], v ≥ y and u > 0,

P(Xτ+x − x ∈ du,x −Xτ+x − ∈ dv, x −Xτ+x − ∈ dy)

= c · (x − y)
αρ−1(v − y)α(1−ρ)−1

(v + u)1+α dydvdu,

where c is a strictly positive constant.
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(iv) Explain why the constant c must normalise the above triple law to a probability
distribution. Show that

c= sinαρπ

π

Γ (α + 1)

Γ (αρ)Γ (α(1− ρ)) .

7.5 Suppose that X is a Lévy process (but not a compound Poisson process) with
jump measure Π and ascending ladder process (L−1,H), whose jump measure is
denoted by �(dt,dh).

(i) Using the conclusion of Exercise 5.6, show that, up to a multiplicative constant,

�(dt,dh)=
∫

[0,∞)
Û(dt,dθ)Π(dh+ θ), t, h > 0.

(ii) Show, further, that if X is spectrally positive, then

�(dt,dh)=
∫ ∞

0
dθ · P(L̂−1

θ ∈ dt
)
Π(dh+ θ), t, h > 0,

where L̂ is the local time of X at its minimum.

7.6 Here, we deduce some statements about creeping and hitting points.

(i) Show that

lim|θ |↑∞
Ψ (θ)

θ2
= σ

2

2
,

where σ is the Gaussian coefficient of Ψ . With the help of the Wiener–Hopf
factorisation, prove that a Lévy process creeps both upwards and downwards
if and only if it has a Gaussian component.

(ii) Show that a Lévy process of bounded variation with Lévy–Khintchine repre-
sentation

Ψ (θ)=−iθδ +
∫

R\{0}
(
1− eiθx

)
Π(dx), θ ∈R,

creeps upwards if δ > 0.
(iii) Show that any Lévy process for which 0 is irregular for (0,∞) cannot creep

upwards.
(iv) Show that a spectrally negative Lévy process with no Gaussian component

cannot creep downwards.
(v) Use part (i) to show that a symmetric α-stable process with α ∈ (1,2) cannot

creep. Use the integral test (7.22) to deduce that this Lévy process can hit
points.

7.7 This exercise concerns an example where an explicit characterisation of the
two-sided exit problem can be obtained. The result is due to Rogozin (1972).
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Suppose that X is an α-stable process with both positive and negative jumps7

and index α ∈ (0,2). From the discussion in Sect. 6.5.3, we know that the positivity
parameter satisfies ρ ∈ (0,1) and that both αρ and α(1− ρ) are valued in (0,1).

(i) With the help of the conclusion of Exercise 5.8 (ii), show that

Px(Xτ+1
≤ 1+ y)=Φαρ

(
y

1− x
)

,

for x ≤ 1, and

Px(−Xτ−0 ≤ y)=Φα(1−ρ)
(
y

x

)

,

for x ≥ 0, where

Φq(u)=
{ sinπq

π

∫ u
0 t
−q(1+ t)−1dt for u≥ 0

0 for u < 0.

Hint: it will be helpful to prove that

∫ 1/(1+θ)

0
uα−1(1− u)−(α+1)dv = θ

−α

α

for any θ > 0.
(ii) Let

r(x, y)=Px
(
Xτ+1
≤ 1+ y; τ+1 < τ−0

)

and

l(x, y)= Px

(
Xτ−0
≥−y; τ+1 > τ−0

)
,

where x ∈ (0,1) and y ≥ 0. Show that the following system of equations hold:

r(x, y)=Φαρ
(

y

1− x
)

−
∫

(0,∞)
Φαρ

(
y

1+ z
)

l(x,dz)

and

l(x, y)=Φα(1−ρ)
(
y

x

)

−
∫

(0,∞)
Φα(1−ρ)

(
y

1+ z
)

r(x,dz),

for x ∈ (0,1) and y ≥ 0.
(iii) Assuming the above system of equations has a unique solution, show that

r(x, y)= sinπαρ

π
(1− x)αρxα(1−ρ)

∫ y

0
t−αρ(t + 1)−α(1−ρ)(t + 1− x)−1dt,

for x ∈ (0,1) and y ≥ 1. Write down a similar expression for l(x, y).

7The case that X or −X is spectrally negative is dealt with later in Exercise 8.11.
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(iv) Now consider the integral
∫ ∞

0
t−αρ(t + 1)−α(1−ρ)(t + 1− x)−1dt,

where 0 < x < 1. By performing the change of variable (t + 1 − x)−1 =
(1 − x)−1u, differentiating the resulting integral in the variable x and then
applying a further change of variable (1/u− 1)= (1− x)−1z, show that8

Px

(
τ+1 < τ

−
0

)= Γ (α)

Γ (αρ)Γ (α(1− ρ))
∫ x

0
zα(1−ρ)−1(1− z)αρ−1dz,

for x ∈ (0,1). Write down a similar expression for Pz(τ
−
0 < τ

+
1 ).

7.8 Suppose that X is any Lévy process. The following problem is taken from
Kyprianou et al. (2010a) and gives an identity which allows one to convert distribu-
tional statements about overshoot and undershoot at first passage into distributional
statements about overshoot, undershoot and undershoot of the last maximum at first
passage. Define the following quantities:

Ux = x −Xτ+x −, Vx = x −Xτ+x −, Ox =Xτ+x − x, x > 0.

Prove that

P(Ux > u,Ox > w,Vx > v)= P(Ox−u > w+ u,Vx−u > v − u).

Hint: A simple sketch will prove to be very useful.

7.9 Suppose that X is a Lévy process with jump measure Π and ascending ladder
height H , satisfying E(H1) <∞. Suppose, moreover, that the drift coefficient of
H is written γ ≥ 0 and the descending ladder height process has potential function
denoted by Û . Show that, for y, z≥ 0,

lim
x↑∞P(Xτ+x − x ∈ dy, x −Xτ+x − − x ∈ dz)

= 1

E(H1)

(
Û(z)Π(z+ dy)dz+ γ δ0(dy)δ0(dz)

)
,

in the sense of vague convergence.

7.10 In this exercise, we shall consider the expected occupation measure of a Lévy
process before first entry into (−∞,0). Related computations can be found in the
proof of Theorem 7.7. The original result is due to Silverstein (1980).

8There is a typographic error in Lemma 3 of Rogozin (1972) for the two-sided exit formula. In the
notation of that paper, the roles of q and (1− q) should be exchanged and the upper delimiter in
the integral should be x and not∞.
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Suppose that X is any Lévy process (other than a compound Poisson process)
and recall that H = {Ht : t ≥ 0} denotes the ascending ladder height process. Let

U(x)= E

(∫ ∞

0
1(Ht≤x)dt

)

, x ≥ 0,

and define Û in the obvious way, with the help of the descending ladder height
process. Appealing to the techniques used in Step 2 of the proof Theorem 7.7, show
that, up to a multiplicative constant, for positive, bounded and measurable f ,

Ex

(∫ τ−0

0
f (Xt )dt

)

=
∫

[0,∞)
U(dy)

∫

[0,x]
Û (dz)f (x + y − z), x ≥ 0.



Chapter 8
Exit Problems for Spectrally Negative Processes

In this chapter, we consider in more detail the special case of spectrally negative
Lévy processes. As we have already seen in a number of examples from previous
chapters, Lévy processes which have jumps in only one direction turn out to offer
a significant advantage for many calculations. We devote our time in this chapter,
initially, to gathering facts about spectrally negative processes from earlier chapters,
and then to an ensemble of fluctuation identities which are semi-explicit in terms
of a class of functions known as scale functions, whose properties we shall also
explore.

8.1 Basic Properties Reviewed

Let us gather what we have already established in previous chapters together with
other easily derived facts.

The Laplace exponent. Rather than working with the Lévy–Khintchine characteris-
tic exponent, it is preferable to work with the Laplace exponent,

ψ(λ) := 1

t
log E

(
eλXt

)=−Ψ (−iλ), (8.1)

which is finite at least for all λ ≥ 0. The function ψ : [0,∞)→ R is zero at
zero and tends to infinity at infinity. Further, it is infinitely differentiable and
strictly convex on (0,∞). In particular, ψ ′(0+)= E(X1) ∈ [−∞,∞). Define
the right inverse

Φ(q)= sup
{
λ≥ 0 :ψ(λ)= q},

for each q ≥ 0. If ψ ′(0+) ≥ 0, then λ= 0 is the unique solution to ψ(λ)= 0
on [0,∞) and otherwise there are two solutions, with λ=Φ(0) > 0 the larger
of the two. The other is λ= 0 (see Fig. 3.3).

A.E. Kyprianou, Fluctuations of Lévy Processes with Applications, Universitext,
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First passage upwards. The first-passage time above a level x > 0 has been defined
by τ+x = inf{t > 0 :Xt > x}. From Theorem 3.12, we know that, for each q ≥
0,

E
(
e−qτ+x 1(τ+x <∞)

)= e−Φ(q)x .

Further, the process {τ+x : x ≥ 0} is a subordinator with Laplace exponent
Φ(q)−Φ(0), killed at rate Φ(0).

Path variation. Given the triple (a, σ,Π) as in Theorem 1.6, where, now, the mea-
sure Π is necessarily concentrated on (−∞,0), we may always write

ψ(λ)=−aλ+ 1

2
σ 2λ2 +

∫

(−∞,0)
(
eλx − 1− λx1(x>−1)

)
Π(dx), (8.2)

for λ≥ 0. When X has bounded variation we may always write

ψ(λ)= δλ−
∫

(−∞,0)
(
1− eλx

)
Π(dx), (8.3)

where necessarily

δ =−a −
∫

(−1,0)
xΠ(dx)

is strictly positive. Hence, a spectrally negative Lévy process of bounded vari-
ation must always take the form of a strictly positive drift minus a pure jump
subordinator. Note that, if δ ≤ 0, then we would see the Laplace exponent of a
decreasing subordinator, which is excluded from the definition of a spectrally
negative Lévy process.

Regularity. From Theorem 6.5 (i) and (ii) one sees immediately that 0 is regular for
(0,∞) forX, irrespective of path variation. Further, by considering the process
−X, we can see from the same theorem that 0 is regular for (−∞,0) for X if
and only if X has unbounded variation. Said another way, 0 is regular for both
(0,∞) and (−∞,0) if and only if it has unbounded variation.

Creeping. We know from Corollary 3.13 and the fact that there are no positive
jumps that

P
(
Xτ+x = x|τ+x <∞

)= 1.

Hence spectrally negative Lévy processes necessarily creep upwards. It was
shown, however, in Exercise 7.6 that they creep downwards if and only if σ >
0.

Wiener–Hopf factorisation. In Chap. 6, we identified, up to a multiplicative con-
stant,

κ(α,β)=Φ(α)+ β and κ̂(α,β)= α −ψ(β)
Φ(α)− β ,
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for α,β ≥ 0. Appropriate choices of local time at the maximum and minimum
allow the multiplicative constants to be taken as equal to unity. From Theo-
rem 6.15 (ii) this leads to

E
(
e−βXep

)= Φ(p)

Φ(p)+ β and E
(
eβXep

)= p

Φ(p)

Φ(p)− β
p−ψ(β) , (8.4)

where ep is an independent and exponentially distributed random variable with
parameter p ≥ 0. The first of these two expressions shows that Xep is expo-
nentially distributed with parameter Φ(p). Note that, when p = 0 in the last
statement, we employ our usual convention that an exponential variable with
parameter zero is infinite with probability one.

Drifting and oscillating. From Theorem 7.2 or Exercise 7.3, we have the follow-
ing asymptotic behaviour for X. The process drifts to infinity if and only if
ψ ′(0+) > 0, oscillates if and only if ψ ′(0+)= 0 and drifts to minus infinity if
and only if ψ ′(0+) < 0.

Exponential change of measure. From Exercise 1.5, we know that, for each c ≥ 0,

{
ecXt−ψ(c)t : t ≥ 0

}

is a martingale. For each c ≥ 0, define the change of measure

dPc

dP

∣
∣
∣
∣
Ft
= ecXt−ψ(c)t . (8.5)

When X is a Brownian motion this is the same change of measure that appears
in the most elementary form of the Cameron–Martin–Girsanov Theorem. In
that case, we know that the effect of the change of measure makes (X,Pc)
equal in law to a Brownian motion with drift c. In Sect. 3.3, we showed that,
if (X,P) is a spectrally negative Lévy process, then (X,Pc) is also a spectrally
negative Lévy process. Moreover, we showed that its Laplace exponent, ψc(λ),
is given by

ψc(λ) = ψ(λ+ c)−ψ(c)

=
(

σ 2c− a +
∫

(−∞,0)
x
(
ecx − 1

)
1(x>−1)Π(dx)

)

λ

+ 1

2
σ 2λ2 +

∫

(−∞,0)
(
eλx − 1− λx1(x>−1)

)
ecxΠ(dx), (8.6)

for λ≥−c.
When we set c = Φ(p) for p ≥ 0 we discover that ψΦ(p)(λ) = ψ(λ +
Φ(p)) − p, and hence ψ ′Φ(p)(0) = ψ ′(Φ(p)) ≥ 0 on account of the strict

convexity of ψ . In particular, (X,PΦ(p)) always drifts to infinity for p > 0.
Roughly speaking, the effect of the change of measure has been to change
the characteristics of X to those of a spectrally negative Lévy process with
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the same Gaussian coefficient, an exponentially tilted Lévy measure and an
adjusted linear drift. Note also that (X,P) is of bounded variation if and
only if (X,Pc) is of bounded variation. This statement is clear when σ > 0.
When σ = 0 it is justified by noting that

∫
(−1,0) |x|Π(dx) <∞ if and only if

∫
(−1,0) |x|ecxΠ(dx) <∞. In the case that X is of bounded variation and we

write the Laplace exponent in the form (8.3), we also see from the second
equality of (8.6) that

ψc(λ)= δλ−
∫

(−∞,0)
(
1− eλx

)
ecxΠ(dx), λ≥−c.

Hence, under Pc, the process retains the same drift and only the Lévy measure
is exponentially tilted.

8.2 The One-Sided and Two-Sided Exit Problems

In this section, we shall develop semi-explicit identities concerning exiting from
a half-line and a strip. Recall that Px and Ex are shorthand for P(·|X0 = x) and
E(·|X0 = x), respectively, and for the special case that x = 0, we keep with our
old notation, so that P0 = P and E0 = E, unless we wish to emphasise the fact that
X0 = 0. Recall also that

τ+x = inf{t > 0 :Xt > x} and τ−x = inf{t > 0 :Xt < x}, (8.7)

for all x ∈R. The main results of this section are the following.

Theorem 8.1 (One- and two-sided exit formulae) There exist a family of functions
W(q) :R→[0,∞) and

Z(q)(x) := 1+ q
∫ x

0
W(q)(y)dy, for x ∈R,

defined for each q ≥ 0, such that the following hold (for short we shall write
W(0) =W ).

(i) For any q ≥ 0, we have W(q)(x) = 0 for x < 0 and W(q) is characterised on
[0,∞) as a strictly increasing and continuous function whose Laplace trans-
form satisfies

∫ ∞

0
e−βxW(q)(x)dx = 1

ψ(β)− q for β >Φ(q). (8.8)

(ii) For any x ∈R and q ≥ 0,

Ex

(
e−qτ

−
0 1(τ−0 <∞)

)= Z(q)(x)− q

Φ(q)
W(q)(x), (8.9)
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where we understand q/Φ(q) in the limiting sense for q = 0, so that

Px

(
τ−0 <∞

)=
{

1−ψ ′(0+)W(x) if ψ ′(0+)≥ 0
1 if ψ ′(0+) < 0

. (8.10)

(iii) For any x ≤ a and q ≥ 0,

Ex

(
e−qτ+a 1(τ−0 >τ

+
a )

)= W
(q)(x)

W(q)(a)
, (8.11)

and

Ex

(
e−qτ

−
0 1(τ−0 <τ

+
a )

)= Z(q)(x)−Z(q)(a)W
(q)(x)

W(q)(a)
. (8.12)

Note that (8.10) should agree with the Pollaczek–Khintchine formula (1.15)
when X is taken as the Cramér–Lundberg risk process discussed in Chap. 1. Ex-
ercise 8.3 handles the details.

The name “scale function” for W was first used by Bertoin (1992) to reflect
the analogous role it plays in (8.11) to scale functions for diffusions. In keeping
with existing literature, we will refer to the functions W(q) and Z(q) as the q-scale
functions.1

Identity (8.9) appears in the form of its Fourier transform in Emery (1973) and,
for the case that Π is finite and σ = 0, in Korolyuk (1975a). Identity (8.11) first
appeared for the case q = 0 in Zolotarev (1964), followed by Takács (1966) and
then, with a short proof, in Rogers (1990). The case q > 0 is found in Korolyuk
(1975a) for the case that Π is finite and σ = 0, in Bertoin (1996b) for the case of a
purely asymmetric stable process and again for a general spectrally negative Lévy
process in Bertoin (1997b) (who referred to a method used for the case q = 0 in
Bertoin (1996a)). See also Doney (2007) for further remarks on this identity. Finally
(8.12) was proved for the case thatΠ is finite and σ = 0 by Korolyuk (1974, 1975a);
see Bertoin (1997b) for the general case.

Proof of Theorem 8.1 (8.11) We prove (8.11) for the case that ψ ′(0+) > 0 and
q = 0, then for the case that q > 0 (with no restriction on ψ ′(0+)). Finally the case
that ψ ′(0+)≤ 0 and q = 0 is handled by passing to the limit as q tends to zero.

Assume that ψ ′(0+) > 0 so that −X∞ is P-almost surely finite. Now define the
non-decreasing function

W(x)= Px(X∞ ≥ 0).

A simple argument using the law of total probability and the strong Markov property
now yields for x ∈ [0, a)

1One may also argue that the terminology “scale function” is inappropriate as the mentioned anal-
ogy breaks down in a number of other respects.
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Px(X∞ ≥ 0) = Ex

(
Px(X∞ ≥ 0|Fτ+a )

)

= Ex

(
1(τ+a <τ−0 )

Pa(X∞ ≥ 0)
)+Ex

(
1(τ+a >τ−0 )

PX
τ
−
0
(X∞ ≥ 0)

)

= Pa(X∞ ≥ 0)Px
(
τ+a < τ−0

)
.

To justify that the second term in the second equality disappears, note the following.
If X has no Gaussian component, then it cannot creep downwards, implying that
Xτ−0

< 0, and then we use that Px(X∞ ≥ 0) = 0 for x < 0. If X has a Gaussian
component, then Xτ−0

≤ 0 and we need to additionally know that P(X∞ ≥ 0)= 0.
However, since 0 is regular for (−∞,0) and (0,∞), it follows that X∞ < 0 P-
almost surely, which is the same as P(X∞ ≥ 0)= 0.

We now have

Px

(
τ+a < τ−0

)= W(x)
W(a)

, x ≥ 0, (8.13)

which proves (8.11) for the case ψ ′(0+) > 0 and q = 0. It is trivial, but nonetheless
useful for later, to note that the same equality holds even when x < 0 since both
sides are equal to zero there.

Now assume that q > 0 or that q = 0 and ψ ′(0+) < 0. In these cases, by the
convexity of ψ , we know that Φ(q) > 0 and hence ψ ′Φ(q)(0) = ψ ′(Φ(q)) > 0

(again by convexity), which implies that under PΦ(q), the process X drifts to infin-
ity. For (X,PΦ(q)), we have already established the existence of a 0-scale function
WΦ(q)(x)= P

Φ(q)
x (X∞ ≥ 0), which fulfils the relation

P
Φ(q)
x

(
τ+a < τ−0

)= WΦ(q)(x)
WΦ(q)(a)

. (8.14)

However, by definition of PΦ(q), we also have that

P
Φ(q)
x

(
τ+a < τ−0

) = Ex

(
e
Φ(q)(X

τ
+
a
−x)−qτ+a 1(τ+a <τ−0 )

)

= eΦ(q)(a−x)Ex
(
e−qτ+a 1(τ+a <τ−0 )

)
. (8.15)

Combining (8.14) and (8.15) gives

Ex

(
e−qτ+a 1(τ+a <τ−0 )

)= e−Φ(q)(a−x)
WΦ(q)(x)

WΦ(q)(a)
= W

(q)(x)

W(q)(a)
, (8.16)

whereW(q)(x)= eΦ(q)xWΦ(q)(x). ClearlyW(q) is identically zero on (−∞,0) and
non-decreasing.

Consider now the final case that ψ ′(0+)= 0 and q = 0. Since the limit as q ↓ 0
on the left-hand side of (8.16) exists, the same is true of the right-hand side. By
choosing an arbitrary b > a, we can thus define, W(x)= limq↓0W

(q)(x)/W(q)(b)

for each x ≤ a. Consequently,
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W(x) = lim
q↓0

W(q)(x)

W(q)(b)

= lim
q↓0

Ex

(
e−qτ+a 1(τ+a <τ−0 )

)W(q)(a)

W(q)(b)

= Px

(
τ+a < τ−0

)
W(a). (8.17)

Again it is clear that W is identically zero on (−∞,0) and non-decreasing.
It is important to note for the remaining parts of the proof that the definition of

W(q) we have given above may be taken up to any multiplicative constant without
affecting the validity of the arguments.2 �

Proof of Theorem 8.1 (i) Suppose again that X is assumed to drift to infinity so that
ψ ′(0+) > 0. First consider the case that q = 0. Recalling that the definition of W
in (8.11) may be taken up to a multiplicative constant, let us work with

W(x)= 1

ψ ′(0+)Px(X∞ ≥ 0). (8.18)

We may take limits in the second Wiener–Hopf factor given in (8.4) to deduce that

E
(
eβX∞

)=ψ ′(0+) β

ψ(β)

for β > 0. Integrating by parts, we also see that

E
(
eβX∞

) =
∫

[0,∞)
e−βxP(−X∞ ∈ dx)

= P(−X∞ = 0)+
∫

(0,∞)
e−βx dP

(−X∞ ∈ (0, x]
)

=
∫ ∞

0
P(−X∞ = 0)β e−βx dx + β

∫ ∞

0
e−βxP

(−X∞ ∈ (0, x]
)
dx

= β
∫ ∞

0
e−βxP(−X∞ ≤ x)dx

= β
∫ ∞

0
e−βxPx(X∞ ≥ 0)dx,

and hence ∫ ∞

0
e−βxW(x) dx = 1

ψ (β)
(8.19)

for all β > 0=Φ(0).
Now for the case that q > 0 or that q = 0 and ψ ′(0+) < 0. Take, as before,

W(q)(x) = eΦ(q)xWΦ(q)(x). As remarked earlier, X under PΦ(q) drifts to infinity,

2This also justifies the terminology “scale function”.
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and hence, using the conclusion from the previous paragraph together with (8.6),
we have

∫ ∞

0
e−βxW(q)(x)dx =

∫ ∞

0
e−(β−Φ(q))xWΦ(q)(x)dx

= 1

ψΦ(q)(β −Φ(q))

= 1

ψ(β)− q ,

provided β − Φ(q) > 0. Since W(q) is an increasing function, we work with
the measure W(q)(dx) on [0,∞), associated with the distribution W(q)(a, b] :=
W(q)(b)−W(q)(a) for −∞< a ≤ b <∞. Integration by parts gives a characteri-
sation of the measure W(q),

∫

[0,∞)
e−βx W(q)(dx) =W(q)(0)+

∫

(0,∞)
e−βx dW(q)(0, x]

=
∫ ∞

0
β e−βx W(q)(0)dx +

∫ ∞

0
β e−βx W(q)(0, x]dx

= β

ψ(β)− q (8.20)

for β >Φ(q).
For the case that q = 0 and ψ ′(0+) = 0 one may appeal to the Extended Con-

tinuity Theorem for Laplace Transforms (see Feller (1971), Theorem XIII.1.2a) to
deduce that, since

lim
q↓0

∫

[0,∞)
e−βx W(q)(dx)= lim

q↓0

β

ψ(β)− q =
β

ψ(β)
,

there exists a measure W ∗ such that, in the sense of vague convergence, W ∗(dx)=
limq↓0W

(q)(dx) and
∫

[0,∞)
e−βx W ∗(dx)= β

ψ(β)
.

Clearly W ∗(x) :=W ∗[0, x] is a multiple of W given in (8.17), so we may define
W =W ∗. Integration by parts now shows that (8.19) holds again.

Next, we turn to continuity and strict monotonicity of W(q). The argument is
taken from Bertoin (1996a). Recall that {(t, εt ) : t ≥ 0 and εt 	= ∂} is the Poisson
point process of excursions on [0,∞) × E , with intensity dt × dn, decomposing
the path of X. Write ε for the height of each excursion ε ∈ E ; see Definition 6.13.
For spectrally negative Lévy processes, we work with the definition of local time
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L=X. Hence, for 0≤ x < a, Lτ+a−x =Xτ+a−x = a − x. Therefore it holds that

{Xτ+a−x ≥−x} = {∀t ≤ a − x and εt 	= ∂, εt ≤ t + x}.

It follows with the help of (8.13) that

W(x)

W(a)
= Px(Xτ+a ≥ 0)

= P(Xτ+a−x ≥−x)
= P(∀t ≤ a − x and εt 	= ∂, εt ≤ t + x)
= P

(
N(A)= 0

)
, (8.21)

where N is the Poisson random measure associated with the process of excursions
and A= {(t, εt ) : t ≤ a− x and εt > t + x}. Since N(A) is Poisson distributed with
parameter

∫
1A n(dε)dt =

∫ a−x
0 n(ε > t + x)dt = ∫ a

x
n(ε > t)dt , we have that

W(x)

W(a)
= exp

{

−
∫ a

x

n(ε > t)dt

}

. (8.22)

Since a may be chosen arbitrarily large, continuity and strict monotonicity fol-
low from (8.22). Continuity of W also guarantees that it is uniquely defined via
its Laplace transform on [0,∞). From the definition

W(q)(x)= eΦ(q)xWΦ(q)(x), (8.23)

the properties of continuity, uniqueness and strict monotonicity carry over to the
case q > 0. �

Proof of Theorem 8.1 (ii) Using the Laplace transform of W(q)(x) (given in (8.8)),
as well as the Laplace–Stieltjes transform (8.20), we can interpret the second
Wiener–Hopf factor in (8.4) as saying that, for x ≥ 0,

P(−Xeq ∈ dx)= q

Φ(q)
W(q)(dx)− qW(q)(x)dx, (8.24)

and hence, for x ≥ 0,

Ex

(
e−qτ

−
0 1(τ−0 <∞)

) = Px

(
eq > τ

−
0

)

= Px(Xeq < 0)

= P(−Xeq > x)

= 1− P(−Xeq ≤ x)
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= 1+ q
∫ x

0
W(q)(y)dy − q

Φ(q)
W(q)(x)

= Z(q)(x)− q

Φ(q)
W(q)(x). (8.25)

Note that since Z(q)(x)= 1 and W(q)(x)= 0 for all x ∈ (−∞,0), the statement is
valid for all x ∈R. The proof is now complete for the case that q > 0.

Finally, we have that limq↓0 q/Φ(q) = limq↓0ψ(Φ(q))/Φ(q). If ψ ′(0+) ≥ 0.
i.e. the process drifts to infinity or oscillates, then Φ(0)= 0 and the limit is equal to
ψ ′(0+). Otherwise, when Φ(0) > 0, the aforementioned limit is zero. The proof is
thus completed by taking the limit in q in (8.9). �

Proof of Theorem 8.1 (8.12) Fix q > 0. We have for x ≥ 0,

Ex

(
e−qτ

−
0 1(τ−0 <τ

+
a )

)= Ex

(
e−qτ

−
0 1(τ−0 <∞)

)−Ex

(
e−qτ

−
0 1(τ+a <τ−0 )

)
.

Applying the strong Markov property at τ+a and using the fact that X creeps up-
wards, we also have that

Ex

(
e−qτ

−
0 1(τ+a <τ−0 )

)= Ex

(
e−qτ+a 1(τ+a <τ−0 )

)
Ea

(
e−qτ

−
0 1(τ−0 <∞)

)
.

Appealing to (8.9) and (8.11) we now have that

Ex

(
e−qτ

−
0 1(τ−0 <τ

+
a )

) = Z(q)(x)− q

Φ(q)
W(q)(x)

− W
(q)(x)

W(q)(a)

(

Z(q)(a)− q

Φ(q)
W(q)(a)

)

,

and the required result follows in the case that q > 0. The case that q = 0 is again
dealt with by taking limits as q ↓ 0. �

8.3 The Scale Functions W(q) and Z(q)

Let us explore a little further the analytical properties of the functions W(q)

and Z(q). As an abuse of notation, let us write W(q) ∈ C1(0,∞) to mean the re-
striction of W(q) to (0,∞) belongs to C1(0,∞).
Lemma 8.2 For all q ≥ 0, the function W(q) has left and right derivatives on
(0,∞), which agree if and only if the measure n(ε ∈ dx) has no atoms. In that case,
W(q) ∈ C1(0,∞).
Proof Since W(q)(x) := eΦ(q)xWΦ(q)(x), it suffices to prove the result for q = 0.
However, in this case, we identified in Eq. (8.22),

W(x)=W(a) exp

{

−
∫ a

x

n(ε > t)dt

}

,
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for any arbitrary a > x. It follows then that the left and right first derivatives exist
and are given by

W ′−(x)= n(ε ≥ x)W(x) and W ′+(x)= n(ε > x)W(x). (8.26)

Since W is continuous, W ′ exists if and only if n(ε ∈ dx) has no atoms as claimed.
In that case it is clear that it also belongs to the class C1(0,∞). �

Although the proof is a little technical, it can be shown that n(ε ∈ dx) has no
atoms if X is a process of unbounded variation. If X has bounded variation then it is
very easy to construct an example where n(ε ∈ dx) has at least one atom. Consider
for example the case of a compound Poisson process with positive drift and negative
jumps whose distribution has an atom at unity. An excursion may therefore begin
with a jump of size one. Since thereafter the process may fail to jump again before
reaching its previous maximum, we see the excursion measure of heights must have
at least an atom at 1, i.e. n(ε = 1) > 0. In fact, it can be shown in the case of bounded
variation paths that n(ε ∈ dx) has no atoms if and only if the Lévy measure Π is
atomless. See Exercise 8.4.

Next, we look at howW(q) and Z(q) extend analytically in the parameter q . This
will turn out to be important in some of the exercises at the end of this chapter. The
following result is found in Bertoin (1997b).

Lemma 8.3 For each x ≥ 0, the function q �→ W(q)(x) may be analytically ex-
tended in q to C.

Proof For a fixed choice of q > 0 and β >Φ(q) (so that 0< q/ψ(β) < 1),

∫ ∞

0
e−βxW(q)(x)dx = 1

ψ(β)− q
= 1

ψ(β)

1

1− q/ψ(β)
= 1

ψ(β)

∑

k≥0

qk
1

ψ(β)k
. (8.27)

Next, we claim that
∑

k≥0

qkW ∗(k+1)(x)

converges for each x ≥ 0 where W ∗(k+1) is the (k + 1)-th convolution of W with
itself. This is easily deduced once one has the estimate

W ∗(k+1)(x)≤ x
k

k!W(x)
k+1, (8.28)
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for k ≥ 0 and x ≥ 0, which itself can easily be proved by induction. Indeed, (8.28)
holds trivially for k = 0 and if (8.28) holds for k ≥ 0, then by monotonicity of W ,

W ∗(k+1)(x) ≤
∫ x

0

yk−1

(k − 1)!W(y)
kW(x − y)dy

≤ 1

(k − 1)!W(x)
k+1

∫ x

0
yk−1 dy

= x
k

k!W(x)
k+1.

Returning to (8.27), we may now apply Fubini’s Theorem (justified by the assump-
tion that β >Φ(q)) and deduce that

∫ ∞

0
e−βxW(q)(x)dx =

∑

k≥0

qk
1

ψ(β)k+1

=
∑

k≥0

qk
∫ ∞

0
e−βxW ∗(k+1)(x)dx

=
∫ ∞

0
e−βx

∑

k≥0

qkW ∗(k+1)(x)dx.

Thanks to continuity of W and W(q), we have that

W(q)(x)=
∑

k≥0

qkW ∗(k+1)(x). (8.29)

Now noting that
∑
k≥0 q

kW ∗(k+1)(x) converges for all q ∈ C, we may extend the
definition of W(q) for each fixed x ≥ 0 by the equality given in (8.29). �

Suppose that, for each c ≥ 0, we call W(q)
c the function fulfilling the definitions

given in Theorem 8.1 but with respect to the measure Pc . The previous lemma allows
us to establish the following relationship forW(q)

c with different values of q and c.

Lemma 8.4 For any q ∈C and c ∈R such that ψ(c) <∞, we have

W(q)(x)= ecxW(q−ψ(c))
c (x) (8.30)

for all x ≥ 0.

Proof For a given c ∈ R such that ψ(c) <∞, the identity (8.30) holds for q ≥ 0
and q − ψ(c) ≥ 0 on account of both left- and right-hand sides being continuous
functions with the same Laplace transform. By Lemma 8.3, both left- and right-
hand sides of (8.30) are analytic in q for each fixed x ≥ 0. The Identity Theorem for
analytic functions thus implies that they are equal for all q ∈C. �



8.3 The Scale Functions W(q) and Z(q) 243

Unfortunately, a convenient relation such as (8.30) cannot be given for Z(q).
Nonetheless, we do have the following obvious corollary.

Corollary 8.5 For each x > 0 the function q �→ Z(q)(x) may be analytically ex-
tended to q ∈C.

The final lemma of this section shows that a discontinuity of W(q) at zero may
occur even whenW(q) belongs to C1(0,∞).

Lemma 8.6 For all q ≥ 0, W(q)(0)= 0 if and only if X has unbounded variation.
Otherwise, when X has bounded variation, it is equal to 1/δ, where δ > 0 is the
drift.

Proof Recall the second identity in (8.4). Note that for all q > 0,

W(q)(0) = lim
β↑∞

∫ ∞

0
β e−βxW(q)(x)dx

= lim
β↑∞

β

ψ(β)− q

= lim
β↑∞

β −Φ(q)
ψ(β)− q

= Φ(q)
q

lim
β↑∞E

(
eβXeq

)

= Φ(q)
q

P(Xeq = 0).

Now recall that P(Xeq = 0) > 0 if and only if 0 is irregular for (−∞,0), which was
shown earlier to be equivalent to the case thatX has paths of bounded variation. The
above calculation also shows that

W(q)(0)= lim
β↑∞

β

ψ(β)− q = lim
β↑∞

β

ψ(β)
,

which in turn is equal to 1/δ by Exercise 2.11.
To deal with the case that q = 0, note from (8.29) that for any p > 0, W(p)(0)=

W(0). �

Returning to (8.11), we see that the conclusion of the previous lemma indicates
that, precisely when X has bounded variation,

P0
(
τ+a < τ−0

)= W(0)
W(a)

> 0. (8.31)
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Note that the stopping time τ−0 is defined by strict first passage. Hence when X
has the property that 0 is irregular for (−∞,0), it takes an almost surely positive
amount of time to exit the half-line [0,∞). Since the aforementioned irregularity is
equivalent to bounded variation for this class of Lévy processes, we see that (8.31)
intuitively makes sense.

8.4 Potential Measures

In this section, we give an example of how scale functions may be used to describe
potential measures associated with the one- and two-sided exit problems. This gives
the opportunity to study the overshoot distributions at first passage below a level.
Many of the calculations in this section concerning potential measures are repro-
duced from Bertoin (1997a).

To introduce the idea of potential measures and their relevance in this context,
fix a > 0 and suppose that

τ = τ+a ∧ τ−0 .
A computation in the spirit of Theorem 5.6 and Lemma 5.8, with the help of the
Compensation Formula (Theorem 4.4), gives, for x ∈ [0, a], A any Borel set in
[0, a) and B any Borel set in (−∞,0),

Px(Xτ ∈ B,Xτ− ∈A)

= Ex

(∫

[0,∞)

∫

(−∞,0)
1(Xt−≤a,Xt−≥0,Xt−∈A)1(y∈B−Xt−)N(dt × dy)

)

= Ex

(∫ ∞

0
1(t<τ)Π(B −Xt)1(Xt∈A)dt

)

=
∫

A

Π(B − y)U(a, x,dy), (8.32)

where N is the Poisson random measure associated with the jumps of X and

U(a,x,dy) :=
∫ ∞

0
Px(Xt ∈ dy, τ > t)dt.

The above is called the potential measure of X killed on exiting [0, a] when issued
from x. It is also known as the resolvent measure. More generally, we can work with
the q-potential measure, where

U(q)(a, x,dy) :=
∫ ∞

0
e−qt Px(Xt ∈ dy, τ > t)dt,

for q ≥ 0, with the agreement that U(0) = U . If, for each x ∈ [0, a], a density of
U(q)(a, x,dy) exists with respect to Lebesgue measure, then we call it the potential
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density and denote it by u(q)(a, x, y) (with u(0) = u). It turns out that, for a spectrally
negative process, not only does a potential density exist, but also we can write it in
semi-explicit terms. This is the subject of the next theorem, which is due to Suprun
(1976) and later Bertoin (1997a). Note, in the statement of the result, it is implicitly
understood thatW(q)(z) is identically zero for z < 0.

Theorem 8.7 Suppose, for q ≥ 0, that U(q)(a, x,dy) is the q-potential measure of
a spectrally negative Lévy process killed on exiting [0, a] where x, y ∈ [0, a]. Then
it has a density u(q)(a, x, y) given by

u(q)(a, x, y)= W
(q)(x)W(q)(a − y)
W(q)(a)

−W(q)(x − y). (8.33)

Proof We start by noting that for all x, y ≥ 0 and q > 0,

R(q)(x,dy) :=
∫ ∞

0
e−qt Px

(
Xt ∈ dy, τ−0 > t

)
dt = 1

q
Px(Xeq ∈ dy,Xeq ≥ 0),

where eq is an independent, exponentially distributed random variable with param-
eter q > 0. Recall, one may think of R(q) as the q-potential measure of the process
X when killed on exiting [0,∞).

Appealing to the Wiener–Hopf factorisation, specifically that Xeq −Xeq is inde-
pendent of Xeq , we have that

R(q)(x,dy) = 1

q
P
(
(Xeq −Xeq )+Xeq ∈ dy − x,−Xeq ≤ x

)

= 1

q

∫

[x−y,x]
P(−Xeq ∈ dz)P(Xeq −Xeq ∈ dy − x + z).

By duality, Xeq −Xeq is equal in distribution to Xeq , which itself is exponentially
distributed with parameter Φ(q). In addition, the law of −Xeq has been identified

in (8.24). We may therefore develop the expression for R(q)(x,dy) as follows:

R(q)(x,dy)=
{∫

[x−y,x]

(
1

Φ(q)
W(q)(dz)−W(q)(z)dz

)

Φ(q)e−Φ(q)(y−x+z)
}

dy.

This shows that there exists a density, r(q)(x, y), for the measure R(q)(x,dy). Now
applying integration by parts to the integral in the last equality, we have that

r(q)(x, y)= e−Φ(q)yW(q)(x)−W(q)(x − y).

Finally, we may use the above established facts to compute the potential density
u(q) as follows. First note that, with the help of the strong Markov property,
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qU(q)(a, x,dy) = Px(Xeq ∈ dy,Xeq ≥ 0,Xeq ≤ a)
= Px(Xeq ∈ dy,Xeq ≥ 0)

− Px(Xeq ∈ dy,Xeq ≥ 0,Xeq > a)

= Px(Xeq ∈ dy,Xeq ≥ 0)

− Px(Xτ = a, τ < eq)Pa(Xeq ∈ dy,Xeq ≥ 0).

The first and third of the three probabilities on the right-hand side above have been
computed in the previous paragraph, the second probability is equal to

Ex

(
e−qτ+a 1(τ+a <τ−0 )

)= W
(q)(x)

W(q)(a)
.

In conclusion, we have that U(q)(a, x,dy) has a density

r(q)(x, y)− W
(q)(x)

W(q)(a)
r(q)(a, y),

which, after a short amount of algebra, can be shown to be equal to the right-hand
side of (8.33).

To complete the proof when q = 0, one may take limits in (8.33), noting that the
right-hand side is analytic and hence continuous in q for fixed values x, a, y. The
right-hand side of (8.33) tends to u(a, x, y) by monotone convergence of U(q) as
q ↓ 0. �

The above proof contains the following corollary.

Corollary 8.8 For q ≥ 0, the q-potential measure of a spectrally negative Lévy
process killed on exiting [0,∞) has density given by

r(q)(x, y)= e−Φ(q)yW(q)(x)−W(q)(x − y),
for x, y ≥ 0.

Define further the q-potential measure of X without killing by

Θ(q)(x,dy)=
∫ ∞

0
e−qtPx(Xt ∈ dy)dt,

for x, y ∈R. Note, by spatial homogeneity, we have thatΘ(q)(x,dy)=Θ(q)(0,dy − x).
IfΘ(q)(x,dy) has a density, then we may always write it in the form θ(q)(y−x) for
some function θ(q). The following corollary was established in Bingham (1975).

Corollary 8.9 For q > 0, the q-potential density of a spectrally negative Lévy
process is given by

θ(q)(z)=Φ ′(q)e−Φ(q)z −W(q)(−z),
for all z ∈R.
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Proof The result is obtained from Corollary 8.8 by considering the effect of moving
the killing barrier to an arbitrary large distance from the initial point. Formally, with
the help of spatial homogeneity,

θ(q)(z)= lim
x↑∞ r

(q)(x, x + z)= lim
x↑∞ e−Φ(q)(x+z)W(q)(x)−W(q)(−z).

Note, however, that, from the proof of Theorem 8.1 (iii), we identified W(q)(x) =
eΦ(q)xWΦ(q)(x) where

∫ ∞

0
e−θxWΦ(q)(x)dx = 1

ψΦ(q)(θ)
.

It follows that

θ(q)(z)= e−Φ(q)zWΦ(q)(∞)−W(q)(−z).
Note that (X,PΦ(q)) drifts to infinity and hence WΦ(q)(∞) <∞. Since WΦ(q) is a
continuous function on (0,∞), we have that

WΦ(q)(∞)= lim
θ↓0

∫ ∞

0
θ e−θxWΦ(q)(x)dx = lim

θ↓0

θ

ψΦ(q)(θ)
= 1

ψ ′Φ(q)(0+)
.

As ψ(Φ(q)) = q , differentiation of this equality implies that the right-hand side
above is equal to Φ ′(q) and the proof is complete. �

To conclude this section, let us now return to (8.32). Recall that τ = τ+a ∧ τ−0 .
The above results now show that for z ∈ (−∞,0) and y ∈ (0, a],

Px(Xτ ∈ dz,Xτ− ∈ dy)

=Π(dz− y)
{
W(x)W(a − y)−W(a)W(x − y)

W(a)

}

dy. (8.34)

Similarly, in the limiting case when a tends to infinity,

Px(Xτ−0
∈ dz,Xτ−0 − ∈ dy)

=Π(dz− y){e−Φ(0)yW(x)−W(x − y)}dy. (8.35)

8.5 Identities for Reflected Processes

In this final section, we give further support to the idea that the functions W(q) and
Z(q) play a central role in many fluctuation identities concerning spectrally negative
Lévy processes. We give a brief account of their appearance in a number of identities
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for spectrally negative Lévy processes reflected at either their supremum or their
infimum.

We begin by reiterating what we mean by a Lévy process reflected at its supre-
mum or reflected at its infimum. Fix x ≥ 0. Then the process

Y
x

t := (x ∨Xt)−Xt, t ≥ 0

is called the process reflected at its supremum (with initial value x) and the process

Yxt :=Xt −
(
Xt ∧ (−x)

)
, t ≥ 0

is called the process reflected at its infimum (with initial value x).
For such processes, we may consider the exit times

σxa = inf
{
t > 0 : Yxt > a

}
and σxa = inf

{
t > 0 : Yxt > a

}

for levels a > 0. In the spirit of Theorem 8.1, we have the following result.

Theorem 8.10 Let X be a spectrally negative Lévy process with Lévy measure Π .
Fix a > 0. We have,

(i) for x ∈ [0, a] and θ ∈R such that ψ(θ) <∞,

E
(
e−qσ

x
a−θY xσxa )= e−θx

(

Z
(p)
θ (a − x)−W(p)

θ (a − x)pW
(p)
θ (a)+ θZ(p)θ (a)

W
(p)′
θ (a)+ θW(p)

θ (a)

)

,

where p = q − ψ(θ) and W(q)′
θ (a) is understood to be the right derivative of

W
(q)
θ at a. Further,

(ii) for x ∈ [0, a],

E
(
e−qσxa

)= Z
(q)(x)

Z(q)(a)
.

Part (i) was proved3 in Avram et al. (2004) and part (ii) in Pistorius (2004).
Their proofs turn out to be quite complicated, requiring the need for a theory
which is slightly beyond the scope of this text, namely, Itô’s excursion theory.
Doney (2005, 2007) gives another proof of the above theorem, again based on
excursion theory. Part (ii) for processes of bounded variation is proved in Exer-
cise 8.10.

It turns out that it is also possible to say something about the q-potential mea-
sures of Y

x
and Yx with killing at first passage over a specified level a > 0. These

potentials are defined, respectively, by

3See also the note at the end of this chapter.
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U
(q)
(a, x,dy)=

∫ ∞

0
e−qtP

(
Y
x

t ∈ dy,σ xa > t
)
dt,

for x, y ∈ [0, a], and

U(q)(a, x,dy)=
∫ ∞

0
e−qtP

(
Yxt ∈ dy,σ xa > t

)
dt,

for x, y ∈ [0, a]. The following results are due to Pistorius (2004). Alternative proofs
are also given in Doney (2005, 2007). Once again, we offer no proofs here on ac-
count of their difficulty.

Theorem 8.11 Fix a > 0 and q ≥ 0.

(i) For x, y ∈ [0, a],

U
(q)
(a, x,dy) =

(

W(q)(a − x) W
(q)(0)

W(q)′(a)

)

δ0(dy)

+
(

W(q)(a − x)W
(q)′(y)

W(q)′(a)
−W(q)(y − x)

)

dy.

(ii) For x, y ∈ [0, a], the measure U(q)(a, x,dy) has a density given by

u(q)(a, x, y)=W(q)(a − y)Z
(q)(x)

Z(q)(a)
−W(q)(x − y).

As in Theorem 8.10, we take W(q)′ to mean the right derivative. Note in particular
that when the underlying Lévy process is of unbounded variation, the q-potential for
Y
x

killed on first passage above a is absolutely continuous with respect to Lebesgue
measure and otherwise it has an atom at zero. A little thought reveals that the atom
in the bounded variation case appears as a consequence of the accumulation of
Lebesgue measure at the maximum of X; see Theorem 6.7.

On a final note, we emphasise that there exists an additional body of literature,
written in Russian and Ukrainian by members of the Kiev school of probability,
which considers the type of boundary problems described above for spectrally one-
sided Lévy processes using a so-called “potential method”, developed in Korolyuk
(1974). For example, Theorem 8.10 (i) can be found for the case that Π has finite
total mass and σ = 0 in Korolyuk (1975a, 1975b) and Bratiychuk and Gusak (1991).
The reader is also referred to Korolyuk et al. (1976) and Korolyuk and Borovskich
(1981) and references therein.4

4I am grateful to Professors V.S. Korolyuk and M.S. Bratiychuk for bringing this literature to my
attention.
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Exercises

8.1 Suppose that X is a spectrally negative Lévy process with Laplace exponent ψ
such that ψ ′(0+) < 0. Show that, for t ≥ 0 and any A in Ft ,

lim
x↑∞P

(
A|τ+x <∞

)= P
Φ(0)(A),

where, as usual, Φ is the right inverse of ψ .

8.2 Suppose thatX is a spectrally negative stable process with index α ∈ (1,2) and
assume, without loss of generality, that its Laplace exponent is given by ψ(θ)= θα ,
for θ ≥ 0 (cf. Exercise 3.7).

(i) Show that, for q > 0 and β > q1/α ,
∫ ∞

0
e−βxW(q)

(x)dx = 1

β(βα − q) =
∑

n≥1

qn−1β−αn−1,

where W
(q)
(x)= ∫ x

0 W
(q)(y)dy.

(ii) Conclude that, for x ≥ 0

Z(q)(x)=
∑

n≥0

qn
xαn

Γ (αn+ 1)
.

Note that the right-hand side above is also equal to Eα,1(qxα) where Eα,1(·) is
the Mittag–Leffler function defined in (5.30).

(iii) Deduce that, for q ≥ 0,

W(q)(x)= αxα−1E′α,1
(
qxα

)
,

for x ≥ 0.
(iv) Show that, for standard Brownian motion,

W(q)(x)=
√

2

q
sinh

(√
2qx

)
and Z(q)(x)= cosh

(√
2qx

)
,

for x ≥ 0 and q ≥ 0.
(v) Suppose now thatX is a tempered stable spectrally negative Lévy process, with

Laplace exponent given by ψ(θ)= (θ + c)α − cα , where c ≥ 0 and α ∈ (1,2).
Show that, for q ≥ 0,

W(q)(x)= e−cxαxα−1E′α,1
((
q + cα)xα).

8.3 Suppose that X is a spectrally negative Lévy process of bounded variation such
that limt↑∞Xt =∞. For convenience, write Xt = δt − St where S = {St : t ≥ 0} is
a subordinator with jump measure Υ and no drift.
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(i) Show that, necessarily, δ−1
∫∞

0 Υ (y,∞)dy < 1.
(ii) Show that the scale function,W , satisfies

∫

[0,∞)
e−βxW(dx)= 1

δ − ∫∞
0 e−βyΥ (y,∞)dy

and deduce that

W(dx)= 1

δ

∑

n≥0

ν∗n(dx),

where ν(dx)= δ−1Υ (x,∞)dx and, as usual, we understand ν∗0(dx)= δ0(dx).
(iii) Suppose that S is a compound Poisson process with rate λ > 0 and jump dis-

tribution which is exponential, with parameter μ> 0. Show that

W(x)= 1

δ

(

1+ λ

δμ− λ
(
1− e−(μ−δ−1λ)x

)
)

,

for x ≥ 0.

8.4 It is known that, when X has paths of bounded variation, and accordingly its
Laplace exponent is written in the form (8.3), the excursion measure, n, satisfies

n(ε > a)= 1

δ

∫

(−∞,0)
Π(dx)P−x

(
τ−−a < τ+0

)
, (8.36)

for a > 0. See for example formula (20) of Pistorius (2004).

(i) Use (8.36) to show that

n(ε > a)= 1

δ
Π(−∞,−a)+ 1

δ

∫

[−a,0)
Π(dx)

(

1− W(x + a)
W(a)

)

.

(ii) Deduce that

n(ε = a)= 1

δ

W(0)

W(a)
Π
({−a})

and hence conclude thatW ∈ C1(0,∞) if and only if Π has no atoms.
(iii) Use part (ii), together with (8.23), to show further that W(q) ∈ C1(0,∞), for

all q ≥ 0, if and only if Π has no atoms.

8.5 Let X be any spectrally negative Lévy process with Laplace exponent ψ .

(i) Use (8.12) and (8.9) to establish that, for each q ≥ 0,

lim
x↑∞

Z(q)(x)

W(q)(x)
= q

Φ(q)
,
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where the right-hand side is understood in the limiting sense when q = 0. In
addition, show that

lim
a↑∞

W(q)(a − x)
W(q)(a)

= e−Φ(q)x .

(ii) Taking account of a possible atom at the origin, write down the Laplace trans-
form ofW(q)(dx) on [0,∞) and show that, if X has unbounded variation, then
W(q)′(0+) = 2/σ 2, where σ is the Gaussian coefficient in the Lévy–Itô de-
composition and it is understood that 1/0 =∞. If, however, X has bounded
variation, then the right derivative of W(q) at zero (with an abuse of notation,
also written here as W(q)′(0+)), satisfies

W(q)′(0+)= Π(−∞,0)+ q
δ2

,

where δ is the drift coefficient and it is understood that the right-hand side is
infinite if Π(−∞,0)=∞.

8.6 Suppose that X is a spectrally negative Lévy process. Using the results of
Chap. 5, show, with the help of the Wiener–Hopf factorisation and scale functions,
that

P
(
Xτ−x = x, τ−x <∞

)= σ
2

2

[
W ′(−x)−Φ(0)W(−x)],

for all x ≤ 0. As usual, W is the scale function, Φ is the inverse of the Laplace
exponent, ψ , of X and σ is the Gaussian coefficient.

8.7 This exercise deals with first hitting of points below zero of spectrally negative
Lévy processes, following the work of Doney (1991). For each x > 0, define

T (−x)= inf{t > 0 :Xt =−x},

where X is a spectrally negative Lévy process with Laplace exponent ψ and right
inverse Φ .

(i) Show that, for all c ≥ 0 and q ≥ 0,

Φc(q)=Φ
(
q +ψ(c))− c.

(ii) Show, for x > 0, c ≥ 0 and p ≥ψ(c)∨ 0, that

E
(
e
−pτ−−x+c(Xτ−−x+x)1(τ−−x<∞)

)= ecx
(

Z
(q)
c (x)− q

Φc(q)
W
(q)
c (x)

)

,

where q = p − ψ(c). Use analytic extension to justify that the above identity
is in fact valid for all x > 0, c ≥ 0 and p ≥ 0.
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(iii) By noting that T (−x)≥ τ−−x , condition on Fτ−−x to deduce that, for p,u≥ 0,

E
(
e−pT (−x)−u(T (−x)−τ

−−x )1(T (−x)<∞)
)

= E
(
e
−pτ−−x+Φ(p+u)(Xτ−−x+x)1(τ−−x<∞)

)
.

(iv) By taking a limit as u ↓ 0 in part (iii) and making use of the identity in part (ii),
deduce that

E
(
e−pT (−x)1(T (−x)<∞)

)= eΦ(p)x −ψ ′(Φ(p))W(p)(x)

and hence by taking limits again as x ↓ 0,

E
(
e−pT (0)1(T (0)<∞)

)=
{

1−ψ ′(Φ(p)) 1
δ

if X has bounded variation
1 if X has unbounded variation,

where δ is the drift term in the Laplace exponent in the case thatX has bounded
variation paths.

8.8 Again relying on Doney (1991), we shall make the following application of
part (iii) of the previous exercise. Suppose that B = {Bt : t ≥ 0} is a Brownian
motion. Denote

σ = inf{t > 0 : Bt = Bt = t}.

(i) Suppose that X is a descending stable- 1
2 subordinator with upward unit drift.

Show that

P(σ <∞)= P
(
T (0) <∞)

,

where T (0) is defined in Exercise 8.7.
(ii) Deduce from part (i) that P(σ <∞)= 1

2 .

8.9 This exercise is based on the results of Chiu and Yin (2005) and Baurdoux
(2009). Suppose that X is any spectrally negative Lévy process with Laplace ex-
ponent ψ , satisfying limt↑∞Xt = ∞. Recall that this necessarily implies that
ψ ′(0+) > 0. Define for each x ∈R,

Λ0 = sup{t > 0 :Xt < 0}.
Here, we work with the definition sup∅ = 0 so that the event {Λ0 = 0} corresponds
to the event that X never enters (−∞,0).

(i) Using the almost surely equivalent events {Λ0 < t} = {Xt ≥ 0, infs≥t Xs ≥ 0}
and the Markov property, show that for each q > 0 and y ∈R

Ey

(
e−qΛ0

)= q
∫ ∞

0
θ(q)(x − y)Px(X∞ ≥ 0)dx,
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where θ(q) is the q-potential density of X.
(ii) Hence show that for y ≤ 0,

Ey

(
e−qΛ0

)=ψ ′(0+)Φ ′(q)eΦ(q)y,
where Φ is the right inverse of ψ and, in particular,

P(Λ0 = 0)=
{
ψ ′(0+)/δ if X has bounded variation with drift δ
0 if X has unbounded variation.

(iii) Suppose now that y > 0. Use again the strong Markov property to deduce that,
for q > 0,

Ey

(
e−qΛ0 1(Λ0>0)

)=ψ ′(0+)Φ ′(q)Ey
(
e
−qτ−0 +Φ(q)Xτ−0 1(τ−0 <∞)

)
.

(iv) Deduce that, for y > 0 and q > 0,

Ey

(
e−qΛ0 1(Λ0>0)

)=ψ ′(0+)Φ ′(q)eΦ(q)y −ψ ′(0+)W(q)(y).

8.10 (Proof of Theorem 8.10 (ii) with Bounded Variation) Adopt the setting of
Theorem 8.10 (ii). It may be assumed that σxa is a stopping time with respect to the
filtration F (recall that in our standard notation, this is the filtration generated by the
underlying Lévy process X, which satisfies the usual conditions of completion and
right continuity).

(i) Show that for any x ∈ (0, a],

E
(
e−qσxa

)= Ex

(
e−qτ

−
0 1(τ−0 <τ

+
a )

)
E
(
e−qσ 0

a
)+Ex

(
e−qτ+a 1(τ+a <τ−0 )

)
.

(ii) By taking limits as x tends to zero in part (i), deduce that

E
(
e−qσxa

)= Z
(q)(x)

Z(q)(a)
,

for all x ∈ [0, a].
Hint: recall that W(q)(0) > 0 if X has paths of bounded variation.

(iii) The following application comes from Dube et al. (2004). Let W be a general
storage process, as described at the beginning of Chap. 4. Now suppose that
this storage process has a limited capacity, say c > 0. This means that, when
the workload exceeds c units, the excess of work is removed and dumped.
Prove that the Laplace transform (with parameter q > 0) of the first time for the
workload of this storage process to become zero, when started from 0< x < c,
is given by Z(q)(c − x)/Z(q)(c), where Z(q) is the scale function associated
with the underlying Lévy process driving W .

8.11 Suppose that X is a spectrally negative α-stable process for α ∈ (1,2). We are
interested in establishing the distribution of the overshoot below the origin when the
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process, starting from x ∈ (0,1), first exits this interval from below. In principle one
could attempt to invert the formula given in Exercise 8.7 (ii). However, the following
technique, taken from Rogozin (1972), offers a more straightforward method. It will
be helpful to first review Exercise 7.7.

(i) Show that

Px

(−Xτ−0 ≤ y; τ
−
0 < τ

+
1

)=Φα−1

(
y

x

)

− Px

(
τ+1 < τ

−
0

)
Φα−1(y),

where Φα−1 was defined in Exercise 7.7.
(ii) Hence, deduce that

Px

(−Xτ−0 ≤ y; τ
−
0 < τ

+
1

)

= sinπ(α − 1)

π
xα−1(1− x)

∫ y

0
t−(α−1)(t + 1)−1(t + x)−1dt.

(iii) Finally let us consider the problem of first entry into the strip (−1,1); cf. Port
(1967). Let

τ(−1,1) = inf
{
t > 0 :Xt ∈ (−1,1)

}
.

Show that the hitting distribution of (−1,1) is given by

Px(Xτ(−1,1) ∈ dy) = sinπ(α − 1)

π
(x − 1)α−1(1− y)1−α(x − y)−1dy

+ δ−1(dy)
sinπ(α − 1)

π

∫ x−1
x+1

0
tα−2(1− t)1−α dt,

for x ≥ 1 and y ∈ (−1,1), where δ−1(dy) is the Dirac unit point mass at −1.
What is the corresponding formula when x ≤−1?

8.12 Fix a ∈ (0,∞] and q ≥ 0. Show that

e−q(t∧τ+a ∧τ
−
0 )W(q)(Xt∧τ+a ∧τ−0 ) and e−q(t∧τ+a ∧τ

−
0 )Z(q)(Xt∧τ+a ∧τ−0 ), t ≥ 0,

are martingales.



Chapter 9
More on Scale Functions

In the previous chapter, we saw that it is possible to develop many fluctuation iden-
tities for spectrally negative Lévy processes in terms of scale functions. In this chap-
ter, we continue in this vein and look in greater detail at the relationship between
scale functions and potential measures of subordinators through the Wiener–Hopf
factorisation. This will allow us to extract a number of additional analytical proper-
ties for scale functions as well as to offer a method for generating many examples
of spectrally negative Lévy processes whose scale functions can be computed ex-
plicitly. A large part of this chapter is based on Hubalek and Kyprianou (2010) and
Kyprianou and Rivero (2008).

9.1 The Wiener–Hopf Factorisation Revisited

Henceforth, we shall assume, as in the previous chapter, that X is a spectrally neg-
ative Lévy process with characteristic triple (a, σ,Π) and Laplace exponent ψ ,
whose right inverse function is denoted by Φ . Suppose temporarily that we denote
its characteristic exponent by Ψ . According to (8.1),

ψ(λ)=−Ψ (−iλ),

for all λ ≥ 0. Taking account of Theorem 6.15 and Sect. 6.5.2, it is not difficult to
see that, up to a multiplicative constant, for all θ ∈R,

Ψ (θ)= (
Φ(0)− iθ

)
φ(iθ),

where φ is the Laplace exponent of the descending ladder height subordinator. This
leads to the factorisation identity

ψ(λ)= (
λ−Φ(0))φ(λ), (9.1)

for all λ ≥ 0. Note that, in a similar manner to the computations in Exercise 6.5,
formula (9.1) can also be proved by a direct manipulation of the expression for the

A.E. Kyprianou, Fluctuations of Lévy Processes with Applications, Universitext,
DOI 10.1007/978-3-642-37632-0_9, © Springer-Verlag Berlin Heidelberg 2014

257

http://dx.doi.org/10.1007/978-3-642-37632-0_9


258 9 More on Scale Functions

Laplace exponent given in (8.2). However, in that case, one may only identify φ as
the Laplace exponent of a (possibly-killed) subordinator, rather than, specifically,
as the Laplace exponent of the descending ladder height process. Either way, the
exponent φ(λ) must take the form

φ(λ)= κ + δλ+
∫

(0,∞)
(
1− e−λx

)
Υ (dx), (9.2)

where κ, δ ≥ 0 and Υ is a measure concentrated on (0,∞), which satisfies∫
(0,∞)(1∧ x)Υ (dx) <∞.

Lemma 9.1 We have that

Υ (x,∞)= eΦ(0)x
∫ ∞

x

e−Φ(0)uΠ(−∞,−u)du, for x > 0, (9.3)

δ = σ 2/2 and κ =ψ ′(0+)∨ 0.

Proof In the case that ψ ′(0+)≥ 0, equivalently Φ(0)= 0, the result may be easily
recovered from Exercise 6.5. To deal with the case that ψ ′(0+) < 0, equivalently
Φ(0) > 0, recall from (8.6) that we may write

ψ(λ)=ψΦ(0)
(
λ−Φ(0)),

where λ≥−Φ(0). Reviewing (9.1) in light of the above equality, it follows that, for
λ≥ 0,

φ(λ)= φΦ(0)
(
λ−Φ(0)), (9.4)

where φΦ(0) plays the role of φ in the Wiener–Hopf factorisation of ψΦ(0). Using
obvious notation, we have that

φ(λ) = κΦ(0) + δΦ(0)
(
λ−Φ(0))+

∫

(0,∞)
(
1− e−(λ−Φ(0))x

)
ΥΦ(0)(dx)

= φΦ(0)
(−Φ(0))+ δΦ(0)λ+

∫

(0,∞)
(
1− e−λx

)
eΦ(0)xΥΦ(0)(dx)

= φ(0)+ δΦ(0)λ+
∫

(0,∞)
(
1− e−λx

)
eΦ(0)xΥΦ(0)(dx),

for λ ≥ 0. This shows, in particular, that δ = δΦ(0) = σ 2/2 and, by (9.1), κ =
φ(0)= 0. Next, note that ψ ′Φ(0)(0+)= ψ ′(Φ(0)) > 0 and that, from Theorem 3.9,

ΠΦ(0)(dx)= eΦ(0)xΠ(dx) for x < 0. From the first sentence of this proof, we know
that (9.3) holds for the spectrally negative Lévy process with Laplace exponent
ψΦ(0). In other words, ΥΦ(0)(x,∞) =

∫∞
x
ΠΦ(0)(−∞,−u)du, for x > 0. Hence,

combining these facts,
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Υ (dx) = eΦ(0)xΥΦ(0)(dx)

= eΦ(0)xΠΦ(0)(−∞,−x)dx

= eΦ(0)xΠ(−∞,−x)+Φ(0)eΦ(0)x
∫ ∞

x

e−Φ(0)uΠ(−∞,−u)du,

for x ≥ 0, where the final equality follows from an integration by parts. This agrees
with the identity given in the statement of the lemma. �

9.2 Scale Functions and Philanthropy

Suppose we now denote the descending ladder height process associated with X by
Ĥ = {Ĥt : t ≥ 0}. In the special case thatΦ(0)= 0, that is to say, the processX does
not drift to −∞ and its Wiener–Hopf factorisation takes the form ψ(λ) = λφ(λ),
it can be shown that the scale function, W , describes the potential measure of Ĥ .
Indeed, recall that the potential measure of Ĥ is defined by

∫ ∞

0
P(Ĥt ∈ dx)dt, for x ≥ 0. (9.5)

Calculating its Laplace transform, we get the identity
∫ ∞

0

∫ ∞

0
e−λxP(Ĥt ∈ dx)dt =

∫ ∞

0
e−φ(λ)tdt = 1

φ(λ)
= λ

ψ(λ)
, (9.6)

where λ ≥ 0. Inverting the Laplace transform on the left-hand side with the help
of (8.20), we get the identity

W(x)=
∫ ∞

0
P(Ĥt ≤ x)dt, x ≥ 0. (9.7)

It can be easily shown in a similar fashion that, when Φ(0) > 0, the scale function
is related to the potential measure of Ĥ by the formula

W(x)= eΦ(0)x
∫ x

0
e−Φ(0)y

∫ ∞

0
P(Ĥt ∈ dy)dt, x ≥ 0. (9.8)

This relationship between scale functions and potential measures of subordina-
tors lies at the heart of the approach we shall describe in this section. Key to the
method is the fact that one can find in the literature several subordinators for which
the potential measure is known explicitly.1 Should these subordinators turn out to
be the descending ladder height process of a spectrally negative Lévy process which

1We remind the reader that many examples can be found directly in Schilling et al. (2010) and, as
inverse local times, in Borodin and Salminen (2002).
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does not drift to −∞, i.e. Φ(0)= 0, then this would give an exact expression for its
scale function. Said another way, we can build scale functions using the following
approach.

Step 1. Choose a subordinator with Laplace exponent φ, for which one knows its
potential measure, or equivalently, in light of (9.6), for which one can explicitly
invert the Laplace transform 1/φ(λ).

Step 2. Verify whether the relation

ψ(λ) := λφ(λ), λ≥ 0,

defines the Laplace exponent of a spectrally negative Lévy process.

Of course, for this method to be useful, we should first provide necessary and
sufficient conditions for a subordinator to be the descending ladder height process
of some spectrally negative Lévy process, or equivalently, a verification method for
Step 2. Precisely this point is addressed by Vigon’s Theorem of Philanthropy 6.23.
Indeed, noting that the ascending ladder height of a spectrally negative Lévy process
necessarily takes the form of a (possibly-killed) linear drift, the aforesaid theorem
tells us that one may take any subordinator with Laplace exponent φ, so long as
the associated Lévy measure is absolutely continuous with non-increasing density.
Moreover, the inclusion of a killing term in φ can only occur when there is no killing
for the ascending ladder height process. More formally, we have the following the-
orem, taken from Hubalek and Kyprianou (2010), which can also be easily proved
directly from Lemma 6.23.

Theorem 9.2 Consider a given (killed) subordinator with Lévy triple (κ, δ,Υ ) and
Laplace exponent given by (9.2). Then, for all ϕ ≥ 0, there exists a spectrally neg-
ative Lévy process, X, henceforth referred to as the parent process, with Laplace
exponent given by

ψ(λ)= (λ− ϕ)φ(λ), (9.9)

for λ≥ 0, such that ϕκ = 0.
The Lévy triple (a, σ,Π) of the parent process is uniquely identified as follows.

The Gaussian coefficient is given by σ =√2δ. The Lévy measure is given by

Π(−∞,−x)= ϕΥ (x,∞)+ dΥ

dx
(x), x > 0. (9.10)

Finally

a =
∫

(−∞,−1)
xΠ(dx)− κ (9.11)
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if ϕ = 0 and otherwise, when ϕ > 0,

a = 1

2
σ 2ϕ + 1

ϕ

∫

(−∞,0)
(
eϕx − 1− xϕ1{x>−1}

)
Π(dx). (9.12)

Note that when describing parent processes later on in this text, for practical
reasons, we shall prefer to specify the triple (σ,Π,ψ) instead of (a, σ,Π). However
both triples provide an equivalent amount of information. It is also worth making an
observation for later reference concerning the path variation of the process X for a
given descending ladder height process.

Corollary 9.3 Given a (killed) subordinator satisfying the conditions of the previ-
ous theorem,

(i) the parent process has paths of unbounded variation if and only if Υ (0,∞)=
∞ or δ > 0, and

(ii) if Υ (0,∞) = c <∞, then the parent process necessarily decomposes in the
form

Xt = (κ + c− δϕ)t +
√

2δBt − St , (9.13)

where B = {Bt : t ≥ 0} is a Brownian motion, S = {St : t ≥ 0} is an indepen-
dent, driftless subordinator with Lévy measure ν, satisfying

ν(x,∞)= ϕΥ (x,∞)+ dΥ

dx
(x).

Proof (i) Recalling the discussion at the beginning of Chap. 8, we know that a spec-
trally negative Lévy process has paths of bounded variation if and only if 0 is irreg-
ular for (−∞,0). This is equivalent to the descending ladder height process being
a driftless compound Poisson subordinator, which is, in turn, equivalent to either
Υ (0,∞)=∞ or δ > 0. See, for example, the discussion preceding Corollary 4.12.

(ii) Using (9.10), the Laplace exponent of the decomposition (9.13) can be com-
puted as follows, with the help of an integration by parts:

(κ + c− δϕ)λ+ δλ2 − ϕλ
∫ ∞

0
e−λxΥ (x,∞)dx − λ

∫ ∞

0
e−λx dΥ

dx
(x)dx

= (
κ +Υ (0,∞)− δϕ)λ+ δλ2 − ϕ

∫ ∞

0

(
1− e−λx

)dΥ

dx
(x)dx

− λ
∫ ∞

0
e−λx dΥ

dx
(x)dx

= (λ− ϕ)
(

κ + δλ+
∫ ∞

0

(
1− e−λx

)dΥ

dx
(x)dx

)

.

This agrees with the Laplace exponent ψ(λ) = (λ− ϕ)φ(λ) of the parent process
constructed in Theorem 9.2. �
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Let us illustrate the functionality of the previous two results with some examples.

Example 9.4 Consider a spectrally negative Lévy process which is the parent pro-
cess of a (killed) tempered stable process, that is to say, a subordinator with Laplace
exponent given by

φ(λ)= κ + cΓ (−α)((γ + λ)α − γ α), λ≥ 0,

where α ∈ (−1,1) \ {0}, γ ≥ 0 and c > 0. The associated Lévy measure is given by

Υ (dx)= cx−α−1e−γ xdx, x > 0.

Recall that, for α,β > 0 and x ∈R,

Eα,β(x)=
∑

n≥0

xn

Γ (nα + β) (9.14)

denotes the two-parameter Mittag–Leffler function. The following is a well-known
transform for the Mittag–Leffler function:

∫ ∞

0
e−θxxβ−1Eα,β

(
λxα

)
dx = θα−β

θα − λ, (9.15)

where λ ∈R and |θα/λ|> 1. Together with the well-known rules for Laplace trans-
forms concerning primitives and exponential tilting, it is straightforward to deduce
the following expressions for the scale functions associated with the parent process
with Laplace exponent given by (9.9) such that κϕ = 0.

If 0< α < 1, then

W(x)=− eϕx

cΓ (−α)
∫ x

0
e−(γ+ϕ)yyα−1Eα,α

(
κ + cΓ (−α)γ α
cΓ (−α) yα

)

dy.

If −1< α < 0, then

W(x) = eϕx

κ + cΓ (−α)γ α

+ cΓ (−α)eϕx
(κ + cΓ (−α)γ α)2

∫ x

0
e−(γ+ϕ)yy−α−1

× E−α,−α
(

cΓ (−α)
κ + cΓ (−α)γ α y

−α
)

dy.

Example 9.5 Let c > 0, ν ≥ 0 and θ ∈ (0,1) and φ be defined by

φ(λ)= cλΓ (ν + λ)
Γ (ν + λ+ θ) , λ≥ 0.
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In Example 5.26, it was shown that φ is the Laplace exponent of some subordinator.
Its characteristics are κ = 0, δ = 0,

Υ (x,∞)= c

Γ (θ)
e−x(ν+θ−1)(ex − 1

)θ−1
, x > 0.

It is not difficult to show that Υ has a non-increasing density. It follows from The-
orem 9.2 that there exists an oscillating spectrally negative Lévy process, say X,
whose Laplace exponent is ψ(λ) = λφ(λ), λ ≥ 0, with σ = 0, and Lévy density
given by −d2Υ (x,∞)/dx2. Again, referring back to Example 5.26, and taking ac-
count of (9.7), we may identify its associated scale function as

W(x)= Γ (ν + θ)
cΓ (ν)

+ θ

cΓ (1− θ)
∫ x

0

{∫ ∞

y

ez(1−ν)

(ez − 1)1+θ
dz

}

dy, x ≥ 0.

An interesting feature of this example is that one may use the fact that φ is a
special subordinator to develop a second example. Indeed the computation in (5.35)
shows

φ∗(λ) := λ

φ(λ)
= Γ (ν + θ)

cΓ (ν)
+ θ

cΓ (1− θ)
∫ ∞

0

(
1− e−λx

) ex(1−ν)

(ex − 1)1+θ
dx, λ≥ 0.

On inspection, we immediately see that the Lévy density of φ∗ is non-increasing
and hence

ψ∗(λ)= λφ∗(λ)= λ2

φ(λ)
, λ≥ 0,

defines the Laplace exponent of a spectrally negative Lévy process. Taking account
of the fact that φ∗(0) > 0, that is to say, the subordinator corresponding to φ∗ is
killed, it follows that the parent process, corresponding to ψ∗, drifts to +∞.

Looking again back into Example 5.26, we can quickly deduce from (5.36) that

W ∗(x)= c

Γ (θ)

∫ x

0
e−z(ν+θ−1)(ez − 1

)θ−1dz.

The method described in this example can be formalised into a general theory
that applies to a large family of subordinators, namely that of special subordinators.

9.3 Special and Conjugate Scale Functions

Recall from Sect. 5.6 that the class of Bernstein functions coincides precisely with
the class of Laplace exponents of (possibly-killed) subordinators. That is to say,
a general Bernstein function takes the form (9.2). Recall, moreover, that a given
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Bernstein function, φ, is further called a special Bernstein function if

φ(λ)= λ

φ∗(λ)
, λ≥ 0, (9.16)

where φ∗(λ) is another Bernstein function. In that case, φ∗ is referred to as conju-
gate to φ. Accordingly, a (possibly-killed) subordinator is called a special subordi-
nator if its Laplace exponent is a special Bernstein function.

Suppose that we use obvious notation and write (κ∗, δ∗,Υ ∗) for the Lévy triple
associated with φ∗. Then Theorem 5.19 offers a very concise relationship between
the potential measure associate to φ and the triple (κ∗, δ∗,Υ ∗). Let us denote by
W(dx) the potential measure of φ. (It will of course prove to be no coincidence
that we have chosen this notation to coincide with the notation for a scale function.)
Then we have that W necessarily satisfies

W(dx)= δ∗δ0(dx)+
{
κ∗ +Υ ∗(x,∞)}dx, for x ≥ 0, (9.17)

where δ0(dx) is the Dirac measure at zero. Naturally, ifW ∗ is the potential measure
of φ∗ then we may describe it the same way as on the right-hand side of (9.17),
using instead the triple (κ, δ,Υ ).

We are interested in constructing a parent process whose descending ladder
height process is a special subordinator. The following theorem and corollary are
now evident given the above discussion when taken in the light of Theorem 9.2.

Theorem 9.6 Suppose that φ and φ∗ are a conjugate pair of special Bernstein
functions such that Υ is absolutely continuous with non-increasing density. Then
there exists a spectrally negative Lévy process that does not drift to −∞, whose
Laplace exponent is described by

ψ(λ)= λ2

φ∗(λ)
= λφ(λ), for λ≥ 0, (9.18)

and whose scale function is a concave function, given by

W ∗(x)= 1− e−x + x
∫ ∞

x

e−z

z
dz, x ≥ 0. (9.19)

The assumptions of the previous theorem only require that both the Lévy and
potential measures associated with φ have a non-increasing density in (0,∞). Note,
from Theorem 5.19, that the aforementioned condition on the potential measure of φ
is equivalent to insisting that φ is a special subordinator. If, in addition, it is assumed
that the potential density is a convex function, that is to say, Υ ∗ has a non-increasing
density, then, in light of the representation (9.19), we can interchange the roles of φ
and φ∗, respectively, in the previous theorem. We thus have the following corollary.

Corollary 9.7 If φ and φ∗ are a conjugate pair of special Bernstein functions such
that both Υ and Υ ∗ are absolutely continuous with non-increasing densities, then
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there exists a pair of scale functions W and W ∗, such that W is concave, its first
derivative is a convex function, (9.19) is satisfied, and

W ∗(x)= δ + κx +
∫ x

0
Υ (y,∞)dy. (9.20)

Moreover, the Laplace exponents of the respective parent processes are given
by (9.18) and

ψ∗(λ)= λ2

φ(λ)
= λφ∗(λ), λ≥ 0. (9.21)

For obvious reasons, we shall henceforth refer to the scale functions W and W ∗
as conjugate special scale functions. Similarly, we call their respective parent pro-
cesses conjugate parent processes. The conjugation of W and W ∗ through the rela-
tion (9.16) can also be seen via the convolution relation

W ∗W ∗(dx)= dx,

for x ≥ 0.

9.4 Tilting and Parent Processes Drifting to −∞
In this section, we present two methods for which, given a scale function and its
associated parent process, it is possible to construct further examples of scale func-
tions. We use the same notation as in the previous section.

For the first, let φ be a special Bernstein function with representation given
by (9.2). Then it is a straightforward computation, in the spirit of Theorem 3.9,
to show that, for any β ≥ 0, the function φβ(λ) = φ(λ + β), λ ≥ 0, is again a
Bernstein function with killing rate κβ = φ(β), drift coefficient δβ = δ and Lévy
measure Υβ(dx) = e−βxΥ (dx), x > 0. By taking Laplace transforms, it is also
straightforward to verify that the potential measure associated with φβ , say Wβ ,
has the same-sized atom at zero as W and a decreasing density in (0,∞) such that
Wβ(dx)= e−βxW ′(x)dx, for x > 0, where W ′ denotes the density of the potential
measure associated with φ. This immediately qualifies φβ as a special subordinator
thanks to Theorem 5.19. Exercise 9.6 gives an expression for its conjugate, φ∗β .

Note that, if Υ has a non-increasing density, then so does Υβ . Moreover, ifW ′ is
convex (equivalently Υ ∗ has a non-increasing density) then W ′β is convex (equiva-
lently Υ ∗β has a non-increasing density). We have the following lemma.

Lemma 9.8 Fix β ≥ 0. If conjugate special Bernstein functions φ and φ∗ exist
such that both Υ and Υ ∗ are absolutely continuous with non-increasing densities,
then there exist conjugate parent processes with Laplace exponents

ψβ(λ)= λφβ(λ) and ψ∗β(λ)= λφ∗β(λ), λ≥ 0,
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whose respective scale functions are given by

Wβ(x) = δ∗ +
∫ x

0
e−βy

(
Υ ∗(y,∞)+ κ∗)dy

= e−βxW(x)+ β
∫ x

0
e−βzW(z)dz, x ≥ 0, (9.22)

and

W ∗β (x)= δ + φ(β)x +
∫ x

0

(∫ ∞

y

e−βzΥ (dz)
)

dy, x ≥ 0. (9.23)

where we have used obvious notation.

Proof Taking account of (9.19) and (9.20), all of the statements in this lemma follow
in a straightforward way from the discussion preceding it. We shall, however, only
elaborate on the first equality in (9.22). By invoking the formula in (9.19) for Wβ ,
it suffices to identify the triple (κ∗β, δ∗β,Υ ∗β ) belonging to φ∗β . Note that, on account
of (5.26) and the fact that κβ = φβ(0) = φ(β) > 0, it follows that the killing rate
κ∗β must be identically zero. Since Wβ(dx) = e−βxW ′(x)dx, we also have from

Theorem 5.19 that Υ ∗β (x,∞) = e−βxW ′(x) = e−βx(Υ ∗(x,∞) + κ∗). Finally, to
obtain the value of δ∗β , note from Exercise 2.11 that it suffices to consider the limit
of φβ(λ)/λ as λ ↑∞. One readily deduces that δ∗β = δ∗. �

The second procedure builds on the first to construct examples of scale functions
whose parent process may be seen as an auxiliary parent process conditioned to drift
to −∞.

Suppose that φ is a Bernstein function such that κ = 0 and its associated Lévy
measure, Υ , has a non-increasing density. Fix β > 0. Theorem 9.2 says that there
exists a parent process, say X, that drifts to −∞, such that its Laplace exponent, ψ ,
can be factorised as

ψ(λ)= (λ− β)φ(λ), λ≥ 0.

Necessarily ψ is a convex function with ψ(0)= 0= ψ(β), so that β is the largest
positive solution to the equation ψ(λ) = 0. From previous discussion, we know
that φβ(λ) := φ(λ+ β) is a Bernstein function with a non-zero killing component
and Lévy measure with non-increasing density. Hence, Theorem 9.2 permits us to
conclude thatψβ(λ) :=ψ(λ+β)= λφβ(λ), λ≥ 0, is also the Laplace exponent of a
parent process. Note in particular that ψ ′β(0+)=ψ ′(β) > 0 and hence the aforesaid
parent process drifts to +∞.

Now, let Wβ be the scale function of the spectrally negative Lévy process with
Laplace exponentψβ(λ). It follows from formula (8.23), with q = 0, that the 0-scale
function of the process with Laplace exponent ψ is related to Wβ by

W(x)= eβxWβ(x), x ≥ 0.
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The above considerations thus lead to the following result, which allows for the
construction of a scale function of a parent process which drifts to −∞.

Lemma 9.9 Suppose that φ is a special Bernstein function such that Υ is ab-
solutely continuous with non-increasing density and κ = 0. Fix β > 0. Then there
exists a parent process with Laplace exponent

ψ(λ)= (λ− β)φ(λ), λ≥ 0,

whose associated scale function is given by

W(x)= δ∗eβx + eβx
∫ x

0
e−βy

(
Υ ∗(y,∞)+ κ∗)dy, x ≥ 0,

where we have used our usual notation.

9.5 Complete Scale Functions

All the results in the previous two sections require that the conjugate pairs of spe-
cial Bernstein functions have Lévy measures, Υ and Υ ∗, which have non-increasing
densities. We have seen earlier in Sect. 5.6 that a natural subclass of Bernstein func-
tion, which respects this requirement, is that of the complete Bernstein functions.
Indeed, all Bernstein functions in the aforementioned class have the defining prop-
erty that their Lévy densities, and consequently the Lévy densities of their conju-
gates, are completely monotone and hence, in particular, non-increasing. We have
the following obvious corollary to Theorem 9.6.

Corollary 9.10 For any conjugate pair of complete Bernstein functions, φ and φ∗,
the pair

ψ(λ)= λ2

φ∗(λ)
= λφ(λ) and ψ∗(λ)= λ2

φ(λ)
= λφ∗(λ), λ≥ 0.

defines the Laplace exponents of parent processes with respective scale functions
given by (9.19) and (9.20).

Scale functions which belong to the parent processes of complete Bernstein func-
tions are, naturally, referred to as complete scale functions. Note that we can also
easily deduce from Corollary 5.24 that complete scale functions have completely
monotone densities. Note also that the scale functions discussed in Examples 9.4
and 9.5 are all complete. Let us conclude this chapter and section with another ex-
ample of a family of complete scale functions.
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Example 9.11 Let 0< α < β ≤ 1, a, b > 0 and φ be the Bernstein function defined
by

φ(λ)= aλβ−α + bλβ, λ≥ 0.

When α < β < 1, φ is the Laplace exponent of a subordinator which is obtained as
the sum of two independent stable subordinators. One has parameter β − α and the
other has parameter β , so that the killing and drift term of φ are both equal to 0, and
its Lévy measure is given by

Υ (dx)=
(

a(β − α)
Γ (1− β + α)x

−(1+β−α) + bβ

Γ (1− β)x
−(1+β)

)

dx, x > 0.

In the case that β = 1, φ is the Laplace exponent of a stable subordinator with
parameter 1− α and a linear drift. In all cases, the Lévy measure Υ has a density
which is completely monotone, and thus its potential density, or equivalently the
density of the associated scale functionW , is completely monotone.

Recall the definition (9.14) of the Mittag–Leffler function Eα,β(x) and its associ-
ated transformation (9.15). With the help of the latter, the scale function associated
with the parent process of φ can now be identified via its density on (0,∞),

W ′(x)= 1

b
xβ−1Eα,β

(−axα/b), x > 0, (9.24)

which, by Theorem 5.24, is necessarily a completely monotone function. The parent
process has Laplace exponent

ψ(λ)= λφ(λ)= aλβ−α+1 + bλβ+1, λ≥ 0,

and hence is the independent sum of two spectrally negative stable processes with
stability indices β + 1 and 1 + β − α, respectively. It therefore has paths of un-
bounded variation, which implies that W(0) = 0. Integrating (9.24), we thus con-
clude that

W(x)= 1

b

∫ x

0
tβ−1Eα,β

(−atα/b)dt, x ≥ 0.

The respective conjugates to φ, ψ and W are given by

φ∗(λ)= λ

aλβ−α + bλβ , ψ∗(λ)= λ2

aλβ−α + bλβ , λ≥ 0,

and

W ∗(x)= a

Γ (2− β + α)x
1−β+α + b

Γ (2− β)x
1−β, x ≥ 0. (9.25)

The subordinator with Laplace exponent φ∗ has zero killing and drift terms and
its Lévy measure is obtained by taking the derivative of the expression in (9.24).
By Theorem 9.2, the spectrally negative Lévy process with Laplace exponent ψ∗
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oscillates, has unbounded variation, has zero Gaussian term and the density of its
Lévy measure is obtained from expression in (9.24) together with (9.10).

One may mention here that, by letting a ↓ 0, the Continuity Theorem for Laplace
transforms tells us that, for the case φ(λ)= bλβ , the associated parent process has
the Laplace exponent of a spectrally negative stable process with stability parameter
1+ β , and its scale function is given by

W(x)= 1

bΓ (1+ β)x
β, x ≥ 0.

The associated conjugates are given by

φ∗(λ)= b−1λ1−β, ψ∗(λ)= b−1λ2−β, λ≥ 0,

and

W ∗(x)= b

Γ (2− β)x
1−β, x ≥ 0.

The Lévy measure of the conjugate parent process is given by

Π∗(−∞,−x)= β(1− β)
bΓ (1+ β)x

β−2, x ≥ 0.

To complete this example, note that we can also consider the construction in
Sect. 9.4. For, m,a,b > 0, 0< α < β < 1, there exists a parent process drifting to
−∞, with Laplace exponent

ψ(λ)= (λ−m)(aλβ−α + bλβ), λ≥ 0.

It follows, from the previous calculations, that the scale function associated with the
parent process with this Laplace exponent is given by

W(x)= emx

b

∫ x

0
e−mt tβ−1Eα,β

(−atα/b)dt, x ≥ 0.

Exercises

9.1 Suppose we are in the setting of Example 9.4. That is to say, we consider the
case of a spectrally negative Lévy process which is the parent process of a subordi-
nator with Laplace exponent

φ(λ)= κ + cΓ (−α)((γ + λ)α − γ α), λ≥ 0,

where κ ≥ 0, c, γ > 0 and α ∈ (−1,1)\{0}.
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(i) Suppose that 0< α < 1. Show that for all q ≥ 0, as x ↓ 0,

W(q)(x)∼− xα

cΓ (−α)Γ (1+ α) and W(q)′(x)∼− xα−1

cΓ (−α)Γ (α) .

(ii) Suppose that −1< α < 0. Show that for all q ≥ 0, as x ↓ 0,

W(q)(x)∼ 1

κ + cγ αΓ (−α) and W(q)′(x)∼ cx−α−1

(κ + cγ αΓ (−α))2 .

(iii) Now suppose that κ = 0 and α = 1/2. Show that, if the parent process is oscil-
lating, then

W(x)= 1

4c
√
γπ

[

(1+ 2γ x)erfc
(−√γ x)+ 2

√
xγ

π
e−γ x − 1

]

,

where

erfc(x)= 2√
π

∫ ∞

x

e−t2dt

is the complementary error function.

9.2 This exercise is based on computations found in Konstantopoulos et al. (2011).
Consider the spectrally negative Lévy process with Laplace exponent

ψ(λ) := λ−
√

2λ+ c2 + c, λ≥ 0,

where c > 0. Show that, for all q ≥ 0,

W(q)(x)= e−c2x/2

η1 − η2

(
η1eη

2
1 x/2 erfc

(−η1
√
x/2

)− η2eη
2
2 x/2 erfc

(−η2
√
x/2

))
,

where

η1 := 1+
√

(1− c)2 + 2q, η2 := 1−
√

(1− c)2 + 2q. (9.26)

9.3 Show that ψ(λ)= λ log(1+ λ), λ≥ 0, is the Laplace exponent of a spectrally
negative Lévy process.

(i) Deduce that its scale function satisfies

W(x)=
∫ x

0
e−y

{∫ ∞

0

yt−1

Γ (t)
dt

}

dy, x ≥ 0.
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(ii) Show that W given above is a complete scale function and its conjugate scale
function is given by

W ∗(x)= x
∫ x

0

e−z

z
dz+ e−x, x ≥ 0.

9.4 Suppose that X is a Brownian motion with drift and compound Poisson jumps
which are exponentially distributed. That is to say

Xt = σBt +μt −
Nt∑

i=1

ξi, t ≥ 0,

where ξi are i.i.d. random variables which are exponentially distributed with param-
eter ρ > 0 and N = {Nt : t ≥ 0} is an independent Poisson process with intensity
a > 0.

(i) Show that the Laplace exponent, ψ , of X satisfies

ψ(λ)= σ
2

2
λ2 +μλ− aλ

ρ + λ, λ ∈R\{−ρ}.

(ii) By considering the behaviour ofψ(λ) as λ→±∞ and λ→ ρ±, verify that, for
every q > 0, the equation ψ(λ)= q has exactly three real solutions −ζ2,−ζ1
and Φ(q), which satisfy

−ζ2 <−ρ <−ζ1 < 0<Φ(q).

(iii) Deduce that, for all q > 0,

W(q)(x)= eΦ(q)x

ψ ′(Φ(q))
+ e−ζ1x

ψ ′(−ζ1) +
e−ζ2x

ψ ′(−ζ2) , x ≥ 0.

(iv) More generally, suppose that X is a spectrally negative meromorphic Lévy
process. In particular, suppose its Lévy density satisfies

π(x)= 1{x<0}
∞∑

j=1

ajρj e
ρj x,

where the coefficients aj and ρj are positive, ρj increase to +∞ as j→+∞
and

∑

j≥1

aj

ρ2
j

<∞.

Use Corollary 6.21 to show that, for q > 0,

W(q)(x)= eΦ(q)x

ψ ′(Φ(q))
+
∞∑

j=1

e−ζj x

ψ ′(−ζj ) , x ≥ 0,
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where

· · ·<−ρ2 <−ζ2 <−ρ1 <−ζ1 < 0<Φ(q)

solve ψ(λ)= q on R. What happens as q ↓ 0?
(v) Suppose that X does not drift to −∞. Explain why W is a complete scale

function and write down an expression for its conjugate.

9.5 Suppose that Π is the Lévy measure of a spectrally negative Lévy process,
X, and define, for all x > 0, Π(x) = Π(−∞,−x). Suppose now that −Π has a
completely monotone density on (0,∞).

(i) Suppose that ψ ′(0+) ≥ 0. Show that the scale function, W , of X has a com-
pletely monotone density.

(ii) Now remove the assumption on ψ ′(0+). For each q ≥ 0, use the previous
part of the question to show that WΦ(q), the scale function associated with
(X,PΦ(q)), has a completely monotone density.

(iii) Use part (ii) of the question to deduce that, for any given spectrally negative
Lévy process whose Lévy measure has the property that −Π has a completely
monotone density on (0,∞), for each q ≥ 0,W(q)′ is a strictly convex function.

9.6 Suppose that φ(λ) is a special Bernstein function. It was shown in Sect. 9.4
that, for fixed β ≥ 0, φβ(λ) := φ(λ + β), λ ≥ 0 is a special Bernstein function.
Show that its conjugate, φ∗β , satisfies

φ∗β(λ)= φ∗(λ+ β)− φ∗(β)+ β
∫ ∞

0

(
1− e−λx

)
e−βxW ′(x)dx, λ≥ 0.

9.7 Use (9.8) and (9.19) to give an alternative proof to Lemma 9.9.

9.8 This example may be considered as an extension of Exercise 5.13, see also
Chazal et al. (2012). Fix β > 0 and suppose that ψ(λ), λ≥ 0, is the Laplace expo-
nent of a spectrally negative Lévy process. Consider the following transformation:

Tβψ(λ)= λ

λ+ βψ(λ+ β), λ≥−β.

(i) Suppose that the Lévy process associated with ψ has Gaussian coefficient σ
and Lévy measure Π , concentrated on (−∞,0). Show that Tβψ is also the
Laplace exponent of a spectrally negative Lévy process with Gaussian coeffi-
cient σ . Moreover, its Lévy measure is given by

eβxΠ(dx)+ βeβxΠ(x)dx on (−∞,0),

where Π(x)=Π(−∞,−x).
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(ii) Suppose thatWψ is the scale function associated with the Laplace exponent ψ .
Show that, for x ≥ 0 and β > 0,

WTβψ(x)= e−βxWψ(x)+ β
∫ x

0
e−βyWψ(y)dy.



Chapter 10
Ruin Problems and Gerber–Shiu Theory

Recall from Sects. 1.3.1 and 2.7.1 that a natural generalisation of the classical
Cramér–Lundberg insurance risk model is a spectrally negative Lévy process; also
called a Lévy insurance risk process. In this chapter, we shall return to the first-
passage problem for Lévy processes, which has already been studied in Chap. 7 and
look at the role it plays in a family of problems which have proved to be an ex-
tensive topic of research in the actuarial literature. Many of the problems we shall
consider are inspired by the longstanding collaborative contributions of Hans Gerber
and Elias Shiu, thereby motivating the title of this chapter.

We shall start by reviewing classical results that have already been treated im-
plicitly, if not explicitly, earlier in this book. Largely, this concerns the exact and
asymptotic distributions of overshoots and undershoots of the Lévy insurance risk
process at ruin. Thereafter, we shall turn our attention to more complex models of
insurance risk in which dividends or tax are paid out of the insurance risk process,
thereby adjusting its trajectory. In this setting, a number of identities concerning
ruin of the resulting adjusted process, as well as the dividends or tax paid out until
ruin, are investigated.

Throughout this chapter, X will denote an insurance risk process which will al-
ways be assumed to belong to the class of spectrally negative Lévy processes. Unless
otherwise stated, we shall also assume throughout this chapter the security loading
condition

lim
t↑∞Xt =∞, (10.1)

which is equivalent to the assumption ψ ′(0+) > 0 where, as usual, ψ is the Laplace
exponent of X; see (8.1). Many of the technical features of the theory of spectrally
negative Lévy processes, for example excursion theory and the theory of scale func-
tions, will inevitably play a central role in our analysis. Accordingly, we shall adopt
the same notation as in Chap. 8.

A.E. Kyprianou, Fluctuations of Lévy Processes with Applications, Universitext,
DOI 10.1007/978-3-642-37632-0_10, © Springer-Verlag Berlin Heidelberg 2014
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10.1 Review of Distributional Properties at Ruin

As alluded to earlier, the ruin problem for the process X is one and the same as
the first-passage problem, which has already been studied extensively in Chap. 7
(for the case of −X). Let us therefore spend some time in this section gathering
together some of the facts that we have already established in previous chapters, for
the special setting of a Lévy insurance risk process. To this end, we start by recalling
that the ruin time is written as

τ−0 = inf{t > 0 :Xt < 0},
in which case the so-called deficit at ruin may be identified as −Xτ−0 and the wealth
prior to ruin is identified as Xτ−0 −.

The probability of ruin. Recall that, for each spectrally negative Lévy process, we
can define its scale function, W , through the Laplace transform in (8.8). The
probability of ruin, when the initial surplus is valued at x ≥ 0, is given in The-
orem 8.1 (ii) by

Px

(
τ−0 <∞

)= 1−ψ ′(0+)W(x).
When X has paths of bounded variation, recall that we may write

Xt = δt − St , t ≥ 0, (10.2)

where δ > 0, {St : t ≥ 0} is a driftless subordinator and the Lévy measure
of which we shall denote by Υ . Note that this class includes the Cramér–
Lundberg model by taking Υ (·) = λF(·), where λ is the rate of arrival of
claims and F(·) is the claim distribution on (0,∞). Using Exercise 8.3, one
can recover easily the Pollaczek–Khintchine formula

Px

(
τ−0 =∞

)= ψ
′(0+)
δ

∑

n≥0

ν∗k(x), x ≥ 0,

where ν(dx) = δ−1Υ (x,∞)dx on (0,∞) and we understand ν∗0(dx) =
δ0(dx).

Cramér’s estimate of ruin. Recall that the Laplace exponent, ψ , of X is a convex
function on (0,∞). Theorem 7.6 tells us that, if there exists an α > 0 such
that ψ(−α)= 0 (the so-called Cramér condition) then, under mild additional
conditions, the ruin probability Px(τ

−
0 <∞) should decay exponentially as a

function of x with rate α. To be precise, if we assume that the Lévy measure
Π of X does not have lattice support when Π(−∞,0) <∞, then one easily
checks from the statement of Theorem 7.6, with the help of (6.35), that

lim
x↑∞ eαxPx

(
τ−0 <∞

)= ψ ′(0)
|ψ ′(−α)| .

Note in particular that, thanks to the convexity of the Laplace exponent ψ and
the fact that ψ(−α)=ψ(0)= 0, it follows that ψ ′(−α) < 0.
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Heavy-tailed estimates of ruin. Cramér’s estimate of ruin requires the existence of
an α > 0 such that E(e−αXt ) = 1 for all t ≥ 0. Hence, it follows from Theo-
rem 3.6 that

∫

(−∞,−1)
e−αxΠ(dx) <∞,

showing the existence of exponential moments in the Lévy measure. Theo-
rem 7.16 (i) shows us that when the Cramér condition fails, then radically
different asymptotics of the ruin probability can occur. Indeed, whenever
Π(−∞,−x), x ≥ 0, is regularly varying at infinity with index −(α + 1), for
α > 0, then

Px

(
τ−0 <∞

)∼ 1

ψ ′(0+)
∫ ∞

x

Π(−∞,−y)dy,

as x ↑∞.
Deficit at ruin. As noted above, the deficit at ruin is nothing other than−Xτ−0 . How-

ever, in the proof of Theorem 7.8, we saw that this quantity, under Px , x > 0,
can also be identified as ĤT̂x , where Ĥ := {Ĥt : t ≥ 0} is the descending ladder

height process of X and T̂x = inf{t > 0 : Ĥt > x}. Recall that Ĥ is a killed
subordinator, where the killing is a consequence of the security loading con-
dition (10.1). If we denote its potential measure by Û , then, recalling that the
security loading condition (10.1) is in force, we have, from the discussion in

Sect. 9.2, that Û (dz)=W(dx). HereW is the scale function associated withX.
Moreover, from Corollary 7.9, the Lévy measure of Ĥ , say ΠĤ (dx) on x > 0,
satisfies

ΠĤ (x,∞)=
∫ ∞

x

Π(z,∞)dz, x > 0.

In that case, we may appeal to Theorem 5.6 to deduce that, for u > 0 and x ≥ 0,

Px

(−Xτ−0 ∈ du, τ−0 <∞
)=

∫

[0,x]
W(dz)Π(x + u− z,∞)du.

Ruin by creeping. We know that any spectrally negative Lévy process creeps down-
wards if and only if it has a Gaussian component; see the discussion in Sect. 8.1
as well as Exercise 7.6. In that case, if σ is the Gaussian coefficient such that
σ 2 > 0, then in light of the comments concerning deficit at ruin given earlier,
we may also write the probability of ruin by creeping in terms of the prob-
ability that the descending ladder height process creeps over a level. Indeed,
recalling from Exercise 6.5 that the descending ladder height process has a
drift if and only if σ 2 > 0, in which case it is equal to σ 2/2, we may infer from
Theorem 5.9 that, for all x > 0,

Px

(−Xτ−0 = 0, τ−0 <∞
)= σ

2

2
W ′(x). (10.3)
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See also Exercise 8.6. Note that the existence of a first derivative of the scale
functionW is guaranteed by the fact that the underlying Lévy process has paths
of unbounded variation; cf. Lemma 8.2 and the comments thereafter.

With these observations in mind, we may dig deeper into some of the other re-
sults in earlier parts of this book and extract similarly relevant statements. One may
consider for example the relevance of Theorem 5.7, Exercise 5.10 and Theorem 7.16
(ii) to the asymptotic deficit at ruin as x ↑∞. In the next section, we address a topic
which is well represented in the actuarial literature. This is the time-penalised joint
law of the deficit at ruin and wealth immediately prior to ruin.

10.2 The Gerber–Shiu Measure

Within the setting of the classical Cramér–Lundberg model, Gerber and Shiu (1997,
1998) introduced the expected discounted penalty function as follows. If we imag-
ine that f : [0,∞)2→ [0,∞) is a measurable function such that f (−Xτ−0 ,Xτ−0 −)
reflects the economic cost to the insurer at the moment of ruin, then taking account
of a discounting force of interest, say q ≥ 0, the penalty function is given by

Ex

(
e−qτ

−
0 f (−Xτ−0 ,Xτ−0 −); τ

−
0 <∞

)
, (10.4)

where the initial surplus of the insurance company is x ≥ 0. More commonly, (10.4)
is referred to as the Gerber–Shiu penalty function.

Since its introduction into the actuarial literature, there has been an arms race
of publications studying the penalty function in settings of ever-increasing gener-
ality. Although far from exhaustive, on account of the extent of the relevant litera-
ture, a list of key papers includes Dickson (1992, 1993), Gerber and Landry (1998),
Lin and Willmot (1999), Cai and Dickson (2002), Cai (2004), Garrido and Morales
(2006), Morales (2007) and Yin and Wang (2009). For an encyclopaedic overview,
see Asmussen and Albrecher (2010). To some extent, until recently, this literature
has evolved disjointly from parallel developments in the theory of Lévy processes.
However, Zhou (2005) makes the important observation, from the point of view
of Lévy insurance risk processes, that the penalty function can be expressed in a
straightforward way in terms of scale functions. Moreover, within the same setting,
Biffis and Morales (2010) make the observation that a more general version of the
Gerber–Shiu penalty function, which allows the cost function f to take account of
the last minimum before ruin, that is Xτ−0 − = infs<τ−0

Xs , can be derived from the
quintuple law given in Theorem 7.7, again in terms of scale functions.

Let f : R3→ [0,∞) be a bounded measurable function such that f (0, ·, ·)= 0
and x, q ≥ 0. The generalised discounted penalty function associated with f and
q ≥ 0 is given by

φf (x, q)= Ex

(
e−qτ

−
0 f (−Xτ−0 , Xτ−0 −, Xτ−0 −); τ

−
0 <∞

)
. (10.5)

Note that the requirement f (0, ·, ·)= 0 simply ensures that the penalty function has
no contribution from the event of creeping when downward creeping is possible for
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X (that is, the case that there is a Gaussian component). The case of creeping at ruin
will shortly be developed separately.

It is more convenient to write the penalty function (10.5) in the form

φf (x, q)=
∫

(0,∞)3
1(v≥y)f (u, v, y) K(q)x (du, dv, dy),

where, for q, x ≥ 0, u < 0, v > 0 and 0< y ≤ v ∧ x, we define

K
(q)
x (du, dv, dy)

= Ex

(
e−qτ

−
0 ;Xτ−0 ∈ du, Xτ−0 − ∈ dv, Xτ−0 − ∈ dy, τ−0 <∞

)

to be the Gerber–Shiu measure.

Theorem 10.1 The Gerber–Shiu measure for a Lévy insurance risk process satis-
fies

K
(q)
x (du, dv, dy)

= e−Φ(q)(v−y)
{
W(q)′(x − y)−Φ(q)W(q)(x − y)}Π(du− v)dydv,

(10.6)

for q ≥ 0, x > 0, u < 0, v > 0 and 0< y ≤ v ∧ x.

It is worth mentioning that although the first derivative of W(q) is only defined
almost everywhere in general, we use W(q)′ in (10.6) as the density with respect to
Lebesgue measure. Unless otherwise stated, this convention will be applied through-
out the remainder of this chapter. Note also that this result does not cover the case
that x = 0. This is of no consequence when X has paths of unbounded variation
as ruin is instantaneous. However, when X has paths of bounded variation, we re-
call that 0 is irregular for (−∞,0), in which case one should expect a non-trivial
expression for the Gerber–Shiu measure. This is left to the reader in Exercise 10.2.

Proof of Theorem 10.1 According to the quintuple law in Theorem 7.7, we have,
for u < 0, v > 0 and 0< y ≤ v ∧ x,

Px

(
Xτ−0
∈ du, Xτ−0 − ∈ dv, Xτ−0 − ∈ dy, τ−0 <∞

)

= kW ′(x − y)Π(du− v)dydv, (10.7)

whereW is the scale function associated with X and k is a strictly positive constant,
which depends on the normalisation of the local time of X at its supremum.

We claim that the constant k is unity. Indeed, on the one hand, we have
from (8.35) that, for u < 0, v > 0,
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Px

(
Xτ−0
∈ du, Xτ−0 − ∈ dv, τ−0 <∞

)

= {
W(x)−W(x − v)}Π(du− v)dv. (10.8)

On the other hand, integrating out y in (10.7), we get the same expression as on the
right-hand side of (10.8), albeit for the factor k. We are thus forced to conclude that
k = 1.

To complete the proof, we need to develop the expression (10.7) so that it
incorporates exponential discounting at rate q > 0. However, this can be done
by considering (10.8) under the measure P

Φ(q), where we recall that Φ(q) =
sup{θ ≥ 0 : ψ(θ) = q} and P

Φ(q) is defined through the exponential change of
measure described in (8.5). Note in particular that, under PΦ(q), the process X is
still a Lévy insurance risk process, but now with Laplace exponent ψΦ(q)(θ) =
ψ(θ + Φ(q)) − q , θ ≥ 0, which still respects the security loading condition,
ψ ′Φ(q)(0+)=ψ ′(Φ(q)) > 0. Moreover, the scale function ofX under PΦ(q), written

WΦ(q)(x), is related to W(q), the q-scale function of X under P, via the relation

W(q)(x)= eΦ(q)xWΦ(q)(x), (10.9)

for x ∈R; see Lemma 8.4.
Revisiting the identity (10.7) with k = 1 but under the law P

Φ(q) instead, we now
have

Ex

(
e−qτ

−
0 ;Xτ−0 ∈ du, Xτ−0 − ∈ dv, Xτ−0 − ∈ dy, τ−0 <∞

)

= eΦ(q)(x−u)PΦ(q)x

(
Xτ−0
∈ du, Xτ−0 − ∈ dv, Xτ−0 − ∈ dy, τ−0 <∞

)

= eΦ(q)(x−u)W ′Φ(q)(x − y)ΠΦ(q)(du− v)dydv, (10.10)

where ΠΦ(q) is the Lévy measure associated with (X,PΦ(q)). From Theorem 3.9
we know that ΠΦ(q)(dx) = eΦ(q)xΠ(dx) on (−∞,0). Moreover, the almost-
everywhere derivative of (10.9) gives us, for x ∈R,

W(q)′(x)−Φ(q)W(q)(x)= eΦ(q)xW ′Φ(q)(x). (10.11)

Plugging this back into (10.10), we get

Ex

(
e−qτ

−
0 ;Xτ−0 ∈ du, Xτ−0 − ∈ dv, Xτ−0 − ∈ dy, τ−0 <∞

)

= e−Φ(q)(v−y)
{
W(q)′(x − y)−Φ(q)W(q)(x − y)}Π(du− v)dydv,

where u < 0, v > 0 and 0< y ≤ v∧ x. Note in particular when q = 0, recalling that
Φ(0) = 0 as the process X drifts to ∞, we see agreement with the formula (10.7)
and the proof is complete. �

It is a straightforward computation to marginalise the kernel K(q)x (du,dv,dy) in
y to give the bivariate Gerber–Shiu measure specifying the joint distribution of the



10.3 Reflection Strategies 281

deficit at ruin and wealth prior to ruin, the classical quantities of interest. With a
slight abuse of notation, let us refer to this measure as K(q)x (du,dv).

Corollary 10.2 Within the setting of Theorem 10.1, we have, for q ≥ 0, x > 0,
v > 0 and u < 0,

K
(q)
x (du, dv)= {

e−Φ(q)vW(q)(x)−W(q)(x − v)}Π(du− v)dv.

Note that, when q = 0, the measure K(q)(du,dv,dy), and hence the measure
K(q)(du,dv), is not necessarily a probability measure on account of the fact that we
have excluded consideration of ruin by creeping in its definition. It was remarked
earlier that ruin by creeping occurs if and only if σ 2 > 0, in which case the probabil-
ity of this event is given by (10.3). Exercise 10.1 gives an identity for the penalised
probability of ruin by creeping Ex(e−qτ

−
0 ;Xτ−0 =Xτ−0 − =Xτ−0 = 0).

10.3 Reflection Strategies

An adaptation of the classical ruin problem was introduced by de Finetti (1957) in
which dividends are paid out to shareholders up to the moment of ruin. De Finetti
was interested in finding a way of paying out dividends such as to optimise the
expected present value of the total income of the shareholders from time zero until
ruin. De Finetti’s dividend problem amounts to solving a control problem which we
reproduce here, albeit in the framework of a general Lévy insurance risk process.

Let ξ = {ξt : t ≥ 0} be a dividend strategy consisting of a process with initial
value zero, which has paths that are left-continuous, non-negative, non-decreasing
and adapted to the filtration of X. The quantity ξt thus represents the cumulative
dividends paid out up to time t ≥ 0 by the insurance company, whose risk-process is
modelled by X. The aggregate, or controlled, value of the risk process, when taking
account of dividend strategy ξ , is thus Uξ = {Uξt : t ≥ 0}, where Uξt = Xt − ξt ,
t ≥ 0. An additional constraint on ξ is that ξt+ − ξt ≤ max{Uξt ,0} for t ≥ 0 (i.e.
lump sum dividend payments are always smaller than the available reserves).

Let Ξ be the family of dividend strategies, as outlined in the previous paragraph,
and, for each ξ ∈ Ξ , write σ ξ = inf{t > 0 : Uξt < 0} for the time at which ruin
occurs for the controlled risk process. The expected present value, with discounting
at rate q ≥ 0, associated with the dividend policy ξ is given by

vξ (x)= Ex

(∫ σ ξ

0
e−qtdξt

)

,

where the risk process has initial capital x ≥ 0. De Finetti’s dividend problem con-
sists of solving the stochastic control problem

v∗(x) := sup
ξ∈Ξ

vξ (x), x ≥ 0. (10.12)
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That is to say, if it exists, to establish a strategy, ξ∗ ∈Ξ , such that v∗ = vξ∗ .
This problem was considered by Gerber (1969), Gerber (1972) and by Azcue

and Muler (2005) for the Cramér–Lundberg model. Thereafter, a string of articles,
each one successively improving on the previous, treated the case of a general Lévy
insurance risk process; see Avram et al. (2007), Loeffen (2008), Kyprianou et al.
(2010b) and Loeffen and Renaud (2010). We shall refrain from giving a complete
account of their findings other than to say that under appropriate conditions on the
underlying Lévy measure ofX, the optimal strategy consists of a so-called reflection
strategy. Specifically, there exists an a∗ ∈ [0,∞) such that the optimal strategy,
ξ∗ = {ξ∗t : t ≥ 0}, satisfies ξ∗0 = 0 and

ξ∗t =
(
a∗ ∨Xt

)− a∗, t ≥ 0.

In that case, the ξ∗-controlled risk process, say U∗ = {U∗t : t ≥ 0}, is identical to the
process {a∗ − Yt : t ≥ 0} under Px , where

Yt =
(
a∗ ∨Xt

)−Xt, t ≥ 0,

and Xt = sups≤t Xs is the running supremum of the Lévy insurance risk process.
Note that Y has earlier been identified as the process X reflected in its supremum,
cf. Sect. 8.5, which motivates the name of the strategy ξ∗. For x ∈ (0, a∗), we may
now write

v∗(x)= Ex

(∫ σ ∗

0
e−qtdξ∗t

)

,

where σ ∗ = inf{t ≥ 0 : U∗t < 0} = inf{t > 0 : Yt > a∗}. From Loeffen (2008), we
know that sufficient (but not necessary) conditions that ensure the reflection strat-
egy is optimal are that the q-scale function, W(q), associated with X is sufficiently
smooth and has a convex first derivative. Here, sufficiently smooth means that it is
continuously differentiable1 on (0,∞) when X has bounded variation paths and,
otherwise, it is twice continuously differentiable in (0,∞). In that case, the optimal
threshold is given by

a∗ = sup
{
c ≥ 0 :W(q)′(c)≤W(q)′(x) for all x ≥ 0

}
.

Exercise 9.5 shows that the above sufficient conditions are met when the function
x �→Π(−∞,−x), x ≥ 0, is completely monotone.

Understanding distributional properties of the random variable
∫ σ ∗

0 e−qtdξ∗t , that
is, the present value of the optimal dividend strategy paid until ruin, is our main
focus of interest in this section. Theorem 10.3 below pertains to the work of Gerber
(1972), Dickson and Waters (2004), Kyprianou and Palmowski (2007) and Renaud

1Recall from the discussion following Lemma 8.2 thatW(q) is continuously differentiable when X
has paths of unbounded variation and otherwise it is continuously differentiable if and only if the
Lévy measure of X has no atoms.



10.3 Reflection Strategies 283

and Zhou (2007). See also Albrecher and Gerber (2011). Specifically, it gives a
closed-form expression for the optimal value function below the optimal threshold,

v∗(x)= W(q)(x)

W
(q)′
+ (a∗)

, x ≤ a∗, (10.13)

where, for all q ≥ 0, W(q)′
+ is the right derivative of the scale function.

Theorem 10.3 Let a > 0 and define the process ξa = {ξat : t ≥ 0} by

ξat = (a ∨Xt)− a, t ≥ 0.

For n= 1,2, . . . and 0≤ x ≤ a, we have

Ex

[(∫ σa

0
e−qtdξat

)n]

= n!W
(qn)(x)

W(qn)(a)

n∏

k=1

W(qk)(a)

W
(qk)′
+ (a)

,

where

σa = inf
{
t > 0 : (a ∨Xt)−Xt > a

}
.

Proof We begin by noting that it suffices to prove the result when x = a. Indeed,
since ξa increases on the set of times that the reflected process Y is equal to zero,
equivalently, the set of times at which Uξ

a
is equal to a, the strong Markov property

for a − Y implies that

Ex

[(∫ σa

0
e−qtdξat

)n]

= Ex

[(∫ σa

τ+a
e−qtdξat

)n
1(τ+a <τ−0 )

]

= Ex

(
e−qnτ+a 1(τ+a <τ−0 )

)
Ea

[(∫ σa

0
e−qtdξat

)n]

= W
(qn)(x)

W(qn)(a)
Ea

[(∫ σa

0
e−qtdξat

)n]

, (10.14)

where we recall that the stopping times τ+a and τ−0 for X are given by (8.7) and
where the final equality is a consequence of Theorem 8.1 (iii).

To deal with the expectation on the right-hand side of (10.14), let us start by
identifying the integral

∫ σa
0 e−qtdξat in terms of the process of excursions of X from

its supremum, introduced in Sect. 6.3. To start with, note that, under Pa , the random
variable

∫ σa
0 e−qtdξat is equal in law to

∫ σa
0 e−qtdXt under P, where σa = inf{t >

0 :Xt −Xt > a}. In the notation of Chap. 6, recall that, under P, the local time of X
at its maximum, L, may be taken as equal to X. Hence, after the change of variable
t �→ L−1

t , we are interested in the distribution of the random variable
∫ ∞

0
1(sups≤t εs≤a)e

−qL−1
t dt
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under P, where {(t, εt ) : t ≥ 0 and t 	= ∂} is the process of excursions of X from its
maximum, indexed by local time, as described in Sect. 6.3. Recall, moreover, that
εs is the supremum of the excursion indexed by local time s. Next, define

Jt =
∫ ∞

t

e−qL−1
u 1(sups≤u εs≤a)du.

Since,

d

dt
J nt =−nJn−1

t e−qL
−1
t 1(sups≤t εs≤a),

we obtain

Jn0 − Jnt = n
∫ t

0
e−qL−1

u 1(sups≤u εs≤a)J
n−1
u du. (10.15)

Recall from Lemma 6.8 that L−1
t is a stopping time. Hence, by the strong Markov

property (cf. Theorem 3.1) and the fact that the process of excursions of X from the
maximum, indexed by local time, forms a Poisson point process (cf. Theorem 6.14),
we can write for each t ≥ 0,

Jt = e−qL
−1
t 1(sups≤t εs≤a)J

∗
0 ,

where J ∗0 is independent of F
L−1
t

and has the same distribution as J0. In conclusion,
if we let

Ψn = E
(
Jn0

)
,

then

Ψn
(
1−E

(
e−nqL

−1
t 1(sups≤t εs≤a)

))= nΨn−1

∫ t

0
E
(
e−nqL−1

u 1(sups≤u εs≤a)
)
du.

(10.16)
Recalling again that L−1

t is a stopping time and appealing to the exponential change
of measure in (8.5), we have that

E
(
e−qnL

−1
t 1(sups≤t εs≤a)

)= e−Φ(qn)tPΦ(qn)
(

sup
s≤t
εs ≤ a

)
. (10.17)

The process (X,PΦ(qn)) is still a spectrally negative Lévy process which drifts
to +∞. (See for example the discussion at the beginning of Sect. 8.1.) Appealing
again to Theorem 6.14, we have, for t ≥ 0, that

P
Φ(qn)

(
sup
s≤t
εs ≤ a

)
= e−nΦ(nq)(ε>a)t , (10.18)

where nΦ(nq) is the excursion measure of the Poisson point process of excursions;
cf. Sect. 6.3.
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Considering (8.26) and (10.11) it is straightforward to show that

nΦ(nq)(ε > a)= W
(qn)′
+ (a)

W(qn)(a)
−Φ(qn), (10.19)

see (8.26).
Plugging (10.17), (10.18) and (10.19) back into (10.16), we now see the iteration

Ψn = nΨn−1
W(qn)(a)

W
(qn)′
+ (a)

,

which yields the desired result. �

10.4 Refraction Strategies

An adaptation of the optimal control problem (10.12) studied by Jeanblanc and
Shiryaev (1995), Asmussen and Taksar (1997), Gerber and Shiu (2006b) and Kypri-
anou et al. (2012b), in the setting of (Lévy) insurance risk processes deals with the
case that optimality is sought in a subclass, say Ξα , of the admissible strategies
Ξ , where α > 0 is a fixed parameter. Specifically, Ξα denotes the set of dividend
strategies ξ ∈Ξ such that

ξt =
∫ t

0
'sds, t ≥ 0,

where '= {'t : t ≥ 0} is uniformly bounded by α. That is to say, Ξα consists of div-
idend strategies which are absolutely continuous with uniformly bounded density.

Again, we refrain from going into the details of their findings, other than to say
that, under appropriate conditions, the optimal strategy, ξα = {ξαt : t ≥ 0}, in Ξα
turns out to satisfy

ξαt = α
∫ t

0
1(Us>b)ds, t ≥ 0,

for some b ≥ 0, where U = {Ut : t ≥ 0} is the controlled Lévy risk process X− ξα .
Each element of the pair (U, ξα) cannot be expressed autonomously and we are
forced to work within the confines of the stochastic differential equation (SDE)

Ut =Xt − α
∫ t

0
1(Us>b)ds, t ≥ 0, (10.20)

also written as

dUt = dXt − α1(Ut>b)dt, t ≥ 0.

For reasons that we shall elaborate on later, the process in (10.20) is called a re-
fracted Lévy process. It will be the main focus of our attention for the remainder of
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this section. We are guided largely by Kyprianou and Loeffen (2010) in our presen-
tation.

The very first issue we are confronted with when studying (10.20) is whether
a solution to this SDE exists. In order to keep our exposition as mathematically
convenient as possible, we shall henceforth make the following assumption.

For the remainder of this section, we restrict ourselves to the case that X is a
bounded variation spectrally negative Lévy process and 0 < α < δ, where δ is the
drift appearing in the decomposition (10.2).

Theorem 10.4 The SDE (10.20) has a unique pathwise solution.

Proof Start by recalling that all spectrally negative Lévy processes of bounded vari-
ation have the property that 0 is irregular for (−∞,0) and, moreover, that they
do not creep downwards. This means that, as 0 < α < δ, the process U , when
issued from a point in [b,∞), behaves as the spectrally negative Lévy process
{Xt − αt : t ≥ 0} until the first moment that it passes below b, which it does by
a jump. On the other hand, in (−∞, b), U behaves like the process X until it first
passes above b, which it does continuously.

Define the times Tn and Sn recursively as follows. We set S0 = 0 and, for n =
1,2, . . . , on the events that {Sn−1 <∞} and {Tn <∞} respectively, put

Tn = inf

{

t > Sn−1 :Xt − α
n−1∑

i=1

(Si − Ti) > b
}

,

Sn = inf

{

t > Tn :Xt − α
n−1∑

i=1

(Si − Ti)− α(t − Tn) < b
}

.

As usual we use the convention that inf∅ =∞. Since 0 is irregular for (−∞,0), the
difference between the two consecutive times Tn and Sn is strictly positive. More-
over, both sequences Tn and Sn increase to infinity almost surely.

Now we construct a solution to (10.20), U = {Ut : t ≥ 0}, as follows. The process
is issued from X0 = x and

Ut =
{
Xt − α∑n

i=1(Si − Ti), for t ∈ [Sn,Tn+1) and n≥ 0,

Xt − α∑n−1
i=1 (Si − Ti)− α(t − Tn), for t ∈ [Tn,Sn) and n≥ 1.

Note that, for n= 1,2, . . . , on the events {Sn−1 <∞} and {Tn <∞}, the times Tn
and Sn can then be identified as

Tn = inf{t > Sn−1 :Ut > b}, Sn = inf{t > Tn :Ut < b}.
Hence

Ut =Xt − α
∫ t

0
1{Us>b}ds, t ≥ 0.
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Fig. 10.1 A sample path of U when the driving Lévy process is a Cramér–Lundberg process. Its
trajectory “refracts” as it passes continuously above the horizontal dashed line at level b.

For uniqueness of this solution, suppose that {U(1)t : t ≥ 0} and {U(2)t : t ≥ 0} are
two pathwise solutions to (10.20). Then, writing

Δt =U(1)t −U(2)t =−α
∫ t

0
(1{U(1)s >b} − 1{U(2)s >b})ds,

it follows from integration by parts that

Δ2
t =−2α

∫ t

0
Δs(1{U(1)s >b} − 1{U(2)s >b})ds.

Thanks to the fact that 1{x>b} is an increasing function, it follows from the above
representation, that, for all t ≥ 0, Δ2

t ≤ 0 and hence Δt = 0 almost surely. This
concludes the proof of existence and uniqueness amongst the class of pathwise so-
lutions. �

Let us momentarily return to the reason why U is referred to as a refracted Lévy
processes. A simple sketch of a realisation of the path of U in the case that X is
a Cramér–Lundberg process (see for example Fig. 10.1) gives the impression that
the trajectory of U “refracts” each time it passes continuously from (−∞, b] into
(b,∞), much as a beam of light does when passing from one medium to another.2

The construction of the unique pathwise solution described above clearly shows
thatU is adapted to the natural filtration F= {Ft : t ≥ 0} ofX. Conversely, since, for
all t ≥ 0, Xt = Ut + α

∫ t
0 1{Us>b}ds, it is also clear that X is adapted to the natural

filtration of U . We can use this observation to reason that U is a strong Markov
process.

2See for example the discussion on p. 80 of Gerber and Shiu (2006b) which also makes reference
to “refraction” in the case of compound Poisson jumps. Gerber and Shiu (2006a) also use the
terminology “refraction” for the case that X is a linear Brownian motion.
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To this end, suppose that T is a stopping time with respect to F. Then define a
process Û whose dynamics are those of {Ut : t ≤ T } issued from x ∈ R and, given
FT , on the event that {T <∞}, it continues to evolve on the time horizon [T ,∞) as
the unique solution, say Ũ , to (10.20) driven by the Lévy process X̃ = {XT+s−XT :
s ≥ 0} and issued from UT . Note that by construction, on {T <∞}, the dependence
of {Ût : t ≥ T } on {Ût : t ≤ T } occurs only through the value ÛT = UT . Note also
that for t > 0,

ÛT+t = Ũt
= ÛT + X̃t − α

∫ t

0
1{Ũs>b}ds

= x +XT − α
∫ T

0
1{Us>b}ds + (XT+t −XT )− α

∫ t

0
1{ÛT+s>b}ds

= x +XT+t − α
∫ T+t

0
1{Ûs>b}ds,

thereby showing that Û solves (10.20) issued from x. Since (10.20) has a unique
pathwise solution, this solution must be Û and therefore possesses the strong
Markov property.

Let us now introduce the stopping times for U ,

κ+a := inf{t > 0 :Ut > a} and κ−0 := inf{t > 0 :Ut < 0},
where a > 0. We are interested in studying the ruin probability

Px

(
κ−0 <∞

)
, (10.21)

as well as the expected present value of dividends paid until ruin,

αEx

(∫ κ−0

0
e−qt1{Ut>b}dt

)

. (10.22)

Not unlike our treatment of the analogous objects for X in Theorem 8.1, it turns
out to be more convenient to first study the seemingly more complex two-sided exit
problem. To this end, let Y = {Yt : t ≥ 0}, where Yt = Xt − αt and denote by Px
the law of the process Y when issued from x (with Ex as the associated expectation
operator). For each q ≥ 0, W(q) and Z(q) denote, as usual, the q-scale functions
associated with X. We shall write W

(q) for the q-scale function associated with Y .
For convenience, we will write

w(q)(x;y)=W(q)(x − y)+ α1(x≥b)
∫ x

b

W
(q)(x − z)W(q)′(z− y)dz,

for x, y ∈ R and q ≥ 0. We have two main results concerning the two-sided exit
problem, from which more can be said about the quantities (10.21) and (10.22).
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Theorem 10.5 For q ≥ 0 and 0≤ x, b ≤ a, we have

Ex

(
e−qκ+a 1{κ+a <κ−0 }

)= w
(q)(x;0)
w(q)(a;0) . (10.23)

Theorem 10.6 For q ≥ 0 and 0≤ x, y, b ≤ a,
∫ ∞

0
e−qtPx

(
Ut ∈ dy, t < κ−0 ∧ κ+a

)
dt

= 1{y∈[b,a]}
{
w(q)(x;0)
w(q)(a;0)W

(q)(a − y)−W
(q)(x − y)

}

dy

+ 1{y∈[0,b)}
{
w(q)(x;0)
w(q)(a;0)w

(q)(a;y)−w(q)(x;y)
}

dy. (10.24)

Although appealing to relatively straightforward methods, the proofs are quite
long, requiring a little patience.

Proof of Theorem 10.5 Write p(x,α) = Ex(e−qκ
+
a 1{κ+a <κ−0 }). Suppose that x ≤ b.

Then, by conditioning on Fτ+b , we have

p(x,α)= Ex

(
e−qτ

+
b 1{τ−0 >τ+b }

)
p(b,α)= W

(q)(x)

W(q)(b)
p(b,α), (10.25)

where in the last equality, we have used Theorem 8.1 (iii). Suppose now that b ≤
x ≤ a. Using, respectively, that 0 is irregular for (−∞,0) for Y , Theorem 8.1 (iii),
the strong Markov property (10.25) and the identity in Exercise 10.6, we have

p(x,α)

= Ex
(
e−qτ+a 1{τ−b >τ+a }

)+ Ex
(
e−qτ

−
b 1{τ−b <τ+a }p(Uτ−b , α)

)

= W
(q)(x − b)

W(q)(a − b) +
p(b,α)

W(q)(b)
Ex
(
e−qτ

−
b 1{τ−b <τ+a }W

(q)(Yτ−b
)
)

= W
(q)(x − b)

W(q)(a − b) +
p(b,α)

W(q)(b)
h(a, b, x), (10.26)

where

h(a, b, x)

=
∫ a−b

0

∫

(−∞,−y)
W(q)(b+ y + θ)

×
[
W
(q)(x − b)W(q)(a − b− y)

W(q)(a − b) −W
(q)(x − b− y)

]

Π(dθ)dy.
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By setting x = b in (10.26) and recalling that W(q)(0) = 1/(δ − α), we can now
solve for p(b,α). Indeed, we have

p(b,α) =W(q)(b)

{

(δ − α)W(q)(a − b)W(q)(b)

−
∫ a−b

0

∫

(−∞,−y)
W(q)(b+ y + θ)W(q)(a − b− y)Π(dθ)dy

}−1

.

(10.27)

Next, we want to simplify the term involving the double integral in the above ex-
pression.

To this end, noting that for α = 0 (the case that there is no refraction), we have,
by Theorem 8.1 (iii), that, for all x ≥ 0,

p(b,0)= Eb

(
e−qτ+a 1{τ−0 >τ+a }

)= W
(q)(b)

W(q)(a)
. (10.28)

It follows, by comparing (10.27) (for α = 0) with (10.28), that

∫ a−b

0

∫

(−∞,−y)
W(q)(b+ y + θ)W(q)(a − b− y)Π(dθ)dy

= δW(q)(b)W(q)(a − b)−W(q)(a). (10.29)

As a ≥ b is taken arbitrarily, we may take Laplace transforms in a on the interval
(b,∞) of both sides of the above expression. Denote by Lb the operator which satis-
fies Lbf [λ] :=

∫∞
b

e−λxf (x)dx and let λ >Φ(q). For the left-hand side of (10.29),
we get with the help of Fubini’s Theorem

∫ ∞

b

e−λx
∫ ∞

0

∫

(−∞,−y)
W(q)(b+ y + θ)W(q)(x − b− y)dyΠ(dθ)dx

= e−λb

ψ(λ)− q
∫ ∞

0

∫

(−∞,−y)
e−λyW(q)(b+ y + θ)Π(dθ)dy.

For the right-hand side of (10.29), we get
∫ ∞

b

e−λx
(
W(q)(x − b)δW(q)(b)−W(q)(x)

)
dx

= e−λb

ψ(λ)− q δW
(q)(b)−

∫ ∞

b

e−λxW(q)(x)dx,

and so
∫ ∞

0

∫

(−∞,−y)
e−λyW(q)(b+ y + θ)Π(dθ)dy
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= δW(q)(b)− (
ψ(λ)− q)eλbLbW(q)[λ], (10.30)

for λ >Φ(q). Our objective is now to use (10.30) to show that for q ≥ 0 and x ≥ b,
we have

∫ ∞

0

∫

(−∞,−y)
W(q)(b+ y + θ)W(q)(x − b− y)Π(dθ)dy

=−W(q)(x)+ (δ − α)W(q)(b)W(q)(x − b)
− α

∫ x

b

W
(q)(x − y)W(q)′(y)dy. (10.31)

We will do this by taking Laplace transforms of (10.31) on both sides in x on (b,∞).
To this end note that, by (10.30), it follows, with the help of Fubini’s Theorem, that
the Laplace transform of the left-hand side of (10.31) equals

∫ ∞

b

e−λx
∫ ∞

0

∫

(−∞,−y)
W(q)(b+ y + θ)W(q)(x − b− y)Π(dθ)dydx

= e−λb

ψ(λ)− αλ− q
(
δW(q)(b)− (

ψ(λ)− q)eλbLbW(q)[λ]), (10.32)

where λ > ϕ(q) and, for q ≥ 0, ϕ(q)= sup{θ ≥ 0 :ψ(θ)− δθ = q}. (Note that ϕ is
the right inverse of the Laplace exponent of Y .) Since

Lb
(∫ x

b

f (x − y)g(y)dy
)

[λ] = (L0f )[λ](Lbg)[λ]

and, for λ >Φ(q),

LbW(q)′[λ] = λLbW(q)[λ] − e−λbW(q)(b)

(which follows from integration by parts), we have that the Laplace transform of
the right-hand side of (10.31) is equal to the right-hand side of (10.32), for all suf-
ficiently large λ. Hence (10.31) holds for almost every x ≥ b. Because both sides
of (10.31) are continuous in x, we finally conclude that (10.31) holds for all x ≥ b.

To complete the proof, it suffices to plug (10.31) and the expression for h(a, b, x)
into (10.26) and the desired identity follows after straightforward algebra. �

In anticipation of the proof of Theorem 10.6, we shall note here a particular
identity which follows easily from (10.31). That is, for v ≥ u≥m≥ 0,

∫ ∞

0

∫

(−∞,−z)
W(q)(z+ θ +m)

×
[
W
(q)(v −m− z)
W(q)(v −m) W

(q)(u−m)−W
(q)(u−m− z)

]

Π(dθ)dz
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=−W
(q)(u−m)

W(q)(v −m)
(

W(q)(v)+ α
∫ v

m

W
(q)(v− z)W(q)′(z)dz

)

+W(q)(u)+ α
∫ u

m

W
(q)(u− z)W(q)′(z)dz. (10.33)

Proof of Theorem 10.6 Define for Borel B ⊆ [0, a] and x, q ≥ 0,

V (q)(x, a,B)=
∫ ∞

0
e−qtPx

(
Ut ∈ B, t < κ−0 ∧ κ+a

)
dt.

For x ≤ b, by the strong Markov property, Theorem 8.1 (iii) and Theorem 8.7, we
have

V (q)(x, a,B) = Ex

(∫ τ+b

0
e−qt1{Ut∈B,t<κ+a ∧κ−0 }dt

)

+Ex

(∫ ∞

τ+b
e−qt1{Ut∈B,t<κ+a ∧κ−0 ,τ+b <τ−0 }dt

)

= Ex

(∫ τ+b ∧τ−0
0

e−qt1{Xt∈B}dt
)

+Ex

(
e−qτ

+
b 1{τ+b <τ−0 }

)
V (q)(b, a,B)

=
∫

B

(
W(q)(b− y)
W(q)(b)

W(q)(x)−W(q)(x − y)
)

dy

+ W
(q)(x)

W(q)(b)
V (q)(b, a,B). (10.34)

Moreover, for b ≤ x ≤ a, we have, using similar arguments,

V (q)(x, a,B)

=
∫ ∞

0
e−qtPx

(
Yt ∈ B ∩ [b, a], t < τ−b ∧ τ+a

)
dt

+ Ex
(
1{τ−b <τ+a }e

−qτ−b V (q)(Yτ−b , a,B)
)

=
∫

B∩[b,a]

(
W
(q)(a − z)

W(q)(a − b)W
(q)(x − b)−W

(q)(x − z)
)

dz

+
∫ ∞

0

∫

(−∞,−z)

{∫

B

[
W(q)(b− y)
W(q)(b)

W(q)(z+ θ + b)

−W(q)(z+ θ + b− y)
]

dy
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+ V
(q)(b, a,B)

W(q)(b)
W(q)(z+ θ + b)

}

×
[
W
(q)(a − b− z)
W(q)(a − b) W

(q)(x − b)−W
(q)(x − b− z)

]

Π(dθ)dz,

where in the first equality, we have used the strong Markov property and in the
second equality, we have used the identity in Exercise 10.6. Next, we shall apply
the identity (10.33) twice in order to simplify the expression for V (q)(x, a,B),
a ≥ x ≥ b. We use it once by setting m = b, u = x, v = a and once by setting
m= b− y and u= x − y, v = a − y for y ∈ [0, b]. We obtain

V (q)(x, a,B)

=
∫

B∩[b,a]

(
W
(q)(a − z)

W(q)(a − b)W
(q)(x − b)−W

(q)(x − z)
)

dz

+
∫

B∩[0,b)

{
W(q)(b− y)
W(q)(b)

(

−W
(q)(x − b)

W(q)(a − b)w
(q)(a;0)+w(q)(x;0)

)

−
(

−W
(q)(x − b)

W(q)(a − b)w
(q)(a;y)+w(q)(x;y)

)}

dy

+ V
(q)(b, a,B)

W(q)(b)

(

−W
(q)(x − b)

W(q)(a − b)w
(q)(a;0)+w(q)(x;0)

)

. (10.35)

Setting x = b in (10.35), we get an expression for V (q)(b, a,B) in terms of it-
self. Solving this and then putting the resulting expression for V (q)(b, a,B) back
in (10.34) and (10.35) leads to (10.24) which completes the proof. �

The two expressions we are interested in, namely the ruin probability and the
expected present value of dividends paid until ruin, can both be extracted from the
identity for the potential measure of U on [0,∞),

∫ ∞

0
Px

(
Ut ∈ B, t < κ−0

)
dt = lim

a↑∞V (x, a,B),

where B is any Borel set in [0,∞). Note that the limit is justified by monotone
convergence. In order to describe this potential measure, let us introduce some more
notation. Recall that ϕ was defined as the right inverse of the Laplace exponent of
Y , so that

ϕ(q)= sup
{
θ ≥ 0 :ψ(θ)− αθ = q}.

Corollary 10.7 For x, y, b ≥ 0 and q ≥ 0
∫ ∞

0
e−qtPx

(
Ut ∈ dy, t < κ−0

)
dt
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= 1{y∈[b,∞)}
{

w(q)(x;0)
α
∫∞
b

e−ϕ(q)zW(q)′(z)dz
e−ϕ(q)y −W

(q)(x − y)
}

dy

+ 1{y∈[0,b)}
{∫∞
b

e−ϕ(q)zW(q)′(z− y)dz
∫∞
b

e−ϕ(q)zW(q)′(z)dz
w(q)(x;0)−w(q)(x;y)

}

dy.

(10.36)

Proof Assume that q > 0. We begin by recalling from Exercise 8.5 that for all
x, q > 0,

lim
a↑∞

W
(q)(a − x)
W(q)(a)

= e−ϕ(q)x .

Note that, for each q ≥ 0, ϕ(q) ≥ Φ(q) and hence, appealing to (10.9), it also fol-
lows that, for all q, x > 0,

lim
a↑∞

W(q)(a − x)
W(q)(a)

= 0.

For q > 0, the result we are after is obtained by dividing the numerator and
denominator of each of the first terms in the curly brackets of (10.24) by W

(q)(a)

and taking limits as a ↑∞, making use of the above two observations. The case that
q = 0 is handled by taking limits as q ↓ 0 in (10.36). �

Now we are in a position to derive expressions for (10.21) and (10.22).

Corollary 10.8 For x ≥ 0, if E(X1) ≤ α then Px(κ
−
0 <∞)= 1. Otherwise, when

E(X1) > α, we have

Px

(
κ−0 <∞

)

= 1− E(X1)− α
1− αW(b)

(

W(x)+ α1(x≥b)
∫ x

b

W(x − y)W ′(y)dy
)

. (10.37)

Proof Let Ut = infs≤t Us and, as usual, eq denotes an independent and exponen-
tially distributed random variable with mean 1/q . Note that for q > 0,

Ex

(
e−qκ

−
0 1{κ−0 <∞}

) = 1− Px(U eq ≥ 0)

= 1− q
∫ ∞

0
e−qtPx

(
Ut ∈ [0,∞), t < κ−0

)
dt.

Computing the integral above from (10.36) is relatively straightforward and gives
us, for x, b ≥ 0 and q > 0,
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Ex

(
e−qκ

−
0 1{κ−0 <∞}

)

= z(q)(x)− q
∫∞
b

e−ϕ(q)yW(q)(y)dy
∫∞
b

e−ϕ(q)yW(q)′(y)dy
w(q)(x;0)

+ q
∫ x

b

W
(q)(x − z)dz+ q

∫ b

0
W(q)(x − z)dz

− q
∫ x

0
W(q)(z)dz− qα

∫ x

b

W
(q)(x − z)W(q)(z− b)dz, (10.38)

where

z(q)(x)= Z(q)(x)+ αq
∫ x

b

W
(q)(x − z)W(q)(z)dz, x ∈R, q ≥ 0.

The details of the computation are left to the reader.
Although it is not immediately obvious, it turns out that the last four terms

in (10.38) sum to zero. Indeed, in the case that x ≤ b, this observation is straight-
forward, noting that the two integrals from b to x are identically zero and the sec-
ond integral may be replaced by

∫ x
0 W

(q)(x − z)dz = ∫ x
0 W

(q)(z)dz on account of
the fact that W(q) is identically zero on (−∞,0). In the case that x > b, the last
four terms of (10.38) can be easily rearranged to be equal to m(x − b), where
m : [0,∞)→[0,∞) is the continuous function

m(u)= q
∫ u

0
W
(q)(z)dz− q

∫ u

0
W(q)(z)dz− qα

∫ u

0
W
(q)(z)W(q)(u− z)dz.

Taking Laplace transforms of m and using (8.8), we easily verify that m is identi-
cally zero.

In conclusion, we have that, for x, b ≥ 0 and q > 0,

Ex

(
e−qκ

−
0 1{κ−0 <∞}

)= z(q)(x)− q
∫∞
b

e−ϕ(q)yW(q)(y)dy
∫∞
b

e−ϕ(q)yW(q)′(y)dy
w(q)(x;0).

The expression for the ruin probability in (10.37) is obtained by taking limits
on the left- and right-hand side above as q ↓ 0. On the left-hand side, thanks to
monotone convergence, the limit is equal to Px(κ

−
0 <∞). Computing the limits on

the right-hand side is relatively straightforward, taking account of the fact that
∫ ∞

0
e−ϕ(q)zW(q)(z)dz= 1

ϕ(q)α
(10.39)

and the fact that

lim
q↓0

q

ϕ(q)
= lim
q↓0

ψ(ϕ(q))− αϕ(q)
ϕ(q)

= 0∨ (E(X1)− α
)
.

The details are again left to the reader. �
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Corollary 10.9 For x ≥ 0,

Ex

(∫ κ−0

0
e−qtα1{Ut>b}dt

)

=−α
∫ x

b

W
(q)(z− b)dz+ W

(q)(x)+ α1(x≥b)
∫ x
b
W
(q)(x − y)W(q)′(y)dy

ϕ(q)
∫∞

0 e−ϕ(q)yW(q)′(y + b)dy .

Proof The proof is a simple exercise in integrating the potential measure (10.36)
over (b,∞). �

For the sake of completeness, let us finish this section by returning to the discus-
sion at the beginning of the section, concerning the optimal control problem (10.12),
and by describing the optimal strategy in a little more detail. We have already indi-
cated that the optimal strategy is one that makes the controlled process a refracted
Lévy process, where refraction occurs at some threshold b ≥ 0. The value func-
tion of this “refraction strategy”, henceforth denoted by vb , is given in the previous
corollary. If we now let

Λ(b)= ϕ(q)
∫ ∞

0
e−ϕ(q)uW(q)′(u+ b)du,

then we have

vb(x)= W
(q)(x)

Λ(b)
, for x ≤ b.

The familiarity of the above identity when compared to (10.13) is also mirrored by
the description of the optimal value of b, denoted by b∗. Kyprianou et al. (2012b)
show that, when −Π(−∞,−x), x > 0 has a completely monotone density, b∗ is
the largest argument at which Λ attains its minimum. That is to say,

b∗ = sup
{
b ≥ 0 :Λ(b)≤Λ(x) for all x ≥ 0

}
.

It is also shown in Kyprianou et al. (2012b) that b∗ ≤ a∗, where we recall that a∗ is
the optimal threshold for the reflection strategy discussed in Sect. 10.3.

10.5 Perturbed Processes and Tax

In the setting of the classical Cramér–Lundberg risk insurance model, Albrecher and
Hipp (2007) introduced the idea of tax payments. More precisely, ifX = {Xt : t ≥ 0}
represents the Cramér–Lundberg process and, for all t ≥ 0,Xt = sups≤t Xs , then the
aforementioned authors study the process

Xt − γXt , t ≥ 0,
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where γ ∈ (0,1) is the rate at which tax is paid. Intuitively speaking, since the
process X increases whenever X increases, it follows that the Cramér–Lundberg
process is taxed only when it generates new maxima. This is similar to the case
of paying dividends according to a reflection strategy, but the requirement that γ ∈
(0,1) ensures that, in principle, the tax paid does not stop the aggregate process
from exploring arbitrarily large values with positive probability.

The above tax model was quickly generalised to the setting that X is a general
spectrally negative Lévy process by Albrecher et al. (2008). Finally, Kyprianou and
Zhou (2009) and Kyprianou and Ott (2012) extended this model further by allowing
the rate at which tax is paid with respect to the process X to vary as a function of
the current value of X. Specifically, they consider the so-called perturbed spectrally
negative Lévy process,

Ut =Xt −
∫

(0,t]
γ (Xu)dXu, t ≥ 0, (10.40)

where γ : [0,∞)→ [0,∞) satisfies appropriate conditions. The presentation we
shall give here follows the last two references.

We distinguish two regimes, light- and heavy-perturbation regimes. The first
corresponds to the case that γ : [0,∞)→ [0,1) and the second to the case that
γ : [0,∞)→ (1,∞). As alluded to previously, the light-perturbation regime has a
similar flavour to paying dividends at a weaker rate than a reflection strategy. In
contrast, the heavy-perturbation regime is equivalent to paying dividends at a much
stronger rate than a reflection strategy. (The connection with the original motivation
to model tax payments is arguably lost.) A little thought reveals that the dividing
case γ = 1 corresponds precisely to a reflection strategy. In principle, it is also
possible to consider the more general case that γ : [0,∞)→ [0,∞) without the
aforementioned restrictions, but this is mathematically less convenient than the two
main regimes we have already identified.

The key observation, which, with the help of excursion theory, leads to all of the
forthcoming results, is that we may write U in the form

Ut =At − (Xt −Xt), t ≥ 0, (10.41)

where the process A= {At : t ≥ 0} is given by

At :=Xt −
∫

(0,t]
γ (Xu)dXu, t ≥ 0. (10.42)

Assuming that X0 = x, we may write At = γ̄x(Xt ), where

γ̄x(s) := s −
∫ s

x

γ (y)dy = x +
∫ s

x

(
1− γ (y))dy, s ≥ x.

Noting that At =
∫
(0,t](1 − γ (Xs))dXs , t ≥ 0, we see that, in the light-

perturbation (resp. heavy-perturbation) regime, the processA has monotone increas-
ing (resp. decreasing) paths. Let the set A consist of the points of increase (resp.
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Fig. 10.2 A symbolic representation of the path of U in the case of heavy-perturbation. At times
when X is increasing, the process U follows the path of γ̄x . During the open intervals of time that
X executes an excursion away from its previous maximum, the process U undertakes the same
excursion, but away from the current value of A= γ̄x (X).

decrease) times of A. We have that A is contained in the support of the measure dX.
If we write B for the countable union of open intervals of time which correspond
to the epochs that the process X −X spends away from zero, then A ∩ B = ∅. As
a consequence, we may interpret (10.41) as a path decomposition in which excur-
sions of X from its maximum (equivalently excursions of X −X away from zero)
are “hung” off the trajectory of A between its increment (resp. decrement) times.
See Fig. 10.2 for a symbolic representation when X is a Cramér–Lundberg process
and there is heavy-perturbation.

It is also worth commenting that, in the light-perturbation regime, the process A
coincides with {sups≤t Us : t ≥ 0}; cf. Exercise 10.9. Hence, unless it is assumed
that

∫ ∞

x

(
1− γ (s))ds =∞, (10.43)

in the light-perturbation regime, the perturbed process U will have an almost surely
finite global maximum. In contrast, in the heavy-perturbation regime, the process A
coincides with {sups≥t Us : t ≥ 0} (see again Exercise 10.9) and hence the process
U is always bounded by its initial value x.

Let

T −0 := inf{t > 0 : Ut < 0},
where we understand, as usual, inf∅ :=∞. We shall also use the stopping time

τ+a = inf{t > 0 :Xt > a} = inf{t > 0 : Xt > a}.
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Note that in the light-perturbation case, the function γ̄x is increasing and hence it
has a well-defined inverse, say γ̄−1

x . In that case, we may write for all values b in
the range of γ̄x ,

τ+
γ̄−1
x (b)

= T +b , (10.44)

where T +b = inf{t > 0 :Ut > b}.

Theorem 10.10 Fix x > 0 and assume (10.43) in the case of the light-perturbation
regime. In the case of the heavy-perturbation regime, noting that, γ̄x is monotone
decreasing, define

s∗(x)= inf
{
s ≥ x : γ̄x(s) < 0

}
.

Then, for any q ≥ 0, and 0≤ x ≤ a in the case of light-perturbation, resp. 0≤ x ≤
a < s∗(x) in the case of heavy-perturbation, we have

Ex

[
e−qτ+a 1{τ+a <T −0 }

]= exp

(

−
∫ a

x

W(q)′(γ̄x(s))
W(q)(γ̄x(s))

ds

)

. (10.45)

Taking account of the equivalence (10.44) in the light-perturbation regime,
(10.45) can be more conveniently written as

Ex

[
e−qT +a 1{T +a <T −0 }

]= exp

(

−
∫ γ̄−1

x (a)

x

W(q)′(γ̄x(s))
W(q)(γ̄x(s))

ds

)

.

Proof of Theorem 10.10 The proof does not distinguish between the two different
regimes of light- and heavy-perturbation. All that is required in what follows is that
γ̄−1
x (a) <∞.

Recall from Chap. 6 that {(t, εt ) : t ≥ 0 and εt 	= ∂} is the Poisson point process
of excursions on [0,∞) × E with intensity dt × dn, indexed by local time. For
x ≥ 0, the connection between local time at zero of {Xt −Xt : t ≥ 0}, denoted by
{Lt : t ≥ 0}, and real time under Px is given by Lt =Xt−x, t ≥ 0. Note in particular
that, again under Px , τ+a = L−1

a−x . Write ε for the height of the canonical excursion
ε ∈ E ; see Definition 6.13. Note that, in terms of excursions, the event {τ+a < T −0 }
corresponds precisely to the event

{
εs ≤ γ̄x(x + s) for all 0≤ s ≤ a − x}.

Using similar reasoning to that found in the computation (8.21), it follows, with the
help of the exponential change of measure (8.5) applied at the stopping time L−1

a−x
and the identity (10.19), that for x ≥ 0,

Ex

[
e−qτ+a 1{τ+a <T −0 }

] = Ex

[
e−qL

−1
a−x1{εs≤γ̄x (x+s) for all 0≤s≤a−x}

]

= e−(a−x)Φ(q)PΦ(q)x

(
εs ≤ γ̄x(x + s) for all 0≤ s ≤ a − x)
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= e−(a−x)Φ(q) exp

(

−
∫ a−x

0
nΦ(q)

(
ε > γ̄x(x + s)

)
ds

)

= exp

(

−
∫ a−x

0

W(q)′(γ̄x(x + s))
W(q)(γ̄x(x + s)) ds

)

. (10.46)

The required identity follows after a straightforward change of variables in the final
integral. �

Theorem 10.10 motivates some interesting observations concerning the event of
ruin, {T −0 <∞}. First, suppose that we are in the heavy-perturbation regime and
s∗(x) <∞. In that case

Px

(
T −0 <∞)≥ Px

(
τ+
s∗(x) <∞

)∨ Px

(
τ−0 <∞

)
.

Indeed, on the event {τ+s∗(x) <∞}, we haveXτ+
s∗(x)
−Xτ+

s∗(x)
= 0 and hence Uτ+

s∗(x)
=

Aτ+
s∗(x)
= γ̄x(s∗(x)) = 0. Moreover, since Ut ≤ Xt for all t ≥ 0, it follows that

{τ−0 <∞} ⊆ {T −0 <∞}. In the event that lim supt↑∞Xt =∞ almost surely, we
have Px(τ

+
s∗(x) <∞)= 1. Otherwise, it follows that Px(τ

−
0 <∞)= 1. Either way,

Px(T
−

0 <∞)= 1.
Remaining in the heavy-perturbation regime, suppose that s∗(x) = ∞. Then

from (10.45), by taking limits as a ↑ ∞, we get an expression for the ruin prob-
ability,

Px

(
T −0 <∞)= 1− exp

(

−
∫ ∞

x

W ′(γ̄x(s))
W(γ̄x(s))

ds

)

. (10.47)

However, the right-hand side above turns out to be equal to 1. Recalling that
W ′(x)/W(x)= n(ε > x) for almost every x > 0, since n(ε > x) is non-increasing
on (0,∞) and γ̄x(s)≤ x for all s ≥ 0, the claim follows.

Finally, in the light-perturbation regime, where necessarily s∗(x)=∞, the rea-
soning that leads to (10.47) still applies. Exercise 10.10 shows that this probability
need not be unity.

Although the perturbed process is almost surely ruined in the heavy-perturbation
regime, it is interesting to note that, unlike regular spectrally negative Lévy pro-
cesses, there are three different ways to become ruined. The first two, i.e. by a jump
or creeping downwards (in the presence of a Gaussian component), are properties
inherited from the underlying Lévy process. The third way of becoming ruined,
which we refer to as type II creeping, is the result of continuously passing the origin
at the moment in time that an increment in X brings U along the curve γ̄x just as
it intersects the origin. Said another way, type II creeping corresponds to the event
that {τ+

s∗(x) = T −0 }, in which case, as remarked upon above, Uτ+
s∗(x)
= 0. This can

only happen with positive probability if s∗(x) <∞.
The following result is a corollary to Theorem 10.10 on account of the fact that

its proof is identical, albeit that one replaces a by s∗(x).
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Corollary 10.11 Fix x > 0, and suppose that γ : [0,∞)→ (1,∞) such that
s∗(x) <∞. Then, for all q ≥ 0,

Ex

[
e−qT

−
0 1{T −0 =τ+s∗(x)}

]= exp

(

−
∫ s∗(x)

x

W(q)′(γ̄x(s))
W(q)(γ̄x(s))

ds

)

.

The above corollary tells us that, under mild conditions, the probability of type II
creeping is strictly positive if and only if

∫ s∗(x)

x

W ′(γ̄x(s))
W(γ̄x(s))

ds <∞.

One easily sees that type II creeping may occur in the case that X is a Cramér–
Lundberg process. Indeed, if the first jump of X occurs after the time it takes X to
climb to a height s∗(x) from the initial position x > 0, then type II creeping will
trivially occur. One may easily elaborate on this reasoning to deduce that, for all
n ∈ N, type II creeping may occur with positive probability between the n-th and
(n+ 1)-th jumps.

Exercise 10.11 deals with a number of scenarios where type II creeping can hap-
pen. In particular, under relatively mild assumptions, there will be type II creeping
if and only if X has paths of bounded variation.

In the spirit of the Gerber–Shiu-type results presented in the previous sections,
our final theorem for perturbed processes (with either light- or heavy-perturbation)
considers the present value of dividends (or tax, as appropriate with the interpreta-
tion of the perturbation) paid until ruin.

Theorem 10.12 Fix x > 0 and assume (10.43) in the case of the light-perturbation
regime. Then, for q ≥ 0,

Ex

[∫ T −0

0
e−quγ (Xu)dXu

]

=
∫ s∗(x)

x

exp

(

−
∫ t

x

W(q)′(γ̄x(s))
W(q)(γ̄x(s))

ds

)

γ (t)dt.

Proof Appealing to a straightforward change of variables and Fubini’s Theorem,
we have

Ex

[∫ T −0

0
e−quγ (Xu)dXu

]

= Ex

[∫ s∗(x)

0
1(u<T −0 )e

−quγ (Xu)dXu
]

= Ex

[∫ s∗(x)

x

1(τ+t <T −0 )
e−qτ

+
t γ (t)dt

]

=
∫ s∗(x)

x

Ex

[
e−qτ

+
t 1(τ+t <T −0 )

]
γ (t)dt.

The proof is completed by taking advantage of the identity in (10.45). �
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Exercises

10.1 Using an exponential change of measure together with (10.3), show that, for
x, q ≥ 0,

Ex

(
e−qτ

−
0 ;Xτ−0 = 0

) = Ex

(
e−qτ

−
0 ;Xτ−0 =Xτ−0 − =Xτ−0 = 0

)

= σ
2

2

{
W(q)′(x)−Φ(q)W(q)(x)

}
,

where the right-hand side is understood to be zero when σ = 0.

10.2 Find an expression for the Gerber–Shiu measure in Theorem 10.1 for the case
that X has paths of bounded variation and x = 0.

10.3 The following exercise is based on results found in Huzak et al. (2004b).
Suppose that X is a Lévy insurance risk process. In particular, we will assume that
X =∑n

i=1X
(i), where each of the X(i) are independent spectrally negative Lévy

processes with respective Lévy measures,Π(i), concentrated on (−∞,0). One may
think of them as competing risk processes.

(i) With the help of the compensation formula, show that, for x ≥ 0, y > 0, u < 0
and i = 1, . . . , n,

Px

(
Xτ−0
∈ du, Xτ−0 − ∈ dy, �Xτ−0

=�X(i)
τ−0

)

= r(x, y)Π(i)(−y + du)dy,

where r(x, y) is the potential density of the process killed on first passage into
(−∞,0) given in Corollary 8.8.

(ii) Suppose now that x = 0 and each of the processesX(i) is of bounded variation.
Recall that any such spectrally negative Lévy process is the difference of a
linear drift and a driftless subordinator. Let δ be the drift of X. Show that for
y > 0, u < 0,

P
(
Xτ−0
∈ du, Xτ−0 − ∈ dy, �Xτ−0

=�X(i)
τ−0

)

= 1

δ
Π(i)(−y + du)dy.

(iii) For each i = 1, . . . , n, let δi be the drift of X(i). Note that, necessarily, δ =
∑n
i=1 δi . Suppose further that for each i = 1, . . . , n, μi := δi − E(X

(i)
1 ) <∞.

Show that the probability that ruin occurs as a result of a claim from the i-th
process when x = 0 is equal to μi/δ.

10.4 Suppose that S = {St : t ≥ 0} is a subordinator, with Laplace exponent
Φ(q) = t−1 logE(exp{−qSt }), t ≥ 0, and eκ is an independent exponentially dis-
tributed random variable with rate κ > 0.
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(i) Use the ideas in the proof of Theorem 10.3 to deduce that

E

[(∫ eκ

0
e−qSt dt

)n]

= n!
n∏

k=1

1

κ +Φ(qk) .

(ii) Explain how part (i) above can be used to rephrase the proof of Theorem 10.3.

10.5 Suppose that X is a Cramér–Lundberg process with premium rate c > 0,
compound Poisson arrival rate λ > 0 and claim distribution F with mean value μ.
In the notation of Theorem 10.3, define

Va = Ea

[∫ σa

0
e−qtdξat

]

.

(i) By conditioning on the first jump of X, show that

Va = c

λ+ q + Va
λ

λ+ q
∫

(0,a]
W(q)(a − y)
W(q)(a)

F (dy).

(ii) Show by means of taking Laplace transforms that, for all q ≥ 0 and a > 0,

cW
(q)′
+ (a)= (λ+ q)W(q)(a)− λ

∫

(0,a]
W(q)(a − y)F (dy).

(iii) Use parts (i) and (ii) to prove Theorem 10.3 in the case that n= 1.

10.6 Use reasoning similar to that of the proof of (8.34) to deduce the following
result. Let a > 0, x ∈ [0, a], q ≥ 0 and f,g be positive, bounded measurable func-
tions. Further suppose that eitherX has no Gaussian component or it has a Gaussian
component and f (0)g(0)= 0. Then

Ex

(
e−qτ

−
0 f (Xτ−0

)g(Xτ−0 −)1{τ−0 <τ+a }
)

=
∫ a

0

∫

(−∞,−y)
f (y + θ)g(y)

{
W(q)(x)W(q)(a − y)

W(q)(a)
−W(q)(x − y)

}

Π(dθ)dy.

10.7 Show that, for q ≥ 0 and 0 ≤ x, b ≤ a, we have for the refracted pro-
cess (10.20),

Ex

(
e−qκ

−
0 1{κ−0 <κ+a }

)= z(q)(x)− z(q)(a)w
(q)(x;0)
w(q)(a;0) .

10.8 Suppose that X is a spectrally negative Lévy process with bounded variation
paths satisfying (10.1). Write, as usual, ψ for its Laplace exponent and Φ for the
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right inverse of ψ . Thinking ofX as a Lévy insurance risk process, we may have the
following adjusted definition of ruin. Every time the processX becomes negative, an
independent and exponentially distributed clock is started with parameter q ≥ 0. If
the process X recovers and enters (0,∞) before this clock rings, then the insurance
company may continue without becoming ruined. If, however, the processX spends
longer below zero than it takes the associated exponential clock to ring, then the
process is declared ruined.

(i) Explain why the probability of ruin (according to the new definition) may now
be written 1− V where

V := E
(
e−q

∫∞
0 1{Xs<0}ds), x ≥ 0.

(ii) Show that

V = E
(
1{τ−0 <∞}g(Xτ−0 )

)
V + P

(
τ−0 =∞

)
,

where, for x ≤ 0, g(x)= Ex(e−qτ
+
0 ). Hence deduce that

V =ψ ′(0+)Φ(q)
q
.

(iii) Now suppose that the drift term of X is denoted δ as in (10.2) and let U be the
associated refracted process as in Sect. 10.4, where the threshold for refraction
is b and α is the rate of refraction. Using ideas similar to those found in the
previous parts of this question, show that, when ψ ′(0+) > α and q ≥ 0,

Eb

(
e−q

∫∞
0 1{Us<b}ds

)= (ψ
′(0+)− α)Φ(q)
q − αΦ(q) .

10.9 Consider the perturbed spectrally negative Lévy process (10.40). Suppose
that we write

←−
U t = sups≤t Us , t ≥ 0, in the light-perturbation regime and

−→
U t =

sups≥t Us , t ≥ 0, in the heavy-perturbation regime. Show that both of these pro-
cesses agree with the definition of the process A in (10.42).

10.10 This exercise reproduces the results of Albrecher and Hipp (2007) and Al-
brecher et al. (2008) for the case of constant light-perturbation. Suppose that U is a
perturbed spectrally negative Lévy process with constant tax rate γ ∈ (0,1). Show
that, for all a ≥ x,

Ex

[
e−qT +a 1{T +a <T −0 }

]=
(
W(q)(x)

W(q)(a)

)1/(1−γ )

and give an expression for the probability of ruin. Show also that

Ex

[∫ T −0

0
e−quγ (Xu)dXu

]

= γ

1− γ
∫ ∞

x

(
W(q)(x)

W(q)(u)

)1/(1−γ )
du
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and derive an expression for the last expectation in the case that γ is a constant in
(1,∞).

10.11 This exercise is based on computations found in Kyprianou and Ott (2012).
Consider the perturbed process U for the heavy-perturbation regime with U0 = x >
0. Assume that s∗(x) <∞.

(i) Suppose that γ is a continuous function. Show that U exhibits type II creeping
under Px if and only if X has paths of bounded variation.

(ii) Fix c > 0. Define for s ∈ [0, c],

γ (s)= 1+ 1

2
(c− s)− 1

2 .

Show that there exists an x > 0 such that γ̄x(s)= x −
∫ s
x
γ (y)dy = (c− s)1/2

with s∗(x)= c. Let U be the associated perturbed process such that the under-
lying Lévy process has a non-zero Gaussian component and U0 = x. Show that
type II creeping can occur.



Chapter 11
Applications to Optimal Stopping Problems

The aim of this chapter is to show how some of the established fluctuation identities
for (reflected) Lévy processes can be used to solve quite specific, but nonetheless
exemplary, optimal stopping problems. To some extent, this will be done in an un-
satisfactory way, without first giving a thorough account of the general theory of
optimal stopping. However, we shall give rigorous proofs relying on the method of
“guess and verify”. That is to say, our proofs will start with a candidate solution, the
choice of which is inspired by intuition, and then we shall prove that this candidate
verifies sufficient conditions in order to confirm its status as the actual solution. For
a more complete overview of the theory of optimal stopping the reader is referred to
the main three texts, Chow et al. (1971), Shiryaev (1978) and Peskir and Shiryaev
(2006); see also Chap. 10 of Øksendal (2003) and Chap. 2 of Øksendal and Sulem
(2004), as well as the foundational work of Snell (1952) and Dynkin (1963).

The optimal stopping problems we consider in this chapter will be of the form

v(x)= sup
τ∈T

Ex

(
e−qτG(Xτ )

)
, x ∈R, (11.1)

or variants thereof, where X = {Xt : t ≥ 0} is a Lévy process. Further, G is a non-
negative measurable function, q ≥ 0 and T is a family of stopping times with respect
to the filtration F. Note that, when talking of a solution to (11.1), it is understood
that we want to characterise the function v as well as finding a stopping time τ ∗
such that v(x)= Ex(e−qτ

∗
G(Xτ∗)), for all x ∈R.

11.1 Sufficient Conditions for Optimality

Here, we give sufficient conditions under which one may verify that a candidate
solution, i.e. a pair (v∗, τ ∗), solves the optimal stopping problem (11.1).

A.E. Kyprianou, Fluctuations of Lévy Processes with Applications, Universitext,
DOI 10.1007/978-3-642-37632-0_11, © Springer-Verlag Berlin Heidelberg 2014

307

http://dx.doi.org/10.1007/978-3-642-37632-0_11


308 11 Applications to Optimal Stopping Problems

Lemma 11.1 Consider the optimal stopping problem (11.1) for q ≥ 0 under the
assumption that, for all x ∈R,

Px

(
there exists lim

t↑∞ e−qtG(Xt ) <∞
)
= 1. (11.2)

Suppose that τ ∗ ∈ T is a candidate optimal strategy for the optimal stopping prob-
lem (11.1) and let v∗(x) = Ex(e−qτ

∗
G(Xτ∗)), x ∈ R. Then the pair (v∗, τ ∗) is a

solution if

(i) v∗(x)≥G(x) for all x ∈R,
(ii) the process {e−qt v∗(Xt ) : t ≥ 0} is a right-continuous supermartingale.

Proof The definition of v∗ implies that

sup
τ∈T

Ex

(
e−qτG(Xτ )

)≥ v∗(x),

for all x ∈ R. On the other hand, property (ii) together with Doob’s Optional Sam-
pling Theorem1 imply that, for all t ≥ 0, x ∈R and σ ∈ T ,

v∗(x)≥ Ex

(
e−q(t∧σ)v∗(Xt∧σ )

)
,

and hence, by property (i), Fatou’s Lemma, the non-negativity of G and assump-
tion (11.2), we have

v∗(x) ≥ liminft↑∞Ex

(
e−q(t∧σ)G(Xt∧σ )

)

≥ Ex

(
liminft↑∞e−q(t∧σ)G(Xt∧σ )

)

= Ex

(
e−qσG(Xσ )

)
.

As σ ∈ T is arbitrary, it follows that, for all x ∈R,

v∗(x)≥ sup
τ∈T

Ex

(
e−qτG(Xτ )

)
.

In conclusion, it must hold that

v∗(x)= sup
τ∈T

Ex

(
e−qτG(Xτ )

)

for all x ∈R. �

Note that, when T contains only almost surely finite stopping times, a brief re-
view of the above proof shows that the condition (11.2) is unnecessary.

When G is a monotone function and q > 0, a reasonable class of candidate solu-
tions that one may consider in conjunction with the previous lemma is those based

1Right-continuity of paths is implicitly used here.
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on first-passage times over a specified threshold. That is, either first passage above
a given constant in the case that G is monotone increasing or first passage below a
given constant in the case that G is monotone decreasing. A heuristic justification
may be given as follows.

Suppose that G is monotone increasing. In order to optimise the value G(Xτ ),
one should stop at some time τ for which Xτ is large. On the other hand, this
should not happen after too much time on account of the exponential discount-
ing. This suggests that there is a threshold, which may depend on time, over which
one should stop X in order to maximise the expected discounted gain. Suppose
that by time t > 0 one has not reached this threshold. Then, by the Markov prop-
erty, given Xt = x, any stopping time τ which depends only on the continuation
of the path of X from the space-time point (x, t) would yield an expected gain
e−qtEx(e−qτG(Xτ )). The optimisation of this expression over the aforementioned
class of stopping times is essentially the same procedure as in the original problem
(11.1). Note that, since X is a Markov process, there is nothing to be gained by con-
sidering stopping times which take account of the history of the process {Xs : s < t}.
These arguments suggest that the threshold should not vary with time, and hence a
candidate for the optimal strategy takes the form

τ ∗ = inf{t > 0 :Xt ∈A},
where A = [y,∞) or (y,∞) for some y ∈ R. Similar heuristic reasoning applies
when G is monotone decreasing. The reader should be warned, however, that if one
were to try and make these arguments rigorous, one would need to impose more
conditions on G than just monotonicity.

When q = 0 and G is monotone increasing, it may be optimal to never stop. To
avoid this case, we impose the added assumption that lim supt↑∞Xt <∞ almost
surely. In that case, we may again expect to describe the optimal stopping strategy as
first passage above a threshold. The reason for this is that we cannot use a stopping
time to stop when the Lévy process is at its all-time maximum.2 Again, the threshold
should be time-invariant due to the Markov property. If q = 0 and G is monotone
decreasing, then, in light of the aforementioned, we may impose the condition that
lim inft↑∞Xt >−∞ almost surely and expect to see an optimal strategy consisting
of first passage below a time-invariant threshold.

11.2 The McKean Optimal Stopping Problem

This optimal stopping problem is given by

v(x)= sup
τ∈T

Ex

(
e−qτ

(
K − eXτ

)+)
, x ∈R, (11.3)

2See, however, Baurdoux and van Schaik (2012) who investigate the problem of stopping as
“close” the maximum as possible in an appropriate sense.
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where T is the set of all F-stopping times, K > 0 and, in the current context, we
consider the two cases:

q > 0 or q = 0 and lim
t↑∞Xt =∞ a.s. (11.4)

The solution to this optimal stopping problem was considered first by McKean
(1965) for the case thatX is linear Brownian motion. The original motivation for this
problem comes from the valuation of the so-called perpetual American put option.
This is a financial derivative which gives the holder the right, but not the obligation,
to sell a risky asset (here modelled by an exponential Lévy process) for a fixed price
K , at any time in the future. It turns out that the valuation of this contract boils down
to solving (11.3).

In Darling et al. (1972), a solution to a discrete-time analogue of (11.3) was
obtained. In that case, the process X is replaced by a random walk. Some years
later, and again within the context of the optimal time to sell a risky asset (the
pricing of an American put), a number of authors dealt with the solution to (11.3)
for a variety of special classes of Lévy processes.3 Below, we give the solution
to (11.3) as presented in Mordecki (2002). The proof we shall give here comes
from Alili and Kyprianou (2005) and remains close in nature to the random walk
proofs of Darling et al. (1972). More recently, Baurdoux (2013) offers an interesting
alternative perspective on our presentation.

Theorem 11.2 The solution to (11.3) under the assumption (11.4) is given by

v(x)= E((KE(eXeq )− ex+Xeq )+)
E(eXeq )

and an optimal stopping time is given by

τ ∗ = inf
{
t > 0 :Xt < x∗

}

where

x∗ = logKE
(
eXeq

)
.

Here, as usual, eq denotes a 1/q-mean, independent and exponentially distributed
random variable, with the understanding that, when q = 0, this variable takes the
value infinity with probability one. Further, Xt = infs≤t Xs . Note that in the case

3Gerber and Shiu (1994) dealt with the case of bounded variation spectrally positive Lévy pro-
cesses; Boyarchenko and Levendorskii (2002a) handled a class of tempered stable processes; Chan
(2004) covers the case of spectrally negative processes; Avram et al. (2002, 2004) deal with spec-
trally negative Lévy processes again; Asmussen et al. (2004) look at Lévy processes which have
phase-type jumps and Chesney and Jeanblanc (2004) again for the spectrally negative case.
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that q = 0, as we have assumed that limt↑∞Xt =∞, by Theorem 7.1, we know that
|X∞|<∞ almost surely.

Proof of Theorem 11.2 We begin by noting that the assumption (11.2) is trivially
satisfied. In view of the remarks following Lemma 11.1, let us define the bounded
functions

vy(x)= Ex

(
e−qτ

−
y
(
K − e

X
τ
−
y
)+)
, x, y ∈R. (11.5)

We shall show that the solution to (11.3) is of the form (11.5), for a suitable choice
of y ≤ logK , by using Lemma 11.1.

According to the conclusion of Exercise 6.7 (i), we have that

Ex

(
e
−ατ−y +βXτ−y 1(τ−y <∞)

)= eβx
E(eβXeα 1(−Xeα>x−y))

E(eβXeα )
, (11.6)

for α,β ≥ 0 and x − y ≥ 0, and hence it follows that, for all x, y ∈R,

vy(x)=
E((KE(eXeq )− ex+Xeq )1(−Xeq >x−y))

E(eXeq )
. (11.7)

Lower bound (i). The lower bound vy(x) ≥ (K − ex)+, x ∈ R, is respected if
and only if vy(x) ≥ 0 and vy(x) ≥ (K − ex), for all x ∈ R. From (11.5), we see
that vy(x) ≥ 0 always holds, for all x, y ∈ R. On the other hand, a straightforward
manipulation shows that

vy(x)=
(
K − ex

)+
E((ex+Xeq −KE(eXeq ))1(−Xeq≤x−y))

E(eXeq )
. (11.8)

From (11.8), we see that a sufficient condition on y which ensures that vy(x) ≥
(K − ex) is

ey ≥KE
(
eXeq

)
. (11.9)

Supermartingale property (ii). On the event {t < eq} the identity Xeq = Xt ∧
(Xt + I ) holds, where conditionally on Ft , I has the same distribution as Xeq . In
particular, it follows that, on {t < eq}, Xeq ≤Xt + I . If

ey ≤KE
(
eXeq

)
, (11.10)

then for x ∈R

vy(x) ≥
E(1(t<eq )E((KE(eXeq )− ex+Xt+I )1(−(Xt+I )>x−y)|Ft ))

E(eXeq )

≥ E
(
e−qt vy(x +Xt)

)
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= Ex

(
e−qt vy(Xt )

)
.

Note that the first inequality follows by virtue of the fact that the part of the outer
expectation in (11.7) taken over the event {eq ≤ t} is positive, thanks to (11.10).
Appealing to stationary independent increments, we can now see that, for 0 ≤ s ≤
t <∞,

E
(
e−rt vy(Xt )|Fs

)= e−rsEXs
(
e−r(t−s)vy(Xt−s)

)≤ e−rsvy(Xs), (11.11)

showing that {e−qt vy(Xt ) : t ≥ 0} is a Px -supermartingale. Right-continuity of its
paths follows from the right-continuity of the paths of X and right-continuity of vy ,
the latter of which can be seen from (11.8).

To conclude, we see that it would be sufficient to take y = logKE(eXeq ) in order
to satisfy conditions (i) and (ii) of Lemma 11.1, and, thereby, establish a solution to
(11.3). �

The case thatX is a compound Poisson process offers us the possibility to see that
the optimal stopping time is not necessarily unique. Assume further that there are
two-sided jumps whose distribution has no atoms (this excludes the possibility that
X can jump exactly onto a prescribed point). For this class of compound Poisson
processes, we note that

inf{t > 0 :Xt < y} = inf{t ≥ 0 :Xt ≤ y}
Px -almost surely, unless y = x. In that case, the stopping time on the left is strictly
positive Px -almost surely whereas the stopping time on the right is zero Px -almost
surely. In other words, for all x, y ∈ R, the optimal stopping time on the left is Px -
almost surely greater than or equal to (as opposed to just equal to) the optimal stop-
ping time on the right. Suppose we redefine τ−y = inf{t ≥ 0 : Xt ≤ y} and take τ−x∗
(under this new definition) to be the candidate optimal stopping time to the McKean
optimal stopping problem, instead of the one given in Theorem 11.2. Revisiting the
proof of Theorem 11.2, we find easily that the value function is the same with this
new stopping time. In showing this, one needs to start by making the strict inequal-
ity in (11.6) a weak inequality and working the consequence of this change through
the computations.

With either the old or the new definition of τ−x∗ , the value function emerges as the
same. We therefore see that, although there is a unique value for the solution to the
optimal stopping problem, the optimal strategy is not necessarily unique. Indeed,
we have found, at least in the case of compound Poisson jumps, that there is another
optimal stopping time which can be almost surely smaller than the optimal stopping
time found in the proof of Theorem 11.2, depending on the value of x.

In the case that X is spectrally negative, the solution may be expressed in terms
of the scale functions. This was shown by Avram et al. (2002) and Chan (2004).

Corollary 11.3 Suppose that X is spectrally negative. Then

v(x)=KZ(q)(x − x∗)− exZ(p)1

(
x − x∗), x ∈R,
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where p = q −ψ(1) and

x∗ = log

(

K
q

Φ(q)

Φ(q)− 1

q −ψ(1)
)

.

Here, we understand the right-hand side above in the limiting sense when q =ψ(1).
That is to say, x∗ = log(Kψ(1)/ψ ′(1)).

Recall that Φ1 is the right inverse of ψ1, which in turn is the Laplace exponent of X
under the measure P

1. Note that we have

ψ1(λ)=ψ(λ+ 1)−ψ(1),

for all λ ≥ −1. Hence, as Φ(q)− 1>−1,

ψ1
(
Φ(q)− 1

)= q −ψ(1)= p,

and this implies that Φ1(p)=Φ(q)− 1, where for negative values of p, we under-
stand

Φ1(p)= sup{λ ≥ −1 :ψ1(λ)= p}.
The subscripts on the functionsW(p)

1 and Z(p)1 indicate that they are the scale func-
tions associated with the measure P

1.

Proof of Corollary 11.3 We know from Theorem 11.2 that v = vy , for y = x∗.
Hence, from (11.5) and the conclusion of Exercise 8.7 (ii), we may write the given
expression for v as

v(x) = K
(

Z(q)
(
x − x∗)−W(q)

(
x − x∗) q

Φ(q)

)

− ex
(

Z
(p)

1

(
x − x∗)−W(p)

1

(
x − x∗) p

Φ1(p)

)

.

Next, note that the general form of x∗ given in Theorem 11.2, together with the
expression for one of the Wiener–Hopf factors in (8.4), allows us to deduce that

ex
∗ =K q

Φ(q)

Φ(q)− 1

q −ψ(1) .

From (8.30), we have that exW(p)

1 (x) = W(q)(x). Hence taking into account the
definition of Φ1(p), two of the terms in the expression for v given above cancel to
give the identity in the statement of the corollary. �
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11.3 Smooth Fit Versus Continuous Fit

It is clear that the solution to (11.3) is bounded from below by the gain function G,
and further, is equal to the gain function on the domain on which the distribution of
Xτ∗ is concentrated. It turns out that there are different ways in which the function v
“fits” on to the gain function G, according to certain path properties of the underly-
ing Lévy process. The McKean optimal stopping problem provides a good example
of where a dichotomy appears in this respect. We say that there is continuous fit at
the threshold x∗ if the left and right limit points of v at x∗ exist and are equal. In
addition, if the left and right derivatives of v exist at the boundary x∗ and are equal,
then we say that there is smooth fit at x∗. The remainder of this section is devoted to
explaining the dichotomy of smooth and continuous fit in (11.3).

Consider again the McKean optimal stopping problem. The following theorem is
again taken from Alili and Kyprianou (2005).

Theorem 11.4 The function v(logy) is convex in y > 0 and, in particular, there
is continuous fit of v at x∗. The right derivative at x∗ is given by v′(x∗+)=−ex

∗ +
KP(Xeq = 0). Thus, the optimal stopping problem (11.3) exhibits smooth fit at x∗ if
and only if 0 is regular for (−∞,0).

Proof Note that, for a fixed stopping time τ ∈ T , the expression E(e−qτ (K −
ex+Xτ )+) is convex in ex , as the same is true of the function (K − cex)+, where
c > 0 is a constant. Further, since taking the supremum is a subadditive operation,
it can easily be deduced that v(logy) is a convex function in y. In particular, v is
continuous.

Next, we establish necessary and sufficient conditions for smooth fit. Since
v(x) = K − ex , for all x < x∗, and hence v′(x∗−) = −ex

∗
, we are required to

show that v′(x∗+) = −ex
∗

for smooth fit. Starting from (11.7) and recalling that
ex
∗ =KE(eXeq ), we have

v(x) = −KE
((

ex−x
∗+Xeq − 1

)
1(−Xeq >x−x∗)

)

= −K(ex−x∗ − 1
)
E
(
eXeq 1(−Xeq >x−x∗)

)

−KE
((

eXeq − 1
)
1(−Xeq >x−x∗)

)
.

From the last equality, we may then write

v(x)− (K − ex
∗
)

x − x∗ = v(x)+K(E(e
Xeq )− 1)

x − x∗

= −K (e
x−x∗ − 1)

x − x∗ E
(
eXeq 1(−Xeq >x−x∗)

)

+K
E((eXeq − 1)1(−Xeq≤x−x∗))

x − x∗ .
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To simplify notations, let us call Ax and Bx the last two terms, respectively. It is
clear that

lim
x↓x∗Ax =−KE

(
eXeq 1(−Xeq >0)

)
. (11.12)

On the other hand, using integration by parts, we have that

Bx = K
E((eXeq − 1)1(0<−Xeq≤x−x∗))

x − x∗

= K
∫

(0,x−x∗]
e−z − 1

x − x∗ P(−Xeq ∈ dz)

= K ex
∗−x − 1

x − x∗ P
(
0<−Xeq ≤ x − x∗

)

+ K

x − x∗
∫ x−x∗

0
e−zP(0<−Xeq ≤ z)dz,

where in the first equality, we have removed the possible atom at zero from
the expectation by noting that exp{Xeq } − 1 = 0 on {Xeq = 0}. This leads to

limx↓x∗ Bx = 0. Using the expression for ex
∗
, we see that v′(x∗+) = −ex

∗ +
KP(−Xeq = 0), which equals−ex

∗
if and only if P(−Xeq = 0)= 0, in other words,

there is smooth fit if and only if 0 is regular for (−∞,0). �

Let us now discuss the dichotomy of continuous and smooth fit as a mathematical
principle. In order to make the arguments more visible, we will restrict ourselves to
the case that X is a spectrally negative Lévy process, in which case v and x∗ are
given in Corollary 11.3. We start by looking in closer detail at the analytic properties
of the candidate solution, vy , at its boundary point y. For convenience, we shall
assume that W(q) is continuously differentiable on (0,∞) when X has paths of
bounded variation.

Returning to the candidate solutions (vy, τ−y ), for y ≤ logK , we have, again from
Exercise 8.7, that

vy(x) = K
(

Z(q)(x − y)−W(q)(x − y) q

Φ(q)

)

− ex
(

Z
(p)

1 (x − y)−W(p)

1 (x − y) p

Φ1(p)

)

= KZ(q)(x − y)− exZ(p)1 (x − y)+W(q)(x − y) p

Φ1(p)

(

ey −K qΦ1(p)

Φ(q)p

)

,

where p = q − ψ(1), x ∈ R and the second equality follows from the fact that
exW(p)

1 (x)=W(q)(x); see (8.30). Thanks to the analytical properties of scale func-
tions, we observe that vy is continuous everywhere, except possibly at y. Indeed, at
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the point y, we find

vy(y−)=
(
K − ey

)

and

vy(y+)= vy(y−)+W(q)(0)
p

Φ1(p)

(

ey −K qΦ1(p)

Φ(q)p

)

. (11.13)

Recall thatW(q)(0)= 0 if and only ifX is of unbounded variation, and otherwise,
W(q)(0)= 1/δ, where δ is the drift in the usual decomposition of X; see (8.3) and
Lemma 8.6. As X is spectrally negative, 0 is regular for (−∞,0) if and only if
X is of unbounded variation. We see that vy is continuous whenever 0 is regular
for (−∞,0) and otherwise, with the exception of one particular value, there is a
discontinuity at y. Specifically, if y < x∗, then there is a negative discontinuity at y.
If y > x∗, then there is a positive discontinuity at y and if y = x∗, then there is
continuity at y.

Next, we compute the derivative of vy as follows. For x < y we have v′y(x)
=−ex . For x > y, again using the fact that exW(p)

1 (x)=W(q)(x), we have

v′y(x) = KqW(q)(x − y)− eypW(q)(x − y)

− exZ(p)1 (x − y)+W(q)′(x − y) p

Φ1(p)

(

ey −K qΦ1(p)

Φ(q)p

)

.

We see that

v′y(y+) = v′y(y−)+W(q)(0)
(
Kq − eyp

)

+W(q)′(0+) p

Φ1(p)

(

ey −K qΦ1(p)

Φ(q)p

)

. (11.14)

Recall from Exercise 8.5 (ii) that

W(q)′(0+)=
{

2/σ 2 if ν(−∞,0)=∞ or σ > 0
(ν(−∞,0)+ q)/δ2 if ν(−∞,0) <∞ and σ = 0

where σ is the Gaussian coefficient, ν is the Lévy measure ofX and δ > 0 is the drift
in the case thatX has bounded variation. Moreover, we adopt the understanding that
1/0=∞. From (11.14), we note that there is a discontinuity in the left- and right-
derivative of vy with the exception of the case that y = x∗. Indeed, when y > x∗,
this discontinuity is positive, when y < x∗ it is negative and when y = x∗, v′y(y) is
well defined.

Figures 11.1 and 11.2 sketch what we can expect to see for the shape of vy , by
perturbing the value y about x∗, for the cases of unbounded variation and bounded
variation with infinite Lévy measure. With these diagrams in mind, we may now
intuitively understand the appearance of smooth or continuous fit as a principle via
the following reasoning.
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Fig. 11.1 A sketch of the functions vy(logx) for different values of y when X is of bounded
variation and ν(−∞,0)=∞. Curves which do not bound the function (K − x)+ from above cor-
respond to examples of vy(logx) with y < x∗. Curves which are bounded from below by (K−x)+
correspond to examples of vy(logx) with y > x∗. The unique curve which bounds the gain from
above with continuous fit corresponds to vx∗ (logx).

Fig. 11.2 A sketch of the functions vy(logx) for different values of y when X is of unbounded
variation and σ = 0. Curves which do not bound from above the function (K − x)+ correspond to
examples of vy(logx)with y < x∗. Curves which are bounded from below by (K−x)+ correspond
to examples of vy(logx) with y > x∗. The unique curve which bounds from above the gain with
smooth fit corresponds to vx∗ (logx).

For the case 0 is irregular for (−∞,0) for X. When y < x∗, thanks to the analy-
sis of (11.13), we know that the function vy does not bound the gain function
(K − ex)+ from above due to a negative discontinuity at y. Hence τ−y is not
a good strategy in this regime of y. On the other hand, from (11.8) and (11.9)
if y ≥ x∗, vy bounds the gain function from above. Again from (11.13), we
see that there is a positive discontinuity in vy at y when y > x∗ and continu-
ity when y = x∗. By bringing y down to x∗ it turns out that the function vy
is pointwise optimised. Here, we experience a principle of continuous fit and
from (11.14) it transpires there is no smooth fit.

For the case 0 is regular for (−∞,0) for X. All curves vy are continuous. When
y < x∗, the function vy cannot bound the gain function (K − ey)+ from above
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as v′y(y+) < v′y(y−). Hence τ−y is not a good strategy in this regime of y. As
before, if y ≥ x∗, vy bounds the gain function from above. Again, from (11.14),
we see that there is a discontinuity in v′y at y if y > x∗ and, otherwise, it is
smooth when y = x∗. It turns out this time that by bringing y down to x∗ the
gradient v′y(y+) becomes equal to v′y(y−) and the function vy is pointwise
optimised. We experience then in this case a principle of smooth fit instead.

Whilst the understanding that smooth fit appears in the solutions of optimal
stopping problems as a principle dates back to Mikhalevich (1958), the idea
that continuous fit appears in certain classes of optimal stopping problems as
a principle appeared for the first time only recently in the work of Peskir and
Shiryaev (2000, 2002).

11.4 The Novikov–Shiryaev Optimal Stopping Problem

The following family of optimal stopping problems was solved by Novikov (2004),
albeit in an analogous random walk setting.4 Consider

vn(x)= sup
τ∈T

Ex

(
e−qτ

(
X+τ

)n)
, x ∈R, (11.15)

where T is the set of F-stopping times and it is assumed that X is any Lévy process,
q > 0 and we may choose n to be any strictly positive integer. We first need to
introduce a special class of polynomials based on so-called cumulants.

Recall that if a non-negative random variable Y has characteristic function
φ(θ) = E(eiθY ), then its cumulant generating function is defined by logφ(θ). If
Y has up to n moments, then it is possible to make a Taylor expansion of the cumu-
lant generating function, in the neighbourhood of the origin, up to order n plus an
error term. Specifically,

logφ(θ)=
n∑

j=1

κj
(iθ)j

j ! + o
(|θ |n) as θ→ 0.

In that case, the coefficients {κ1, . . . , κn} are called the first n cumulants, and they
may be written in terms of the first n moments. For example,

κ1 = μ1,

κ2 = μ2 −μ2
1,

κ3 = 2μ3
1 − 3μ1μ2 +μ3,

and so on, where μ1,μ2,μ3, . . . are the first, second, third, etc. moments of Y .

4The continuous-time arguments are also given in Kyprianou and Surya (2005). Further work in
this direction can be found in Deligiannidis and Utev (2009).
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For a concise overview of cumulant generating functions, the reader is referred
to Lukacs (1970) and Kendall and Stuart (1977).

Definition 11.5 (Appell Polynomials) Suppose that Y is a non-negative random
variable and, for n = 1,2, . . . , its n-th cumulant is given by κn. Define the Appell
polynomials of Y iteratively as follows. Take Q0(x)= 1, x ∈R and, assuming that
|κn| <∞ (equivalently, Y has an n-th moment), given Qn−1(x), we define Qn(x)
via

d

dx
Qn(x)= nQn−1(x), x ∈R. (11.16)

This defines Qn up to a constant. To pin this constant down, we insist that
E(Qn(Y ))= 0. The first three Appell polynomials are given by

Q0(x)= 1, Q1(x)= x − κ1, Q2(x)= (x − κ1)
2 − κ2,

Q3(x)= (x − κ1)
3 − 3κ2(x − κ1)− κ3,

under the assumption that κ3 <∞. See also Schoutens (2003) for further details of
Appell polynomials.

In the following theorem, we shall work with the Appell polynomials gener-
ated by the random variable Y = Xeq where as usual, for each t ∈ [0,∞), Xt =
sups∈[0,t]Xs and eq is an exponentially distributed random variable with mean 1/q ,
which is independent of X.

Theorem 11.6 Fix n ∈ {1,2, . . .} and assume that
∫

(1,∞)
xnν(dx) <∞. (11.17)

Then there exists a largest root, x∗n ∈ [0,∞), of the equation Qn(x)= 0. Let

τ ∗n = inf
{
t ≥ 0 :Xt ≥ x∗n

}
.

Then τ ∗n is an optimal strategy to (11.15). Further,

vn(x)= Ex

(
Qn(Xeq )1(Xeq≥x∗n)

)
, x ∈R.

Similarly to the McKean optimal stopping problem, we can establish a necessary
and sufficient criterion for the occurrence of smooth fit. Once again, it boils down
to the underlying path regularity of X.

Theorem 11.7 For each n= 1,2, . . . , the solution to the optimal stopping problem
in Theorem 9.6 is convex. In particular, there is continuous fit at x∗n . Moreover,

v′n
(
x∗n−

)= v′n
(
x∗n+

)−Q′n
(
x∗n
)
P(Xeq = 0).
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Hence, there is smooth fit at x∗n if and only if 0 is regular for (0,∞) for X.

The proofs of the last two theorems require some preliminary results, given in
the following lemmas.

Lemma 11.8 (Mean value property) Fix n ∈ {1,2, . . .} and suppose that Y is a
non-negative random variable satisfying E(Y n) <∞. IfQn is the n-th Appell poly-
nomial generated by Y , then

E
(
Qn(x + Y)

)= xn,
for all x ∈R.

Proof Note that the result is trivially true for n= 1. Next, suppose the result is true
for Qn−1. Then, using dominated convergence, we have from (11.16) that

d

dx
E
(
Qn(x + Y)

)= E

(
d

dx
Qn(x + Y)

)

= nE(Qn−1(x + Y)
)= nxn−1.

Solving this differential equation, using E(Qn(Y )) = 0 to pin down the constant,
we have the required result. �

Lemma 11.9 (Fluctuation identity) Fix n ∈ {1,2, . . .} and suppose that
∫

(1,∞)
xnν(dx) <∞.

Then, for all a > 0 and x ∈R,

Ex

(
e−qT +a Xn

T +a
1(T +a <∞)

)= Ex

(
Qn(Xeq )1(Xeq≥a)

)
,

where T +a = inf{t ≥ 0 :Xt ≥ a}.
Proof On the event {T +a < eq}, equivalently, on the event {Xeq ≥ a}, we have that
Xeq = XT +a + S, where S is independent of FT +a and has the same distribution as

Xeq . It follows that

Ex

(
Qn(Xeq )1(Xeq≥a)|FT +a

)= 1(T +a <eq )h(XT +a ), x ∈R,

where h(x) = Ex(Qn(Xeq )) = xn, and the last equality follows from Lemma 11.8
with Y = Xeq . Note also that, by Exercise 7.1, the integral condition on ν implies

that E(X
n

eq ) <∞, which has been used in order to apply Lemma 11.8. We see, by
taking expectations again in the previous calculation, that

Ex

(
Qn(Xeq )1(Xeq≥a)

)= Ex

(
e−qT +a Xn

T +a
1(T +a <∞)

)
,

as required. �
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Lemma 11.10 (Largest positive root) Fix n ∈ {1,2, . . .} and suppose that
∫

(1,∞)
xnν(dx) <∞.

Suppose that Qn is generated by Xeq . Then Qn has a unique strictly positive root,
say x∗n , such that Qn(x) is negative on [0, x∗n) and positive and increasing on
[x∗n,∞).

Proof We start by noting that the statement of the lemma is clearly true forQ1(x)=
x − κ1. We proceed then by induction and assume that the result is true for Qn−1.

The first step is to prove that Qn(0)≤ 0. Let

η(a,n)= E
(
e−qT +a Xn

T +a
1(T +a <∞)

)

and, for all a ≥ 0 and n= 1,2, . . . , note that η(a,n)≥ 0. On the other hand

η(a,n) = E
(
Qn(Xeq )1(Xeq≥a)

)

= −E(Qn(Xeq )1(Xeq <a)

)

= −P(Xeq < a)Qn(0)

+E
((
Qn(0)−Qn(Xeq )

)
1(Xeq <a)

)
,

for all n= 1,2, . . . , where the first equality follows by Lemma 11.9 and the second
by Lemma 11.8. Since, by definition,

Qn(x)=Qn(0)+ n
∫ x

0
Qn−1(u)dy, (11.18)

for all x ≥ 0, we have the estimate

∣
∣Ex

((
Qn(0)−Qn(Xeq )

)
1(Xeq <a)

)∣
∣≤ na sup

y∈[0,a]

∣
∣Qn−1(y)

∣
∣P(Xeq < a),

which tends to zero as a ↓ 0. We have, in conclusion, that, as a ↓ 0,

0≤ η(a,n)≤−P(Xeq < a)
[
Qn(0)+O(a)

]
,

and hence it follows that Qn(0)≤ 0.
Under the induction hypothesis for Qn−1, we see from (11.18), together with

the fact that Qn(0)≤ 0, that Qn is negative and decreasing on [0, x∗n−1). The point
x∗n−1 is the argument corresponding to the infimum of Qn, thanks to the positivity
and monotonicity ofQn−1(s) on x > x∗n−1. In particular,Qn(x) increases to infinity
from its minimum point, and hence there must be a unique strictly positive root of
the equation Qn(x)= 0. �
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We are now ready to move to the proofs of the main theorems of this section. For
the first one below, the reader is again referred to Baurdoux (2013) for an interesting
alternative.

Proof of Theorem 11.6 Fix n ∈ {1,2, . . .}. As a consequence of (11.17), we have
that E(X1) ∈ [−∞,∞), and hence the Strong Law of Large Numbers, given in Ex-
ercise 7.2, implies that (11.2) is automatically satisfied, since q > 0. Indeed, (X+t )n
grows no faster than Ctn for some constant C > 0.

Define

van(x)= Ex

(
e−qT +a

(
X+
T +a

)n1(T +a <∞)
)
, x ∈R. (11.19)

Again, referring to the discussion following Lemma 11.1, we consider pairs
(van, T

+
a ), for a > 0, to be a class of candidate solutions to (11.15). Our goal

then is to verify, with the help of Lemma 11.1, that the candidate pair (van, T
+
a )

solves (11.15) for some a > 0.
Lower bound (i). We need to prove that van(x) ≥ (x+)n for all x ∈ R. Note that

this statement is obvious for x ∈ (−∞,0) ∪ (a,∞), just from the definition of van .
Otherwise, when x ∈ (0, a), we have from Lemmas 11.8 and 11.9 that, for all x ∈R,

van(x) = Ex

(
Qn(Xeq )1(Xeq≥a)

)

= xn −E
(
Qn(x +Xeq )1(x+Xeq <a)

)
. (11.20)

Recall from Lemma 11.10 that Qn(x)≤ 0 on (0, x∗n]. Therefore, provided

a ≤ x∗n,
we have in (11.20) that van(x)≥ (x+)n, x ∈R.

Supermartingale property (ii). Provided

a ≥ x∗n,
we have almost surely that

Qn(Xeq )1(Xeq≥a) ≥ 0.

On the event that {eq > t}, we have that Xeq is equal in distribution to (Xt +
S)∨Xt , where S is independent of Ft and equal in distribution to Xeq . In particular
Xeq ≥Xt + S. It now follows that

van(x) ≥ Ex

(
1(eq>t)Qn(Xeq )1(Xeq≥a)

)

≥ Ex

(
1(eq>t)Ex

(
Qn(Xt + S)1(Xt+S≥a)|Ft

))

= Ex

(
e−qt van(Xt )

)
, x ∈R.
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From this inequality, together with the Markov property, it is easily shown, as
in the McKean optimal stopping problem, that {e−qt van(Xt ) : t ≥ 0} is a Px -
supermartingale. Right-continuity follows again from the right-continuity of the
paths of X, together with the right-continuity of van , which is evident from (11.20).

We now see that the unique choice a = x∗n allows all the conditions of
Lemma 11.1 to be satisfied, thus giving the solution to (11.15). �

Note that the case q = 0 can be dealt with in essentially the same manner. In this
regime it is necessary to assume that lim supt↑∞Xt <∞, and if working with the
gain function (x+)n, for n= 1,2, . . . , then one needs to assume that

∫

(1,∞)
xn+1ν(dx) <∞.

The power in the above integral is n+ 1, and not n as one must now deal with the
n-th moments of X∞; see Exercise 7.1.

Proof of Theorem 11.7 In a similar manner to the proof of Theorem 11.4, it is
straightforward to prove that v is convex and hence continuous.

To establish when there is smooth fit at x∗n , we note that, for x < x∗n ,

vn(x
∗
n)− vn(xn)
x∗n − x

= (x
∗
n)
n − xn

x∗n − x
+

Ex(Qn(Xeq )1(Xeq <x
∗
n)
)

x∗n − x

= (x
∗
n)
n − xn

x∗n − x
+

Ex((Qn(Xeq )−Qn(x∗n))1(Xeq <x
∗
n)
)

x∗n − x
,

where the final equality follows because Qn(x∗n)= 0. Clearly,

lim
x↓x∗n

(x∗n)n − xn
x∗n − x

= v′n
(
x∗n+

)
.

However,

Ex((Qn(Xeq )−Qn(x∗n))1(Xeq <x
∗
n)
)

x∗n − x

=
Ex((Qn(Xeq )−Qn(x))1(x<Xeq <x

∗
n)
)

x∗n − x

−
Ex((Qn(x

∗
n)−Qn(x))1(Xeq <x

∗
n)
)

x∗n − x
, (11.21)

where, in the first term on the right-hand side, we may restrict the expectation to
{x < Xeq < x

∗
n} as, under Px , the possible atom of Xeq at x gives zero mass to
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the expectation. Denote by Ax and Bx the two expressions on the right-hand side
of (11.21). We have that

lim
x↑x∗n

Bx =−Q′n
(
x∗n
)
P(Xeq = 0).

Integration by parts also gives

Ax =
∫

(0,x∗n−x)
Qn(x + y)−Qn(x)

x∗n − x
P(Xeq ∈ dy)

= Qn(x
∗
n)−Qn(x)
x∗n − x

P
(
Xeq ∈

(
0, x∗n − x

))

− 1

x∗n − x
∫ x∗n−x

0
P
(
Xeq ∈ (0, y]

)
Q′n(x + y)dy.

Hence, it follows that

lim
x↑x∗n

Ax = 0.

In conclusion, we have that

lim
x↑x∗n

vn(x
∗
n)− vn(x)
x∗n − x

= v′n
(
x∗n+

)−Q′n
(
x∗n
)
P(Xeq = 0),

which concludes the proof. �

11.5 The Shepp–Shiryaev Optimal Stopping Problem

Consider the optimal stopping problem

v(x)= sup
τ∈T

E
(
e−qτ+(Xτ∨x)

)
, (11.22)

where q > 0, T is the set of F-stopping times which are almost surely finite and
x ≥ 0. This optimal stopping problem was proposed and solved by Shepp and
Shiryaev (1993), for the case that X is a linear Brownian motion and q is suffi-
ciently large. Like the McKean optimal stopping problem, (11.22) appears in the
context of an option pricing problem. Specifically, it addresses the problem of the
optimal time to sell a risky asset for the maximum of either ex or its running maxi-
mum (with discounting) when the risky asset follows the dynamics of an exponen-
tial linear Brownian motion. This lies at the heart of the pricing problem of so-called
Russian options.

In Avram et al. (2004), a solution was given to (11.22) in the case that X is a
general spectrally negative Lévy process (and q is sufficiently large). In order to
keep to the mathematics that has been covered earlier on in this text, we give an
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account of a special case of that solution here. Specifically, we deal with the case
that X has bounded variation, in which case, we shall write X in the usual form

Xt = δt − St , t ≥ 0, (11.23)

where δ > 0 and S is a driftless subordinator with Lévy measure ν (concentrated
on (0,∞)). We shall further assume that ν has no atoms. As we shall use scale
functions in our solution, this last condition will ensure that they are continuously
differentiable on (0,∞); see Exercise 8.4. Our objective is the theorem below. Note
that we use standard notation from Chap. 8.

Theorem 11.11 Suppose that X has paths of bounded variation with Laplace ex-
ponent ψ satisfying q > ψ(1). Define

x∗ = inf
{
x ≥ 0 :Z(q)(x)≤ qW(q)(x)

}
, x ≥ 0.

Then for each x ≥ 0, a solution to (11.22) is given by the pair

v(x)= exZ(q)
(
x∗ − x)

and

τ ∗ = inf
{
t > 0 : Yxt > x∗

}
,

where Yx = {Yxt : t ≥ 0} is the process X reflected in its supremum, when issued
from x ≥ 0, so that Yxt = (x ∨Xt)−Xt .

Before moving to the proof of Theorem 11.11, let us consider the nature
of (11.22) and its solution.

It needs to be pointed out that, due to the involvement of the running supremum
in the formulation of the problem, one may consider (11.22) as an optimal stopping
problem which concerns the three-dimensional Markov process {(t,Xt ,Xt ) : t ≥ 0}.
Nonetheless, it is possible to reduce (11.22) to an optimal stopping problem driven
by the two-dimensional Markov process {(t, Y xt ) : t ≥ 0}.

The way to do this was noted by Shepp and Shiryaev (1994) in a follow-up article
to their original contribution. Recalling the method of change of measure described
in Sects. 3.3 and 8.1 (see specifically Corollary 3.11), for each τ ∈ T , we may write

E
(
e−qτ+(Xτ∨x)

)= E
1(e−ατ+Yxτ 1(τ<∞)

)
,

where

α = q −ψ(1).
Hence, our objective is to solve the optimal stopping problem

sup
τ∈T

E
1(e−ατ+Yxτ 1(τ<∞)

)
, (11.24)
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which is based on the two-dimensional Markov process {(t, Y xt ) : t ≥ 0}. Note
that (11.24) takes a different form from the type of optimal stopping problems we
have considered earlier, in that it does not conform to the description given in (11.1).
We shall return to this point shortly. In the meantime, we can note that arguments
along the lines of those in the paragraphs following Lemma 11.1, suggest that a suit-
able class of candidate solutions to (11.24) is pairs of the form (va(x), σ

x
a), a ≥ 0,

where for each x ≥ 0,

va(x)= E
1(e
−ασxa+Yxσxa 1(σ xa<∞)

)= E
1(e
−ασxa+Yxσxa ) (11.25)

and

σxa = inf
{
t > 0 : Yxt ≥ a

}
. (11.26)

Indeed, the times at which Yx is zero correspond to times at which X, and hence the
gain in (11.22), is increasing. The times at which Yx takes large values correspond
to the times at which X is far from its running supremum. At such moments, one
must wait for the process to return to its maximum before there is an increase in the
gain. Exponential discounting puts a time penalty on waiting too long, suggesting
that we should look for a threshold strategy in which one should stop if X moves
too far from its maximum. Note from Exercise 11.1 that the stopping time (11.26)
is P-almost surely finite, which places it in the class T . By the same token, it is also
P

1-almost surely finite, which explains the removal of the indicator in the second
equality of (11.25). We see at this point that the original problem (11.22) has now
been reduced to an optimal stopping problem concerning only the one-dimensional
process {Yxt : t ≥ 0}.

Next, let us consider the optimal threshold x∗. Define the function f (x) =
Z(q)(x)− qW(q)(x), x ≥ 0. Differentiating, we have, for x > 0,

f ′(x) = q(W(q)(x)−W(q)′(x)
)

= qeΦ(q)x
((

1−Φ(q))WΦ(q)(x)−W ′Φ(q)(x)
)
, (11.27)

where in the second equality, we have used (8.30). We know thatWΦ(q)(x) is mono-
tone increasing (cf. Theorem 8.1). In particular W ′Φ(q)(x) > 0 for all x > 0. On the
other hand, the assumption that q > ψ(1) implies that Φ(q) > 1. Hence, the right-
hand side of (11.27) is strictly negative, for all x > 0. Further, we may check, with
the help of Exercise 8.5 (i), that

lim
x↑∞

f (x)

qW(q)(x)
= 1

Φ(q)
− 1< 0.

From (8.30) again, it is clear that the denominator on the left-hand side above tends
to infinity.

Note that f (0+)= 1− qW(q)(0). Since X has bounded variation, we know that
W(q)(0) = δ−1. If q ≥ δ, then f (0+) < 0 and x∗ = 0, which corresponds to stop-
ping immediately. Note that it is already clear that one should stop immediately
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for this regime of q as the gain process exp{−qt + (Xt ∨ x)}, t ≥ 0, is decreasing.
When q < δ, we have that f (0+) > 0, f ′(x) < 0 for all x > 0 and f (∞) = −∞.
It follows that there is a unique solution in (0,∞) to f (x) = 0, which we denote
by x∗.

Note also that, as the solution can be expressed in terms of functions whose
analytic properties are sufficiently well-understood, we may easily investigate the
situation with regard to smooth or continuous fit. For each x > 0, the process
Yx has the same small-time path behaviour as −X, and hence P(σ xx = 0) = 0 as
P(τ−0 = 0)= 0. This property is independent of x > 0 (the point x = 0 needs to be
considered as a special case on account of reflection).

Corollary 11.12 When q < δ, the value function in (11.22) is convex and hence
exhibits continuous fit at x∗. Further, it satisfies

v′
(
x∗−)= v′(x∗+)− q

δ
ex
∗
,

showing that there is no smooth fit at x∗.

Proof The first part follows in a similar manner to the proof of convexity in the pre-
vious two optimal stopping problems. After a straightforward differentiation of the
value function of (11.22), recalling that W(0+)= 1/δ, the last part of the corollary
follows. �

Proof of Theorem 11.11 As indicated above, we consider candidate solutions of the
form (va, σ xa). We can develop the right-hand side of va in terms of scale functions
with the help of Theorem 8.10 (i). However, before doing so, let us note, with the
help of Lemma 8.4, that the analogue of the scale function W(q)

−1 , when working
under the measure P

1, can be calculated as equal to

[
W
(q)

1

]
−1(x)= exW(q+ψ1(−1))

1 (x).

However, we also know that ψ1(−1) = ψ(1 − 1) − ψ(1) = −ψ(1), and hence,
applying Lemma 8.4 again, we have further that

[
W
(q)

1

]
−1(x)= exe−xW(q)(x)=W(q)(x).

We may therefore read out of Theorem 8.10 (i) the identity

va(x)= ex
(

Z(q)(a − x)−W(q)(a − x)qW
(q)(a)−Z(q)(a)

W(q)′(a)−W(q)(a)

)

, x ≥ 0. (11.28)

It would be convenient at this point if we could apply Lemma 11.1 to the pair
(va, σ

x
a) for an appropriate choice of a. As alluded to previously, this lemma is not

directly applicable to the optimal stopping problem (11.24) on two counts. Firstly,
because the process Yx is not a Lévy process and, secondly, because of the inclusion
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of the indicator of the event {τ <∞} in the expected gain. This is not a serious
obstruction however. Indeed, we leave it as an exercise to the reader to show that,
following closely the proof of Lemma 11.1, the following statement is true. If, for
some τ ∗ ∈ T , v∗(x) := E

1(exp{−ατ ∗ + Yxτ∗}1(τ∗<∞)) satisfies (i) v∗(x) ≥ ex and
(ii) {e−αtv∗(Y xt ) : t ≥ 0} is a right-continuous supermartingale, then the pair (v∗, τ ∗)
solves (11.24).

Let us continue then to check the conditions of the aforementioned modified
version of Lemma 11.1 for the pair (σ xa, va), with an appropriate choice of a.

Lower bound (i). We need to show that va(s) ≥ ex . The assumption q > ψ(1)
implies that Φ(q) > 1, and hence

W(q)′(a)−W(q)(a) >W(q)′(a)−Φ(q)W(q)(a).

On the other hand, from (8.30), we may compute

W(q)′(a)−Φ(q)W(q)(a)= eΦ(q)aW ′Φ(q)(a) > 0,

where the inequality is due to (8.22). Together with the properties of Z(q)(a) −
qW(q)(a) as a function of a, we see that the coefficient

qW(q)(a)−Z(q)(a)
W(q)′(a)−W(q)(a)

is strictly positive when a > x∗ and non-positive when a ∈ [0, x∗].
Recalling that Z(q)(x) ≥ 1, we conclude that va(x) ≥ ex when a ∈ [0, x∗]. On

the other hand, if a > x∗, then

va(a−)= ea −W(q)(0)
qW(q)(a)−Z(q)(a)
W(q)′(a)−W(q)(a)

< ea, (11.29)

showing that, in order to respect the lower bound, we must take a ≤ x∗.
Supermartingale property (ii). We know that the function va(x) is differentiable

with continuous first derivative on (0, a). Further, the right-derivative at zero exists
and is equal to zero. To see this, simply compute

v′a(0+) =
(

Z(q)(a)−W(q)(a)
qW(q)(a)−Z(q)(a)
W(q)′(a)−W(q)(a)

− qW(q)(a)+W(q)′(a)qW
(q)(a)−Z(q)(a)

W(q)′(a)−W(q)(a)

)

= 0.

Next, recall from Sect. 8.1 that, under P1, X remains a Lévy process of bounded
variation with the same drift, but now with exponentially tilted Lévy measure, so
that in the form (11.23), ν(dy) becomes e−yν(dy). Applying the change of variable
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formula in the spirit of Exercises 4.2 and 4.1, we see that, despite the fact that the
first derivative of va is not well defined at a, for t ≥ 0,

e−αtva
(
Yxt

) = va(x)− α
∫ t

0
e−αsva

(
Yxs

)
ds

+
∫ t

0
e−αs

(
va(a−)− va(a+)

)
dLat

− δ
∫ t

0
e−αsv′a

(
Yxs

)
ds +

∫ t

0
e−αsv′a

(
Yxs

)
d(x ∨Xs)

+
∫ t

0

∫

(0,∞)
e−αs

(
va
(
Yxs− + y

)− va
(
Yxs−

))
e−yν(dy)ds

+Mt (11.30)

P-almost surely, where {Lat : t ≥ 0} counts the number of crossings of the process
Yx over the level a. Further, for t ≥ 0,

Mt =
∫

[0,t]

∫

(0,∞)
e−αs

(
va
(
Yxs− + y

)− va
(
Yxs−

))
N1(ds × dy)

−
∫ t

0

∫

(0,∞)
e−αs

(
va
(
Yxs− + y

)− va
(
Yxs−

))
e−yν(dy)ds,

where N1 is the counting measure associated with the jumps of S in the decompo-
sition (11.23) of X under P1. In the fourth integral of (11.30), the process x ∨Xs
increases only when Yxs = 0. Since v′a(0+)= 0, the fourth integral is equal to zero.
Note also that it can be proved in a straightforward way, with the help of the compen-
sation formula in Theorem 4.4, that the processM := {Mt : t ≥ 0} is a martingale. In
the first and third integrals of (11.30), we can freely interchange the roles of Yxs− and
Yxs on account of the set of jump times of X (and hence Yx ) having zero Lebesgue
measure.

Recalling that P1(σ xa <∞)= 1, the Markov property and (11.25) imply that

E
1(e
−ασxa+Yxσxa |Ft

)= e−α(σxa∧t)va
(
Yxσxa∧t

)
, t ≥ 0.

In particular, we have a martingale. Hence, considering the left-hand side of (11.30),
we deduce that, for all 0≤ x ≤ a and stopping times τ for the process Yx ,

E

(∫ σxa∧τ

0
e−αsL1va

(
Yxs

)
ds

)

= 0, (11.31)

where

L1va(x) :=
∫

(0,∞)
(
va(x + y)− va(x)

)
e−yν(dy)− δv′a(x)− αva(x)= 0, (11.32)
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for all x ∈ (0, a). It is a straightforward exercise to show that x �→ L1va(x) is a
continuous function on (0, a). Let us consider the particular the case that, in (11.31),

τ = inf
{
t > 0 : Yxt /∈ (u, v)

}
,

for 0< u< x < v ≤ a, so that σxa ∧ τ = τ . The equality in (11.31) can be rewritten
using the resolvent density, u(α)(·, ·, ·), described in Theorem 8.7. Specifically, using
Fubini’s Theorem, we have

E

(∫ τ

0
e−αsL1va

(
Yxs

)
ds

)

=
∫ ∞

0
e−αs

∫

(u,v)

P
(
Yxs ∈ dy, s < τ

)
L1va(y)ds

=
∫ v

u

u(α)(v− u,v− x, v − y)L1va(y)dy

= 0.

Since we may choose 0< u < x < v ≤ a arbitrarily and the density u(α) is strictly
positive, it can be shown that L1va(y) is Lebesgue-almost everywhere zero on
(0, a), and hence, by continuity, L1va(y)= 0 for all y ∈ (0, a).

Since va(x)= ex for all x > a, we know that the expression on the left-hand side
of (11.32) satisfies

L1va(x) = ex
∫

(0,∞)
(
1− e−y

)
ν(dy)− δex − αex

= −ex
(
ψ(1)+ α)

= −qex < 0,

for x > a. In conclusion, we have shown that L1va(x)≤ 0 on x ∈ (0,∞)\{a}.
If a ≥ x∗, then from (11.29) va(a−) − va(a+) ≤ 0. In the notation of Theo-

rem 8.11,
∫ ∞

0
e−αsP

(
Yxs ∈ {a}

)
ds = lim

z↑∞U
(α)(
z, x, {a})= 0.

This implies that we can rewrite (11.30) in the form

e−αtva
(
Yxt

) = va(x)+
∫ t

0
e−αsL1va

(
Yxs

)
ds

+
∫ t

0
e−αs

(
va(a−)− va(a+)

)
dLat +Mt,

without having to worry about the value of L1va at a. It follows that the process
{e−αtva(Xt ) : t ≥ 0} is the difference of a martingale M and a non-decreasing
adapted process, thus making it a supermartingale. It is also clear from (11.30) that
this supermartingale must be right-continuous.
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Fig. 11.3 A sketch of the functions va(logx) for different values of a, when X is of bounded
variation and ν(−∞,0) =∞. Curves which do not bound from above the diagonal correspond
to va(logx) for a > x∗. Curves which are bounded from below by the diagonal correspond to
va(logx) for 0< a < x∗. The unique curve which bounds from above the diagonal with continuous
fit corresponds to va(logx) with y = x∗.

In conclusion, all properties of Lemma 11.1 are satisfied uniquely when a = x∗,
thus concluding the proof. �

The semi-explicit nature of the functions {va : a ≥ 0}, once again, gives us the
opportunity to show graphically how continuous fit occurs, by perturbing the func-
tion va about the value a = x∗. See Fig. 11.3.

Exercises

11.1 Suppose that X is a spectrally negative Lévy process. Consider the process
Yx = {Yxt : t ≥ 0}, where Yxt = (x ∨Xt)−Xt . Recall the definition

σxa = inf
{
t > 0 : Yxt > a

}
,

for 0 ≤ x ≤ a. Use the Poisson point process of excursions, described in Theo-
rem 6.14, to show that

P
(
σxa =∞

)= lim
t↑∞

W(a − x)
W(a)

exp
{−tW ′(a)/W(a)},

and hence P(σ xa <∞)= 1, for all 0≤ x ≤ a.
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11.2 The following exercise is based on Novikov and Shiryaev (2004). Suppose
that X is a Lévy process and either:

q > 0 or q = 0 and lim
t↑∞Xt =−∞.

Consider the optimal stopping problem

v(x)= sup
τ∈T

Ex

(
e−qτ

(
1− e−(Xτ )+

))
, x ∈R, (11.33)

where T is the set of F-stopping times.

(i) For a > 0, prove the identity

Ex

(
e−qT +a

(
1− e

−X
T
+
a

)
1(T +a <∞)

)= Ex

((

1− e−Xeq

E(e−Xeq )

)

1(Xeq≥a)
)

,

where T +a = inf{t ≥ 0 :Xt ≥ a} and x ∈R.
(ii) Show that a solution to (11.33) is given by the pair (vx∗ , T

+
x∗), where vx∗(x) is

equal to the left-hand side of the identity in part (i) with

a = x∗ := − logE
(
e−Xeq

)
.

(iii) Show that there is smooth fit at x∗ if and only if 0 is regular for (0,∞) for X,
and otherwise there is continuous fit.

11.3 This exercise is taken from Baurdoux (2007) and is based on a method of
Beibel and Lerche (1997). Suppose that X is a spectrally negative α-stable Lévy
process, with α ∈ (1,2) and probabilities {Px : x ∈ R}. Let η > 0 and define for,
x ∈R,

H(x)=
∫ ∞

0
eux−uαuαη−1du.

Now suppose that h is a function on R such that there exists some x∗ satisfying

x∗ = argmaxx∈R
h(x)

H(x)
.

(i) Show that, for all x ∈R,

H((t + 1)−1/αXt )

H(x)(t + 1)η
, t ≥ 0

is a martingale under Px .
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(ii) Use the martingale in part (i) to deduce that, for any stopping time τ ,

Ex

[
h((τ + 1)−1/αXτ )

(τ + 1)η
1(τ<∞)

]

≤H(x) h(x
∗)

H(x∗)
.

(iii) Define

τ ∗ = inf
{
t > 0 : (1+ t)−1/αXt = x∗

}
.

Assuming that P(τ ∗ <∞)= 1 for x < x∗,5 show that τ ∗ is an optimal stopping
time for

V (x)= sup
τ

Ex

[
h((τ + 1)−1/αXτ )

(τ + 1)η
1(τ<∞)

]

,

for x < x∗, where the supremum is taken over all stopping times for X. More-
over deduce that V (x)= h(x∗)H(x)/H(x∗).

5In fact it is the case that P(τ ∗ <∞)= 1 thanks to the law of the iterated logarithm for X, which
states that

lim sup
t↑∞

Xt

t1/α(2 log log t)(α−1)/α
= cα

almost surely, for some constant cα > 0.



Chapter 12
Continuous-State Branching Processes

Our interest in continuous-state branching processes will be in exposing their in-
timate relationship with spectrally positive Lévy processes. A flavour for this has
already been given in Sect. 1.3.4, where it was shown that a compound Poisson
process killed on exiting (0,∞) can be time changed to obtain a continuous-time
Bienaymé–Galton–Watson process, and vice versa. The analogue of this path trans-
formation in greater generality consists of time changing the path of a spectrally
positive Lévy process, killed on exiting (0,∞), to obtain a process equal in law to a
Markov process which observes the so-called branching property (defined in more
detail later) and vice versa. The latter process is what we refer to as the continuous-
state branching process. The time change binding the two processes together is
called the Lamperti transform, following the foundational work of Lamperti (1967a,
1967b).1

Having looked closely at the Lamperti transform, we shall give an account of a
number of observations concerning the long-term behaviour, as well as conditioning
on survival, of continuous-state branching processes. Thanks to some of the results
in Chap. 8, semi-explicit results can be obtained.

12.1 The Lamperti Transform

A [0,∞]-valued strong Markov process Y = {Yt : t ≥ 0} with probabilities {Px :
x ≥ 0} is called a continuous-state branching process if it has paths that are right-
continuous with left limits and its law observes the branching property given in
Definition 1.14.2 Another way of phrasing the branching property is that, for all
θ ≥ 0 and x, y ≥ 0,

Ex+y
(
e−θYt

)=Ex
(
e−θYt

)
Ey

(
e−θYt

)
. (12.1)

1See also Silverstein (1968).
2As usual, for x ≥ 0, the measure Px satisfies the property Px(Y0 = x)= 1.
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Note from the above equality that, by iterating, we may always write, for each x > 0,

Ex
(
e−θYt

)=Ex/n
(
e−θYt

)n
, (12.2)

showing that Yt is infinitely divisible for each t > 0. If we define for, θ, t ≥ 0,

g(t, θ, x)=− logEx
(
e−θYt

)
,

then (12.2) implies that, for any positive integer m,

g(t, θ,m)= ng(t, θ,m/n) and g(t, θ,m)=mg(t, θ,1),
showing that for x ∈Q∩ [0,∞),

g(t, θ, x)= xut (θ), (12.3)

where ut (θ) = g(t, θ,1) ≥ 0. From (12.1), we also see that, for 0 ≤ z < y,
g(t, θ, z) ≤ g(t, θ, y), which implies that g(t, θ, x−) exists as a left limit and is
less than or equal to g(t, θ, x+), which exists as a right limit. Thanks to (12.3), both
left and right limits are the same, so that, for all x > 0

Ex
(
e−θYt

)= e−xut (θ). (12.4)

The Markov property in conjunction with (12.4) implies that, for all x > 0 and
t, s, θ ≥ 0,

e−xut+s (θ) =Ex
(
E
(
e−θYt+s |Yt

))=Ex
(
e−Ytus(θ)

)= e−xut (us(θ)).

In other words, the Laplace exponent of Y obeys the semi-group property

ut+s(θ)= ut
(
us(θ)

)
. (12.5)

The first significant glimpse one gets of Lévy processes, in relation to the above
definition of a continuous-state branching process, comes with the following result,
for which we offer no proof on account of the associated technicalities (see, how-
ever, Exercise 1.11 for intuitive motivation or Chap. II of Le Gall (1999), Silverstein
(1968), Caballero et al. (2009) for a proof).

Theorem 12.1 For t, θ ≥ 0, suppose that ut (θ) is the Laplace functional given by
(12.4) of some continuous-state branching process. Then it is differentiable in t and
satisfies

∂ut

∂t
(θ)+ψ(ut (θ)

)= 0, (12.6)

with initial condition u0(θ)= θ , where for λ≥ 0,

ψ(λ)=−q − aλ+ 1

2
σ 2λ2 +

∫

(0,∞)
(
e−λx − 1+ λx1(x<1)

)
Π(dx), (12.7)
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with q ≥ 0, a ∈ R, σ ≥ 0 and Π is a measure supported in (0,∞) satisfying∫
(0,∞)(1∧ x2)Π(dx) <∞.

Note that, for λ≥ 0, ψ(λ)= logE(e−λX1), whereX is either a spectrally positive
Lévy process3 or a subordinator, killed independently at rate q ≥ 0, with cemetery
state +∞.4 From Sects. 8.1 and 5.5, respectively, we know that ψ is convex, in-
finitely differentiable on (0,∞), ψ(0) = q and ψ ′(0+) ∈ [−∞,∞). Further, if X
is a (killed) subordinator, then ψ(∞) < 0 and otherwise, we have that ψ(∞)=∞.

For each θ > 0 the solution to (12.6) can be uniquely identified by the relation

−
∫ ut (θ)

θ

1

ψ(ξ)
dξ = t. (12.8)

This is easily confirmed by elementary differentiation. Note, by letting t ↓ 0, we
notice that u0(θ)= θ .

From the discussion above, we see that if a continuous-state branching pro-
cess exists, then it is associated with a particular function ψ : [0,∞) �→ R given
by (12.7). Formally speaking, we shall refer to all ψ which respect the defini-
tion (12.7) as branching mechanisms. We will now state without proof the Lamperti
transform which, amongst other things, shows that every branching mechanism ψ

can be associated with a continuous-state branching process.

Theorem 12.2 (The Lamperti transform) Let ψ be any given branching mecha-
nism.

(i) Suppose that X = {Xt : t ≥ 0} is a Lévy process with no negative jumps, killed
(with cemetery state+∞) at an independent and exponentially distributed time
with parameter q ≥ 0. Further, ψ(λ)= logE(e−λX1). Define, for t ≥ 0,

Yt =Xθt∧τ−0 ,

where τ−0 = inf{t > 0 :Xt < 0} and

θt = inf

{

s > 0 :
∫ s

0

du

Xu
> t

}

.

Then under Px , x ≥ 0, Y = {Yt : t ≥ 0} is a continuous-state branching process
with branching mechanism ψ and initial value Y0 = x.

3Recall that our definition of spectrally positive processes excludes subordinators. See the discus-
sion following Lemma 2.14.
4As usual, we understand the process X killed at rate q to mean that it is sent to +∞ after an
independent and exponentially distributed time with parameter q . Further q = 0 means there is no
killing.
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(ii) Conversely, suppose that Y = {Yt : t ≥ 0} is a continuous-state branching pro-
cess with branching mechanism ψ , such that Y0 = x ≥ 0. Define for t ≥ 0,

Xt = Yϕt ,
where

ϕt = inf

{

s > 0 :
∫ s

0
Yudu > t

}

.

Then X = {Xt : t ≥ 0} is a Lévy process with no negative jumps and initial
position X0 = x, which is stopped on first entry into (−∞,0) and killed (with
cemetery state +∞) at an independent and exponentially distributed time with
parameter q ≥ 0. If P is the law of X conditional on X0 = 0, then ψ(λ) =
logE(e−λX1), λ≥ 0.

It can be shown that a general continuous-state branching process appears
as the result of an asymptotic rescaling (in time and space) of the continuous-
time Bienaymé–Galton–Watson process discussed in Sect. 1.3.4; see Jirina (1958).
Roughly speaking, the Lamperti transform for continuous-state branching processes
then follows as a consequence of the analogous construction being valid for the
continuous-time Bienaymé–Galton–Watson process.

12.2 Long-Term Behaviour

For the forthcoming discussion, it will be useful to recall the definition of a
Bienaymé–Galton–Watson process. This process is a discrete-time Markov chain
Z = {Zn : n = 0,1,2, . . .} with state space {0,1,2, . . .}. The quantity Zn is to be
thought of as the size of the n-th generation of some asexually reproducing popu-
lation. The process Z has probabilities {Px : x = 0,1,2, . . .} such that, under Px ,
Z0 = x and

Zn =
Zn−1∑

i=1

ξ
(n)
i , (12.9)

for n = 1,2, . . . , where, for each n ≥ 1, {ξ (n)i : i = 1,2, . . .} are independent and
identically distributed on {0,1,2, . . .}.

Without specifying anything further about the common distribution of the off-
spring, there are two events which are of immediate concern for the Markov chain
Z, explosion and absorption. In the first case it is not clear whether or not the event
{Zn =∞} has positive probability for some n≥ 1 (the latter could happen if, for ex-
ample, the offspring distribution has no moments). When Px(Zn <∞)= 1, for all
n≥ 1, we say the process is conservative (in other words there is no explosion). In
the second case, we note from the definition of Z that if Zn = 0 for some n≥ 1, then
Zn+m = 0 for all m≥ 0, which makes 0 an absorbing state. As Zn is to be thought



12.2 Long-Term Behaviour 339

of as the size of the n-th generation of some asexually reproducing population, the
event {Zn = 0 for some n > 0} is referred to as extinction.

In this section, we consider the analogues of conservative behaviour and extinc-
tion within the setting of continuous-state branching processes. In addition, we shall
examine the laws of the supremum and total progeny process of continuous-state
branching processes. These are the analogues of

sup
n≥0
Zn and

{ ∑

0≤k≤n
Zk : n≥ 0

}

for the Bienaymé–Galton–Watson process. Note, in the latter case, total progeny is
interpreted as the total number of offspring to date.

12.2.1 Conservative Processes

A continuous-state branching process, Y = {Yt : t ≥ 0}, is said to be conservative if,
for all t > 0, P(Yt <∞)= 1. The following result is taken from Grey (1974).

Theorem 12.3 A continuous-state branching process with branching mechanism
ψ is conservative if and only if

∫

0+
1

|ψ(ξ)|dξ =∞.

Therefore, a necessary condition is that ψ(0)= 0 and a sufficient condition is that
ψ(0)= 0 and |ψ ′(0+)|<∞ (equivalently q = 0 and

∫
[1,∞) xΠ(dx) <∞).

Proof From the definition of ut (θ), a continuous-state branching process is conser-
vative if and only if limθ↓0 ut (θ)= 0, since, for each x > 0,

Px(Yt <∞)= lim
θ↓0
Ex

(
e−θYt

)= exp
{
−x lim

θ↓0
ut (θ)

}
,

where the limits are justified by monotonicity. However, note from (12.8) that as
θ ↓ 0,

t =−
∫ δ

θ

1

ψ(ξ)
dξ +

∫ δ

ut (θ)

1

ψ(ξ)
dξ,

where δ > 0 is sufficiently small. However, as the left-hand side is independent of θ ,
we are forced to conclude that limθ↓0 ut (θ)= 0 if and only if

∫

0+
1

|ψ(ξ)|dξ =∞.
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Note that ψ(θ) may be negative in the neighbourhood of the origin, and hence the
absolute value is taken in the integral.

If ψ is bounded away from zero in the neighbourhood of the origin, then 1/|ψ |
is locally integrable there. Hence, a necessary condition to be conservative is that
ψ(0)= 0. On the other hand, if ψ(0)= 0 and ψ is locally linear in the neighbour-
hood of the origin, then 1/|ψ | is not locally integrable there. Hence, recalling that
ψ is a smooth function on [0,∞), a sufficient condition to be conservative is that
ψ(0)= 0 and |ψ ′(0+)|<∞. �

Henceforth, we shall assume that there is no explosion (and in particular that
q = 0).

12.2.2 Extinction Probabilities

Thanks to the representation of continuous-state branching processes given in The-
orem 12.2 (i), it is clear that they observe the fundamental property that if Yt = 0
for some t > 0, then Yt+s = 0 for s ≥ 0. This can also be seen from the branch-
ing property (12.1). By taking y = 0 in (12.1), we see that P0 must be the measure
that assigns probability one to the process which is identically zero. Hence by the
Markov property, once in state zero, the process remains in state zero.

Let ζ = inf{t > 0 : Yt = 0}. The event {ζ <∞}= {Yt = 0 for some t > 0} is thus
referred to as extinction, in line with the same terminology used for the Bienaymé–
Galton–Watson process.

Note from (12.4) that ut (θ) is continuously differentiable in θ on (0,∞) (since,
by dominated convergence, the same is true for the left-hand side of the aforemen-
tioned equality). Differentiating (12.4) in θ , we find that, for each θ, x, t > 0,

Ex
(
Yte
−θYt )= x ∂ut

∂θ
(θ)e−xut (θ). (12.10)

Hence taking limits as θ ↓ 0, we obtain

Ex(Yt )= x ∂ut
∂θ
(0+), (12.11)

so that both sides of the equality are infinite at the same time. Differentiating (12.6)
in θ , we also find that, for θ > 0,

∂

∂t

∂ut

∂θ
(θ)+ψ ′(ut (θ)

)∂ut

∂θ
(θ)= 0.

Standard techniques for first-order differential equations then imply that

∂ut

∂θ
(θ)= c exp

{

−
∫ t

0
ψ ′
(
us(θ)

)
ds

}

, (12.12)
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for some constant c > 0. Inspecting (12.10) as t ↓ 0, we see that c= 1. Now taking
limits as θ ↓ 0 and recalling that, for each fixed s > 0, us(θ) ↓ 0 (thanks to the
exclusion of explosive behaviour), it is straightforward to deduce from (12.11) and
(12.12) that

Ex(Yt )= xe−ψ ′(0+)t , (12.13)

where we understand the left-hand side to be infinite wheneverψ ′(0+)=−∞. Note
that, from its definition, we know that ψ is convex and ψ ′(0+) ∈ [−∞,∞) (cf.
Sects. 5.5 and 8.1). Hence, to obtain (12.13), we have used dominated convergence
in the integral in (12.12) when |ψ ′(0+)| <∞ and monotone convergence when
ψ ′(0+)=−∞.

This leads to the following classification of continuous-state branching pro-
cesses.

Definition 12.4 A continuous-state branching process with branching mechanism
ψ is called:

(i) subcritical, if ψ ′(0+) > 0,
(ii) critical, if ψ ′(0+)= 0 and

(iii) supercritical, if ψ ′(0+) < 0.

The use of the terminology “criticality” refers then to whether the process will,
on average, decrease, remain constant or increase. The same terminology is em-
ployed for Bienaymé–Galton–Watson processes where now the three cases in Def-
inition 12.4 correspond to the mean of the offspring distribution being strictly less
than, equal to and strictly greater than unity, respectively. A classic result, attributed
to the scientists after which the latter process is named, states that there is extinc-
tion with probability 1 if and only if the mean offspring size is less than or equal to
unity (see Chap. I of Athreya and Ney (1972) for example). The analogous result
for continuous-state branching processes might therefore say that there is extinc-
tion with probability one if and only if ψ ′(0+)≥ 0. However, here we encounter a
subtle difference for continuous-state branching processes as the following simple
example shows. In the representation given by Theorem 12.2, take Xt = 1− t cor-
responding to Yt = e−t . Clearly ψ(λ) = λ so that ψ ′(0+) = 1 > 0 and yet Yt > 0
for all t > 0.

Extinction is characterised by the following result, due to Grey (1974); see also
Bingham (1976).

Theorem 12.5 Suppose that Y is a continuous-state branching process with
branching mechanism ψ . For all x ≥ 0, let p(x)= Px(ζ <∞).

(i) If ψ(∞) < 0, then for all x > 0, p(x)= 0.
(ii) When ψ(∞)=∞, p(x) > 0 for some (and then for all) x > 0 if and only if

∫ ∞ 1

ψ(ξ)
dξ <∞, (12.14)
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in which case p(x) = e−Φ(0)x , where Φ(0) = sup{λ ≥ 0 : ψ(λ) = 0}. Other-
wise p(x)= 0 for all x > 0.

Proof (i) If ψ(λ) = logE(e−λX1), λ ≥ 0, where X is a subordinator, then clearly,
from the path representation given in Theorem 12.2 (i), extinction occurs with prob-
ability zero. From the discussion following Theorem 12.1, the case that X is a sub-
ordinator is equivalent to ψ(λ) < 0 for all λ > 0.

(ii) Since {Yt = 0} ⊆ {Yt+s = 0}, for s, t > 0, we have by monotonicity that, for
each x > 0,

Px(Yt = 0) ↑ p(x) (12.15)

as t ↑ ∞. Hence p(x) > 0 if and only if Px(Yt = 0) > 0 for some t > 0. Since
Px(Yt = 0) = e−xut (∞), we see that p(x) > 0 for some (and then all) x > 0 if and
only if ut (∞) <∞ for some t > 0.

Fix t > 0. Taking limits in (12.8) as θ ↑∞, we see that, if ut (∞) <∞, then
∫ ∞ 1

ψ(ξ)
dξ <∞. (12.16)

Conversely, if the above integral condition holds, then, again taking limits in (12.8)
as θ ↑∞, it must necessarily hold that ut (∞) <∞.

Finally, assuming (12.16), we have learnt that
∫ ∞

ut (∞)
1

ψ(ξ)
dξ = t. (12.17)

From (12.15) and the fact that ut (∞) = −x−1 logPx(Yt = 0), we see that ut (∞)
decreases as t ↑∞ to the largest constant, c ≥ 0, such that

∫∞
c

1/ψ(ξ)dξ becomes
infinite. Appealing to the convexity and smoothness of ψ , the constant c must nec-
essarily correspond to a root of ψ in [0,∞), at which point it will behave linearly
and thus cause

∫∞
c

1/ψ(ξ)dξ to blow up. There are at most two such points, and
the largest of these is described precisely by c = Φ(0) ∈ [0,∞) (see Sect. 8.1). In
conclusion,

p(x)= lim
t↑∞ e−xut (∞) = e−Φ(0)x,

as required. �

On account of the convexity of ψ , we also recover the following corollary to part
(ii) of the above theorem.

Corollary 12.6 For a continuous-state branching process with branching mecha-
nism ψ satisfying ψ(∞)=∞ and

∫ ∞ 1

ψ(ξ)
dξ <∞,

we have p(x) < 1 for some (and then for all) x > 0 if and only if ψ ′(0+) < 0.
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To summarise the conclusions of Theorem 12.5 and Corollary 12.6, we have the
following cases for the extinction probability p(x):

Condition p(x)

ψ(∞) < 0 0
ψ(∞)=∞, ∫∞ψ(ξ)−1dξ =∞ 0
ψ(∞)=∞, ψ ′(0+) < 0,

∫∞
ψ(ξ)−1dξ <∞ e−Φ(0)x ∈ (0,1)

ψ(∞)=∞, ψ ′(0+)≥ 0,
∫∞

ψ(ξ)−1dξ <∞ 1

Let us return to the example that ψ(λ) = λ, resulting in a continuous-state
branching process Yt = e−t for t ≥ 0. We see that, in the above table, this exam-
ple falls into the second category. Despite the fact that this is a process which does
not become extinct, it does become extinguished. That is to say, limt↑∞ Yt = 0 with
positive probability; in fact with probability one.

What is not clear from the above table is whether, like the aforesaid example,
all continuous-state branching processes which fall into the second category nec-
essarily become extinguished. Exercises 12.1 and 12.3 explore this eventuality in
more detail. Despite the fact that extinction is impossible within the second cate-
gory, the probability of becoming extinguished is again related to the largest root
of the branching mechanism. Specifically, the following result is established in the
aforementioned exercises.

Theorem 12.7 Suppose that ψ(∞)=∞. Then for all x ≥ 0,

Px

(
lim
t↑∞Yt = 0

)
= e−Φ(0)x .

This means that (sub)critical processes which do not become extinct necessarily
become extinguished with probability one. Moreover, supercritical processes which
do not become extinct can still become extinguished with positive probability. The
only exception in the latter case is if the underlying Lévy process is a subordina-
tor, in which case there is neither extinction nor the possibility of becoming extin-
guished.

12.2.3 Total Progeny and the Supremum

Thinking of a continuous-state branching process, {Yt : t ≥ 0}, as the continuous-
time, continuous-state analogue of the Bienaymé–Galton–Watson process, it is rea-
sonable to refer to

Jt :=
∫ t

0
Yudu

as the total progeny until time t ≥ 0.
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In this section our main goal, given in the theorem below, is to provide distribu-
tional identities for JT +a , where

T +a = inf{t > 0 : Yt > a},

and sups≤ζ Ys . To facilitate the statement of the main result, let us first recall the
following notation. As remarked above, for any branching mechanism ψ , when
ψ(∞)=∞ (in other words when the Lévy process associated with ψ is not a sub-
ordinator), we have that ψ is the Laplace exponent of a spectrally negative Lévy
process. Let Φ(q) = sup{θ ≥ 0 : ψ(θ) = q} (cf. Sect. 8.1). Associated with ψ are
the scale functionsW(q) and Z(q) (cf. Sect. 8.2). In particular,

∫ ∞

0
e−βxW(q)(x)dx = 1

ψ(β)− q for β >Φ(q),

and Z(q)(x) = 1+ q ∫ x0 W(q)(y)dy. Following the notational protocol of Chap. 8,
we write W in place of W(0).

Theorem 12.8 Let Y = {Yt : t ≥ 0} be a continuous-state branching process with
branching mechanism ψ satisfying ψ(∞)=∞.

(i) For each a ≥ x > 0 and q ≥ 0,

Ex
(
e−q

∫ T+a
0 Ysds1(T +a <ζ)

)= Z(q)(a − x)−W(q)(a − x) Z
(q)(a)

W(q)(a)
.

(ii) For each a ≥ x > 0 and q ≥ 0,

Ex
(
e−q

∫ ζ
0 Ysds1(ζ<T +a )

)= W
(q)(a − x)
W(q)(a)

.

Proof Suppose now that X is the Lévy process mentioned in Theorem 12.2 (ii).
Write in the usual way τ+a = inf{t > 0 :Xt > a} and τ−0 = inf{t > 0 :Xt < 0}. Then
the Lamperti transform implies that

τ+a =
∫ T +a

0
Ysds and τ−0 =

∫ ζ

0
Ysds. (12.18)

The proof is now completed by invoking Theorem 8.1 (iii) for the process X. Note
that X is a spectrally positive Lévy process and, hence, to implement the aforemen-
tioned result, which applies to spectrally negative processes, one must consider the
problem of two-sided exit from [0, a] of −X with initial condition X0 = a − x. �

We conclude this section by noting the following two corollaries of Theorem 12.8
which, in their original form, are due to Bingham (1976).
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Corollary 12.9 Under the assumptions of Theorem 12.8, we have for each
a ≥ x > 0,

Px

(
sup
s≥0
Ys ≤ a

)
= W(a − x)

W(a)
.

In particular,

Px

(
sup
s≥0
Ys <∞

)
= e−Φ(0)x, x ≥ 0,

and the right-hand side is equal to unity if and only if Y is not supercritical.

Proof The first part is obvious by taking limits as q ↓ 0 in Theorem 12.8 (i). The
second part follows by taking limits as a ↑∞ and making use of Exercise 8.5 (i).
Recall that Φ(0) > 0 if and only if ψ ′(0+) < 0. �

Corollary 12.10 Under the assumptions of Theorem 12.8, we have for each x > 0
and q ≥ 0,

Ex
(
e−q

∫ ζ
0 Ysds

)= e−Φ(q)x .

Proof The proof is, again, a straightforward consequence of Theorem 12.8 (ii) by
taking limits as a ↑∞ and then applying the conclusion of Exercise 8.5 (i). �

12.3 Conditioned Processes and Immigration

In the classical theory of Bienaymé–Galton–Watson processes where the offspring
distribution is assumed to have finite mean, it is well understood that by taking a
critical or subcritical process (for which extinction occurs with probability one) and
conditioning it in the long term to remain positive, one uncovers a beautiful rela-
tionship between a martingale change of measure and processes with immigration;
cf. Athreya and Ney (1972) and Lyons et al. (1995).

Let us be a little more specific. A Bienaymé–Galton–Watson process with im-
migration is defined as the Markov chain Z∗ = {Z∗n : n= 0,1, . . .} where Z∗0 = z ∈{0,1,2, . . .} and, for n= 1,2, . . . ,

Z∗n = Zn +
n∑

k=1

Z
(k)
n−k, (12.19)

where now, Z = {Zn : n ≥ 0} has law Pz. Moreover, for each k = 1,2, . . . , n,
Z
(k)
n−k is independent and equal in distribution to numbers in the (n − k)-th gen-

eration of (Z,Pηk ), where it is assumed that the initial numbers, ηk , are, inde-
pendently of everything else, randomly distributed according to the probabilities
{p∗i : i = 0,1,2, . . .}. Intuitively speaking, one may see the process Z∗ as a variant
of the Bienaymé–Galton–Watson process,Z, in which, from the first and subsequent
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generations, there is a stream of immigrants, {η1, η2, . . .} each of whom initiates an
independent copy of (Z,P1).

Suppose now that Z is a Bienaymé–Galton–Watson process with probabilities
{Px : x = 1,2, . . .} as described above. For any event A which belongs to the sigma-
algebra generated by the first n generations, it turns out that for each x = 0,1,2, . . . ,

P ∗x (A) := lim
m↑∞Px(A|Zk > 0 for k = 0,1, . . . , n+m)

is well defined, and further,

P ∗x (A)=Ex(1AMn),

where Mn = m−nZn/Z0 and m = E1(Z1), which is assumed to be finite. It is not
difficult to show, using the iteration (12.9), thatEx(Zn)= xmn and that {Mn : n≥ 0}
is a martingale. What is perhaps more intriguing is that the new process, (Z,P ∗x ),
can be identified in two different ways:

1. The process {Zn − 1 : n ≥ 0} under P ∗x can be shown to have the same law
as a Bienaymé–Galton–Watson process with immigration having x − 1 ini-
tial ancestors. The immigration probabilities satisfy p∗i = (i + 1)pi+1/m, for
i = 0,1,2, . . . , where {pi : i = 0,1,2, . . .} is the offspring distribution of the
original Bienaymé–Galton–Watson process. Moreover, immigrants initiate in-
dependent copies of Z.

2. The process Z under P ∗x has the same law as x − 1 initial individuals, each
one independently initiating a Bienaymé–Galton–Watson process with law P1,
together with one individual initiating an independent immortal genealogical
line of descent, the spine, along which individuals reproduce with the tilted dis-
tribution {ipi/m : i = 1,2, . . .}. The siblings of individuals on the spine initiate
copies of a Bienaymé–Galton–Watson process under P1. By subtracting indi-
viduals on the spine from the aggregate population, one observes a Bienaymé–
Galton–Watson process with immigration as described above.

Taking the second interpretation above, one sees that the change of measure has
adjusted the statistics on just one genealogical line of descent to ensure that it, and
hence the whole process itself, is immortal. See Fig. 12.1.

Our aim in this section is to establish the analogue of these ideas for critical or
subcritical continuous-state branching processes. This is done in Sect. 12.3.2. How-
ever, we first address the issue of how to condition a spectrally positive Lévy process
to stay positive. Apart from being a useful comparison for the case of conditioning a
continuous-state branching process, there are reasons to believe that the two classes
of conditioned processes might be connected through a Lamperti-type transform
because of the relationship given in Theorem 12.2. This is the very last point we
address in Sect. 12.3.2.
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Fig. 12.1 Nodes shaded in black initiate Bienaymé–Galton–Watson processes under P1. Nodes in
white are individuals belonging to the immortal genealogical line of descent known as the spine.
Nodes shaded in grey represent the offspring of individuals on the spine who are not themselves
members of the spine. These individuals may also be considered as “immigrants”.

12.3.1 Conditioning a Spectrally Positive Lévy Process to Stay
Positive

It is possible to talk of conditioning any Lévy process to stay positive and this is now
a well-documented phenomenon (also for the case of random walks). See Bertoin
(1993), Bertoin and Doney (1994b), Chaumont (1994, 1996), Konstantopoulos and
Richardson (2002), Duquesne (2003), Bryn-Jones and Doney (2006) and Chaumont
and Doney (2005), to name but some of the most recent additions to the literature;
see also Lambert (2000) who considers conditioning a spectrally negative Lévy pro-
cess to stay in a strip. We restrict our attention to the case of conditioning a spectrally
positive Lévy process to stay positive, since this is what is required for the forthcom-
ing discussion. This also facilitates the mathematics. A more general treatment of
conditioning a Lévy process to stay positive is given in Chap. 13.
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Suppose that X = {Xt : t ≥ 0} is a spectrally positive Lévy process with Laplace
exponent ψ(λ)= logE(e−λX1), λ ≥ 0. First recall from Theorem 3.12 that, for all
x > 0,

Ex

(
e−qτ

−
0 1(τ−0 <∞)

)= e−Φ(q)x, (12.20)

where, as usual, τ−0 = inf{t > 0 : Xt < 0} and Φ is the right inverse of ψ . In par-
ticular, when ψ ′(0+) < 0, so that limt↑∞Xt = ∞, we have that Φ(0) > 0 and
Px(τ

−
0 =∞) = 1 − e−Φ(0)x . In that case, for any A ∈ Ft , we may simply apply

the formula for conditional probability and the Markov property, respectively, to
deduce that, for all x > 0,

P
↑
x (A) := Px

(
A|τ−0 =∞

)

=
Ex(1(A,t<τ−0 )

P(τ−0 =∞|Ft ))
Px(τ

−
0 =∞)

= Ex

(

1(A,t<τ−0 )
1− e−Φ(0)Xt
1− e−Φ(0)x

)

,

thus giving sense to “conditioning X to stay positive”. If, however, ψ ′(0+) ≥ 0,
i.e. lim inft↑∞Xt = −∞, then the above calculation is not possible as Φ(0) = 0.
Moreover, it is less clear what it means to condition the process to stay positive,
in particular, since the event we are conditioning on has zero mass. The sense in
which this may be understood is given in Chaumont (1994, 1996). The basic idea is
to consider the trajectories of X with a killing time ς at which the process is sent
to a cemetery state. For all x > 0, one randomises ς according to an independent
exponential distribution with rate q > 0 under Px . Conditioning to stay positive (an
event which now has positive probability) is then performed up to this killing time,
followed by taking limits as q ↓ 0.

Theorem 12.11 5 Suppose that eq is an exponentially distributed random variable,
with parameter q , that is independent of X. Suppose that ψ ′(0+)≥ 0. For all x, t >
0 and A ∈Ft ,

P
↑
x (A, t < ς) := lim

q↓0
Px

(
A, t < eq |τ−0 > eq

)
(12.21)

exists and satisfies

P
↑
x (A, t < ς)= Ex

(

1(A,t<τ−0 )
Xt

x

)

.

5Here and later on, we make an abuse of notation in working with the independent and exponen-
tially distributed random variables eq . In taking limits as q ↓ 0 in, for example, (12.21), we appear
to be working with an uncountable sequence of independent exponential random variables on the
same probability space. This is possible, on account of the fact that, for each q > 0, we may write
eq = q−1e1.
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Proof Appealing to the formula for conditional probability, the Markov property,
the lack-of-memory property and (12.20), we have

Px

(
A, t < eq |τ−0 > eq

) = Px(A, t < eq, τ
−
0 > eq)

Px(τ
−
0 > eq)

=
Ex(1(A,t<eq∧τ−0 )E(τ

−
0 > eq |Ft ))

Ex(1− e−qτ
−
0 )

= Ex

(

1(A,t<τ−0 )
e−qt 1− e−Φ(q)Xt

1− e−Φ(q)x

)

. (12.22)

Under the assumption ψ ′(0+) ≥ 0, we know that Φ(0) = 0 and, hence, by
l’Hôpital’s Rule

lim
q↓0

1− e−Φ(q)Xt
1− e−Φ(q)x

= Xt
x
. (12.23)

Note also that, for all q sufficiently small,

1− e−Φ(q)Xt
1− e−Φ(q)x

≤ Φ(q)Xt

1− e−Φ(q)x
≤ CXt

x
,

where C > 1 is a constant. The condition ψ ′(0+) ≥ 0 also implies that, for all
t > 0, E(|Xt |) <∞ (see Sect. 8.1) and hence, by dominated convergence, we may
take limits in (12.22) as q ↓ 0 and then apply (12.23) to deduce the result. �

When ψ ′(0+) < 0, for each x > 0, P↑x is a probability measure. This is not nec-
essarily the case when ψ ′(0+) ≥ 0. The following lemma gives a more precise
account.

Lemma 12.12 Fix x > 0. When ψ ′(0+) = 0, P↑x is a probability measure and
when ψ ′(0+) > 0, P↑x is a sub-probability measure.

Proof All that is required to be shown is that, for each t > 0, Ex(1(t<τ−0 )
Xt )= x for

P
↑
x to be a probability measure, and Ex(1(t<τ−0 )

Xt ) < x for it to be a sub-probability
measure. To this end, recall from the proof of Theorem 12.11 that

Ex

(

1(t<τ−0 )
Xt

x

)

= lim
q↓0

Px

(
t < eq |τ−0 > eq

)

= 1− lim
q↓0

Px

(
eq ≤ t |τ−0 > eq

)

= 1− lim
q↓0

∫ t

0

qe−qu

1− e−Φ(q)x
Px

(
τ−0 > u

)
du
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= 1− lim
q↓0

q

Φ(q)x

∫ t

0
e−quPx

(
τ−0 > u

)
du

= 1− lim
q↓0

ψ ′(0+)
x

∫ t

0
e−quPx

(
τ−0 > u

)
du.

When ψ ′(0+) = 0, it is clear that the right-hand side above is equal to unity and,
otherwise, it is strictly less than unity, thereby distinguishing the case of a probabil-
ity measure from a sub-probability measure. �

Note that when Ex(1(t<τ−0 )Xt ) = x, an easy application of the Markov prop-

erty implies that {1(t<τ−0 )Xt/x : t ≥ 0} is a unit mean Px -martingale, so that P↑x is
obtained by a martingale change of measure. Similarly, when Ex(1(t<τ−0 )

Xt ) ≤ x,
{1(t<τ−0 )Xt/x : t ≥ 0} is a supermartingale.

On a final note, the reader may be curious as to how one characterises spectrally
positive Lévy processes (and indeed a general Lévy process) conditioned to stay
positive when the initial value x = 0. In general, this is a non-trivial issue, but pos-
sible by considering the weak limit of P↑x as a measure on the space of paths that are
right-continuous with left limits. The interested reader should consult Chaumont and
Doney (2005) for the most recent account as well as the commentary in Chap. 13.

12.3.2 Conditioning a (sub)Critical Continuous-State Branching
Process to Stay Positive

Let us now progress to the issue of conditioning continuous-state branching pro-
cesses to stay positive, following closely Chap. 3 of Lambert (2001) and Lambert
(2007). We continue to adopt the notation of Sect. 12.1. Our interest is restricted
to the case that there is extinction with probability one, for all initial values x > 0.
According to Corollary 12.6, this corresponds to ψ(∞)=∞, ψ ′(0+)≥ 0 and

∫ ∞ 1

ψ(ξ)
dξ <∞,

and, henceforth, we assume that these conditions are in force. For notational conve-
nience, we also set

ρ =ψ ′(0+).

Theorem 12.13 Suppose that Y = {Yt : t ≥ 0} is a continuous-state branching pro-
cess with branching mechanism ψ satisfying the above conditions. For each event
A ∈ σ(Ys : s ≤ t) and x > 0,

P ↑x (A) := lim
s↑∞Px(A|ζ > t + s)

is well defined as a probability measure and satisfies
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P ↑x (A)=Ex
(

1Aeρt
Yt

x

)

.

In particular, P ↑x (ζ <∞)= 0 and {eρtYt : t ≥ 0} is a Px -martingale.

Proof From the proof of Theorem 12.5, we have seen that, for x > 0,

Px(ζ ≤ t)= Px(Yt = 0)= e−xut (∞),

where ut (θ) satisfies (12.17). Crucial to the proof will be the convergence

lim
s↑∞

us(∞)
ut+s(∞) = eρt , (12.24)

for each t > 0, and hence, we first show that this result holds.
To this end, note from (12.17) that

∫ us(∞)

ut+s (∞)
1

ψ(ξ)
dξ = t.

On the other hand, recall from the proof of Theorem 12.5 that ut (∞) is decreasing
to Φ(0)= 0, as t ↓ 0. Hence, since limξ↓0ψ(ξ)/ξ =ψ ′(0+)= ρ, it follows that

log
us(∞)
ut+s(∞) =

∫ us(∞)

ut+s (∞)
1

ξ
dξ =

∫ us(∞)

ut+s (∞)
ψ(ξ)

ξ

1

ψ(ξ)
dξ→ ρt,

as s ↑∞, thus proving the claim.
With (12.24) in hand, we may now proceed to note that

lim
s↑∞

1− e−Ytus(∞)

1− e−xut+s (∞)
= Yt
x

eρt .

In addition, for s sufficiently large,

1− e−Ytus(∞)

1− e−xut+s (∞)
≤ Ytus(∞)

1− e−xut+s (∞)
≤ CYt

x
eρt ,

for some C > 1. Hence, we may now apply the Markov property and then the Dom-
inated Convergence Theorem to deduce that

lim
s↑∞Px(A|ζ > t + s) = lim

s↑∞Ex
(

1(A,ζ>t)
PYt (ζ > s)

Px(ζ > t + s)
)

= lim
s↑∞Ex

(

1(A,ζ>t)
1− e−Ytus(∞)

1− e−xut+s (∞)

)

= Ex
(

1(A,ζ>t)
Yt

x
eρt

)

.
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Note that we may remove the requirement that {t < ζ } from the indicator on the
right-hand side above, as Yt = 0 on {t ≥ ζ }. To show that P ↑x is a probability mea-
sure, it suffices to show that, for each x, t > 0, Ex(Yt )= e−ρtx. However, this was
already proved in (12.13). A direct consequence of this is that P ↑x (ζ > t) = 1, for
all t ≥ 0, which implies that P ↑x (ζ <∞)= 0.

The fact that {eρtYt : t ≥ 0} is a martingale follows in the usual way from the nec-
essary consistency of Radon–Nikodym densities. Alternatively, it follows directly
from (12.13) by applying the Markov property as follows. For 0≤ s ≤ t ,

Ex
(
eρtYt |σ(Yu : u≤ s)

)= eρsEYs
(
eρ(t−s)Yt−s

)= eρsYs,

which establishes the martingale property. �

In older literature, the process (Y,P ↑x ) is called the Q-process. See for example
Athreya and Ney (1972). It is also straightforward to show that (Y,P ↑x ) is a Markov
process, using the formula for conditional expectation under change of measure.

We have thus far seen that conditioning a (sub)critical continuous-state branching
process to stay positive can be performed mathematically in a similar way to condi-
tioning a spectrally positive Lévy processes to stay positive. Our next objective is to
show that, in an analogous sense to what has been discussed for Bienaymé–Galton–
Watson processes, the conditioned process has the same law as a continuous-state
branching process with immigration. Let us spend a little time to give a mathemati-
cal description of the latter.

In general, we define a Markov process Y ∗ = {Y ∗t : t ≥ 0}, with probabilities
{Px : x ≥ 0}, to be a continuous-state branching process with branching mechanism
ψ and immigration mechanism φ if the following hold: It is [0,∞)-valued, has
paths that are right-continuous with left limits and, for all x, t > 0 and θ ≥ 0,

Ex
(
e−θY ∗t

)= exp

{

−xut (θ)−
∫ t

0
φ
(
ut−s(θ)

)
ds

}

, (12.25)

where ut (θ) is the unique solution to (12.6) and φ is the Laplace exponent of any
subordinator. Specifically, for θ ≥ 0,

φ(θ)= δθ +
∫

(0,∞)
(
1− e−θx

)
Υ (dx),

where Υ is a measure concentrated on (0,∞) satisfying
∫
(0,∞)(1 ∧ x)Υ (dx)

<∞.
It is possible to see how the above definition plays an analogous role to (12.19)

by considering the following sample calculations (which also show the existence
of continuous-state branching processes with immigration). Suppose that S = {St :
t ≥ 0}, under P, is a pure jump subordinator6 with Laplace exponent φ(θ) (hence

6Examples of such processes when φ(λ) = cλα for α ∈ (0,1) and c > 0 are considered by
Etheridge and Williams (2003).
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δ = 0). Now define a process

Y ∗t = Y (y)t +
∫

[0,t]

∫

(0,∞)
Y
(x)
t−s N(ds × dx), t ≥ 0,

where N is the Poisson random measure associated with the jumps of S, {Y (y)t :
t ≥ 0} is a continuous-state branching process with initial value y > 0 and, for each
(s, x) in the support of N , Y (x)t−s is an independent copy of the process (Y,Px) at
time t − s. Note that, since S has a countable number of jumps, the integral above is
well defined. Moreover, for the forthcoming calculations, it will be more convenient
to write the expression for Y ∗t in the form

Y ∗t = Y (y)t +
∑

u≤t
Y
(�Su)
t−u , t ≥ 0,

where�Su := Su−Su−, so that�Su = 0 at all but a countable number of u ∈ [0, t].
We immediately see that Y ∗ = {Y ∗t : t ≥ 0} is a natural analogue of (12.19), where
now the subordinator St plays the role of

∑n
i=1 ηi , the total number of immigrants

in Z∗ up to and including generation n. It is also straightforward to see, from its

pathwise definition, that Y ∗ is Markovian. Indeed Y ∗t+s = Ỹ (Y
∗
t )

s +∑t<u≤t+s Y
(�Su)
t+s−u,

where Ỹ (y)s is an independent copy of Y (y)s , showing that the only dependency on
{Y ∗u : u ≤ t} comes through Y ∗t , in the first term on the right-hand side of the last
equality.

Let us proceed further to compute the Laplace exponent of Y ∗. If Px is the law
of Y ∗ when Y ∗0 = Y0 = x, then, with Ex as the associated expectation operator, for
all θ ≥ 0,

Ex
(
e−θY ∗t

)= Ex

(

e−θYt
∏

v≤t
E
(
e−θY

�Sv
t−v |S)

)

,

where the interchange of the product and the conditional expectation is a conse-
quence of monotone convergence.7 decomposition tells us that

E
(

1−
∏

u≤t
1(�Su>ε)e

−θY (�Su)t−u
∣
∣S

)

= 1−
∏

u≤t
1(�Su>ε)E

(
e−θY

(�Su)
t−u

∣
∣S
)

due to there being a finite number of independent jumps greater than ε. Now take
limits as ε ↓ 0 and apply monotone convergence. Continuing this calculation, we
have

Ex
(
e−θY ∗t

) = Ex
(
e−θYt

)
E

(∏

v≤t
E�Sv

(
e−θYt−v

)
)

7Note that for each ε > 0, the Lévy–Itô
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= e−xut (θ)E
(∏

v≤t
e−�Svut−v(θ)

)

= e−xut (θ)E
(
e−

∑
v≤t �Svut−v(θ)

)

= e−xut (θ)E
(
e−

∫
[0,t]

∫
(0,∞) xut−s (θ)N(ds×dx))

= exp

{

−xut (θ)−
∫

[0,t]

∫

(0,∞)
(
1− e−xut−s (θ)

)
dsΥ (dx)

}

= exp

{

−xut (θ)−
∫ t

0
φ
(
ut−s(θ)

)
ds

}

,

where the penultimate equality follows from Theorem 2.7 (ii).
Allowing a drift component in φ introduces some lack of clarity with regard to a

path-wise construction of Y ∗ in the manner shown above. Intuitively speaking, if δ
is the drift of the underlying subordinator, then the term δ

∫ t
0 ut−s(θ)ds, which ap-

pears in the Laplace exponent of (12.25), may be thought of as due to a “continuum
immigration” where, with rate δ, in each dt an independent copy of (Y,P·) immi-
grates with infinitesimally small initial value. The problem with this heuristic is that
there is an uncountable number of immigrating processes, which creates measura-
bility problems. Nonetheless, Lambert (2002), Kyprianou et al. (2012a) and Chen
and Delmas (2012) all give different pathwise constructions, using techniques that
go beyond the scope of this text. Returning to the relationship between processes
with immigration and conditioned processes, we see that the existence of a process
Y ∗ with an immigration mechanism containing drift can otherwise be seen from the
following lemma.

Lemma 12.14 Fix x > 0. Suppose that (Y,Px) is a continuous-state branching pro-
cess with branching mechanism ψ such that ρ ≥ 0. Then (Y,P ↑x ) has the same law
as a continuous-state branching process with branching mechanism ψ and immi-
gration mechanism φ, where for θ ≥ 0,

φ(θ)=ψ ′(θ)− ρ.

Proof Fix x > 0. Clearly (Y,P ↑x ) has paths that are right-continuous with left limits
as, for each t > 0, when restricted to σ(Ys : s ≤ t), we have P ↑x # Px . Next, we
compute the Laplace exponent of Yt under P ↑, making use of (12.4):

E↑x
(
e−θYt

) = Ex
(

eρt
Yt

x
e−θYt

)

= −eρt

x

∂

∂θ
Ex

(
e−θYt

)

= −eρt

x

∂

∂θ
e−xut (θ)
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= eρte−xut (θ) ∂ut
∂θ
(θ). (12.26)

Recall from (12.12) that

∂ut

∂θ
(θ)= e−

∫ t
0 ψ
′(us(θ))ds = e−

∫ t
0 ψ
′(ut−s (θ))ds ,

in which case, we may identify with the help of (12.7),

φ(θ) = ψ ′(θ)− ρ
= σ 2θ +

∫

(0,∞)
(
1− e−θx

)
xΠ(dx).

The latter is the Laplace exponent of a subordinator with drift σ 2 and Lévy measure
xΠ(dx), x > 0. �

Looking again to the analogy with conditioned Bienaymé–Galton–Watson pro-
cesses, it is natural to ask whether there is any way to decompose the conditioned
process in some way so as to identify the analogue of the genealogical line of de-
scent, earlier referred to as the spine, along which copies of the original process
immigrate. This is possible, but again somewhat beyond the scope of this text. We
refer the reader instead to Duquesne (2009), Duquesne and Winkel (2007), Lambert
(2002) and Kyprianou et al. (2012a). See also Berestycki et al. (2011b).

Finally, as promised earlier, we show the connection between (X,P↑x ) and
(Y,P

↑
x ) for each x > 0. We are only able to make a statement for the case that

ψ ′(0+)= 0.

Lemma 12.15 Suppose that Y = {Yt : t ≥ 0} is a continuous-state branching pro-
cess with branching mechanism ψ . Suppose further that X = {Xt : t ≥ 0} is a spec-
trally positive Lévy process with Laplace exponent ψ(θ)= logE(e−θX1), for θ ≥ 0.
Fix x > 0. If ψ ′(0+)= 0 and

∫ ∞ 1

ψ(ξ)
dξ <∞,

then

(i) the process {Xθt : t ≥ 0} under P↑x has the same law as (Y,P ↑x ), where

θt = inf

{

s > 0 :
∫ s

0

1

Xu
du > t

}

,

(ii) the process {Yϕt : t ≥ 0} under P ↑x has the same law as (X,P↑x ), where

ϕt = inf

{

s > 0 :
∫ s

0
Yudu > t

}

.

Proof Note that the condition ψ ′(0+)= 0 necessarily excludes the case that X is a
subordinator.
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(i) It is easy to show that θt is a stopping time with respect to the filtration {Ft :
t ≥ 0} of X. Using Theorem 12.11 and the Lamperti transform, we have that, if
F(Xθs : s ≤ t) is a non-negative measurable functional of X, then, for each x > 0,

E
↑
x

(
F(Xθs : s ≤ t)1(θt<∞)

) = Ex

(
Xθt

x
F (Xθs : s ≤ t)1(θt<τ−0 )

)

= Ex
(
Yt

x
F (Ys : s ≤ t)1(t<ζ )

)

= E↑x
(
F(Ys : s ≤ t)

)
.

(ii) The proof of the second part is a similar argument and left to the reader. �

12.4 Concluding Remarks

It would be impossible to complete this chapter without mentioning that the ma-
terial presented above is but the tip of the iceberg of a much grander theory of
branching processes. If in the continuous-time Bienaymé–Galton–Watson process
we allowed individuals to independently move around according to some Markov
process, then we would have an example of a spatial Markov branching particle pro-
cess. If continuous-state branching processes are the continuous-state analogue of
continuous-time Bienaymé–Galton–Watson processes, then what is the analogue of
a spatial Markov branching particle process? The answer to this question opens the
door to the world of measure-valued processes, or superprocesses. Apart from their
implicit probabilistic and mathematical interest, superprocesses have many applica-
tions from the point of view of mathematical biology, genetics, statistical physics
and PDE theory. The interested reader is referred to the monographs of Etheridge
(2000), Le Gall (1999), Duquesne and Le Gall (2002) and Dynkin (2002) for an in-
troduction. In the direction of genetics, the extended article of Lambert (2008) gives
an excellent overview.

Exercises

12.1 8 Suppose that Y = {Yt : t ≥ 0} is a continuous-state branching process with
branching mechanism

ψ(θ)= cθ −
∫

(0,∞)
(
1− eθx

)
λF(dx), θ ≥ 0,

where c,λ > 0 and F is a probability distribution concentrated on (0,∞). Assume
further that ψ ′(0+) > 0 (hence Y is subcritical).

8This exercise is due to Prof. A.G. Pakes.
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(i) Show that Y does not become extinct with probability one.
(ii) Show that for all t sufficiently large, Yt = e−ctΔ where Δ is a positive random

variable.

12.2 Fix x > 0. Suppose that (Y,Px) is a non-explosive continuous-state branch-
ing process with branching mechanism ψ . Write, as usual, X for the Lévy process
associated with Y .

(i) Use the Kella–Whitt martingale9 for X (described in Sect. 4.4) and the Lam-
perti transformation to show that, for x ≥ 0 and λ > 0,

Mλ
t := e−λYt −ψ(λ)

∫ t

0
Yse
−λYsds, t ≥ 0,

is a Px -martingale.
(ii) Recall from Theorem 12.1 that, for x ≥ 0, Ex(e−λYt )= e−xut (λ), where ut (θ)

solves (12.6). Use the above facts to deduce directly (without using the Kella–
Whitt martingale) that Ex(Mλ

t ) = e−λx , for all x, t ≥ 0. Hence, using the
Markov property, give a different proof that {Mλ

t : t ≥ 0} is a martingale.

12.3 (Proof of Theorem 12.7) This exercise elaborates further on the phenomena
exposed in Exercise 12.1, with the help of the martingale in Exercise 12.2. In doing
so, it provides the proof of Theorem 12.7. We suppose that (Y,Px) is a continuous-
state branching process, issued from x > 0, with branching mechanism ψ which
satisfies ψ(∞)=∞ and

∫ ∞ 1

ψ(ξ)
dξ =∞.

(i) Using (12.18) and the long-term behaviour of X, show that if ψ ′(0+) ≥ 0,
then, for all x > 0,

Px

(
lim
t↑∞Yt = 0

)
= 1.

(ii) Now suppose that ψ ′(0+) < 0, so that Φ(0) > 0. Note from part (i) of Exer-
cise 12.2 that {e−Φ(0)Yt : t ≥ 0} is a martingale. For all x > 0, show that

Px

(
lim
t↑∞Yt ∈ {0,∞}

)
= 1,

and, moreover, that

Px

(
lim
t↑∞Yt = 0

)
= e−Φ(0)x .

9In Theorem 4.7, the Kella–Whitt martingale was only introduced for Lévy processes with bounded
variation paths. Thereafter it was noted that, in fact, the conclusion of this theorem is still valid
when the Lévy process has paths of unbounded variation.
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(iii) Show that all supercritical branching mechanisms ψ which correspond to spec-
trally positive Lévy processes with bounded variation paths survive with prob-
ability one, but become extinguished with positive probability.

12.4 Suppose that ψ is a branching mechanism associated with the continuous-
state branching process (Y,Px), where x > 0. Assume that ψ ′(0+) < 0 and
ψ(∞)=∞. Define a new probability measure, P ∗, that satisfies

P ∗x (A)= Px
(
A| lim
t↑∞Yt = 0

)

for each A ∈ σ(Yu : u≤ t).
(i) Show that (Y,P ∗x ) is a Markov process and, for all θ, t ≥ 0,

E∗x
(
e−θYt

)= e−x(ut (θ+Φ(0))−Φ(0)).

(ii) Using (12.6), show that (Y,P ∗x ) is a continuous-state branching process with
branching mechanism

ψ∗(λ)=ψ(λ+Φ(0)), λ≥ 0,

explaining, in particular, why ψ∗ agrees with the definition of a branching
mechanism.

12.5 This exercise is based in part on Chaumont (1994). Suppose that X is a spec-
trally positive Lévy process with Laplace exponent ψ(θ)= logE(e−θX1), for θ ≥ 0.
Assume that ψ ′(0+)≥ 0.

(i) Show, using the Wiener–Hopf factorisation, that, for each x, q > 0 and contin-
uous, compactly supported f : [0,∞)→[0,∞),

E
↑
x

(∫ ∞

0
e−qtf (Xt )dt

)

= Φ(q)
qx

∫ ∞

0
dy e−Φ(q)y1(y<x)

∫

[0,∞)
P(Xeq ∈ dz)f (x + z− y)(x + z− y).

(ii) Hence, show the following identity holds for the potential density of the pro-
cess conditioned to stay positive:

∫ ∞

0
dt · P↑x (Xt ∈ dy)= y

x

{
W(y)−W(y − x)}dy, y ≥ 0,

where W is the scale function defined in Theorem 8.1.
(iii) Show that when ψ ′(0+)= 0 (in which case it follows from Lemma 12.12 that

P
↑
x is a probability measure for each x > 0), we have

P
↑
x

(
τ+z < τ−y

)= 1− y
x

W(x − y)
W(z− y) ,
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where 0≤ y < x < z <∞ and

τ+z = inf{t > 0 :Xt > z} and τ−y = inf{t > 0 :Xt < y}.

Hence deduce that, for all x > 0,

P
↑
x

(
lim inf
t↑∞ Xt =∞

)
= 1.

12.6 This exercise is taken from Lambert (2001). Suppose that Y is a conservative
continuous-state branching process with branching mechanism ψ (we shall adopt
the same notation as the main text in this chapter). Suppose that ψ(∞) =∞ (and
hence the underlying Lévy process is not a subordinator),

∫∞
ψ(ξ)−1dξ <∞ and

ρ :=ψ ′(0+)≥ 0.

(i) Using (12.8) show that one may write, for each t, x > 0 and θ ≥ 0,

E↑x
(
e−θYt

)= e−xut (θ)+ρt ψ(ut (θ))
ψ(θ)

,

which is a slightly different representation from (12.25).
(ii) Assume that ρ = 0. Show that, for each x > 0,

P ↑x
(

lim
t↑∞Yt =∞

)
= 1.

Hint: you may use the conclusion of Exercise 12.5 (iii).
(iii) Now assume that ρ > 0 so that the convexity of ψ implies, in addition, that

ρ <∞ and hence
∫
(1,∞) xΠ(dx) <∞ (cf. Sect. 8.1). Show that

0≤
∫ θ

0

ψ(ξ)− ρξ
ξ2

dξ = 1

2
σ 2θ +

∫

(0,∞)
xΠ(dx) ·

∫ θx

0

(
e−λ − 1+ λ

λ2

)

dλ.

Hence, using the fact that ψ(ξ)∼ ρξ as ξ ↓ 0, show that

∫ ∞
x logxΠ(dx) <∞

if and only if

0≤
∫

0+

(
1

ρξ
− 1

ψ(ξ)

)

dξ <∞.

(iv) Keeping with the assumption that ρ > 0 and x > 0, show that

Yt
P
↑
x→∞ as t ↑∞
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if
∫∞

x logxΠ(dx) = ∞ and, otherwise, Yt converges in distribution under

P
↑
x as t ↑∞ to a non-negative random variable, Y∞, with Laplace transform

E↑x
(
e−θY∞

)= ρθ

ψ(θ)
exp

{

−ρ
∫ θ

0

(
1

ρξ
− 1

ψ(ξ)

)

dξ

}

.

12.7 This exercise deals with the so-called Seneta–Heyde norming for continuous-
state branching processes and is based on Grey (1974). Suppose that ψ is a branch-
ing mechanism for the continuous-state branching process (Y,Px), where x > 0.
Assume that ρ :=ψ ′(0+) ∈ (−∞,0).

(i) Fix t > 0. Show that, as a function of θ , ut (θ) is strictly increasing from 0
to qt := − logP1(Yt = 0). Hence, deduce that its inverse, say ηt : [0, qt )→
[0,∞) satisfies

−
∫ λ

ηt (λ)

1

ψ(ξ)
dξ = t,

for λ ∈ [0, qt ), and, moreover, that

ηt
(
ηs(λ)

)= ηt+s(λ),
for λ ∈ [0, qt+s).

(ii) Show that qt is either equal to∞ for all t ≥ 0 or it decreases to Φ(0).
(iii) Now fix λ ∈ (0,Φ(0)). Show that

{
e−ηt (λ)Yt : t ≥ 0

}

is a Px -martingale, which converges almost surely and in mean. Deduce ac-
cordingly that

Ξ := lim
t↑∞ηt (λ)Yt

exists almost surely and is valued in [0,∞).
(iv) Suppose that, for θ > 0, we write φ(θ)=− logE1(exp{−θΞ}). Show that

∫ ut (θηt (λ))

λ

1

ψ(ξ)
dξ =

∫ θηt (λ)

ηt (λ)

1

ψ(ξ)
dξ and

∫ φ(θ)

λ

1

ψ(ξ)
dξ = 1

−ρ log θ.

By taking limits as θ tends to 0 and∞ respectively, deduce that for all x > 0,
Px(Ξ <∞)= 1 and {Ξ = 0} = {limt↑∞Zt = 0} Px -almost surely.10

10There is a minor error in Grey (1974). In the current setting, Theorem 3 (ii) of this paper
states that P1(Ξ = 0) = P1(ζ <∞), which cannot be true for all supercritical continuous-state
branching processes. Indeed, suppose that

∫∞ 1/ψ(ξ)dξ =∞, so that P1(ζ <∞) = 0. In that
case, Theorem 12.7 tells us that P1(limt↑∞ Yt = 0)= exp{−Φ(0)}. However, since λ ∈ (0,Φ(0)),
ηt (λ)→ 0 as t ↑ ∞ and we see that ηt (λ)Yt → 0 on {limt↑∞ Yt = 0}. This also implies that
exp{−Φ(0)} ≤ P1(Ξ = 0), which is a contradiction. The error occurs on line 11 of p. 675 where it
is claimed that “φ(θ)→− logq (which may be +∞) as θ→∞”.
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12.8 In contrast to the previous exercise, note that

{
eρtYt : t ≥ 0

}

is also a non-negative Px -martingale, and hence has an almost sure limit, which is
not guaranteed to be non-trivial, however. Our aim in this exercise is to establish
when the aforesaid martingale limit agrees, up to a multiplicative constant, with the
random variable Ξ in the previous exercise. Assume, as before, that ρ :=ψ ′(0+) ∈
(−∞,0) and fix λ ∈ (0,Φ(0)).

(i) Use an argument similar to the one used to derive (12.24) to prove that

lim
s↑∞

ηt+s(λ)
ηs(λ)

= eρt ,

for all t > 0. Note that, as a consequence, there exists a slowly varying function
at zero, say L, such that

Ξ = lim
t↑∞ eρtL

(
eρt

)
Yt

Px -almost surely.
(ii) We are interested to find out when L may be asymptotically replaced by a

constant in (0,∞). To this end, prove that

∫ λ

ηt (λ)

(
1

ρξ
− 1

ψ(ξ)

)

dξ =− 1

ρ
log

(
ηt (λ)e−ρt

λ

)

.

(iii) Show that ηt (λ) is decreasing to zero as t ↑∞. Hence ηt (λ)e−ρt is increasing
and has a finite limit if and only if

∫ λ

0

(
1

ρξ
− 1

ψ(ξ)

)

dξ <∞.

(iv) Finally, appealing to analysis that is similar in spirit to part (iii) of Exer-
cise 12.6, prove that L may be asymptotically replaced by a strictly positive
constant in (0,∞) if and only if

∫ ∞
x logxΠ(dx) <∞.



Chapter 13
Positive Self-similar Markov Processes

In this chapter, our objective is to explore in detail the general class of so-called
positive self-similar Markov processes. Emphasis will be placed on the bijection
between this class and the class of Lévy processes which are killed at an independent
and exponentially distributed time. This bijection, which can be expressed through
a straightforward space-time transformation, is due to Lamperti (1972).1 Somewhat
confusingly, on account of the theory presented in Sect. 12.1 for continuous-state
branching processes, is also known as the Lamperti transform. To distinguish the
two cases, we therefore refer to the bijection discussed in this chapter as the second
Lamperti transform.

Through the second Lamperti transform, we are able to explore a number of
specific examples of positive self-similar Markov processes which illuminate a va-
riety of explicit and semi-explicit fluctuation identities for Lévy processes. Our first
such family of examples will be positive self-similar Markov processes that are ob-
tained when considering path transformations of stable processes and conditioned
stable processes. Here, the underlying associated Lévy processes are known as
Lamperti-stable processes. Known properties of stable processes, when transferred
through the second Lamperti transform, will give us explicit fluctuation identities for
Lamperti-stable processes; in particular, we will obtain their Wiener–Hopf factori-
sation. Another family of examples we will consider is continuous-state branching
processes and continuous-state branching processes with immigration, which are
also self-similar. (Note that they are automatically Markovian and positive.) Here,
we shall see an interesting interplay between the first Lamperti transform, described
in Chap. 12, and the second Lamperti transform.

Whilst our exposition of general positive self-similar Markov processes will, in
the beginning, insist that their initial value lies in (0,∞), we will also look at the
more complicated case that the point of issue is the origin. This discussion leads
us to the concept of recurrent extensions of positive self-similar Markov processes.
With this theory in hand, we will conclude the chapter by looking at elements of

1What we call here “positive self-similar Markov processes”, Lamperti (1972) called “semi-stable
Markov processes”.
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fluctuation theory for positive self-similar Markov processes associated with spec-
trally negative Lévy processes.

13.1 Definition and Examples

A [0,∞)-valued strong Markov process X = {Xt : t ≥ 0} which has paths that are
almost surely right-continuous with left limits, as well as quasi-left-continous,2 is
called a positive self-similar Markov process if there exists a constant α > 0 such
that, for any x > 0 and c > 0,

the law of {cXc−αt : t ≥ 0} under Px is Pcx , (13.1)

where Px is the law of X when issued from x.3 In that case, we refer to α as the
index of self-similarity. Let us turn immediately to some examples that are easily
found through path transformations of a familiar class of Lévy processes.

13.1.1 Stable Subordinators

With an eye on the definition above, recall that the class of α-stable processes de-
fined in Sect. 1.2.6 enjoys the scaling property (13.1), for α ∈ (0,2], as well as being
Markovian with the desired path properties. We understand the extreme parameter
value α = 2 as corresponding to the case of Brownian motion. Not all α-stable pro-
cesses are positive, however. If α ∈ (0,1) and we agree to restrict ourselves to the
case of subordinators, then positivity is guaranteed and we find our first examples
of positive self-similar Markov processes.

Although α-stable processes for α ∈ [1,2] fail to meet the definition given above,
we shall use them extensively to construct other examples of positive self-similar
Markov processes by considering appropriate path transformations.

13.1.2 Modulus of a Symmetric Stable Process

We wish to consider |Y | := {|Yt | : t ≥ 0}, where Y := {Yt : t ≥ 0} is a symmetric
α-stable process with α ∈ (0,2]. Note that when α = 1, in definition (1.13) for the
characteristic exponent of Y , we must necessarily have η = 0. We understand the

2Recall thatX is quasi-left-continuous if it has the following property: For each F-stopping time T ,
if there exists an increasing sequence of F-stopping times, {Tn: n≥ 1}, satisfying limn↑∞ Tn = T
almost surely, then limn↑∞XTn =XT almost surely on {T <∞}.
3It is important to note that our definition of a positive self-similar Markov process differs slightly
from what one normally finds in the literature. Where we have assumed that it is a strong Markov
process with paths that are right-continuous with left limits and quasi-left-continuous, a more usual
assumption would be that it is a regular Markov process that satisfies the so-called Feller property.
The latter assumption implies the former assumption.
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word “symmetric” here to mean that the constants c1 and c2, in the definition of
its Lévy measure (1.11), are equal if α ∈ (0,2). Equivalently, we can say that we
require the parameter β in (1.13) to be equal to zero. When α = 2, then Y is a
Brownian motion which is clearly symmetric. In all cases, symmetry implies that Y
has the same law as −Y .

It is clear that the process |Y | is positive, as well as inheriting from Y the prop-
erty that its paths are right-continuous and quasi-left-continuous. We must establish
that it is both a strong Markov process as well as respecting the self-similar scaling
property. To this end, rather than indicating the initial value of Y through its law, let
us enhance our notation so that Y (x)t is now understood as the position of Y at time
t ≥ 0 when issued from x ∈R. The process Y (x) := {Y (x)t : t ≥ 0} is thus a symmet-
ric stable process issued from x ∈R. The scaling property (13.1) for symmetric, and
indeed non-symmetric, stable processes may now be written

{
cY
(x)

c−αt : t ≥ 0
} d= {

Y
(cx)
t : t ≥ 0

}
, c > 0,

where
d=means equality in distribution. With our new notation, the Markov property

for stable processes can also be phrased as follows. For s, t ≥ 0 and x ∈R,

Y
(x)
t+s

d= Ỹ (Y
(x)
t )

s ,

where, for each y ∈R, Ỹ (y) := {Ỹ (y)s : s ≥ 0} is an independent copy of Y (y). A little
thought now reveals that in the symmetric case, thanks to the fact that Y (x) has the
same law as −Y (−x), we additionally have

∣
∣Y
(x)
t+s

∣
∣ d= ∣

∣Ỹ
(|Y (x)t |)
s

∣
∣,

which is the Markov property for |Y (x)|. It is now not difficult to derive the strong
Markov property for |Y (x)| in the spirit of Exercise 3.2. Moreover, for c > 0 and
x ∈R,

{
c
∣
∣Y
(x)

c−αt
∣
∣ : t ≥ 0

} d= {∣
∣Y
(cx)
t

∣
∣ : t ≥ 0

}
.

In conclusion |Y (x)| is a positive self-similar Markov process with index α. These
processes have been studied in more detail in Caballero et al. (2011). In particular,
the aforementioned paper more generally considers the radial part of an isotropic
R
d -valued α-stable process.

13.1.3 Bessel Processes

In the spirit of the previous example, suppose we take the radial part of an
n-dimensional Brownian motion. In a similar spirit to the previous example, its ra-
dial part is also a strong Markov process thanks to radial symmetry. Clearly the
radial part has continuous paths. Moreover, the scaling property of n-dimensional
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Brownian motion, together with symmetry considerations, can be used to show that
the radial part is self-similar with stability index equal to 2.

In conclusion, the radial part of an n-dimensional Brownian motion is a pos-
itive self-similar Markov process. Indeed, the resulting diffusion belongs to the
family of so-called Bessel processes. The general class of Bessel processes are
continuous-path strong Markov processes on [0,∞), parameterised by a constant,
d ∈ (0,∞), known as its dimension, having transition semi-group density (with re-
spect to Lebesgue measure) given by

pν(t, x, y)= 1

t

(
y

x

)ν
y exp

{

−x
2 + y2

2t

}

Jν

(
xy

t

)

,

for t, x, y > 0, where Jν is the Bessel function of the first kind4 with index ν :=
d/2− 1, and

pν(t,0, y)= 2−νt−(ν+1)Γ (ν + 1)−1y2ν+1 exp

{

−y
2

2t

}

.

To be precise, the radial part of an n-dimensional Brownian motion is a Bessel
process of dimension d= n.

It is straightforward to verify, from the expressions given above for their transi-
tion semigroup densities, that Bessel processes of all dimensions d ∈ (0,∞) respect
the scaling property (13.1) with α = 2, and hence are positive self-similar Markov
processes. Indeed, one easily verifies that

p(t, cx, y)= 1

c
p
(
c−2t, x, y/c

)
,

for all x, y, t ≥ 0 and c > 0, which is equivalent to (13.1).
If we denote by R = {Rt : t ≥ 0} a d-dimensional Bessel process, then it is also

the case that, for any q > 0, the process {(Rt )q : t ≥ 0} is a positive strong Markov
process which also possesses the scaling property (13.1).

The detailed justification of all of the above facts concerning Bessel processes
can be found in Chap. XI of Revuz and Yor (2004). See also Pitman and Yor (1981).
Alternatively, see Exercise 13.10.

13.1.4 Reflected Stable Processes

Keeping with the notational convention of Sect. 13.1.2, let us look at the (not neces-
sarily symmetric) α-stable process Y := Y (0), started from zero. Consider the pro-
cess

Z
(x)
t := (x ∨ Y t )− Yt , x, t ≥ 0,

where, as usual, Y t := sups≤t Ys . This is the reflection of Y in its supremum. As

4See Lebedev (1972) for further background on Bessel functions.
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we have seen at earlier stages of this book, the process Z(x) := {Z(x)t : t ≥ 0} is a
[0,∞)-valued strong Markov process (cf. Exercise 3.2), with paths that are right-
continuous. Quasi-left continuity is inherited from the paths of Y . To check that it
respects the scaling property (13.1), note that, for all c > 0,

(
cY c−αt
cYc−αt

)

=
(
c sups≤c−αt Ys
cYc−αt

)

=
(

supu≤t cYc−αu
cYc−αt

)

, t ≥ 0. (13.2)

Using the scaling property of the α-stable process Y , the last pair in (13.2), as a
process, is equal in law to {(Y t , Yt ) : t ≥ 0}. In that case, we have, for x, t ≥ 0 and
c > 0,

cZ
(x)

c−αt = (cx ∨ cY c−αt )− cYc−αt , t ≥ 0,

which is equal in law to the process {(cx ∨ Y t ) − Yt : t ≥ 0}, that is to say, the
process {Z(cx)t : t ≥ 0}. It follows that {Z(x)t : t ≥ 0} is a positive self-similar Markov
process.

13.1.5 Killed Stable Processes

Excluding the case of subordinators, a general α-stable process is not a positive-
valued process (albeit strong Markov and self-similar). However, by absorbing an α-
stable process at the origin as it enters (−∞,0), we can preserve the strong Markov
and self-similarity properties whilst introducing the property of positivity. Again
appealing to our previous notation, let us define, for x, t > 0,

X
(x)
t = Y (x)t 1

(Y
(x)
t ≥0)

.

Taking account of a similar computation to (13.2), it is now straightforward to see
that, for x, c > 0,

cX
(x)

c−αt = cY (x)c−αt1(Y (x)
c−αt≥0)

, t ≥ 0,

and as a process, this is equal in law to

Y
(cx)
t 1

(Y
(cx)
t ≥0)

=X(cx)t , t ≥ 0.

As with previous examples, the requirement that paths are right-continuous and
quasi-left-continuous is trivially fulfilled.

13.2 Conditioned Processes and Self-similarity

Another family of positive self-similar Markov processes consists of conditioned
stable processes. In order to describe them in detail, it is worth spending a little time
investigating the type of conditioning we are interested in for the setting of general
Lévy processes.
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13.2.1 Lévy Processes Conditioned to Stay Positive

Recall that in Sect. 12.3.1, we introduced spectrally positive Lévy processes con-
ditioned to stay positive. It is possible to treat the general class of Lévy processes
with this kind of conditioning. In this respect, we briefly outline the work of Chau-
mont (1994, 1996) and Chaumont and Doney (2005).

Let us start with a simple fluctuation identity. In order to state it, we need to recall
some notation. In what follows, we shall understandX to be a general Lévy process.
In Chap. 6, it was shown that there exists a local time process, L̂, for X−X at zero.
We defined Ĥt =−XL̂−1

t
, when t < L̂∞, and otherwise Ĥt :=∞. It turned out that

the pair (L̂−1, Ĥ ), also known as the descending ladder process, has the law of a
(possibly-killed) two-dimensional subordinator whose range corresponds precisely
to the time-space points of increase of −X. The Laplace exponent of this bivariate
subordinator was defined by

κ̂(α,β) := −1

t
logE

(
e−αL̂

−1
t −βĤt ), α,β, t ≥ 0.

The exponent κ̂ also appears in the expression for the Laplace exponent of the run-
ning infimum sampled at eq , an independent and exponentially distributed time with
rate q > 0,

E
(
eβXeq

)= κ̂(q,0)
κ̂(q,β)

, β ≥ 0. (13.3)

If we define the potential function

Ûq(x)= E

[∫ ∞

0
e−qL̂

−1
t 1(Ĥt≤x)dt

]

, q, x ≥ 0, (13.4)

then a straightforward computation shows that

∫

[0,∞)
e−βxÛq(dx)= 1

κ̂(q,β)
, β ≥ 0. (13.5)

Using (13.3) and (13.5), and noting that Px(τ
−
0 > eq)= P(−Xeq ≤ x), we can easily

deduce the following useful fluctuation identity. For q > 0 and x ≥ 0,

Px

(
τ−0 > eq

)= Ûq(x)̂κ(q,0), (13.6)

where, as usual, τ−0 = inf{t > 0 :Xt < 0}. We will use (13.6) to show the existence
of a martingale change of measure for stable processes, which, in turn, will lead to
the law of a new strong Markov process that can be identified as positive self-similar.

To this end, let us start by remarking that, from (13.6), the ratio Px(τ
−
0 >

eq)/̂κ(q,0) is monotone decreasing in q . Moreover, its limit is clearly identifiable
as Û (x)= Û0(x), the potential function for the descending ladder height process Ĥ .
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We may now appeal to monotone convergence, together with the Markov property
and the lack-of-memory property, to deduce that

Ex

(
Û (Xt )1(t<τ−0 )

)

= lim
q↓0

Ex

(
PXt (τ

−
0 > eq)

κ̂(q,0)
1(t<τ−0 )

)

= lim
q↓0

1

κ̂(q,0)
Px

(
τ−0 > t + eq

)

= lim
q↓0

1

κ̂(q,0)
Px

(
τ−0 > eq |eq > t

)

= lim
q↓0

1

κ̂(q,0)

{

eqtPx
(
τ−0 > eq

)− eqt
∫ t

0
qe−qsPx

(
τ−0 > s

)
ds

}

= Û (x)− lim
q↓0

qeqt

κ̂(q,0)

∫ t

0
e−qsPx

(
τ−0 > s

)
ds. (13.7)

Note that κ̂ ′(0+,0) = limq↓0 κ̂(q,0)/q exists and is equal to E(L̂−1
1 ) ∈ (0,∞].

We claim that κ̂ ′(0+,0) <∞ if and only if limt↑∞Xt = −∞. To see why, recall
from (6.30) that, up to a multiplicative constant, q = κ(q,0)̂κ(q,0). Hence, when
lim supt↑∞Xt =∞, we have κ(0,0)= 0 and, since

1= lim
q↓0
κ(q,0)

κ̂(q,0)

q
, (13.8)

it follows that κ̂ ′(0+,0) = ∞. On the other hand, if lim supt↑∞Xt <∞, equiv-
alently limt↑∞Xt = −∞, then κ(0,0) > 0 and (13.8) forces us to conclude that
κ̂ ′(0+,0) <∞.

We may now return to (13.7) and observe that if lim supt↑∞Xt =∞, then, for
all x, t ≥ 0,

Ex

(
Û (Xt )1(t<τ−0 )

)= Û (x). (13.9)

Hence, again thanks to the Markov property, we have that, for all x, s, t ≥ 0,

Ex

(
Û (Xt+s)1(t+s<τ−0 )|Ft

) = Ey

(
Û (Xs)1(s<τ−0 )

)∣
∣
y=Xt 1(t<τ−0 )

= Û (Xt )1(t<τ−0 ),

showing that {Û (Xt )1(t<τ−0 ) : t ≥ 0} is a martingale. Here, {Ft : t ≥ 0} denotes the
usual filtration associated with X. In the case that limt↑∞Xt =−∞, the equality in
(13.9) is replaced by

Ex

(
Û (Xt )1(t<τ−0 )

)≤ Û (x), (13.10)

and we get that {Û (Xt )1(t<τ−0 ) : t ≥ 0} is a supermartingale.
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We may now use the above (super)martingale to define a change of measure to a
(sub-)probability measure. To accommodate for the case that {Û (Xt )1(t<τ−0 ) : t ≥ 0}
is a supermartingale but not a martingale, the change of measure must take place on
the space of processes which are killed at some time, say ς , and sent to a cemetery
state. For each x > 0, under Px , the time ς is randomised according to the stopping
time τ−0 . In that case, we have on {t < ς}

dP↑x
dPx

∣
∣
∣
∣
Ft
= Û (Xt )
Û(x)

1(t<τ−0 )
, t ≥ 0, (13.11)

for all x > 0. It is a straightforward exercise to check that X, together with the new
family of probabilities {P↑x : x > 0}, defines a Markov process (which is killed in the
case that the change of measure induces a sub-probability measure). Indeed, for all
non-negative, measurable f and s, t, x > 0,

E
↑
x

(
f (Xt+s)1(t+s<ς)|Ft

) = 1(s<ς)Ex

(

f (Xt+s)
Û (Xt+s)
Û (x)

1(t+s<τ−0 )
∣
∣
∣
∣Fs

)

= 1(t<ς)Ey

(

f (Xt )
Û (Xt )

Û(x)

)∣
∣
∣
∣
y=Xs

= E
↑
y

(
f (Xt )

)∣
∣
y=Xs on s < ς, (13.12)

where E
↑
x denotes expectation with respect to P

↑
x . When lim supt↑∞Xt =∞, we

have P
↑
x (t < ς) = 1 and the final qualification on the right-hand side of (13.12) is

unnecessary. With a little further work, it can also be shown that under the change
of measure (13.11), the process X remains in the class of strong Markov processes.
We omit the details for the sake of brevity.

The choice of notation P
↑
x was already used in Sect. 12.3.1 to denote the law of

a class of spectrally positive Lévy processes conditioned to stay positive. However,
there is no conflict with the use of this notation here. Indeed, we can also show that
the change of measure (13.11) corresponds to the same conditioning of the process
X to stay positive as found in Theorem 12.11. To see why, note that, for each A ∈Ft
and x, t > 0, we have

P
↑
x (A, t < ς) = lim

q↓0
Px

(
A, t < eq |τ−0 > eq

)

= lim
q↓0

Ex

(

1(A∩{t<eq∧τ−0 })
PXt (τ

−
0 > eq)

Px(τ
−
0 > eq)

)

= lim
q↓0

Ex

(

1(A∩{t<eq∧τ−0 })
Ûq(Xt )

Ûq(x)

)

= Ex

(

1(A∩{t<τ−0 })
Û (Xt )

Û(x)

)

. (13.13)
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In the third equality, we have used (13.6) and in the final equality, we have used that,
from (13.4), Ûq(x) ↑ Û(x) as q ↓ 0 and that Ûq(Xt ) ≤ Û (Xt ), so that thanks to
(13.9) or (13.10), as appropriate, we may apply dominated convergence. When X is
a spectrally positive Lévy process with Laplace exponentψ(λ)= logE(e−λX1), λ≥
0, its descending ladder height process is a unit rate linear drift that is killed at rate
Φ(0), whereΦ is the right inverse of ψ . IfΦ(0) > 0, equivalently ψ ′(0+) < 0, then
this gives us Û (x) = (1 − e−Φ(0)x)/Φ(0). If Φ(0) = 0, equivalently ψ ′(0+)≥ 0,
then Û (x)= x.

Note further that P↑x is a probability measure if and only if lim supt↑∞Xt =∞.
Otherwise, it is a sub-probability measure. In the case that X is a stable process, we
know from Sect. 6.5.3 that its ascending ladder height is a stable subordinator and
hence the condition lim supt↑∞Xt =∞ is automatically satisfied.

On a final note, when considering {P↑x : x > 0} as a family of probability laws
on an appropriate measurable space, Chaumont and Doney (2005) show that, in an
appropriate sense of weak convergence, the limiting law P

↑
0 := limx↓0 P

↑
x exists.

The details are complicated and we refrain from giving them here as P
↑
0 does not

appear in any of our computations below.

13.2.2 Conditioned Stable Processes

Let us return to the objective at hand, which is to illustrate another family of positive
self-similar Markov processes. In the case that X is equal to Y , an α-stable process,
we know from (6.37) that κ(0, β) ∝ βαρ , where ρ = P(Yt ≥ 0) ∈ (0,1). In other
words, the ascending ladder height process is a stable subordinator (and in particu-
lar has no killing) which implies that lim supt↑∞ Yt =∞. Hence, we may apply the
change of measure (13.11) to generate the positive strong Markov process, which
we can now identify as the α-stable process conditioned to stay positive. Moreover,
thanks to (6.37), we can compute Û (x)∝ xα(1−ρ) for x ≥ 0; see for example Exer-
cise 5.8 (ii).

With regard to self-similarity, we note the following. For c, x > 0, t ≥ 0 and
appropriately bounded, measurable and non-negative f , we can write, with the help
of (13.1),

E
↑
x

[
f
({cYc−αs : s ≤ t}

)] = E

[

f
({
cY
(x)

c−αs : s ≤ t
}) (Y

(x)

c−αt )
α(1−ρ)

xα(1−ρ)
1
(Y
(x)

c−αt≥0)

]

= E

[

f
({
Y (cx)s : s ≤ t}) (Y

(cx)
t )α(1−ρ)

(cx)α(1−ρ)
1
(Y
(cx)
t ≥0)

]

= E
↑
cx

[
f
({Ys : s ≤ t}

)]
. (13.14)

In conclusion, any (non-monotone) α-stable process conditioned to stay positive is
also a positive self-similar Markov process.

There is another type of conditioning for Lévy processes, which also boils down
to a change of measure in the spirit of (13.11), and which can be used to identify
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positive self-similar Markov processes when applied to the special case of α-stable
processes.

The increasing function Û is differentiable Lebesgue almost everywhere. If
its density with respect to Lebesgue measure is denoted by û, then Chaumont
(1996) notes that, under appropriate conditions, for a general Lévy process, X,
Ex (̂u(Xt )1(t<τ−0 )

) = û(x), for all x, t > 0. One may then proceed to a martingale

change of measure as in (13.11), with the potential function Û replaced by its
density û. Accordingly, one may define a new family of Markovian measures, say
{P↓x : x > 0}, on the space of processes killed at some random time ς . As before, for
each x > 0, under Px , ς is randomised according to the stopping time τ−0 . We have
on t < ς

dP↓x
dPx

∣
∣
∣
∣
Ft
= û(Xt )
û(x)

1(t<τ−0 )
, t ≥ 0.

Chaumont (1996) goes on to show that this family corresponds to the law of the un-
derlying Lévy process conditioned to be absorbed continuously at the origin before
entering (−∞,0). In particular, for each A ∈Ft and x, t, η > 0,

P
↓
x

(
A, t < τ−η

)= lim
ε↓0

Px

(
A, t < τ−η |Xτ−0 − ≤ ε

)
.

Further details are explored in Exercise 13.5 for the case that X is a stable pro-
cess. In that case, we have û(x)∝ xα(1−ρ)−1. Moreover, checking the self-similarity
property of the positive strong Markov process (X,P↓x ), x > 0, is as straightforward
as the computation in (13.14). In the case that X is a spectrally positive stable pro-
cess, from the discussion in Sect. 6.5.3, we know that α(1− ρ)− 1= 0 and hence,
in effect, P↓x , x > 0, does not constitute a change of measure. Intuitively this is obvi-
ous on account of the fact that a spectrally positive Lévy process will hit the origin
continuously with probability one.

13.3 The Second Lamperti Transform

In this section, we shall look at a second transformation of Lamperti (1972), which
provides a bijection between the class of exponentially killed Lévy processes and
positive self-similar Markov processes, up to the first moment that they hit zero. We
are guided, in part, by the presentation in Chaumont (2007), as well as the original
contribution of Lamperti (1972).

To this end, let us introduce some more notation. Throughout this section, we
shall use ξ := {ξt : t ≥ 0} to denote a Lévy process which is killed and sent to the
cemetery state −∞ at an independent and exponentially distributed random time,
e = inf{t > 0 : ξt = −∞}, with rate in [0,∞). As usual, we understand e in the
broader sense of an exponential distribution, so that if its rate is 0, then e=∞ with
probability one, in which case there is no killing.
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We will be interested in applying a time change to the process ξ by using its
integrated exponential process, I := {It : t ≥ 0}, where

It =
∫ t

0
eαξsds, t ≥ 0. (13.15)

As the process I is increasing, we may define its limit, I∞ := limt↑∞ It . We are also
interested in the inverse process of I :

ϕ(t)= inf{s > 0 : Is > t}, t ≥ 0. (13.16)

As usual, we work with the convention inf∅ =∞.
In the spirit of the examples given in the previous section, many of the arguments

we shall use in the remainder of this section are of a pathwise nature. Therefore, we
shall often prefer to use the notation X(x) := {X(x)t : t ≥ 0} to denote a positive self-
similar Markov process with initial value x > 0. Its lifetime until hitting zero will
be denoted by ζ (x) = inf{t > 0 : X(x)t = 0}. We shall also write ζ when the initial
value of X is expressed through Px .

Theorem 13.1 (The second Lamperti transform) Fix α > 0.

(i) If X(x), x > 0, is a positive self-similar Markov process with index of self-
similarity α, then up to absorption at the origin, it can be represented as fol-
lows. For x > 0,

X
(x)
t 1(t<ζ (x)) = x exp{ξϕ(x−αt)}, t ≥ 0, (13.17)

and either

(1) ζ (x) =∞ almost surely for all x > 0, in which case ξ is a Lévy process
satisfying lim supt↑∞ ξt =∞,

(2) ζ (x) <∞ and X(x)
ζ (x)− = 0 almost surely for all x > 0, in which case ξ is a

Lévy process satisfying limt↑∞ ξt =−∞, or

(3) ζ (x) <∞ and X(x)
ζ (x)− > 0 almost surely for all x > 0, in which case ξ

is a Lévy process killed at an independent and exponentially distributed
random time.

In all cases, we may identify ζ (x) = xαI∞.
(ii) Conversely, suppose that ξ is a given (killed) Lévy process. For each x > 0,

define

X
(x)
t = x exp{ξϕ(x−αt)}1(t<xαI∞), t ≥ 0.

Then X(x) defines a positive self-similar Markov process, up to its absorption
time ζ (x) = xαI∞, with index α.

Before moving to the proof of this theorem, let us point out that there is another
way of connecting positive self-similar Markov processes to an underlying Lévy
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process. This is done through the use of stochastic differential equations. Such ideas
have been pursued in Barczy and Döring (2011) and Berestycki et al. (2011a).

13.3.1 Proof of Theorem 13.1 (i)

We break the proof up into a series of lemmas. The first lemma shows that only
three types of positive self-similar Markov processes can exist when categorised
according to the absorption time ζ . These three cases correspond precisely to the
cases (1), (2) and (3) in Theorem 13.1.

Lemma 13.2 Simultaneously for all x > 0, either Px(ζ = ∞) = 1, Px(ζ <
∞,Xζ− = 0)= 1 or Px(ζ <∞,Xζ− > 0)= 1.

Proof We claim that the probabilities Px(ζ <∞) are independent of x > 0. To see
why this is true, we can appeal to the scaling property (13.1) and write, for all c > 0,

ζ (cx) = inf
{
t > 0 :X(cx)t = 0

}

d= cα inf
{
c−αt > 0 : cX(x)

c−αt = 0
}

= cαζ (x), (13.18)

showing that Px(ζ <∞)= Pcx(ζ <∞), for all x, c > 0, as claimed. Note that this
also shows that x−αζ (x) is independent of the value of x.

Denote by p ∈ [0,1] the common value of the probabilities Px(ζ <∞), x > 0.
We shall now show that either p = 0 or p = 1. Thanks to the Markov property, we
can now write, for all x, t > 0,

Px(t < ζ <∞)=Ex
(
1(t<ζ )PXt (ζ <∞)

)= pPx(t < ζ),

and, hence,

p = Px(ζ ≤ t)+ Px(t < ζ <∞)
= Px(ζ ≤ t)+ p

(
1− Px(ζ ≤ t)

)

= p+ (1− p)Px(ζ ≤ t).

This forces us to conclude that either p = 1 or Px(ζ ≤ t) = 0, for all x, t > 0. In
other words, p = 1 or p = 0.

Next, let us assume that Px(ζ <∞) = 1 for all x > 0. We are interested in the
probabilities Px(Xζ− = 0), x > 0. In fact, similarly to the computations above, we
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can argue that, thanks to self-similarity, this probability does not depend on the
initial value of X (the details are left as an exercise for the reader). Henceforth,
we shall denote the common value of these probabilities by p. Let us introduce the
stopping times κ−y = inf{t > 0 :Xt < y}, where y > 0. Note that, for a fixed y > 0,
the events {κ−y = ζ } and {Xζ− = 0} are disjoint. Together with the strong Markov
property, this implies that for all x > y > 0,

p= Px(Xζ− = 0)=Ex
(
1(κ−y <ζ)Pz(Xζ− = 0)|z=X

κ
−
y

)= pPx
(
κ−y < ζ

)
.

We are therefore forced to conclude that either p= 0 or, for all 0< y < x,

Px
(
κ−y < ζ

)= 1.

In other words, if p is not equal to 0, then X visits every (0, y)-neighbourhood of
the origin, for y < x, which is another way of saying p= 1. �

For the next lemma, we need more notation. For x > 0, let us write

ϕ(t)=
∫ xαt

0

(
X(x)s

)−α
ds, t < x−αζ (x). (13.19)

This choice of notation is preemptive as we shall show in due course that it agrees
with (13.16). We also claim that the distribution of ϕ(t) does not depend on x.
Indeed, let us momentarily indicate any dependence on x by writing ϕ(x)(t) in place

of ϕ(t), for t ≥ 0. For each x, c > 0 and t < (cx)−αζ (cx) d= x−αζ (x),

ϕ(cx)(t)
d=
∫ (cx)αt

0
c−α

(
X
(x)

c−αs
)−αds

=
∫ xαt

0

(
X(x)u

)−αdu

= ϕ(x)(t). (13.20)

For technical reasons, it is important that we understand the behaviour of
ϕ(x−αζ−) := limt↑ζ ϕ(x−αt). A similar argument to the one given in (13.20) also
shows that, for x > 0, ϕ(x−αζ−) does not depend on x. This is also intuitively clear
as both x−αζ (x) and ϕ(x) are independent of the value of x. The next lemma says a
little more about the distribution of ϕ(x−αζ−).

Lemma 13.3 In the cases that ζ =∞ or that {ζ <∞ and Xζ− = 0}, we have
Px(ϕ(x

−αζ−) =∞) = 1, for all x > 0. In the case that ζ <∞ and Xζ− > 0, we
have that, under Px , ϕ(x−αζ−) is exponentially distributed with a rate that does
not depend on the value of x.
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Proof We consider each of the three cases individually. First, we look at the case
that ζ =∞. Using the Markov property, we have

ϕ(∞) =
∫ 1

0

(
X(x)s

)−αds +
∫ ∞

1

(
X(x)s

)−αds

d=
∫ 1

0

(
X(x)s

)−αds +
∫ ∞

0

(
X̃(z)s

)−αds

=
∫ 1

0

(
X(x)s

)−αds + ϕ̃(∞), (13.21)

where z = X(x)1 and X̃ is an independent copy of X with ϕ̃ defined in the obvious
way. Since the integral in the final equality of (13.21) is strictly positive, we are
forced to deduce that ϕ(∞)=∞, Px -almost surely, for all x > 0.

Next, in the case that ζ <∞ andXζ− = 0, we cannot appeal to the above method
as it is not true that 1< ζ almost surely. It is, however, true that Px(κ−y < ζ)= 1 for
all x, y > 0. We may therefore use the strong Markov property in a similar fashion
to (13.21), splitting the integral in the definition of ϕ(x−αζ (x)−) at κ−y , where y < x,
to recover the required result. The details are again left to the reader.

Finally, we consider the case that ζ <∞ and Xζ− > 0. Fix x > 0. By right-
continuity and quasi-left-continuity of paths, it is trivial to note that the trajectory of
X(x) is bounded away from zero and infinity on the time horizon [0, ζ (x)). It follows
that ϕ(x−αζ (x)−) is almost surely finite. Now define the inverse of ϕ,

Iu = inf
{
0< t < x−αζ (x) : ϕ(t) > u}, u > 0, (13.22)

which is also a stopping time for X(x), and moreover does not depend on the initial
value x, thanks to the same being true of ϕ. As usual, we insist on the standard
convention inf∅ =∞. In particular, for u≥ ϕ(x−αζ (x)−), Iu =∞.

From (13.19), we have that xαI· is the inverse of the process
∫ ·

0(X
(x)
s )
−αds. It

follows that, for each u > 0, xαIu is a stopping time for X. For each u > 0, on the
event {ϕ(x−αζ (x)−) > u}, using (13.18) and the strong Markov property, we have
that

ϕ
(
x−αζ (x)−) =

∫ xαIu

0

(
X(x)s

)−αds +
∫ ζ (x)

xαIu

(
X(x)s

)−αds

d= u+
∫ ζ̃ (z)

0

(
X̃(z)s

)−α
ds

= u+ ϕ̃(z−αζ̃ (z)−), (13.23)

where z = X(x)xαIu and, as before, X̃ is an independent copy of X with the corre-

sponding quantities ζ̃ and ϕ̃ defined in the obvious way. Let us now write, for
x,u > 0, E(u) = Px(ϕ(x−αζ−) > u), recalling that this quantity does not depend
on the value of x. Thanks to (13.23), it is now clear that, for all u, s > 0,
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E(u+ s)
E(u) = Px

(
ϕ
(
x−αζ−)> u+ s|ϕ(x−αζ−)> u)

= Pz
(
ϕ
(
z−αζ

)
> s

)

= E(s),

whenever E(u) > 0. The value of z in the above computation is irrelevant on account
of the fact that ϕ(z−αζ (z)−) is independent of z.

We know that there must exist some u0 > 0 such that E(u) > 0 for all u≤ u0. In
that case, E(u0+ s)= E(u0)E(s) for all s ≤ u0. Iterating this argument, we find that
E(u) > 0 for all u > 0. Right-continuity of E(u) is also evident. Classical theory now
allows us to conclude that E(u) is an exponential function or identically equal to one.
However the latter case can be excluded on account of the fact that ϕ(x−αζ (x)−) is
almost surely finite. In conclusion, irrespective of the value of x, ϕ(x−αζ (x)−) is
exponentially distributed, as required. �

With the previous two preparatory lemmas in hand, we may now give the proof
of Theorem 13.1 (i). The classification of positive self-similar Markov processes
into three categories has already been established by Lemma 13.2. It was proved just
before the statement of Lemma 13.3 that ϕ(x−αζ (x)−) is independent of the value of
x. Let us rename this quantity e. The same lemma also tells us that e is exponentially
distributed in the broader sense (i.e. e=∞ almost surely is interpreted as meaning
that the exponential parameter is zero).

Using the same notation as above, we now define the process ξ = {ξt : t ≥ 0} by
setting, for x, t > 0,

ξt = log
(
X
(x)
xαIt
/x
)
. (13.24)

It is a straightforward consequence of the scaling arguments, which have been re-
peatedly used above, that the law of ξ does not depend on the value of x. For the
sake of brevity, and since the arguments are now familiar, the details are, yet again,
left to the reader. It is also apparent from (13.22) that ξt > −∞ for all t < e, and
ξt =−∞ for all t ≥ e (in the case that e<∞).

The process ξ has right-continuous paths with left limits. Moreover, since
ϕ(It )= t for t < e, we may use straightforward calculus to deduce that ϕ′(It )dIt /
dt = 1,

and hence

dIt
dt
= x−α(X(x)xαIt

)α = eαξt .

Recalling that x−αζ (x) does not depend on the value of x, we may therefore write,
for each x > 0,

It =
∫ t

0
eαξsds, t < e.
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Hence, as soon as we can establish that ξ is a killed Lévy process, where the time at
which it is sent to the cemetery state−∞ (if at all) is e, our proof of Theorem 13.1 (i)
is complete.

To this end, fix x > 0 and consider the event

{ξt >−∞}=
{
X
(x)
xαIt

> 0
}= {

xαIt < ζ
(x)
}= {

t < ϕ
(
x−αζ (x)−)}= {t < e}.

We claim that, on {t < e}, for h > 0,

exp(ξt+h − ξt )=
X
(x)
xαIt+h

X
(x)
xαIt

d= z−1X̃
(z)

zα Ĩh
, (13.25)

where z = X(x)xαIt and, as before, X̃ is an independent copy of X, with an obvious

associated definition for Ĩ . To see where the last equality in (13.25) comes from,
apply the strong Markov property to deduce that, on {t < e},

xαIt+h = xαIt + xα inf

{

s > 0 :
∫ xαs

0

(
X
(x)
xαIt+u

)−αdu > h

}

d= xαIt + xα inf

{

s > 0 :
∫ xαs

0

(
X̃(z)u

)−αdu > h

}

= xαIt + zα inf

{

r > 0 :
∫ zαr

0

(
X̃(z)u

)−αdu > h

}

= xαIt + zαĨh.
However, Ĩh is independent of the value z and hence, using the scaling property
(13.1) in (13.25), we deduce that exp(ξt+h − ξt ) is independent of {ξs : s ≤ t} and
has the same distribution as exp(ξh).

In the case that e =∞, we see that ξ is a Lévy process (no killing). Moreover,
referring to (13.24), we see that ζ (x) = xαI∞. Hence in case (1), we necessarily have
that I∞ =∞ almost surely and in case (2), I∞ <∞ almost surely. The following
lemma is dealt with in Exercise 13.6.

Lemma 13.4 Suppose that ξ is an unkilled Lévy process. Then P(I∞ <∞)= 1 if
and only if lim supt↑∞ ξt <∞, and otherwise P(I∞ =∞)= 1.

It is now clear that in case (1), we have lim supt↑∞ ξt = ∞ and in case (2),
lim supt↑∞ ξt <∞, which is to say that limt↑∞ ξt =−∞.

We now prove for case (3) that ξ and e are independent. Recall from Lemma 13.3
that, irrespective of the initial value of X(x), e is exponentially distributed. More-
over, from (13.23), again, irrespective of the value of x, for all t > 0, the event
{e> t} is independent of {X(x)s : s ≤ xαIt }, and hence is independent of {ξs : s ≤ t}.
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Taking account of our earlier observation that, conditional on {e> t}, the increment

ξt+h − ξt d= ξh, for all t, h > 0, we conclude that ξ must be a Lévy process killed at
an independent and exponentially distributed time. �

13.3.2 Proof of Theorem 13.1 (ii)

Whilst it is clear that X(x) is positive and has paths that are right-continuous with
left limits, we need to check that it is self-similar as well as a strong Markov process.
Self-similarity is very easy to show. Indeed, for all c, t > 0,

cX
(x)

c−αt = cx exp{ξϕ((cx)−αt)}1(t<(cx)αI∞) =X(cx)t .

The remainder of the proof is thus concerned with establishing the strong Markov
property.

To this end, let us write H := {Ht : t ≥ 0} for a right-continuous version of the
natural filtration generated by the process ξ . Note in particular that ϕ(x−αt) is a
stopping time for H and Gt := Hϕ(x−αt), t ≥ 0 is the natural right-continuous fil-
tration to which X(x) is adapted. See, for example, Proposition 7.9 of Kallenberg
(2002). Now suppose that τ is a stopping time with respect to G := {Gt : t ≥ 0}. We
claim that ϕ(x−ατ) is a stopping time with respect to H. To see this, write for each
s > 0,

{
ϕ
(
x−ατ

)
< s

}= {
τ < xαIs

}=
⋃

u∈Q∩(0,∞)

{
τ < u < xαIs

}
. (13.26)

For each s, u > 0, the set {τ < u < xαIs} can be written {τ < u, ϕ(x−αu) < s}.
Since τ is a stopping time for G, the last event belongs to Gu ∩ {ϕ(x−αu) < s} =
Hϕ(x−αu) ∩ {ϕ(x−αu) < s} ⊆ Hs . The final inclusion uses the fact that ϕ(x−αu)
is a stopping time. In conclusion, we have from (13.26) that {ϕ(x−ατ) < s} ∈Hs ,
for all s > 0. Recalling the discussion in Sect. 3.1, this establishes the claim that
ϕ(x−ατ) is a stopping time for H since we have assumed that H is a right-continuous
filtration.

We can now say that, from the strong Markov property for Lévy processes and
the lack-of-memory property for exponential distributions, on {ϕ(x−ατ) < e}, the
process ξ̃ := {̃ξt : t ≥ 0}, where ξ̃t := ξϕ(x−ατ)+t − ξϕ(x−ατ), t ≥ 0, is a (killed) Lévy
process, which is independent of Gτ =Hϕ(x−ατ) and has the same law as ξ .

Next note that τ < xαI∞ if and only if ϕ(x−ατ) < e, in which case

xα
∫ ϕ(x−ατ)

0 exp{αξs}ds = τ . Moreover, we have on {τ < xαI∞},

xαI∞ = xα
∫ ϕ(x−ατ)

0
eαξsds

+xαeαξϕ(x−ατ)
∫ e−ϕ(x−ατ)

0
eα(ξϕ(x−ατ)+u−ξϕ(x−ατ))du

= τ + (
X(x)τ

)α
Ĩ∞,
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where, conditional on Gτ ∩ {τ < xαI∞}, from the strong Markov property and lack-
of-memory property, the random variable Ĩ∞ has the same distribution as I∞. We
may now write

1(τ+t<xαI∞) = 1(τ<xαI∞)1(t<(X(x)τ )α Ĩ∞). (13.27)

Note also that we have on {τ + t < xαI∞},
Iϕ(x−α(τ+t)) = x−ατ + x−αt = Iϕ(x−ατ) + x−αt,

and hence,

x−αt =
∫ ϕ(x−α(τ+t))

ϕ(x−ατ)
exp{αξs}ds

= exp{αξϕ(x−ατ)}
∫ ϕ(x−α(τ+t))−ϕ(x−ατ)

0
exp

{
α(ξs − ξϕ(x−ατ))

}
ds

= x−α(X(x)τ
)α
∫ ϕ(x−α(τ+t))−ϕ(x−ατ)

0
exp{αξ̃s}ds.

It follows that if we define ϕ̃ to play the role of ϕ for the process ξ̃ , then given
Gτ ∩ {τ < xαI∞}, for t < (X(x)τ )αĨ∞,

ϕ
(
x−α(τ + t))− ϕ(x−ατ)= ϕ̃((X(x)τ

)−α
t
)
. (13.28)

Finally, taking account of (13.27) and (13.28), we have, for t ≥ 0,

X
(x)
τ+t = xeξϕ(x−ατ)e(ξϕ(x−α(τ+t))−ξϕ(x−ατ))1(τ<xαI∞)1(t<(X(x)τ )α Ĩ∞)

= X(x)τ exp{̃ξ
ϕ̃((X

(x)
τ )
−αt)}1(t<(X(x)τ )α Ĩ∞),

from which the strong Markov property is now evident.
Finally, there is the issue of quasi-left-continuity. We recall from Lemma 3.2 that

Lévy processes have the aforementioned property. In turn, quasi-left-continuity of
ξ transfers through the second Lamperti transform in a straightforward way (using
in particular that the time-change for ξ is a stopping time with respect to H) and is
inherited by the process X. We leave the details to the reader. �

13.4 Lamperti-Stable Processes

Let us return to some of the examples given in Sects. 13.1 and 13.2. Our objective
is to compute in explicit terms the characteristics of the underlying Lévy process ξ
in the second Lamperti transform. In particular, we are interested in the three cases
of a stable process conditioned to stay positive, a stable process conditioned to hit
the origin continuously, and a stable process killed on first entry into (−∞,0). For
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each of these three cases, we shall write ξ↑, ξ∗ and ξ↓, respectively, for the three
underlying Lévy processes that appear through the second Lamperti transform. Our
presentation is inspired by the original investigation of these processes found in
Caballero and Chaumont (2006b) and Chaumont et al. (2009).

As we shall shortly see, ξ↑, ξ↓ and ξ∗ all belong to the class of hypergeomet-
ric class of Lévy processes that was described in Sect. 6.6.1. However, these three
processes are more precisely named Lamperti-stable processes on account of their
intimate relationship with stable processes, through the second Lamperti transform.
See Caballero et al. (2010).

13.4.1 The Case of ξ↑

Recall from Sect. 13.2 that, for x > 0, the process (Y,P↑x ) is used to denote an
α-stable Lévy process conditioned to stay positive. From Theorem 13.1, we know
that ξ↑ = {ξ↑t : t ≥ 0}, the associated Lévy process through the second Lamperti
transform, is not killed and drifts to +∞. Our strategy for characterising ξ↑ will
revolve around the Wiener–Hopf factorisation. In particular, if we write Ψ ↑ for the
characteristic exponent of ξ↑, then the Wiener–Hopf factorisation tells us that, up to
a multiplicative constant,

Ψ ↑(θ)= φ↑(−iθ)φ̂↑(iθ), θ ∈R,
where φ↑ and φ̂↑ are the Laplace exponents of the ascending and descending lad-
der height processes, respectively, cf. Theorem 6.15. Therefore, in order to get our
hands on Ψ ↑, it suffices to try to compute closed form expressions for φ↑ and φ̂↑.
An obvious place to look for information concerning these quantities will be in the
overshoot distribution of ξ↑, when it crosses thresholds both upwards and down-
wards. As we shall shortly see, these overshoot distributions conveniently turn out
to be easily recovered from overshoot distributions of the associated stable process,
thanks to the second Lamperti transform.

Let us start by computing the Laplace exponent φ↑. Fix α ∈ (0,2) and, for con-
venience, assume that Y has positive jumps. That is to say, we rule out the case of
a spectrally negative stable process. This means that, in particular, we are excluding
the extreme case of a Brownian motion.5 The case that Y is a Brownian motion is
treated in Exercise 13.3. More generally, the spectrally negative case is dealt with in
Exercise 13.8.

As usual, write

τ+a = inf{t > 0 : Yt > a} and τ−a = inf{t > 0 : Yt < a}, (13.29)

for any a ∈ R. Now take y > 1. In the light of the change of measure (13.11), we
have, for all z > 0,

5Rather obviously, we also rule out the case that −Y is a subordinator.
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P
↑
1

(Yτ+y − y
y

∈ dz

)

= P1

(

(Yτ+y )
α(1−ρ);

Yτ+y − y
y

∈ dz, τ+y < τ−0
)

= (
y(1+ z))α(1−ρ)P1

(Yτ+y
y
− 1 ∈ dz, τ+y < τ−0

)

, (13.30)

where Px is the law of an α-stable process issued from x ∈ R. Using scaling argu-
ments similar to those that were used repeatedly in Sect. 13.3, it is straightforward
to show that

P1

(Yτ+y
y
− 1 ∈ dz, τ+y < τ−0

)

= P1/y
(
Yτ+1
− 1 ∈ dz, τ+1 < τ

−
0

)
. (13.31)

On the one hand, thanks to the second Lamperti transform, if we write τ+,↑logy =
inf{t > 0 : ξ↑t > logy}, then, under P↑1 ,

Yτ+y
y
= exp

{
ξ
↑
τ
+,↑
logy

− logy
}
.

On the other hand, the probability on the right-hand side of (13.31) is known ex-
plicitly and has been derived in Exercise 7.7. Taking account of these facts, back in
(13.30), we have, after a little algebra, that, for z > 0,

P↑
(
exp

{
ξ
↑
τ
+,↑
logy

− logy
}− 1 ∈ dz

)

= sinπαρ

π

(

1− 1

y

)αρ
z−αρ

(

z+ 1− 1

y

)−1

dz, (13.32)

where P↑ is the law of ξ↑ (with associated expectation operator E↑).
Before we are in a position to extract information about φ↑ from this last identity,

we must first take limits as y ↑∞. To see why, recall that the overshoot ξ↑
τ
+,↑
logy

− logy

agrees precisely with the overshoot of the ascending ladder height process of ξ↑.
Moreover, thanks to Theorem 5.7, providing the ascending ladder height process
has finite mean, we should expect to see a non-degenerate limiting distribution
in (13.32). This will give us, up to a multiplicative constant, the tail of the Lévy
measure of the ascending ladder height process. If the ascending ladder height pro-
cess of ξ↑ does not have finite mean, then it is straightforward to check from the
proof of Theorem 5.7, using Corollary 5.3, that the limiting overshoot distribution
should be degenerate. In conclusion, by taking limits as y ↑∞ in (13.32), we de-
duce that if Υ ↑ is the Lévy measure of the ascending ladder height process of ξ↑,
then

Υ ↑(x,∞)dx ∝ P↑
(
Δ↑ ∈ dx

)
,
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where the random variable Δ↑ satisfies

P↑
(
eΔ
↑ − 1 ∈ dz

)= sinπαρ

π
z−αρ(z+ 1)−1dz.

This tells us that

Υ ↑(x,∞)∝ (ex − 1)−αρ

Γ (1− αρ)Γ (αρ) , (13.33)

where we have used Euler’s reflection formula6 for gamma functions.
Note that ξ↑ (and hence its ascending ladder height process) cannot creep up-

wards on account of the fact that the same is true of Y . Therefore, there is no drift
component in the Laplace exponent φ↑ and hence, recalling Exercise 2.11, for all
λ≥ 0,

φ↑(λ)∝ λ
∫ ∞

0
e−λxΥ ↑(x,∞)dx

= λ

Γ (1− αρ)Γ (αρ)
∫ ∞

0
e−λx

(
ex − 1

)−αρdx

= λ

Γ (1− αρ)Γ (αρ)
∫ 1

0
uλ+αρ−1(1− u)−αρdu.

The right-hand side above is a beta integral and hence, for all λ≥ 0, up to a multi-
plicative constant, we have

φ↑(λ)= λ Γ (λ+ αρ)Γ (1− αρ)
Γ (1− αρ)Γ (αρ)Γ (λ+ 1)

= Γ (αρ + λ)
Γ (αρ)Γ (λ)

. (13.34)

Note that we could have equivalently derived this expression from (13.33) using
Example 5.26.

Next, we turn our attention to the derivation of φ̂↑. We cannot apply the same
technique as above since P↑(lim inft↑∞ ξ↑t > −∞) = 1, and hence an asymptotic
overshoot in the downwards direction would not make sense. Moreover, the de-
scending ladder height process of ξ↑ is exponentially killed, in which case φ̂↑(0) >
0. This means that we need to find more than just the Lévy measure of the descend-
ing ladder height process in order to construct φ̂↑. Note that, as before, there will be
no drift term in φ̂↑ on account of the fact that Y does not creep downwards.

Instead, we can look at the law of the global infimum of ξ↑, which, again thanks
to the second Lamperti transform, can easily be derived from the global infimum of
Y under P↑1 . Indeed, we have from (6.29) that, for λ≥ 0,

φ̂↑(0)
φ̂↑(λ)

= E↑
(
eλξ

↑
∞
)= E

↑
1

(
(Y∞)λ

)
, (13.35)

6Recall again (see the first footnote in Sect. 5.6) that Euler’s reflection formula for gamma functions
says that Γ (1− u)Γ (u)= π/ sinπu for u ∈C\Z.
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where ξ↑∞ = infs≥0 ξ
↑
s and Y∞ = infs≥0 Ys . Moreover, referring to Exercise 7.7 (i),

we have, for 0< y < 1,

P
↑
1 (Y∞ ≤ y)
= P

↑
1

(
τ−y <∞

)

= E1
(
(Yτ−y )

α(1−ρ); τ−y < τ−0
)

= E1−y
(
(y + Yτ−0 )

α(1−ρ); −Yτ−0 ≤ y
)

= sinπα(1− ρ)
π

∫ y

0
(y − z)α(1−ρ)

(
z

1− y
)−α(1−ρ)(

1+ z

1− y
)−1 1

1− y dz

= sinπα(1− ρ)
π

(1− y)α(1−ρ)

×
∫ y

0

1

y

(

1− z
y

)α(1−ρ)(
z

y

)−α(1−ρ)( 1

y
− 1+ z

y

)−1

dz. (13.36)

The expression on the right-hand side reduces to 1− (1− y)α(1−ρ). However, this
requires one to first spot some straightforward, but nonetheless non-obvious, manip-
ulations. Set 1− z/y = (v + 1)−1 and note that the integral on the right-hand side
of (13.36) can be developed as follows:

∫ ∞

0

y

(v + 1− y)(v + 1)vα(1−ρ)
dv

=
∫ ∞

0

1

vα(1−ρ)(v + 1− y)dv−
∫ ∞

0

1

vα(1−ρ)(v + 1)
dv

= [
(1− y)−α(1−ρ) − 1

]
∫ ∞

0

1

zα(1−ρ)(z+ 1)
dz, (13.37)

where we have used the change of variable v = (1−y)z to deal with the first integral
in the first equality. Note, moreover, that by setting w = (1+ z)−1, we get a familiar
beta integral,

∫ ∞

0

1

zα(1−ρ)(z+ 1)
dz =

∫ 1

0
(1−w)−α(1−ρ)wα(1−ρ)dw

= Γ (1− α(1− ρ))Γ (α(1− ρ))

= π

sinπα(1− ρ) , (13.38)

where we have used the reflection formula again in the final equality.
Now plugging (13.37) and (13.38) back into (13.36), we get, as promised,

P
↑
1 (Y∞ ≤ y)= 1− (1− y)α(1−ρ),
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for 0< y < 1. Returning to (13.35), we now have, up to a multiplicative constant,

φ̂↑(λ) =
(

α(1− ρ)
∫ 1

0
yλ(1− y)α(1−ρ)−1dy

)−1

= Γ (1+ λ+ α(1− ρ))
α(1− ρ)Γ (1+ λ)Γ (α(1− ρ))

= Γ (1+ λ+ α(1− ρ))
Γ (1+ λ)Γ (α(1− ρ)+ 1)

, (13.39)

for λ≥ 0.
Through the Wiener–Hopf factorisation, we may now write down the character-

istic exponent of ξ↑ up to a multiplicative constant:

Ψ ↑(θ)= Γ (αρ − iθ)

Γ (−iθ)

Γ (1+ iθ + α(1− ρ))
Γ (1+ iθ)

. (13.40)

This clearly puts the process ξ↑ in the class of hypergeometric Lévy processes. See
Sect. 6.6.1.

13.4.2 The Case of ξ↓

In Sect. 13.2, we also introduced the process (Y,P↓x ), for x > 0, in other words, an α-
stable process conditioned to be absorbed continuously at the origin before entering
(−∞,0). From Theorem 13.1, we know that ξ↓ = {ξ↓t : t ≥ 0}, the associated Lévy
process through the second Lamperti transform, is not killed and drifts to −∞.

As in the previous section, we can again try to reconstruct the characteristic ex-
ponent of ξ↓ by piecing together its Wiener–Hopf factorisation. This time, we must

take account of the fact that ξ
↓
∞ := sups≥0 ξ

↓
s <∞. If Ψ ↓ is the characteristic ex-

ponent of ξ↓, then its factorisation will be written

Ψ ↓(θ)= φ↓(−iθ)φ̂↓(iθ), θ ∈R,
where φ↓ and φ̂↓ are the Laplace exponents of the ascending and descending lad-
der height processes, respectively. On account of the fact that limt↑∞ ξ↓t =−∞, we
must have φ↓(0) > 0. That is to say, the ascending ladder height process is expo-
nentially killed.

To compute φ↓, we again appeal to (6.29) to deduce that, for λ≥ 0,

φ↓(0)
φ↓(λ)

= E↓
(
e−λξ

↓
∞
)= E

↓
1

(
(Y∞)−λ

)
, (13.41)

where P↓ is the law of ξ↓ (with associated expectation operator E↓) and Y∞ =
sups≥0 Ys . Appealing to the change of measure discussed at the end of Sect. 13.2,
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we have, for z > 1,

P
↓
1 (Y∞ > z)

= P
↓
1

(
τ+z <∞

)

= E1
(
(Yτ+z )

α(1−ρ)−1; τ+z < τ−0
)

= zα(1−ρ)−1
E1/z

(
(Yτ+1

)α(1−ρ)−1; τ+1 < τ−0
)

= sinπαρ

π

(

1− 1

z

)αρ ∫ ∞

0

1/z

(1+ y)yαρ(y + 1− 1/z)
dy

= 1−
(

1− 1

z

)αρ
, (13.42)

where in the third equality, we have used the scaling property, in the fourth equal-
ity, we have used Exercise 7.7 and for the fifth equality, we have used (13.37) and
(13.38), writing 1−ρ in place of ρ. With (13.42) in hand, one may return to (13.41)
and easily show that, up to a multiplicative constant,

φ↓(λ)= Γ (1+ λ+ αρ)
Γ (1+ λ)Γ (αρ + 1)

,

for λ≥ 0. The computation is left to the reader.
In order to deal with φ̂↓, write τ−,↓logy = inf{t > 0 : ξ↓t < logy} and use the second

Lamperti transform to deduce that, for 0< z,y < 1,

P↓
(
1− exp

{
ξ
↓
τ
−,↓
logy

− logy
}≤ z) = P

↓
1

(y − Yτ−y
y

≤ z
)

= E1

(

(Yτ−y )
α(1−ρ)−1;

y − Yτ−y
y

≤ z
)

= E1−y
(

(y + Yτ−0 )
α(1−ρ)−1;

−Yτ−0
y
≤ z

)

.

Again, making use of Exercise 7.7, we deduce that

P↓
(
1− exp

{
ξ
↓
τ
−,↓
logy

− logy
} ∈ dz

)

= sinπα(1− ρ)
π

(1− y)α(1−ρ)(1− z)α(1−ρ)−1z−α(1−ρ)(1− y + zy)−1dz.

Suppose we write Υ̂ ↓ for the Lévy measure of φ̂↓. Taking limits as y ↓ 0, we may
again appeal to Corollary 5.3 to deduce that, for 0< z < 1 and x > 0,

Υ̂ ↓(x,∞)dx ∝ P↓
(
Δ↓ ∈ dx

)
,
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where

P↓
(
1− exp

{−Δ↓} ∈ dz
)= sinπα(1− ρ)

π
(1− z)α(1−ρ)−1z−α(1−ρ)dz.

Said another way, for x > 0, we have

Υ̂ ↓(x,∞)∝ e−α(1−ρ)x(1− e−x)−α(1−ρ)

Γ (1− α(1− ρ))Γ (α(1− ρ)) ,

where again, we have used Euler’s reflection formula for gamma functions.
Using similar reasoning to previously, it is now easy to verify that

φ̂↓(λ)∝ λ
∫ ∞

0
e−λxΥ̂ ↓(x,∞)dx = Γ (λ+ α(1− ρ))

Γ (α(1− ρ))Γ (λ) ,

for λ≥ 0.
In conclusion, we see that, up to a multiplicative constant,

Ψ ↓(θ)= Γ (1− iθ + αρ)
Γ (1− iθ)

Γ (iθ + α(1− ρ))
Γ (iθ)

, θ ∈R. (13.43)

Again, we see that ξ↓ also belongs to the class of hypergeometric Lévy processes.

13.4.3 The Case of ξ∗

The Lévy process ξ∗ comes about by applying the second Lamperti transform to an
α-stable process killed on first entering (−∞,0). In terms of the three categories
described in Theorem 13.1 (i), if we exclude the case of a spectrally positive stable
process, then, since all other stable processes do not creep downwards, we are forced
to conclude that ξ∗ belongs to the third category. Specifically, it is killed at some
independent and exponentially distributed random time. A little thought also reveals
that the case of a spectrally positive stable process has already been covered through
our study of ξ↓.

We are interested in computing Ψ ∗, the characteristic exponent of ξ∗. Suppose
that e is the independent exponentially distributed time at which ξ is killed. Since
we only aim to compute Ψ ∗ up to a multiplicative constant, we may assume that the
rate associated with e is unity and appeal to the Wiener–Hopf factorisation to write

E∗
(
eiθξ∗e

)= E∗
(
eiθξ

∗
e
)
E∗

(
eiθξ∗

e
)= 1

Ψ ∗(θ)
, θ ∈R,

where P∗ (with associated expectation operator E∗) is the law of ξ∗. Written another
way, we have

Ψ ∗(θ)= 1

E∗(eiθξ
∗
e )E∗(eiθξ∗

e )
, θ ∈R. (13.44)
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Note that

E∗
(
eiθξ

∗
e
)= E1

(
(Y τ−0

)iθ
)

and E∗
(
eiθξ∗

e
)= E1

(
(Y τ−0 −)

iθ ), (13.45)

where Y τ−0
= sups≤τ−0 Ys , Y τ−0 − = infs<τ−0

Ys and P1 is the law of an α-stable pro-
cess with initial value 1 (with associated expectation operator E1). To obtain the first
equality in (13.45), note that, for all z > 1,

P1(Y τ−0
≤ z) = P1

(
τ−0 < τ

+
z

)

= P1/z
(
τ−0 < τ

+
1

)

= Γ (α)

Γ (αρ)Γ (α(1− ρ))
∫ 1−1/z

0
uαρ−1(1− u)α(1−ρ)−1du,

where the second equality is the result of scaling and the third equality uses Exer-
cise 7.7. We can now compute, for θ ∈R,

E1
(
(Y τ−0

)iθ
) = Γ (α)

Γ (αρ)Γ (α(1− ρ))
∫ ∞

1
ziθ

(

1− 1

z

)αρ−1(1

z

)α(1−ρ)−1 dz

z2

= Γ (α)

Γ (αρ)Γ (α(1− ρ))
∫ 1

0
uα(1−ρ)−iθ−1(1− u)αρ−1du

= Γ (α)Γ (α(ρ − 1)− iθ)

Γ (αρ)Γ (α − iθ)
.

In order to deal with the second equality in (13.45), observe that Y τ−0 − is equal
to the position of the descending ladder height process of Y immediately before en-
tering into (−∞,0). Recall from (6.37) that the descending ladder height process
is a stable subordinator with index α(1− ρ). Using this fact, together with Theo-
rem 5.6, or more conveniently Exercise 5.8, a straightforward computation gives,
for 0< z < 1,

P1(Y τ−0 − ∈ dz)

= P(1− ĤT̂ +1 − ∈ dz)

= sinπα(1− ρ)
π

(1− z)α(1−ρ)−1z−α(1−ρ)dz,

where {Ĥt : t ≥ 0} is the descending ladder height of Y and T̂ +1 = inf{t > 0 : Ĥt >
1}. It follows that, for θ ∈R,

E1
(
(Y τ−0 −)

iθ )= Γ (iθ + 1− α(1− ρ))
Γ (1− α(1− ρ))Γ (iθ + 1)

.
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Putting everything together in (13.44), we find that, up to a multiplicative con-
stant,

Ψ ∗(θ)= Γ (α − iθ)

Γ (α(1− ρ)− iθ)

Γ (iθ + 1)

Γ (iθ + 1− α(1− ρ)) , θ ∈R. (13.46)

Again, we see that ξ∗ belongs to the class of hypergeometric Lévy processes.

13.4.4 The Relation Between ξ↑, ξ↓ and ξ∗

Careful inspection of the three characteristic exponents Ψ ↑, Ψ ↓ and Ψ ∗ reveals that,
for θ ∈R,

Ψ ↑(θ)= Ψ ↓(θ − i)= Ψ ∗(θ − iα(1− ρ)). (13.47)

We shall now offer a very straightforward explanation of this connection.
Note that both P

↑
1 and P

↓
1 are absolutely continuous with respect to P

∗
1, the law

of a stable process issued from 1 and killed on entering (−∞,0). Taking account of
their respective densities, we may write, for any stopping time T with respect to the
filtration of Y ,

E
↑
1

(
f (YT )1(T <∞)

)= E
↓
1

(
YT f (YT )1(T <∞)

)= E
∗
1

(
Y
α(1−ρ)
T f (YT )1(T <∞)

)
,

where f is any bounded, measurable function and E
∗
1 is expectation with respect to

P
∗
1. Glancing back to (13.24) and noting, in particular, that the quantity xαIt there

is a stopping time, we see that, for all t > 0,

E↑
(
f
(
eξ
↑
t
))= E↓

(
eξ
↓
t f

(
eξ
↓
t
))= E∗

(
eα(1−ρ)ξ∗t f

(
eξ
∗
t
))
. (13.48)

This last identity can be easily extended to complex-valued functions with bounded,
measurable real and imaginary components. In that case, taking f (z)= zi, (13.47)
follows immediately.

Taking f = 1 in (13.48) shows, with the help of the Markov property, that
{exp{ξ↓t } : t ≥ 0} and {exp{α(1 − ρ)ξ∗t } : t ≥ 0} are martingales with respect to
P
↓ and P

∗, respectively. Moreover, these martingales describe Esscher transforms
in the spirit of (8.5), allowing one to transform between P

↓ and P
↑ and P

∗ and P
↑

respectively.7

Naturally, we could have used this observation to give shorter proofs of (13.43)
and (13.46). However, the proofs given in Sects. 13.4.2 and 13.4.3 expose a number
of interesting identities for ξ↓ and ξ∗, some of which are exploited in the exercises
at the end of this chapter.

7Formally the case of Esscher transforms for killed Lévy processes was not discussed in (8.5).
However, it is not difficult to check that one may similarly change measure in this way when the
underlying Lévy process has independent exponential killing.
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13.5 Self-similar Continuous-State Branching Processes

Fix x > 0. Suppose now that (Y,Px) is a spectrally positive α-stable process with
index α ∈ (1,2), starting from x > 0. Let (Z,Px) be the associated continuous-state
branching process. That is to say, Z is the continuous-state branching process whose
branching mechanism is given by ψ(λ)= λα , λ≥ 0. Recall from Chap. 12 that the
processes Y and Z are connected through the first Lamperti transform, given in
Theorem 12.2. Specifically,

Zt = Yθt∧τ−0 ,
with τ−0 = inf{t > 0 : Yt < 0} and θ· = θ·(Y ), where for any positive stochastic pro-
cess X = {Xt : t ≥ 0}, we define

θt (X)= inf

{

s > 0 :
∫ s

0

1

Xu
du > t

}

. (13.49)

Recall, moreover, that, from Lemma 12.15, if P ↑x is the law of Z conditioned to stay
positive with initial value x > 0, then (Z,P ↑x ) has the same law as (Yθ· ,P

↑
x ).

The question we would like to address in this section is whether the process Z
is a positive self-similar Markov process under either of the measures Px or P ↑x .
This is a natural question to ask. Indeed, we have already shown in Sect. 13.4 that
a spectrally positive α-stable process up until its first entry in (−∞,0) and a spec-
trally positive α-stable process conditioned to stay positive are both positive self-
similar Markov processes. Therefore (Z,Px) and (Z,P ↑x ) are both time-changed
positive self-similar Markov processes. Our question thus boils down to whether
self-similarity is preserved through the time change in the first Lamperti transform.

Remarkably, we can show something a little stronger. Namely that the class of
positive self-similar Markov processes remains closed under the operation of tak-
ing the first Lamperti transform. The following result is due to Patie (2009a) and
Kyprianou and Pardo (2008).

Proposition 13.5 Suppose that X is any positive self-similar Markov process with
initial value x > 0 and self-similarity index α > 1. Then, recalling the definition
(13.49), {Xθt 1(θt<ζ ) : t ≥ 0} is a positive self-similar Markov process with initial
value x, self-similarity index α−1 and the same underlying Lévy process appearing
in the second Lamperti transform.

Proof Suppose that ξ is the Lévy process associated with X through the second
Lamperti transform. Write I (α)t =

∫ t
0 exp{αξs}ds, t ≥ 0, indicating the index of self-

similarity, where previously, in (13.15), we have just written It . Accordingly, we
shall additionally modify our notation and write ϕα for the right-continuous inverse
of I (α). Define

At =
∫ t

0

ds

Xs
, t ≥ 0.
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Appealing to the second Lamperti transform, we have that, for t < ϕα(x−αζ ),

A
xαI

(α)
t
=
∫ xαI

(α)
t

0

1

x
exp{−ξϕα(x−αs)}ds

= xα−1
∫ t

0
e(α−1)ξudu

= xα−1I
(α−1)
t , (13.50)

where in the second equality we have changed variables using s = xαI (α)u . On the
other hand, for any 0≤ t < xα−1I

(α−1)∞ ,

ϕα−1
(
x−(α−1)t

) = inf
{
s ≥ 0 : I (α−1)

s > x−(α−1)t
}

= inf{s ≥ 0 :A
xαI

(α)
s
> t}

= inf
{
ϕα
(
x−αu

)≥ 0 :Au > t
}

= ϕα
(
x−αθ(t)

)
, (13.51)

where in the final inequality we have used the monotonicity and continuity of ϕα .
Using the fact that ζ = xαI∞, and that A and θ are mutually inverse to one

another, (13.50) gives us that

inf{t ≥ 0 :Xθ(t) = 0} =Aζ =AxαI (α)∞ = x
α−1I (α−1)∞ ,

and, for all 0≤ t < xα−1I
(α−1)∞ ,

Xθ(t) = x exp{ξϕα(x−αθ(t))} = x exp{ξϕα−1(x
−(α−1)t)},

thus completing the proof. �

We may now return to our original question concerning the processes (Z,Px)
and (Z,P ↑x ). From Sect. 13.4, we know that the underlying Lévy process that drives
(Y,Px) through the second Lamperti transform is ξ∗ (in the case that it is spectrally
positive). Said another way, it is the Lévy process with characteristic exponent given
by (13.46) such that α(1 − ρ) = 1. The computations in Sect. 13.4 assumed that
there were jumps in both directions. However, given the simpler form of the Wiener–
Hopf factorisation in the spectrally one-sided case, the reader can readily check that
a straightforward modification of the arguments given there can be adapted to handle
the spectrally one-sided case as well. Similarly, one easily verifies that (Y,P↑x ) is
associated, through the second Lamperti transform, with ξ↑ (in the case that it is
spectrally positive), i.e. the Lévy process with characteristic exponent (13.40) such
that α(1− ρ)= 1. In both cases, we also recall that (Y,Px) and (Y,P↑x ) have index
of self-similarity α ∈ (1,2).
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It now follows from Proposition 13.5 that (Z,Px) and (Z,P ↑x ) are positive self-
similar Markov processes, associated through the second Lamperti transform with
ξ∗ and ξ↑ respectively, but now with index of self-similarity α − 1.

We can summarise the above conclusions with the schematic below, which also
indicates the relevant functions that are used to construct changes of measure be-
tween the laws (Px,Px,P∗) and (P↑x ,P ↑x ,P↑). For convenience, we shall write Y ∗
for the process {Yt1(t<τ−0 ) : t ≥ 0}.

(ξ∗,P∗) Lamperti 2
←−−→ (Y ∗,Px) Lamperti 1

←−−→ (Z,Px)
Lamperti 2
←−−→ (ξ∗,P∗)

↑ e−y
|
|
↓ ey

α

y−1 ↑
|
|

y ↓

↑ y−1

|
|
↓ y

α − 1

e−y ↑
|
|

ey ↓

(ξ↑,P↑)
Lamperti 2
←−−→ (Y,P

↑
x )

Lamperti 1
←−−→ (Z,P

↑
x )

Lamperti 2
←−−→ (ξ↑,P↑)

13.6 Entrance Laws and Recurrent Extensions

The second Lamperti transform in Theorem 13.1 requires that the initial value of
the underlying positive self-similar Markov process, X, is strictly positive. Taking
limits as the initial value, x, tends to zero in the representation (13.17) does not offer
any insight with regard to the following question: For a given positive self-similar
Markov process, is it possible to give a construction of the process issued from the
origin in terms of the underlying Lévy process ξ? Said another way, can we make
sense of “P0”?

We know from Sect. 13.1 that the point 0 may be included in the state space as
an initial value, for at least some positive self-similar Markov processes. In this re-
spect, one may take, for example, stable subordinators, the modulus of symmetric
stable processes, Bessel processes and reflected stable processes. It turns out that ad-
dressing this issue in general is highly non-trivial. Our objective in this section is to
summarise what is known in this direction. However, on account of the mathemat-
ical complexity involved, we shall offer no proofs, presenting instead the relevant
intuition where possible.

Theorem 13.1 (i) indicates that positive self-similar Markov processes naturally
divide into two classes. Firstly, conservative processes, for which ζ =∞ almost
surely, and, secondly, non-conservative processes, for which ζ <∞ almost surely.
It turns out that the way to deal with the first case is to construct an entrance law
and the way to deal with the second case is to construct a recurrent extension.
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13.6.1 Entrance Law

Suppose that X is a conservative positive self-similar Markov process. We want to
find a way to give a meaning to “P0 := limx↓0 Px”. One way to do this is to look at
the behaviour of the transition semigroup of X as its initial value tends to zero. That
is to say, to consider whether the weak limit

P0(Xt ∈ dy) := lim
x↓0
Px(Xt ∈ dy), t, y > 0, (13.52)

exists. In that case, for any sequence of times 0 < t1 ≤ t2 ≤ · · · ≤ tn <∞ and
y1, . . . , yn ∈ (0,∞), n ∈N, the Markov property gives us

P0(Xt1 ∈ dy1, . . . ,Xtn ∈ dyn)

:= lim
x↓0
Px(Xt1 ∈ dy1, . . . ,Xtn ∈ dyn)

= lim
x↓0
Px(Xt1 ∈ dy1)Py1(Xt2−t1 ∈ dy2, . . . ,Xtn−t2 ∈ dyn)

= P0(Xt1 ∈ dy1)Py1(Xt2−t1 ∈ dy2, . . . ,Xtn−t2 ∈ dyn).

The limit (13.52), when it exists, thus implies the existence of P0 as limit of Px as
x ↓ 0, in the sense of convergence of finite-dimensional distributions.

The existence of an entrance law was first investigated by Bertoin and Caballero
(2002) for the case of positive self-similar processes with monotone increasing paths
and processes with no positive jumps. The general case was treated in a series of
papers: Bertoin and Yor (2002b), Caballero and Chaumont (2006a), Chaumont et
al. (2012) and Bertoin and Savov (2011). In particular, amongst other things, one
can find in these papers the following result.

Theorem 13.6 Assume that X is a conservative positive self-similar Markov pro-
cess. Moreover, suppose that the Lévy process (ξ,P), associated with X through
the second Lamperti transform, is not a compound Poisson process and has an as-
cending ladder height processH which satisfies E(H1) <∞. Then P0 := limx↓0 Px
exists in the sense of convergence of finite-dimensional distributions. Conversely, if
E(H1)=∞, then this limit does not exist.

The contents of the above theorem understates the actual contribution found
in the aforementioned literature. This is partly due to the fact that we have not
developed all the appropriate tools here in order to state the strongest available
form of this theorem. Indeed, what has been shown by Bertoin and Savov (2011)
and Chaumont et al. (2012) is that, when considering {Px : x > 0} as a family of
probability laws on the measurable space of trajectories that are right-continuous
with left limits, accompanied by the sigma-algebra generated by the so-called Sko-
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rokhod topology,8 then, under the same assumption as Theorem 13.6, there exists
P0 := limx↓0 Px , in the sense of weak convergence on the aforesaid measurable
space. Moreover, when this assumption fails, the limit does not exist.

Under the additional assumption that E(ξ1) > 0, Bertoin and Yor (2002b) are also
able to characterise transitions from the origin under the measure P0. They showed
that, for any positive measurable function f and t > 0,

E0
(
f (Xt )

)= 1

αE(ξ1)
E

(
1

I−∞
f

((
t

I−∞

)1/α))

,

where I−∞ =
∫∞

0 exp{−αξs}ds.
Bertoin and Savov (2011) go further and give a pathwise construction of the

process X(0), using the forthcoming intuition, which, itself, was developed earlier
in Caballero and Chaumont (2006a). Recall from the definition of self-similarity
(13.1) that, for fixed t, y > 0,

P1
(
t−1/αXt ∈ dy

)= Pt−1/α (X1 ∈ dy).

This suggests that, in terms of the underlying Lévy process ξ = {ξt : t ≥ 0}, one
needs to sample ξ over a longer and longer time horizon in order to construct the law
ofX(x) as x ↓ 0. Ultimately, one would therefore expect that a pathwise construction
of the limiting process X(0) over any period [0, t] would necessarily require one to
sample ξ over an infinite time horizon. However, appealing to the Markov property,
one would still need to further sample from an independent copy of ξ , again over an
infinite time horizon, to construct the path of X(0) over the period (t,∞).

Appealing to this logic, Bertoin and Savov (2011) define the law of the Lévy
process ξ with time index running over R, and then give a pathwise construction
of X(0) with this extended definition of ξ . They reason that a Lévy process in-
dexed by R, now written ξ◦ = {ξ◦t : t ∈ R}, must have the stationarity property that
(ξ◦
σ+x
− x, x − ξ◦

σ+x −) is independent of x ∈ R, where σ+x = inf{t > −∞ : ξ◦t > x}.
Moreover, the distribution of (ξ◦

σ+x
− x, x − ξ◦

σ+x −) must be equal to that of the joint

law of the overshoot and undershoot of ξ at first passage over a level as this level
tends to∞. Suppose that ξ has ascending ladder height process H and the potential
measure of its descending ladder height is denoted by Û . Assume that E(H1) <∞
(which necessarily implies that H has no killing, and hence lim supt↑∞ ξt = ∞)
and write γ ≥ 0 for its drift coefficient. Then referring back to Exercise 7.9, the
aforementioned joint law is given by

χ(dy,dz)= 1

E(H1)

(
Û (z)Π(z+ dy)dz+ γ δ0(dy)δ0(dz)

)
, y, z≥ 0.

8Let D be the space of mappings from [0,∞) to R which are right-continuous with left limits. The
Skorokhod topology is generated by an appropriate metric on the space D, which has the property
that most events of interest belong to the sigma-algebra generated by its open sets. The details are
far too involved to provide a concise overview here. The reader is instead referred to Chap. VI of
Jacod and Shiryaev (1987), or indeed Billingsley (1999).
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Next, write Px (resp. P↑x ) for the law of ξ (resp. ξ conditioned to stay positive)
when ξ0 = x ≥ 0.9 Let us also write ξ↑ = {ξ↑t : t ≥ 0} for an independent copy of
the process ξ conditioned to stay positive.

The process ξ◦ can now be described as follows. We suppose that the two-
dimensional random variable (Δ,Δ↑) has distribution χ . Then

ξ◦t :=
{
ξt under PΔ if t ≥ 0,
−ξ↑|t |− under P↑

Δ↑ if t < 0.

Now, define

I ◦t =
∫ t

−∞
eαξ

◦
s ds

and let ϕ◦(t)= inf{s > 0 : I ◦s ≥ t}. Then Bertoin and Savov (2011) showed, under
the same assumptions as Theorem 13.6, that I ◦∞ =∞ almost surely and the process

X
(0)
t = exp

{
ξ◦ϕ◦(t)

}
, t ≥ 0,

has the same law as P0.
A convenient feature of this construction, and indeed the earlier inspiration for

this construction in Caballero and Chaumont (2006a), is that it offers transparency
with regard to the need for the assumption that E(H1) <∞. This condition is crucial
to the definition of the process ξ◦, around which the whole construction pivots.

13.6.2 Recurrent Extension

Suppose now that X is a non-conservative positive self-similar Markov process. If
there is a way to describe how X can be issued from the origin then, in principle,
one should be able to reissue it from the origin at all subsequent hitting times of
this point, in such a way that the resulting process remains strong Markov, thereby
generating what is known as a recurrent extension. To be more precise, we say
that the strong Markov process,

�
X:= {�Xt : t ≥ 0}, possessing paths that are right-

continuous with left limits and probabilities {�
Px, x ≥ 0}, is a recurrent extension

of X if, for each x > 0, the origin is not an absorbing state
�
Px -almost surely and

{�X
t∧�
ζ
: t ≥ 0} under

�
Px has the same law as (X,Px), where

�
ζ= inf{t > 0 : �

Xt= 0}.

9Our lack of willingness to give a precise description of P↑0 at the end of Sect. 13.2.1 comes at the
price of lack of clarity at this point of our informal discussion. On the other hand, in the case that
γ = 0, that is to say, there is no upward creeping in ξ , there is no need for us to be clear about the
meaning of P↑0 as then it is not used in this construction.
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Showing that a recurrent extension exists is a very technical task and revolves
around the theory of excursions. Roughly speaking, instead of constructing an en-
trance law for the family {Px : x > 0}, it turns out that the correct mathematical
procedure is to use {Px : x > 0} to construct an entrance law for an excursion mea-
sure that will describe the sojourns of

�
X away from zero. Then with the help of

what is known as Itô synthesis, one may piece together excursions end to end in an
appropriate way to generate the desired recurrent extension.

In theory, one may approach the problem of constructing an excursion entrance
law, and hence the problem of constructing a recurrent extension, in two different
ways. Either the excursion may start by leaving the origin with a jump, or it leaves
the origin continuously. Necessary and sufficient conditions are given by Rivero
(2005) in the first case and by Rivero (2007) and Fitzsimmons (2006) in the second
case. We focus on the case of recurrent extensions which leave the origin continu-
ously, on account of the fact that the construction is unique. Otherwise, in the case
of processes which leave the origin with a jump, there is no unique construction.

Theorem 13.7 Assume that X is a non-conservative positive self-similar Markov
process. Suppose that (ξ,P) is the (killed) Lévy process associated with X through
the second Lamperti transform and, moreover, it is not a compound Poisson process.
Then there exists a unique recurrent extension of X which leaves 0 continuously if
and only if there exists a β ∈ (0, α) such

E
(
eβξ1

)= 1. (13.53)

Here, as usual, α is the index of self-similarity.

Condition (13.53) is also known as the Cramér condition.

13.7 Spectrally Negative Processes

For any given positive self-similar Markov process, X, if the (killed) Lévy process,
ξ , associated with X through the second Lamperti transform, is spectrally negative,
then we say that X is a positive self-similar Markov process of the spectrally nega-
tive type. In this final section, we shall briefly introduce some fluctuation theory for
positive self-similar Markov processes of the spectrally negative type.

Conforming to the notation in Chap. 8, we shall write

ψ(λ)= logE
(
exp{λξ1}

)
, λ≥ 0,

where

ψ(λ)=−q − aλ+ 1

2
σ 2λ2 +

∫

(−∞,0)
(
eλx − 1− λx1(x>−1)

)
Π(dx),

such that q ≥ 0, a ∈ R, σ 2 ≥ 0 and Π is a measure concentrated on (−∞,0)
such that

∫
(−∞,0)(1 ∧ x2)Π(dx) < ∞. In the case that ξ is killed, we have

q =−ψ(0) > 0.
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As usual, we write X, with probabilities {Px : x > 0}, for the positive self-
similar Markov process associated with ξ by the second Lamperti transform. When
ψ(0)= 0 and ψ ′(0+) ≥ 0, the state 0 is never visited at strictly positive times and
Theorem 13.6 gives us the existence of an entrance law P0. In the case that the
boundary state 0 is reached continuously in an almost surely finite time, we have
ψ(0)= 0 and ψ ′(0+) < 0. Otherwise, when −ψ(0) > 0, the state zero it is reached
in an almost surely finite time by a jump. Moreover, for these last two cases, The-
orem 13.7 tells us that, providing there exists a Φ(0) ∈ (0, α), a unique recurrent
extension of X exists which leaves 0 continuously, thereby giving meaning to P0.
As usual, α > 0 is the index of self-similarity.

13.7.1 Patie’s Scale Functions

Recall from Chap. 8 that, for any spectrally negative Lévy process, ξ , there exists
a family of so-called scale functions. These functions play a fundamental role in
many fluctuation identities for spectrally negative Lévy processes. Patie (2009b)
introduced a family of functions which, just like scale functions for spectrally neg-
ative Lévy processes, play a similarly natural role for many fluctuation identities
of positive self-similar Markov processes of the spectrally negative type, as well as
possessing related martingale properties (cf. Exercise 8.12). Unlike scale functions
for spectrally negative Lévy processes, they can be explicitly identified through a
power series representation with coefficients written in terms of the Laplace expo-
nent ψ . Defined immediately below, we henceforth refer to them as Patie’s scale
functions.

Definition 13.8 (Patie’s scale functions) Fix α > 0. For a given (killed) spectrally
negative Lévy process with Laplace exponent ψ , let

a0(ψ;α)= 1 and an(ψ;α)=
(
n∏

k=1

ψ(αk)

)−1

, n ∈N (13.54)

and define the function

Iψ,α(x)=
∞∑

n=0

an(ψ;α)xn, x ≥ 0.

Let us make some immediate observations regarding basic analytical properties
of Iψ,α . Firstly, note that, since limλ↑∞ψ(λ)=∞, we have

lim
n↑∞
|an+1(ψ;α)|
|an(ψ;α)| = lim

n↑∞
1

|ψ(α(n+ 1))| = 0.

Hence for all x ≥ 0, Iψ,α(x) is a convergent series. In fact this argument shows that
if we consider Iψ,α as a mapping on C, then it is an entire function. We also see
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that, whenever Φ(0) < α, all of the coefficients an(ψ;α) are strictly positive and
Iψ,α is a positive and strictly increasing function.

13.7.2 Exit Problems

Our aim here is to use Patie’s scale functions to address some simple exit problems
in the spirit of what we have seen in Chap. 8 for spectrally negative Lévy processes.
Recall that ζ = inf{t > 0 : Xt = 0}. As a first step, we examine a martingale prop-
erty, similar to the martingale property observed in Exercise 8.12 for scale functions
of spectrally negative Lévy processes.

Theorem 13.9 Suppose that ψ(0) = 0 and ψ ′(0+) ≥ 0 (equivalently Φ(0) = 0)
and fix q > 0. The process

e−qtIψ,α
(
qXαt

)
, t ≥ 0

is a martingale.

Proof Let us start by first proving the following claim, lifted from Bertoin and Yor
(2002a). For x, q, t > 0,

Ex
(
Xαnt

)=
n∑

k=0

an−k(ψ;α)
an(ψ;α) x

α(n−k) tk

k! . (13.55)

To this end, let us define un(x, t) = x−αnEx(Xαnt ) for x, t > 0 and n ∈ N. In the
notation of Sect. 13.3,

un(x, t)= E
(
exp{αnξϕ(x−αt)}

)= E
αn
(
eψ(αn)ϕ(x

−αnt)),

where we have used the fact that ϕ(x−αt) is a stopping time in the filtration of ξ
and E

αn means expectation with respect to the probability measure P
αn, which is

defined through the exponential change of measure in (8.5).10

Next, recall that, for all t ≥ 0,

∫ ϕ(x−αt)

0
eαξsds = x−αt, (13.56)

so that
d

dt
ϕ
(
x−αt

)= x−αe−αξϕ(x−αt) .

10As remarked upon earlier in this chapter, although the exponential change of measure has only
been defined for processes ξ with no killing, the reader can easily verify that it is equally applicable
to spectrally negative Lévy processes with killing.
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Accordingly, we have

d

dt
eψ(αn)ϕ(x

−αt) = x−αψ(αn)eψ(αn)ϕ(x−αt)e−αξϕ(x−αt) ,

so that

eψ(αn)ϕ(x
−αt) = 1+ x−αψ(αn)

∫ t

0
eψ(αn)ϕ(x

−αs)e−αξϕ(x−αs)ds.

Now taking expectations above with respect to P
αn and reverting back to the original

measure P, we find, for x, t > 0 and n≥ 1,

un(x, t)= 1+ x−αψ(αn)Ex
(∫ t

0
un−1(x, s)ds

)

,

where u0(x, t)= 1. It is now a straightforward exercise, left to the reader, to show
by induction that

un(x, t)=
n∑

k=0

an−k(ψ;α)
an(ψ;α) x

−αk tk

k! ,

from which the claim (13.55) follows.
We can now compute for all q, t, x > 0,

Ex
(
e−qtIψ,α

(
qXαt

)) = e−qt
∞∑

n=0

an(ψ;α)qnEx
(
Xαnt

)

= e−qt
∞∑

n=0

an(ψ;α)qn
n∑

k=0

an−k(ψ;α)
an(ψ;α) x

α(n−k) tk

k!

= e−qt
∞∑

k=0

qk
tk

k!
∞∑

n=k
an−k(ψ;α)qn−kxα(n−k)

= Iψ,α
(
qxα

)
, (13.57)

where we have used the fact that Φ(0) = 0 (which implies that the coefficients
an(ψ;α) are all positive) and Fubini’s Theorem in the first equality. The case that
x = 0 can be obtained by taking limits as x ↓ 0 in (13.57) making use of Theo-
rem 13.6.

Finally, the Markov property together with the identity (13.57) gives us the re-
quired martingale property. Indeed, if {Gt : t ≥ 0} is the natural filtration generated
by X, then for s, t > 0,

Ex
(
e−q(t+s)Iψ,α

(
qXαt+s

)|Gs
) = e−qsEy

(
e−qtIψ,α

(
qXαt

))∣
∣
y=Xs

= e−qsIψ,α
(
qXαs

)
.

The proof is now complete. �
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The next theorem deals with the promised exit problems for our class of positive
self-similar Markov processes of the spectrally negative type.

Theorem 13.10 Fix q ≥ 0 and, for all a > 0, let κ+a = inf{t > 0 :Xt > a}.
(i) Suppose that Φ(0) < α. For 0≤ x ≤ a, we have

Ex
(
e−qκ+a

)= Iψ,α(qxα)
Iψ,α(qaα)

.

(ii) Moreover, for 0< x ≤ a, we have

Ex
(
e−qκ+a 1(κ+a <ζ)

)=
(
x

a

)Φ(0) IψΦ(0),α(qxα)
IψΦ(0),α(qaα)

,

where ψΦ(0)(λ)=ψ(λ+Φ(0)).

Proof (i) We start by giving the proof in the case that ψ(0) = 0 and ψ ′(0+) ≥ 0
(equivalentlyΦ(0)= 0) and hence ζ =∞ almost surely. Applying Doob’s Optional
Sampling Theorem at the bounded stopping time t ∧ κ+a , we have, for all q ≥ 0 and
0≤ x ≤ a,

Ex
(
e−q(t∧κ+a )Iψ,α

(
qXα

t∧κ+a
))= Iψ,α

(
qxα

)
.

Noting that Xt∧κ+a ≤ a, we may apply bounded convergence to conclude that as
t ↑∞,

Iψ,α
(
qxα

)=Ex
(
e−qκ+a Iψ,α

(
qXα

κ+a

))=Ex
(
e−qκ+a

)
Iψ,α

(
qaα

)
,

where in the second equality, we have used the fact that Xκ+a = a, which follows as
a consequence of spectral negativity.

The remaining cases, when there is a recurrent extension, are somewhat more
complicated and therefore omitted. The reader is referred instead to Patie (2009b)
for further details. See also the comments in Kyprianou and Patie (2011).

(ii) When ψ(0) = 0 and ψ ′(0+) ≥ 0 there is nothing to prove as Φ(0) = 0
and hence ζ <∞ almost surely. We therefore concentrate on the case that either
ψ(0)= 0 and ψ ′(0+) < 0 or −ψ(0) > 0.

The process X with probabilities {Px : x ≥ 0} corresponds, through the sec-
ond Lamperti transform, to the spectrally negative Lévy process (ξ,P). Suppose
that we consider instead the positive self-similar Markov process of the spectrally
negative type, X, with probabilities {PΦ(0)x : x ≥ 0}, corresponding, through the
second Lamperti transform, to the Lévy process (ξ,PΦ(0)). From the discussion
around the change of measure (8.5), under P

Φ(0), the Laplace exponent of ξ is
equal to ψΦ(0)(λ) for λ ≥ 0. Note also that since ψΦ(0)(0) = 0 and ψ ′Φ(0)(0+) =
ψ ′(Φ(0)) > 0, the process (ξ,PΦ(0)) has no killing and drifts to ∞. This implies
that PΦ(0)x (ζ =∞)= 1 for all x ≥ 0.



13.7 Spectrally Negative Processes 401

Next, we are going to use the fact that, for x > 0, under Px ,

a =Xκ+a = x exp{ξτ+log(a/x)
},

and accordingly τ+log(a/x) = ϕ(x−ακ+a ), whenever the stopping times κ+a and

τ+log(a/x) are finite.

Hence, from (13.16),

κ+a = xα
∫ τ+log(a/x)

0
exp{ξs}ds.

We may now compute, for 0< x ≤ a,

EΦ(0)x

(
e−qκ+a

) = E
Φ(0)

(

exp

{

−qxα
∫ τ+log(a/x)

0
eξsds

}

1(τ+log(a/x)<∞)
)

= E

(

exp

{

−qxα
∫ τ+log(a/x)

0
eξsds +Φ(0)ξτ+log(a/x)

}

1(τ+log(a/x)<e)

)

=
(
a

x

)Φ(0)
E

(

exp

{

−qxα
∫ τ+log(a/x)

0
eξsds

}

1(τ+log(a/x)<e)

)

=
(
a

x

)Φ(0)
Ex

(
e−qκ+a 1(κ+a <ζ)

)
.

Note that in the second equality, we have simply applied the change of mea-
sure (8.5), noting that e is the killing time of (ξ,P), which is almost surely infinite
in the case that ψ(0) = 0. The desired result now follows by using the expression
derived in part (i). �

13.7.3 Ciesielski–Taylor Identity

Recall the definition of Bessel processes in Sect. 13.1.3. Suppose that (X,Q(d))
is a Bessel process starting from 0, with dimension d > 0. For these processes,
Ciesielski and Taylor (1962) observed that the following curious identity holds in
distribution. For a > 0 and integer d> 0,

(
κ+a ,Q(d)

) (d)=
(∫ ∞

0
1(Xs≤a)ds,Q(d+2)

)

, (13.58)

where we recall that κ+a = inf{s ≥ 0; Xs > a}. They proved this relationship by
showing that the densities of both random variables coincide. Getoor and Sharpe
(1979) extended this identity to any dimension d > 0 by means of Laplace trans-
forms and recurrence relationships for Bessel functions. Other generalisations of
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this identity have been explored for a variety of other one-dimensional Markov pro-
cesses. See for example Biane (1985), Carmona et al. (1998) and Bertoin (1992).
In particular Yor (1991) gives a pathwise explanation for this identity for certain
parameter regimes. We shall follow the exposition of Kyprianou and Patie (2011)
here and look at the generalisation of the Ciesielski–Taylor identity for the class
of positive self-similar Markov processes of the spectrally negative type. This set-
ting captures all of the aforementioned results with the exception of those of Biane
(1985), who considers the case of one-dimensional diffusions.

In order to state the main result, we need to establish some appropriate notation.
Recall that we are working in a setting where P0 is well defined for our class of
positive self-similar Markov processes of the spectrally negative type, either as an
entrance law or the law of a recurrent extension issued from the origin. It will be
convenient to adjust our notation to include some information about the underlying
spectrally negative Lévy process, ξ . We shall therefore prefer to write Pψ0 from now
on, where ψ is the Laplace exponent of ξ . Accordingly, we shall also write P

ψ for
the law of ξ .

Next, recall from Exercise 9.8 that for any given Laplace exponent ψ of a spec-
trally negative Lévy process and any β > 0,

Tβψ(λ)= λ

λ+ β ψ(λ+ β), λ≥−β, (13.59)

is also the Laplace exponent of another spectrally negative Lévy process. Although
the case of killed processes was not covered by Exercise 9.8, we may easily verify
that the same conclusion still holds. In particular, when −ψ(0) > 0, Tβψ(0) = 0
and, hence, the spectrally negative Lévy process with Laplace exponent Tβψ has no
killing.

We are now ready to state our generalisation of the Ciesielski–Taylor identity.

Theorem 13.11 Suppose that ψ is the Laplace exponent of a (possibly-killed)
spectrally negative Lévy process. Assume that Φ(0) < α. Then, for any a > 0, the
following Ciesielski–Taylor type identity holds:

(
κ+a ,P

ψ

0

) (d)=
(∫ ∞

0
1(Xs≤a)ds,P

Tαψ
0

)

. (13.60)

Proof Recall from Theorem 13.10 that, for 0≤ x ≤ a and q ≥ 0, we have

E
ψ

0

[
e−qκ+a

]= 1

Iψ,α(qaα)
. (13.61)

The proof is thus complete as soon as we can show the right-hand side above is
equal to OTαψ

q (0;a), where, for any q ≥ 0, a > 0 and 0≤ x ≤ a,

OTαψ
q (x;a)=ETαψ

x

[
e−q

∫∞
0 1(Xs≤a)ds

]
.
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To this end, observe that a straightforward computation, using the self-similarity
property (13.1), implies that

OTαψ
q (x;a)=OTαψ

qaα (x/a;1).

Hence, without loss of generality, we may henceforth assume that a = 1. Note more-
over that with the help of the strong Markov property, we have, for q ≥ 0,

OTαψ
q (0;1)=ETαψ

0

(
e−qκ

+
1
)
OTαψ
q (1;1).

Therefore, again appealing to Theorem 13.10, the theorem is proved as soon as we
can show that, for all q ≥ 0,

OTαψ
q (1;1)= ITαψ,α(q)

Iψ,α(q)
.

We start by computing OTαψ
q (1;1). Let

κ−1 = inf{s > 0; Xs < 1}

be the first-passage time of X below the level 1. Fixing y > 1, we may make use of
the strong Markov property and spectral negativity to deduce that

OTαψ
q (1;1)=ETαψ

1

[
e−q

∫ κ+y
0 1(Xs≤1)ds

]
ETαψ
y

[
e−q

∫∞
0 1(Xs≤1)ds

]

and

ETαψ
y

[
e−q

∫∞
0 1(Xs≤1)ds

]

=ETαψ
y

[
1(κ−1 <∞)E

Tαψ
X
κ
−
1

[
e−qκ

+
1
]]
OTαψ
q (1;1)+ P Tαψ

y

[
κ−1 =∞

]
.

Solving for OTαψ
q (1;1), we get for all y > 1,

OTαψ
q (1;1)−1

=
{ETαψ

1 [e−q
∫ κ+y

0 1(Xs≤1)ds]}−1 −ETαψ
y [1(κ−1 <∞)E

Tαψ
X
κ
−
1

[e−qκ+1 ]]

P
Tαψ
y [κ−1 =∞]

. (13.62)

Now we evaluate some of the expressions on the right-hand side above. First, we
deal with the denominator. We write as usual τ−0 = inf{t > 0 : ξt < 0}. Note that

X
(y)

κ−1
= y exp{ξϕ(y−ακ−1 )} = y exp{ξτ−0 }.
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Hence, from (13.16), under P Tαψ
y , we have

y−ακ−1 =
∫ τ−0

0
eαξsds, (13.63)

with the understanding that both left- and right-hand sides are infinite in value at the
same time. Next, recall that (Tαψ)′(0+)= ψ(α)/α > 0 and hence, using (8.10) in
Theorem 8.1 together with (13.63), we have

P Tαψ
y

[
κ−1 =∞

] = E
Tαψ
logy

(∫ τ−0

0
eαξsds =∞

)

= P
Tαψ
logy

(
τ−0 =∞

)

= ψ(α)
α
WTαψ(logy) (13.64)

where WTαψ is the 0-scale function of (ξ,PTαψ).
For the second term in the numerator of (13.62), we may use Fubini’s Theorem,

together with Theorem 13.10 and the second Lamperti transform, to get

ETαψ
y

[
1(κ−1 <∞)E

Tαψ
X
κ
−
1

[
e−qκ

+
1
]]

=ETαψ
y

[ITαψ,α(qXακ−1
)1(κ−1 <∞)

ITαψ,α(q)

]

= 1

ITαψ,α(q)
ETαψ
y

[ ∞∑

n=0

an(Tαψ;α)qnXαnκ−1 1(κ−1 <∞)

]

= 1

ITαψ,α(q)

∞∑

n=0

an(Tαψ;α)qnETαψ
logy

[
e
αnξ

τ
−
0 1(τ−0 <∞)

]
. (13.65)

Using the fluctuation identity found in Exercise 8.7 (ii), and again recalling that
(Tαψ)′(0+) > 0, we have, for x ≥ 0 and u≥ 0,

E
Tαψ
x

(
e
uξ
τ
−
0 1(τ−0 <∞)

)

= eux − Tαψ(u)eux
∫ x

0
e−uzWTαψ(z)dz−

Tαψ(u)
u

WTαψ(x), (13.66)

where Tαψ(u)/u is understood to be (Tαψ)′(0+) when u= 0. Hence incorporating
(13.64), (13.65) and (13.66) into (13.62), recalling the identity (13.61), and then
taking limits as y ↓ 1, we have
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1

O
Tαψ
q (1;1)

= lim
y↓1

∞∑

n=0

an(Tαψ;α)
ψ(α)ITαψ,α(q)

αqn
{

Tαψ(αn)yαn
∫ logy

0
e−αnz

WTαψ(z)

WTαψ(logy)
dz

}

+
∞∑

n=0

an(Tαψ;α)
ψ(α)ITαψ,α(q)

αqn
Tαψ(αn)
αn

− lim
y↓1

αITαψ,α(qyα){ETαψ
1 [e−q

∫ κ+y
0 1(Xs≤1)ds] −ETαψ

1 [e−qκ+y ]}
ψ(α)ITαψ,α(q)WTαψ(logy)ETαψ

1 [e−q
∫ κ+y

0 1(Xs≤1)ds]
. (13.67)

Now using the simple estimate that, for θ ≥ ε ≥ 0, e−(θ−ε) − e−θ ≤ ε, we have that

E
Tαψ
1

[
e−q

∫ κ+y
0 1(Xs≤1)ds

]−ETαψ
1

[
e−qκ

+
y
] ≤ qETαψ

1

[∫ κ+y

0
1(Xs>1)ds

]

= qETαψ
[∫ τ+logy

0
eαξs1(ξs>0)ds

]

= q
∫ logy

0
eαzu(logy, z)dz

≤ qyα
∫ logy

0
u(logy, z)dz,

where τ+logy = inf{s > 0; ξs > logy} and u(logy, z) is the potential density of

(ξ,PTαψ) when killed on exiting (−∞, logy]. It can easily be deduced from Corol-
lary 8.8 that, for z > 0, u(logy, z) = WTαψ(logy − z). Since WTαψ is monotone
increasing it now follows that

lim
y↓1

1

WTαψ(logy)

{
E
Tαψ
1

[
e−q

∫ κ+y
0 1(Xs≤1)ds

]−ETαψ
1

[
e−qκ

+
y
]}

≤ lim
y↓1
qyα

∫ logy

0

WTαψ(logy − z)
WTαψ(logy)

dz

= 0. (13.68)

Similarly, we have that

lim
y↓1

∞∑

n=0

an(Tαψ;α)qnTαψ(αn)yαn
∫ logy

0
e−αnz

WTαψ(z)

WTαψ(logy)
dz

≤ lim
y↓1

ITαψ,α
(
qyα

)
logy

= 0. (13.69)
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Using (13.68) and (13.69) together with the trivial observation that

lim
y↓1
E
Tαψ
1

[
e−q

∫ κ+y
0 1(Xs≤1)ds

]= 1,

we may now return to (13.67) to identify the limit and find that

OTαψ
q (1;1)= ψ(α)ITαψ,α(q)

∑∞
n=0 an(Tαψ;α)αqn Tαψ(αn)αn

.

Appealing to the definitions (13.54) and (13.59), we have that for any n ∈N,

αTαψ(αn)
ψ(α)αn

an(Tαψ;α)=
(
n∏

k=1

ψ(αk)

)−1

. (13.70)

Moreover, with the interpretation that Tαψ(u)/u = (Tαψ)′(0+) when u = 0, we
also see that the left-hand side of (13.70) is also equal to 1 when n= 0. We finally
come to rest at the identity

OTαψ
q (1;1)= ITαψ,α(q)∑∞

n=0 an(ψ;α)qn
= ITαψ,α(q)

Iψ,α(q)
,

as required. �

See Exercise 13.10 to check that the conclusion of Theorem 13.11 agrees with
the original statement of the Ciesielski–Taylor identity in the setting of Bessel pro-
cesses.

Exercises

13.1 Suppose that Y = {Yt : t ≥ 0} is an α-stable process. Define the occupation
time of (0,∞),

At =
∫ t

0
1(Xs>0)ds, t ≥ 0,

and let γ (t) := inf{s ≥ 0 : As > t} be its right-continuous inverse. Show that
Yγ (t)1(t<T0), t ≥ 0, is a positive self-similar Markov process, where T0 =
inf{t > 0 : Yγ (t) = 0}.

13.2 Suppose thatX = {Xt : t ≥ 0} is an α-stable subordinator, so that (necessarily)
α ∈ (0,1). Use the method of looking at the asymptotic overshoot of X at first entry
into (y,∞), as y ↑∞, to deduce that the Lévy process that appears in the second



Exercises 407

Lamperti transform is a subordinator with no killing, no drift and jump measure ν
satisfying

ν(dx)= c ex

(ex − 1)α+1
dx, x > 0,

where c > 0 is a constant.

13.3 Consider the case that B = {Bt : t ≥ 0} is a standard Brownian motion. Use
first-passage problems to deduce the following facts.

(i) Set τ−0 = inf{t > 0 : Bt < 0}. The process {Bt1(t<τ−0 ) : t ≥ 0} is a positive self-
similar Markov process driven through the second Lamperti transform by a
constant multiple of a standard Brownian motion with drift −1/2.

(ii) Fix x > 0. Suppose that P
↑
x is the law of B conditioned to stay positive.

Show that the process (B,P↑x ) is a positive self-similar Markov process driven
through the second Lamperti transform by a constant multiple of standard
Brownian motion with drift 1/2.

In both cases, how might one deduce that the unspecified constant is equal to 1?

13.4 Suppose that (X,P) is a Lévy process which satisfies lim supt↑∞Xt =∞. We
exclude the case that X is a compound Poisson process. Fix 0 < y ≤ x. Write, as
usual, τ−y = inf{t > 0 :Xt < y}. By considering the event {τ−y <∞} under P↑x and
the computation in (13.13), show that

P
↑
x

(
inf
s≥0
Xs ≥ y

)
= Û (x − y)

Û(x)
, x, y ≥ 0.

Deduce that the law of the global minimum of a standard Brownian motion condi-
tioned to stay positive, with initial value x > 0, is uniformly distributed on (0, x).

13.5 In this exercise, our aim is to follow Chaumont (1996) in constructing the
law of a stable process conditioned to be absorbed continuously at the origin. To
this end, we suppose that Y = {Yt : t ≥ 0} is an α-stable process and that, for all
x ∈ R, τ−x = inf{t > 0 : Yt < x}. Following our usual notation, we shall also write
Y t = infs≤t Ys .

(i) Show that, for any ε, x > 0,

Px(Y τ−0 − ≤ ε)∝
∫ ε

0

(x − u)α(1−ρ)−1

uα(1−ρ)
du.

(ii) Deduce that, for x, y > 0,

lim
ε↓0

Px(Y τ−0 − ≤ ε)
Py(Y τ−0 − ≤ ε)

=
(
x

y

)α(1−ρ)−1

.
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(iii) Now suppose that A belongs to the sigma-algebra generated by {Ys : s ≤ t}.
Show, using the Markov property, that, for all x, t, η > 0 and 0< ε < η,

Px

(
A, t < τ−η |Y τ−0 − ≤ ε

)= Ex

(

1(A, t<τ(0,η))
PYτ(0,η)

(Y τ−0 − ≤ ε)
Px(Y τ−0 − ≤ ε)

)

,

where τ(0,η) = inf{t > 0 : Yt ∈ (0, η)}.
(iv) Now assume that, for all x, t > 0, Ex(Y

α(1−ρ)−1
t 1(t<τ−0 )

) = xα(1−ρ)−1. Show
that

lim
ε↓0

Px

(
A, t < τ−η |Y τ−0 − ≤ ε

) = Ex

(

1(A, t<τ(0,η))
X
α(1−ρ)−1
t

xα(1−ρ)−1

)

.

13.6 This exercise is concerned with the proof of Lemma 13.4. Suppose that ξ is a
Lévy process which is killed at rate q ≥ 0.

(i) Suppose that q > 0. Using pathwise arguments, explain why it is trivial that
P(I∞ <∞)= 1.

(ii) Now suppose that q = 0 and lim supt↑∞ ξt <∞. Use Theorem 7.2 to deduce
that P(I∞ <∞)= 1.

(iii) Keeping with the case that q = 0, suppose that limt↑∞ ξt =∞. Use the same
hint as in part (ii) to deduce that P(I∞ <∞)= 0.

(iv) Finally, in the case that q = 0 and ξ oscillates, define the sequence of stopping
times

T1 = inf{t > 0 : ξt > 2} and S1 = inf{t > T1 : ξt < 1}
and for n≥ 2

Tn = inf{t > Sn−1 : ξt > 2} and Sn = inf{t > Tn : ξt < 1}.
Show that

I∞ ≥ eα
∑

n≥1

(Sn − Tn)

and hence, by comparing the random variable T1 − S1 to τ−0 = inf{t > 0 :
Xt < 0} under P1, show that P(I∞ =∞)= 1.

13.7 In the notation of Sect. 13.4.2, let τ+,↓x = inf{t > 0 : ξ↓t > x} and τ−,↓x =
inf{t > 0 : ξ↓t < x} for any x ∈R. Fix −∞< v < 0< u<∞.

(i) Show that, for θ ≥ 0,

P↓
(
ξ
↓
τ
+,↓
u

− u ∈ dθ; τ+,↓u < τ−,↓v

)

= sinπα(1− ρ)
π

(
eu − 1

)α(1−ρ)(1− ev
)αρ

× (
eu+θ

)αρ(eu+θ − eu
)−α(1−ρ)(eu+θ − ev

)−αρ(eu+θ − 1
)−1dθ.
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(ii) Show moreover that, for θ ≥ 0,

P↓
(
v− ξ↓

τ
−,↓
v

∈ dθ; τ+,↓u > τ−,↓v

)

= sinπα(1− ρ)
π

(
eu − 1

)α(1−ρ)(1− ev
)αρ

× (
ev−θ

)αρ(ev − ev−θ
)−αρ(eu − ev−θ

)−α(1−ρ)(1− ev−θ
)−1dθ.

13.8 We use here the notation of Sect. 13.4 and consider the case of scale functions
for spectrally negative Lamperti-stable processes; see Patie (2009a) and Chaumont
et al. (2009).

(i) Show that, for z≥ 0, P↑(−ξ↑∞ ≤ z)= (1−e−z)α(1−ρ). Hence deduce that there
exists a spectrally negative Lévy process with Laplace exponent

ψ↑(θ)= Γ (θ + α)
Γ (θ)

, θ ≥ 0,

whose associated 0-scale function, say W↑, is given by

W↑(x)= 1

Γ (α)

(
1− e−x

)α−1
, x ≥ 0.

(ii) Show that, for z ≥ 0, P↓(ξ↓∞ ≤ z) = (1 − e−z)αρ . Hence deduce that there
exists a spectrally negative Lévy process with Laplace exponent

ψ↓(θ)= Γ (θ − 1+ α)
Γ (θ − 1)

, θ ≥ 0,

whose associated 0-scale function, say W↓, is written

W↓(x)= 1

Γ (α)

(
1− e−x

)α−1ex, x ≥ 0.

13.9 Consider the case of an α-stable process conditioned to stay positive, as dis-
cussed in Sect. 13.4.1. As usual, it is denoted by {Yt : t ≥ 0} with probabilities
{P↑x : x > 0}.

(i) Let b > x > 0. Use the quintuple law applied to the Lévy process ξ↑ to deduce
that for u ∈ [0, b− x], v ∈ [u,b) and y > 0,

P
↑
x (b− Y τ+b − ∈ du, b− Yτ+b − ∈ dv, Yτ+b

− b ∈ dy)

= sin(παρ)

π

Γ (α + 1)

Γ (αρ)Γ (α(1− ρ))

× (b− x − u)
αρ−1(v− u)α(1−ρ)−1(b− v)αρ(y + b)α(1−ρ)

(b− u)α(y + v)α+1
dudv dy.
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(ii) Deduce from the previous part of the question that, for u ∈ [0, b−x], v ∈ [u,b)
and y > 0,

Px

(
b− Y τ+b − ∈ du, b− Yτ+b − ∈ dv, Yτ+b

− b ∈ dy, τ+b < τ
−
0

)

= sin(παρ)

π

Γ (α + 1)

Γ (αρ)Γ (α(1− ρ))

× x
αρ(b− x − u)αρ−1(v − u)α(1−ρ)−1(b− v)αρ(y + b)α(1−2ρ)

(b− u)α(y + v)α+1
dudv dy.

13.10 An alternative definition of the Bessel process uses the second Lam-
perti transform. Specifically, we define a Bessel process of dimension d > 0, say
R = {Rt : t ≥ 0}, to be a positive self-similar Markov process with index of self-
similarity 2, whose driving Lévy process, ξ = {ξt : t ≥ 0}, is given by

ξt := Bt +
(
d

2
− 1

)

t, t ≥ 0,

where {Bt : t ≥ 0} is a Brownian motion. Note in particular that the resulting process
must have continuous paths.

In the case d≥ 2, we have that lim supt≥0 ξt =∞. Hence R never hits the origin
and has an entrance law at the origin. When d ∈ (0,2) then the process R visits the
origin in an almost surely finite time. Moreover, since

E
(
eλξ1

)= exp

{

λ2/2+
(
d

2
− 1

)

λ

}

, λ ∈R

it follows that Φ(0) = (2 − d) < 2 and hence there exists a recurrent extension
which leaves the origin continuously.

(i) Verify that the generalised Ciesielski–Taylor identity proved in Theorem 13.11
confirms the original result for Bessel processes.

(ii) Now suppose that q > 0 is a constant. Use the second Lamperti transform or
otherwise to show that {(Rt )q : t ≥ 0} is a positive self-similar Markov process.
In particular, show that its index of self-similarity is 2/q .



Epilogue

The applications featured in this book have been chosen specifically because they
exemplify, utilise and have stimulated many different aspects of the mathematical
subtleties which are commonly referred to as the fluctuation theory of Lévy pro-
cesses. There are, of course, many other applications of Lévy processes which we
have not touched upon. The literature in this respect is vast.

None the less, let us mention a few topics, with a few key references for the
interested reader. The list is by no means exhaustive but merely a selection of current
research activities at the time of writing.

Stable and stable-like processes Stable processes and variants thereof are a core
class of Lévy processes which offer the luxury of a higher degree of mathematical
tractability in a wide variety of problems. This is in part due to their inherent scaling
properties. Samorodnitsky and Taqqu (1994) provides an excellent starting point for
further reading.

Stochastic control The step from optimal stopping problems driven by diffusions
to optimal stopping problems driven by processes with jumps comes hand in hand
with the movement to stochastic control problems driven by jump processes. Recent
progress is summarised in Øksendal and Sulem (2004).

Financial mathematics In Sect. 2.7.3, we made some brief remarks concerning
how properties of Lévy processes may be used to one’s advantage when modelling
risky assets. This picture is far from complete as, at the very least, we have made
no reference to the more substantial and effective stochastic volatility models. The
use of such models increases the mathematical demands on subtle financial issues
such as hedging, completeness, exact analytic pricing, measures of risk and so on.
Whilst solving some problems in mathematical finance, the use of Lévy processes
also creates many problems. The degree of complexity of the latter now supports
a large and vibrant community of researchers engaged in many new and interest-
ing forms of mathematical theories. The reader is again referred to Boyarchenko
and Levendorskii (2002a), Schoutens (2003), Bingham and Kiesel (2004), Cont and
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Tankov (2004), Kyprianou et al. (2005), Bingham (2006), Schoutens and Cariboni
(2009) and Bingham et al. (2010).

Regenerative sets and combinatorics By sampling values independently from
an exponential distribution and grouping them in a way that is determined by a pre-
specified regenerative set on [0,∞) (for example the range of a subordinator) one
may describe certain combinatorial sampling formulae. This is but part of a much
bigger theory which studies the relationship between stochastic processes and com-
binatorial structures. See Chap. 9 of Kingman (1993), Gnedin and Pitman (2005) or
Pitman (2006).

Stochastic differential equations driven by Lévy processes There is a well-
established theory for existence, uniqueness and characterisation of the solution to
stochastic differential equations driven by Brownian motion which crop up in count-
less scenarios within the physical and engineering sciences (cf. Øksendal 2003). It
is natural to consider analogues of these equations where now the driving source
of randomness is a Lévy process. Applebaum (2004) offers a recent treatment. See
also Bass (2004) and Situ (2005).

Continuous-time time series models Lévy processes are the continuous-time
analogue of random walks. What, then, are the continuous-time analogues of time
series models, particularly those that are popular in mathematical finance such as
GARCH processes? The answer to this question has been addressed in recent liter-
ature such as Klüppelberg et al. (2004b, 2006) and Brockwell et al. (2006). See also
the discussion in Bingham (2013). Lévy processes play an important role here.

Integrated exponential Lévy processes For any pair of (not necessarily indepen-
dent) Lévy processes one may formally define the associated integrated exponen-
tial as the stochastic integral over non-negative times of the exponential of the first
process with respect to the increments of the second process. The resulting random
variable appears in a variety of applications, for example in the, already seen, setting
of positive self-similar Markov processes. Other applications include risk theory, the
theory of Brownian diffusions in random environments, mathematical finance and
the theory of self-similar fragmentation; see the review paper of Bertoin and Yor
(2005) and references therein. Particular issues of concern are the almost sure con-
vergence of the above integral, as well as its moments and the tail behaviour of its
distribution. See Erickson and Maller (2004), Bertoin and Yor (2005) and Maulik
and Zwart (2006).

Generalised Ornstein–Uhlenbeck process In the stochastic differential equation
which describes the classical Ornstein–Uhlenbeck process, if one replaces the role
of Brownian motion by a general Lévy process, then one obtains the definition of a
generalised Ornstein–Uhlenbeck process. See, for example, Chaps. 3 and 10 of Sato
(1999). Fluctuations for such processes have been studied in the spectrally nega-
tive case; see for example Hadjiev (1985) and more recently Novikov and Shiryaev
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(2004) and Patie (2004, 2005). Their stationary distributions are also closely related
to the distribution of integrated exponential Lévy processes, cf. Lindner and Maller
(2005). See also Bingham and Kiesel (2004) or Bingham et al. (2010) for a view on
modelling with generalised Ornstein–Uhlenbeck processes.

Lévy copulas The method of using copulas to build in certain parametric de-
pendencies in multivariate distributions from their marginals is a well-established
theory. See for example the up-to-date account in Nelson (2006). Inspired by this
methodology, a limited volume of recent literature has proposed to address the mod-
elling of multi-dimensional Lévy processes by working with copulas on the Lévy
measure. The foundational ideas are to be found in Tankov (2003) and Kallsen and
Tankov (2006).

Lévy-type processes and pseudodifferential operators Jacob (2001, 2002,
2005) summarises the analysis of Markov processes through certain pseudodiffer-
ential operators. The latter are intimately related to the infinitesimal generator of the
underlying process via complex analysis.

Fractional Lévy processes The concept of fractional Brownian motion also has
its counterpart for Lévy processes; see Samorodnitsky and Taqqu (1994). Interest-
ingly, whilst fractional Brownian motion has at least two consistent definitions in
the form of stochastic integrals with respect to Brownian motion (the harmonisable
representation and the moving-average representation), the analogues of these two
definitions for fractional Lévy processes throw out subtle differences. See for exam-
ple Benassi et al. (2002, 2004).

Quantum independent increment processes Lévy processes have also been in-
troduced in quantum probability, where they can be thought of as an abstraction of
a “noise” perturbing a quantum system. The first examples arose in models of quan-
tum systems coupled to a heat bath and in von Waldenfels’ investigations of light
emission and absorption. The algebraic structure underlying the notions of incre-
ment and independence in this setting was developed by Accardi, Schürmann and
von Waldenfels. For an introduction to the subject and a description of the latest
research in this area, see Applebaum et al. et al. (2005) and Barndorff-Nielsen et al.
(2006).

Lévy networks These systems can be thought of as multi-dimensional Lévy pro-
cesses reflected on the boundary of the positive orthant of Rd , which appear as lim-
iting models of communication networks with traffic process of an unconventional
(i.e. long-range dependent) type. See, for example, Harrison and Williams (1987),
Kella (1993) and Konstantopoulos et al. (2004). The justification of these as lim-
its can be found, for example, in Konstantopoulos and Lin (1998) and Mikosch et
al. (2002). Although Brownian stochastic networks have, in some cases, stationary
distributions which can be simply described, this is not the case with more general
Lévy networks. The area of multi-dimensional Lévy processes is a challenging field
of research.



414 Epilogue

Fragmentation and coagulation theory Closely related to classical spatial
branching processes, a core class of fragmentation processes model the way in
which an object of unit total mass dislocates in continuous time. In a way that has
familiarities with the theory of Lévy processes, the construction of fragmentation
processes is done with the help of Poisson point processes. Accordingly, one finds
embedded probabilistic structures which are closely related to subordinators.

Conversely to fragmentation processes, coagulation processes model the coales-
cence of mass over time. Similarly to fragmentation processes, however, coagulation
processes can be assembled in the pathwise sense, again through the use of Poisson
point processes, and, again, one finds an intimate relationship with subordinators.

We refer to the monograph of Bertoin (2006) for an introduction to the state of
the art for both fragmentation and coagulation processes.



Hints for Exercises

Here, we offer a terse set of hints for most parts of the exercises. There are no hints
for parts of exercises which are self-explanatory.

Chapter 1

1.1 As an intermediate step, show that it suffices to check that, for all 0≤ s ≤ t ≤
u <∞, A ∈Fs and θ ∈R,

E
[
1Aeiθ(Xu−Xt )]= P(A)E

[
eiθXt−u].

1.2 (i) The distribution �p is a special example of a negative binomial distribu-
tion. A negative binomial random variable, �c,p , with parameter range c > 0 and
p ∈ (0,1), has mass distribution function

P(�c,p = k)=
(−c
k

)

pc(−q)k = (k!)−1(−c)(−c− 1) · · · (−c− k+ 1)pc(−q)k,

where k runs through the non-negative integers. Infinite divisibility of �p can be
seen by computing the characteristic exponent of �c,p . (ii) Use the infinite divisi-
bility of �p to write S�p as a sum of n i.i.d. random variables for any n ∈N.

1.3 (i) Integrate
∫ b
a
f ′(yx)dy as a function in x and use Fubini’s Theorem. (ii) One

should use the convention that, for z ∈ C, 1/(1− z/α)β = exp{−β log(1− z/α)},
where the principal value of the logarithm function is taken, thus showing that the
right-hand side of (1.24) is analytic. Use a power series expansion of ez and Fubini’s
Theorem to show that

∫∞
0 (1 − ezx)β

x
e−αxdx is analytic on �z < 0. Now use the

Identity Theorem (for analytic functions in C) and continuity to deduce that (1.24)
holds for z ∈C such that �z≤ 0.
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1.4 (i) Use integration by parts. Analytic extension may be performed in a similar
manner to the calculations in Exercise 1.3. Use (1.25) to write

∫

R

(
1− eiθx)Π(dx)=−c1Γ (−α)|θ |αe−iπα sgn θ/2 − c2Γ (−α)|θ |αeiπα sgn θ/2,

(S.1)
the rest is algebra. The desired representation requires a particular normalisation of
constants. Replace −Γ (−α) cos(πα/2)ci by another constant (also called ci ) for
i = 1,2 and then set β = (c1 − c2)/(c1 + c2) and c= (c1 + c2). (ii) The first part is
a straightforward computation. Fourier inversion allows one to write

1

2π

∫

R

2

(
1− cos θ

θ2

)

eiθxdθ = 1− |x|.

Choose x = 0 and use symmetry for the second claim. For z > 0, write

∫ ∞

0

(
1− eirz + irz1(r<1)

) 1

r2
dr

=
∫ ∞

0
(1− cos zr)

1

r2
− i

∫ 1/z

0

1

r2
(sin zr − zr)dr

− i
∫ ∞

1/z

1

r2
sin rzdr + i

∫ 1

1/z

1

r2
zrdr

and accordingly compute the integrals to get the third claim. For θ ∈R,
∫

R

(
1− eiθx + iθx

)
Π(dx)

=−c1Γ (−α)|θ |αe−iπα sgn θ/2 − c2Γ (−α)|θ |αeiπα sgn θ/2.

The right-hand side above is the same as (S.1) and the calculation thus proceeds in
the same way as it does there.

1.5 Let Mt = exp{iθXt + Ψ (θ)t}. Clearly {Mt : t ≥ 0} is adapted to the filtration
Ft = σ(Xs : s ≤ t). Check that

E
(|Mt |

)≤
{

ct

∫

R

(
1∧ x2)Π(dx)

}

for some sufficiently large constant c > 0. Finally, for 0≤ s ≤ t <∞, E(Mt |Fs)=
Ms thanks to stationary and independent increments and (1.3).

1.6 (i) Similar arguments to those given in the solution to Exercise 1.5 show that
{exp{λBt − λ2t/2} : t ≥ 0} is a martingale. Doob’s Optional Sampling Theorem
gives us

1= E
(
eλ(Bt∧τs+b(t∧τs ))−(

1
2λ

2+bλ)(t∧τs )).
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Take limits as s ↑∞, using dominated convergence and the fact that limt↑∞Bt +
bt = ∞, to recover the Laplace transform of τs . Both the left- and right-hand
side of this Laplace transform can easily be shown to be analytic functions and
hence, by the Identity Theorem, equal on {z ∈ C : �z > 0}. The characteristic ex-
ponent is recovered by taking limits onto the imaginary axis. (ii) When Π(dx) =
(2πx3)−1/2e−xb2/2 on x > 0, write

∫ ∞

0

(
1− eiθx)Π(dx)

=
∫ ∞

0

1√
2πx3

(
1− eiθ−b2x/2)dx −

∫ ∞

0

1√
2πx3

(
1− e−b2x/2)dx

and use Exercise 1.4 (i). (iii) Use the change of variable sx−1/2 = ((2λ+ b2)u)1/2

in the first integral to obtain the second. Add the two integrals, writing the sum in
terms of a common dummy variable x, and make a change of variable η= sx−1/2−√
(b2 + 2λ)x.

1.7 Note, by definition, that τ = {τs : s ≥ 0} is also the inverse of the continuous
process {Bt : t ≥ 0}, where Bt = sups≤t Bs . One may thus deduce that τ satisfies the
first two conditions of Definition 1.1. The strong Markov property and spatial homo-
geneity of Brownian motion implies that {τs : s ≥ 0} has stationary and independent
increments. Similar analysis to the solution of Exercise 1.6 shows that

E
(
e−qτs

)= e−
√

2qs, s ≥ 0.

1.8 (ii) Let T0 = 0 and define recursively, for n = 1,2, . . . , Tn = inf{k > Tn−1 :
Sk > STn−1} and let Hn = STn if Tn <∞. The indices Tn are called the strong as-
cending ladder times and Hn are the ladder heights. It is straightforward to prove
that Tn are stopping times. Note that for each n≥ 1, from the Strong Markov Prop-
erty, Hn −Hn−1 has the same distribution as ST +0

. The required identity follows by
showing, for x ≥ 0,

P(ST −0
∈ dx)= P(S1 ∈ dx)

+
∫

(0,∞)

∑

n≥1

P(Sn ∈ dy,Sn > Sj for all j = 0, . . . , n− 1)Q(dx − y).

(iii) Note that Q(z,∞) = P(eβ > z+ ξ1) and integrate out the exponential distri-
bution. (iv) The security loading condition guarantees that ST +0

has a proper dis-
tribution (first passage above the origin has probability one). The lack-of-memory
property together with the fact that upward jumps in S are exponentially distributed
implies that ST +0

is exponentially distributed with parameter β . From this it fol-
lows that, for each n = 1,2, . . . , Hn has a gamma distribution. One may therefore
compute V (dy) explicitly as indicated in the question.
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1.9 (i) The Laplace exponent may be computed directly using the Poisson distri-
bution of N1 in a similar manner to the calculations in Sect. 1.2.2. With the help of
the Dominated Convergence Theorem, one can show directly that ψ ′′(θ) > 0 for all
θ > 0. One easily confirms that ψ(0)= 0 and ψ(∞)=∞. Convexity thus dictates
the existence of a second root of ψ in (0,∞). (ii) The martingale properties follow
from similar arguments to those given in the solution to Exercise 1.5. An argument
using Doob’s Optional Sampling Theorem with this martingale, similar to the one
given in the solution of Exercise 1.6, allows one to deduce

eθ
∗x
P
(
τ+x <∞

)= 1,

from which the remaining conclusions can be drawn. (iii) Note that

{Ws = 0} = {Xs =Xs and Xs >w}.
Moreover, on these events, for s ≥ 0, ds = dXs = dXs . (iv) A direct computation
shows thatψ ′(0+)= 1−λμ. Hence λμ≤ 1 if and only if θ∗ = 0. (v) When λμ> 1,
we have that θ∗ > 0. Moreover, I = 0 on {τ+w =∞}. This is sufficient to draw the
first conclusion. On the other hand,

P
(
I ∈ dx, τ+w <∞|W0 =w

) = P(X∞ −w ∈ dx,X∞ >w|W0 =w).
The strong Markov property and the lack-of-memory property for the exponential
distribution can now be used to derive the second conclusion.

1.10 (i) See Exercise 1.5. (ii) Use similar reasoning to the proof of part (i) of Exer-
cise 1.6. (iii) Differentiate in a, taking care to note that v(x)≥K − ea . Why?

1.11 (i) Use the branching property to deduce that, under Py , Yt is equal in law to

the independent sum
∑y

i=1 Y
(i)
t , where Y (i)t has the same distribution as Yt under P1.

From here the required expression for ut (φ) follows. Strict positivity of ut (φ) fol-
lows by proving that ut (φ)≥ e−φy+λt . (ii) Use the Markov property. (iii) Under the
assumption π0 = 0, we have, for i =−1,1,2, . . . ,

P1(Yh = 1+ i)= λπih+ o(h)
as h ↓ 0, from which one may show

lim
h↓0

E1(e−φYh)− e−φ

h
=−e−φψ(φ).

Chapter 2

2.1 Both parts (i) and (ii) can be addressed by considering the moment-generating
function of

∑n
i=1Ni and taking limits thereof as n ↑∞.
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2.2 Suppose that {Si : i = 1,2, . . . , n} are independent and exponentially dis-
tributed. Use the classical density transform to deduce that for A ∈ B([0,∞)n),

P
(
(T1, . . . , Tn) ∈A and Nt = n

)

=
∫

(t1,...,tn)∈A
1(t1≤t2≤···≤tn≤t)λne−λtndt1 · · ·dtn. (S.2)

Parts (i) and (ii) can be deduced from (S.2).

2.3 Find upper and lower bounds of 1− e−φy which are multiples of 1∧ y. A dia-
gram may help.

2.4 (i) For left-continuity, it suffices to show that, for each x ∈ (0,1], f (x − ε) is a
Cauchy sequence with respect to the distance metric | · | as ε ↓ 0. This can be done
by applying the triangle inequality to |f (x−ε)−f (x−η)|. Right-continuity can be
proved directly by applying the triangle inequality to |f (x+ε)−f (x)|. (ii) Suppose
for contradiction that, for a given c > 0, the setΔc has an accumulation point, say x.
This means there exists a sequence, say yn→ x, such that, for each n≥ 1, yn ∈Δc .
From this sequence, assume without loss of generality that there exists an increasing
subsequence, say xn ↑ x. Noting that

f (xn)− f (xm)=
[
f (xn)− f (xn−)

]+ [
f (xn−)− f (xm)

]
,

one can deduce that there is a contradiction with the existence of the limit f (x−).
2.5 (i) The function f−1 jumps for values in its argument that correspond to val-
ues in the range of f . (ii) Note that, for any y > 0 and k = 1,2,3, . . . , there are
either an even or odd number of jumps of magnitude 2−k in [0, y]. This leads to a
straightforward upper estimate of |f (y)|. Showing that f has paths of unbounded
variation is straightforward as there are countable increments. Countable increments
also implies that f is right-continuous with left limits.

2.6 (i) Apply Theorem 2.7 to the case that S = [0,∞)×R and the intensity measure
is dt ×Π(dx). One should not forget to check that

∫
(−1,1) |x|nΠ(dx) <∞. (ii) The

proof follows very closely the proof of Lemma 2.9.

2.7 (i) Consider the probability P(N([0, t] × {R\(−a, a)}) = 0). (ii) Use part (i).
(iii) and (iv) Piecewise linear paths have bounded variation. Moreover, consider
lima↓0 P(Ta > t), where Ta := inf{t > 0 : |Xt −Xt−| ≥ a}, together with stationary
and independent increments.

2.8 Suppose that N is the Poisson random measure on [0,∞)× R that describes
jumps. Consider the independence that arises when restrictingN to [0,∞)× (0,∞)
and to [0,∞)× (−∞,0).
2.9 (i) See Lemma 2.15. (ii) Use the factorisation

(

1− i
θc

α
+ σ

2θ2

2α

)

=
(

1− iθ

α(1)

)

×
(

1− iθ

α(2)

)

, θ ∈R.
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2.10 Increasing the dimension of the space on which the Poisson random measure
of jumps is defined has little effect on the computations we have seen for the Lévy–
Itô decomposition of one-dimensional Lévy processes.

2.11 (i) Non-negativity of X1 allows for analytic extension of the characteristic
exponent to the Laplace exponent. (ii) As an intermediary step, use integration by
parts to deduce that

∫

(ε,∞)
(
1− e−qx

)
Π(dx)= q

∫ ∞

0
e−qxΠ(x ∨ ε,∞)dx.

The remaining parts use the representation in (ii).

2.12 In all parts of this exercise, one can appeal to Lemma 2.15.

Chapter 3

3.1 (i) Use the martingale property from Exercise 1.5. (ii) This is a consequence
of standard measure theory (see for example Theorem 4.6.3 of Durrett 2004) and
part (i). (iii) Use the conclusion in part (ii) to deduce that, almost surely,

1A = P(A|Ft+)= P(A|Ft ),
for any A ∈Ft+. Use the completion of F by null sets of P to deduce that Ft+ ⊆Ft .

3.2 It suffices to prove the result for the first process. Define for each y ≥ 0, Yyt =
(y ∨Xt)−Xt and, for each F-stopping time T , let X̃u =XT+u−XT , on {T <∞}.
Show that, on {T <∞},

Y
y
t+s =

[
Y
y
t ∨ sup

u∈[0,s]
X̃u

]
− X̃s .

3.3 The solution to this exercise is taken from Sect. 25 of Sato (1999). (i) Use
submultiplicativity to show that, for integer n chosen so that |x| ∈ (n − 1, n],
g(x) ≤ cn−1g(x/n)n and hence, since g is bounded on compacts, deduce that
g(x) ≤ agebg |x|, for some ag ∈ (0,∞). Suppose that E(g(Xt )) <∞ for all t > 0.
Using the Lévy–Itô decomposition to write

E
(
g(Xt )

)=
∫

R

∫

R

g(x + y)dF2(y)dF1,3(x),

where F2 is the distribution of X(2)t and F1,3 is the distribution of X(1)t + X(3)t ,
deduce that, for some x ∈R, E(g(X(2)t ))≤ cagebg |x|

∫
R
g(x+ y)dF2(y) <∞. Con-

clude that
∫
|y|≥1 g(y)Π(dy) <∞. Conversely, suppose that

∫
|y|≥1 g(y)Π(dy) <∞.

Use submultiplicativity, together with the method found in the proof of Theorem 3.6,
to find that E(g(Xt )) <∞. (ii) Suppose that h(x) is a positive increasing function
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on R such that, for x ≤ b, it is constant and, for x > b, logh(x) is concave. Show
that

h
(|x + y|)≤ h(|x| + |y|)≤ ch(|x|)h(|y|),

where c > 0 is a constant. Now consider the discussion preceding Theorem 3.8.
(iii) Apply the conclusion of Theorem 3.8 to the Lévy measure of a stable process.

3.4 It suffices to show that any Lévy process can be written as the difference of
two spectrally positive processes. One should also take advantage of Theorem 3.9
in part (iii).

3.5 It is convenient to write, for β > 0,

ψ(β)=−aβ+ 1

2
σ 2β2+

∫

x<−1

(
eβx − 1

)
Π(dx)+

∫

0>x>−1

(
eβx − 1−βx)Π(dx),

before using dominated convergence to perform multiple derivatives. See also the
hints in the solution to Exercise 1.9.

3.6 (i) Use spectral negativity, stationary independent increments of the subordina-
tor {τ+x : x ≥ 0} and that {τ+x < eq} = {Xeq > 0}. (ii) Define the right-continuous
function f (x) = P(Xeq > x) for all x ≥ 0. Show that, for positive integers p,q ,
f (p/q)= f (1/q)p and f (1)= f (1/q)q and that this leads to the desired exponen-
tial distribution. Use continuity of the process {Xt : t ≥ 0} to infer, and then use, the
finiteness of E(eXt ) for all t ≥ 0. (iii) Use Theorem 3.12 and Exercise 3.5, noting
that, as q ↓ 0, the random variable Xeq converges in distribution to X∞.

3.7 For both (i) and (ii), first show that

Ψ (θ)= c(cos(πα/2)
)−1
(−θ i)α, θ ∈R,

and then use analytical extension, with the help of Theorem 3.6. See also Theo-
rem 3.8.

Chapter 4

4.1 (i) Note from Lemma 4.11 that P(τ {0} > 0) = 1, where τ {0} = inf{t > 0 :
Xt = 0}, and apply the strong Markov property at this time. (ii) Apply the change
of variable formula over the time intervals [Tn,Tn+1), where T0 = 0 and, for
n= 1,2, . . . , Tn is the time of the n-th visit of X to 0. Note, moreover, that

∫

(0,t]
(
f (Xs)− f (Xs−)

)
dL0
t =

nt−1∑

i=1

(
f (XTi )− f (XTi−)

)
,

where nt is the number of visits to 0 on the time horizon (0, t].
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4.2 Follow the proof of Theorem 4.2, taking care to apply regular Lebesgue–
Stieltjes calculus between the jumps of the process X(ε) (note in particular that
{Xt : t ≥ 0} has non-decreasing paths and is continuous).

4.3 Starting with an approximation to φ via (4.8), one may establish this identity
in a similar way to the proof of Theorem 4.4. The calculations are somewhat more
technically involved, however.

4.4 (i) The Lévy–Itô decomposition tells us that we may write, for each t ≥ 0,

X
(ε)
t = −at +

∫

[0,t]

∫

|x|≥1
xN(ds × dx)+

∫

[0,t]

∫

ε≤|x|<1
xN(ds × dx)

− t
∫

ε≤|x|<1
xΠ(dx),

where N is the Poisson random measure associated with the jumps of X. Apply
the change of variable formula. (ii) Use Exercise 4.3 to analyse ||M(ε) −M(η)|| as
ε, η ↓ 0, taking account of the boundedness of the first derivative of f in x and the
necessary property that

∫
(−1,1) x

2Π(dx) <∞. (iii) We know from the Lévy–Itô de-

composition that X(ε) converges uniformly on [0, T ], with probability one, along
some deterministic subsequence, say {εn : n = 1,2, . . .}, to X. Similar reasoning
also shows that, thanks to the result in part (ii), there exists a subsubsequence, say
ε = {εn : n= 1,2, . . .}, of the latter subsequence along which M(ε) converges uni-
formly on [0, T ], with probability one to its limit, sayM .

For the convergence of the other terms in (4.24), use the assumed continuity and
boundedness conditions of f in conjunction with dominated convergence. In doing
so, it will be convenient to show that, for all 0≤ s ≤ t and y ∈R,

∣
∣
∣
∣f (s, y + x)− f (s, y)− x

∂f

∂x
(s, y)

∣
∣
∣
∣≤ Cx2.

(iv) This is a standard localisation technique.

4.5 (i) The period B is equal to the time it takes for the workload to become zero
again. The latter has the same distribution as τ+x = inf{t > 0 : Xt > x}, when x is
independently randomised using the distribution F . (ii) Decompose the path of X
into excursions from the maximum, interlaced by intervals of time when X = X.
Accordingly, show that

∫ ∞

0
1(Wt=0)dt =

Γp+1∑

k=1

e(k)λ ,

where Γp is a geometric random variable with parameter p = 1 − F̂ (Φ(0)) and

{e(k)λ : k = 1,2, . . .} is a sequence of independent random variables (also indepen-
dent of Γp), each of which is exponentially distributed with parameter λp.
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4.6 (i) Use Itô’s formula for semi-martingales. (ii) Use Exercise 3.6 (iii) and con-
sider E(Xeq ). (iii) Use the positivity of the process Z and the fact that X increases,
to deduce that E(sups≤t |Ms |) <∞. Use dominated convergence with a localising
sequence of stopping times, to show that M is a real martingale and not just a local
martingale.

4.7 (i) The proof is similar to the previous question. (ii) Show that

E

(∫ eq

0
eiα(Xs−Xs)+iβXsds

)

= 1

q
E
(
eiα(Xeq−Xeq )+iβXs

)

and that

E

(∫ eq

0
eiα(Xs−Xs)+iβXsdXs

)

= 1

Φ(q)− iβ
.

(iii) Note that (4.25) factorises as follows

Φ(q)

Φ(q)− iβ
× q

Φ(q)

Φ(q)− iα

q +Ψ (α) .

4.8 (i) Write X as the difference of two subordinators. (ii) Use that X is stochas-
tically bounded below by a spectrally negative Lévy process of bounded variation.
(iii) Consider the Pollaczek–Khintchine formula in Sect. 4.6.

Chapter 5

5.1 (i) One reasons as for a general Lévy process, using stationary and indepen-
dent increments with a minor adaptation for killing. (ii) Start by writing Φ(θ) =
limn↑∞ n(1−exp{−Φ(θ)/n}) for θ ≥ 0. (iii) Note thatΠn(x)dx converges vaguely.
As Π is monotone, atoms in the aforementioned measure can only accumulate at 0
or∞. Uniqueness is clear. (iv) The quantity

∫
(0,∞)(1∧ x)Π(dx) must be finite for

Φ(θ) to be finite. Why?

5.2 Write out Φ(θ + q)−Φ(q) in detail.

5.3 The proof follows verbatim the proof of Lemma 5.5 (ii), using Corollary 5.3 in
place of Theorem 5.1. Note, moreover, that

1− lim
x↑∞P(Xτ+x = x) =

1

μ

∫ ∞

0
Π(y,∞)dy. (S.3)

Consider also the expression for Φ ′(0+).
5.4 (i) From Sect. 4.6, we know that for the process Y , P(σ+0 > 0)= 1. Consider the
auxiliary process, say X = {Xt : t ≥ 0}, which has positive and independent jumps
which are equal in distribution to Yσ+0

. (ii) Apply Theorem 5.5. (iii) When mod-
elling a risk process by −Y , the previous limit is the asymptotic joint distribution of
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the deficit at ruin and the wealth prior to ruin, conditional on ruin occurring when
starting from an arbitrary large capital.

5.5 Show, using Theorem 5.6, that

lim
x↑∞P(Xτ+x −Xτ+x − ∈ dz)= lim

x↑∞
1

μ
zΠ(dz), z > 0.

5.6 An analogue of Theorem 4.4 is required for the case of a Poisson random
measure N which is defined on ([0,∞) × R

d,B[0,∞) × B(R),dt ×�), where
d ∈ N (although our attention will be restricted to the case that d = 2). Following
the proof of Theorem 4.4, one deduces that, if φ : [0,∞)×R

d ×Ω→ [0,∞) is a
random time-space function such that

(i) as a trivariate function, φ = φ(t, x)[ω] is measurable,
(ii) for each t ≥ 0, φ(t, x)[ω] is Ft ×B(Rd)-measurable, and

(iii) for each x ∈ Rd , with probability one, {φ(t, x)[ω] : t ≥ 0} is a left-continuous
process,

then for all t ≥ 0,

E

(∫

[0,t]

∫

Rd

φ(s, x)N(ds × dx)

)

= E

(∫ t

0

∫

Rd

φ(s, x)ds�(dx)

)

. (S.4)

Here, we have the understanding that the right-hand side is infinite if and only if the
left-hand side is. From this, the required result follows from calculations similar in
nature to those found in the proof of Theorem 5.6.

5.7 (i) Show, and use, that conditionally on Fτ+x , on the event {τ+x < eα}, the ran-
dom variables Xeα − Xτ+x and Xeα have the same distribution. (ii) Use Laplace
transforms. (iii) Take limits as β ↑∞ in the previous part of the question, appealing
to Exercise 2.11, and recall that

∫

[0,∞)
e−qyU(α)(dy)= 1

α +Φ(q) .

(iv) Use Lemma 5.11.

5.8 (ii) Use the definition of the gamma function. (iii) Refer to (5.8). (iv) Check for
a degenerate distribution in part (iii).

5.9 (i) Take Laplace transforms, using the conclusion of Theorem 5.6. (ii) and
Theorem 5.9. (ii) Use the previous exercise. (iii) With the help of the Dominated
Convergence Theorem and the assumed regular variation, consider

∫ ∞

0
dx · e−qx lim

t↑∞E
(
e
−β(X

τ
+
tx−
/t)−γ (X

τ
+
tx
−tx)/t)

.

(iv) Take limits in the identity in part (ii), first considering the case that γ = 0,
and then the case that β = 0 as t tends to infinity (resp. zero). Note also from the
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discussion in Sect. 5.5, if Φ is regularly varying with index α, then necessarily
α ∈ [0,1].
5.10 (i) Introduce the auxiliary process X̃ = {X̃t : t ≥ 0}, which is the subordinator
whose Laplace exponent is given by Φ(q)− η. Define the quantity τ̃+x = inf{t > 0 :
X̃t > x} and consider the expectation E(

∫∞
0 e−ηt1(X̃t>x)dt). (ii) Make use of (5.37).

(iv) Compute G(0,∞). (v) Use the Continuity Theorem for Laplace transforms.

5.11 Use inductive differentiation.

5.12 This question requires patience in computing Laplace transforms. For part (ii),
use (5.31).

5.13 (i) and (ii) Show that it sufficient to consider the case that η = 0. Use the
expression for Φ(u)/u appearing in part (ii) of Exercise 2.11.

5.14 (i) Apply Laplace transforms. (ii) Use Theorem 5.6 to write down P(Xτ+x > x).

Chapter 6

6.1 For the first part, consider any symmetric Lévy process. Which symmetric Lévy
processes do not have the desired properties? For the second part, consider any
spectrally positive Lévy process of bounded variation. Alternatively, consider the
difference of two independent stable subordinators with different indices. Which
one should have the larger index?

6.2 (i) By assumption, limq↑∞Φ(q) =∞. Why? Use Exercise 2.11 to show that
δ = limθ↑∞ 1/ψ ′(θ) and hence deduce that δ = 0. (ii) Use Theorem 4.11 and
that Xτ+x = x on {τ+x <∞}. (iii) From the Wiener–Hopf factorisation given in
Sect. 6.5.2, we have that

E
(
eθXeq

)= q

Φ(q)

Φ(q)− θ
q −ψ(θ) .

Take limits as θ ↑∞.

6.3 Suppose that N = {Nt : t ≥ 0} is a Poisson process with rate λρ and {ξn :
n = 1,2, . . .} are independent (also of N ) and identically distributed and, further,
eλ(1−ρ) is an independent exponentially distributed random variable with parameter
λ(1− ρ). On the other hand, suppose that Ñ = {Ñt : t ≥ 0} is an independent Pois-
son process with rate λ and �1−ρ is a geometric distribution with parameter 1− ρ.
Compare the expectations

E
(
e−θ

∑N1
i=1 ξi1(1<eλ(1−ρ))

)
and E

(
e−θ

∑Ñt
i=1 ξi1(Ñt≤�1−ρ)

)
.

6.4 Make the connection with path regularity.
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6.5 (i) It will be helpful to show that

E(X1)=−a +
∫

(−∞,−1)
xΠ(dx).

(ii) First explain why, for θ ∈R, κ̂(0, iθ)=−ψ(iθ)/iθ .

6.6 (i) See Exercise 3.7, Theorem 3.12 and Corollary 3.14. See also the calculations
in Sect. 6.5.3. (ii) Use (5.31).

6.7 (i) Given Fτ+x , consider the law of Xeα −Xτ+x on {τ+x < eα}. (ii) Take Laplace
transforms on both sides of (6.46) and use Fubini’s Theorem.

6.8 (i) Recall that P(Xep = 0)= limβ↑∞E(e−βXep ) and make use of Theorem 6.15.

(ii) Similarly, use the same theorem, together with the fact that limλ↑∞E(e−λGep )

= P(Gep = 0) > 0.

6.9 (i) For s ∈ (0,1) and θ ∈ R, let q = 1− p and show, with the help of Fubini’s
Theorem, that

exp

{

−
∫

R

∞∑

n=1

(
1− sneiθx)qn

1

n
F ∗n(dx)

}

= p

1− qsE(eiθS1)
.

Exercise 2.10 will also be useful to address infinite divisibility. (ii) The path of the
random walk may be broken into ν ∈ {0,1,2, . . . .} finite excursions from the max-
imum, followed by an additional excursion which straddles the random time �p .
(iii) The independence of (G,SG) and (�p −G,S�p − SG) is immediate from the
decomposition described in part (ii). Duality1 for random walks implies that the
latter pair is equal in distribution to (D,SD). (iv) We know that (�p,S�p ) may be
written as the independent sum of (G,SG) and (�p−G,SG−S�p ), where the latter
is equal in distribution to (D,SD). Reviewing the proof of part (ii), when the strong
ladder height is replaced by a weak ladder height, we see that (�p −G,S�p − SG),
like (G,SG), is infinitely divisible (for the weak ladder height, one works with
the stopping time N ′ = inf{n > 0 : Sn ≤ 0}; note the relationship between the
inequality in the definition of N ′ and the max in the definition of D). Further,
(G,SG) is supported on {1,2, . . .}× (0,∞) and (�p−G,S�p−SG) is supported on
{1,2, . . .} × (−∞,0). This means that, in the variable θ , E(sGeiθSG) can be analyt-
ically extended to the upper half of the complex plane and E(s(�p−G)eiθ(S�p−SG))
to the lower half of the complex plane. (v) Note that the path decomposition given
in part (ii) shows that

E
(
sGeiθSG

)=E(s
∑ν
i=1N

(i)

eiθ
∑ν
i=1H

(i))
,

1Duality for random walks is the same concept as for Lévy processes. In other words, for any
n = 0,1,2, . . . (which may later be randomised with any independent distribution), note that the
independence and common distribution of increments implies that {Sn−k − Sn : k = 0,1, . . . , n}
has the same law as {−Sk : k = 0,1, . . . , n}.
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where the pairs {(N(i),H (i)) : i = 1,2, . . .} are independent, having the same distri-
bution as (N,SN) conditioned on {N ≤ �p}.
6.10 (i) Use Lemma 1.7 with the parameter choices α =Φ(q) and β = 1. (iii) Con-
sider the characterisation of measures through their transforms.

Chapter 7

7.1 (i) Use Exercise 3.3. (ii) First suppose that q > 0. The Wiener–Hopf factorisa-
tion gives us

E
(
e−iθX

K
eq
)= E

(
eiθXKeq

) κ̂K(q, iθ)

κ̂K(q,0)
, (S.5)

where κ̂K is the Laplace exponent of the bivariate descending ladder process of
XK and eq is an independent and exponentially distributed random variable with
mean 1/q . Show, and use, that the descending ladder height process of XK has
moments of all orders. Together with the fact that E(|XKt |n) <∞, for all t > 0,
consider the Maclaurin expansion up to order n of (S.5). (iii) Use the Wiener–Hopf
factorisation for XK (up to a multiplicative constant) in the form

κK(0,−iθ)= ΨK(θ)

κ̂K(0, iθ)
,

where κK and ΨK are defined in an obvious way, and appeal to reasoning similar

to that used in part (ii). Note that X
K

∞ is equal in law to the ascending ladder height
process of XK , stopped at an independent and exponentially distributed time.

7.2 (i) Show that E(Yn) ≤ E(X1) − E(X1). (iii) Let [t] be the integer part of t .
Write

Xt

t
=

∑[t]
i=1(Xi −Xi−1)

[t]
[t]
t
+ Xt −X[t][t]

[t]
t
.

(iv) The assumption E(X1) = ∞ implies that E(max{−X1,0}) < ∞ and
E(max{X1,0})=∞. Use truncation ideas from Exercise 7.1.

7.3 (i) Take limits in the appropriate Wiener–Hopf factor (see Sect. 6.5.2). (ii) Sim-
ilar to part (i). (iii) The trichotomy in Theorem 7.1, together with the conclusions
of parts (i) and (ii), gives the required asymptotic behaviour. (iv) The given process
has Laplace exponent given by ψ(θ)= cθα , for some c > 0.

7.4 (i) See Exercise 3.7 and Lemma 7.10. (ii) The measure U(dx) is the poten-
tial measure of the ascending ladder height process. Revisit Exercise 5.8. (iii) The
potential Û(dx) can be derived as in the previous part of the question. Apply the
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quintuple law. (iv) Use part (i), the beta integral

∫ 1

0
up−1(1− u)q−1du= Γ (p)Γ (q)

Γ (p+ q) ,

for p,q > 0, and the reflection formula for the gamma function.

7.5 (i) Consider, in the light of Exercise 5.6, the quadruple law

P
(
τ+x −Gτ+x − ∈ dt,Gτ+x − ∈ ds,Xτ+x − x ∈ du,x −Xτ+x − ∈ dy

)
,

for u > 0, y ∈ [0, x] and s, t ≥ 0. (ii) When X is spectrally positive, we have Ĥt = t
on {t < L̂∞}.
7.6 (i) It suffices to prove that

lim|θ |↑∞
1

θ2

∫

R

(
1− eiθx + iθx1(|x|<1)

)
Π(dx)= 0. (S.6)

It will help to first prove that |1− cosa| ≤ 2(1∧ a2) and |a− sina| ≤ 2(|a| ∧ |a|3).
For the second assertion, recall from Lemma 7.10 that there is creeping upwards if
and only if limβ↑∞ κ(0, β)/β > 0. (ii) Show, and then use, that L−1 is a subordi-
nator which has a non-zero drift coefficient. (iii) What class of subordinators does
the ladder height process H belong to in the case of irregularity? (iv) Use part (i).
(v) Any symmetric process must either creep in both directions or not at all (by
symmetry). Consider the integral test in Theorem 7.12.

7.7 (i) It will be convenient to use the identity:

θ−α(1+ θ)−1 = α
∫ 1

0
(1− φ)α−1(φ + θ)−(α+1)dφ,

valid for all θ > 0. By changing variables, via (1+ θ)(1− u)= φ + θ , this identity
can be derived by showing that, for all θ > 0,

θ−α

α
=
∫ 1/(1+θ)

0
uα−1(1− u)−(α+1)du,

which, in turn, follows by differentiation. (ii) In the appropriate probabilistic setting,
subtract from those paths which enter (1,∞), the paths which first enter (−∞,0).
(iii) It turns out to be easier to differentiate the equations in (ii) in the variable y
first.

7.8 Show that, on the event {Ux > u,Vx > v,Ox > w}, the interval [x − u,x +w]
does not belong to the range of X. Show, moreover, that when Ox−u > u+w and
Vx−u > v − u, the interval [x − u,x +w] does not belong to the range of X.

7.9 Marginalise the quintuple law to the joint law of the overshoot and undershoot
and then take limits, using the Renewal Theorem 5.1. Don’t forget to take account
of creeping.
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7.10 Start by showing, for q > 0 and x ≥ 0,

Ex

(∫ τ−0

0
e−qtf (Xt )dt

)

= 1

q

∫

[0,∞)
P(Xeq ∈ dy)

∫

[0,x]
P(−Xeq ∈ dz)f (x+ y− z).

Take limits as q ↓ 0, making use of (7.14).

Chapter 8

8.1 Show that

P
(
A|τ+x <∞

)= eΦ(0)xP
(
A,τ+x < t

)+ P
Φ(0)(A,τ+x ≥ t

)
,

so that it suffices to establish

lim
x↑∞ eΦ(0)xP

(
A,τ+x < t

)= 0, (S.7)

for all t > 0. Show instead that, for all q > 0, limx↑∞ eΦ(0)xP(A, τ+x < eq) = 0.
Since we can choose q arbitrarily small, we can make P(eq > t)= e−qt arbitrarily
close to 1, from which one can recover (S.7).

8.2 All parts can be handled through Laplace transforms.

8.3 (i) Use the assumption that ψ ′(0+) > 0. (ii) See (8.20). (iii) Use the second as-
sertion of part (ii), noting that, for n≥ 1, ν∗n(dx)= ((n−1)!)−1(λ/δ)nxn−1e−μxdx
on (0,∞).
8.4 (ii) Use (8.26). (iii) Consider the atomic support of the Lévy measure associated
to (X,PΦ(q)) relative to the support of Π .

8.5 (i) Take limits in (8.12) as a ↑∞. For the second assertion, use (8.11). (ii) Note
that

W
(q)′
+ (0+)= lim

β↑∞

∫ ∞

0
βe−βxW(q)′(x)dx.

8.6 Use Theorem 5.9 and the fact that, for β ≥ 0,
∫

[0,∞)
e−βyÛ(dy)= β −Φ(0)

ψ(β)
,

where Û is the potential measure of the descending ladder height process. Be care-
ful with the normalisation of local time at the maximum, which is implicit in the
definition of Û .

8.7 (i) Follows by definition. (ii) Apply an exponential change of measure in (8.9).
Analytic extension of the resulting identity may thereafter be necessary. (iii) Choose
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c=Φ(p+ u) and q = p−ψ(Φ(p+ u))=−u, then take limits, first as u ↓ 0, and
then as x ↓ 0, in the identity established in part (ii).

8.8 2 (i) The event {∃t > 0 : Bt = Bt = t} is equivalent to {∃s > 0 : L−1
s = Hs},

where (L−1,H) is the ascending ladder height process. (ii) Apply the conclusion of
part (iv) in Exercise 8.7.

8.9 (i) Starting by showing that

Ey

(
e−qΛ0

)= q
∫ ∞

0
e−qtPy(0≤Λ0 < t)dt.

(ii) Use (8.18) and Corollary 8.9. (iii) Note that, on {Λ0 > 0}, we have Λ0 > τ
−
0 .

Condition on Fτ−0 and apply the strong Markov property. (iv) Make an exponential
change of measure.

8.10 (i) The process Zx will either exit from [0, a) by first hitting zero, or by
directly passing above a, before hitting zero. (ii) Take the limit as x tends to zero in
the identity from part (i).

8.11 (i) This is a repetition of Exercise 7.7 (ii) with some simplifications. One can
take advantage of the fact that r(x, y)= r(x,0)= P(τ+1 < τ

−
0 ), which follows from

spectral negativity. Recall from Exercise 6.6 (i), that ρ = 1/α. (ii) Use Exercise 8.2
and Theorem 8.1. (iii) Starting from x ≥ 1, the process X either first enters (−1,1)
simultaneously on first entering (−∞,−1), or, at the latter time, it jumps over the
interval (−1,1) and creeps in at the lower boundary at some later time.

8.12 First take a ∈ (0,∞). For the first martingale, justify the almost sure equality

e−q(τ+a ∧τ
−
0 )1(τ+a <τ−0 )

= e−q(τ+a ∧τ
−
0 )W(q)(Xτ+a ∧τ−0 )/W

(q)(a),

and take expectation conditional on Ft . For the case a =∞, use dominated conver-
gence and the representation (8.23). Use similar reasoning for the second martingale
by taking expectations of exp{−qτ−0 }, conditional on Ft .

Chapter 9

9.1 (i) and (ii) Consider using the Tauberian theorems from Sect. 5.4. (iii) Take
Laplace transforms.

9.2 Visit the Laplace inversion formula on page 233 of Konstantopoulos et al.
(2011).

2It is worth pointing out that this exercise can be adapted to cover the case when we replace B by
any spectrally negative Lévy process in the original question.



Chapter 10 431

9.3 Consider the Lévy measure of the subordinator used in Exercise 9.1 and look
at the extreme case that α = 0. Which well-known subordinator is this? (i) Use the
definition of W as a potential measure.

9.4 (iii) Consider a partial fraction decomposition of (ψ(θ)− q)−1. (iv) Consider
using (8.24). (v) See Corollary 5.24.

9.5 (i) Consider the jump density of the descending ladder height process. (ii) What
is the Lévy density associated with (X,PΦ(q)) and is it still completely monotone?
(iii) Consider W(q)′′′, using the fact that WΦ(q) has a completely monotone density,
together with Theorem 5.21.

9.6 Suppose that φ∗β has associated triple (κ∗β, δ∗β,Υ ∗β ). On the one hand, note that,
thanks to conjugacy,

Wβ(x)= δ∗β +
∫ x

0
κ∗β + Υ ∗β (y,∞)dy,

where Wβ is the potential function associated to φβ . On the other hand, one easily
verifies that Wβ(dx) = e−βxW(dx) for x ≥ 0, where W is the potential function
associated to φ.

9.7 Substitute the descending ladder height potential into formula (9.8).

9.8 (i) and (ii) It will be useful to note that

Tβψ(θ)=
(
ψ(θ + β))−ψ(β)− β(Φ(θ + β)−Φ(β)), θ ≥ 0,

where Φ(θ)=ψ(θ)/θ . (iii) Use Laplace transforms.

Chapter 10

10.1 Note that Ex(e−qτ
−
0 ;Xτ−0 = 0)= eΦ(q)xPΦ(q)x (Xτ−0

= 0).

10.2 Appeal again to the quintuple law, being careful to note that the scale functions
W(q), q ≥ 0, have a discontinuity at the origin.

10.3 (i) Let N be a Poisson random measure associated with the jumps of X. Note
that N =∑n

i=1N
(i), where, for i = 1, . . . , n, N(i) are the independent Poisson ran-

dom measures associated with the jumps of X(i). For Borel A ⊆ (−∞,0), show
that

Px

(
Xτ−0 − ∈ dy,Xτ−0

∈A,ΔXτ−0 =ΔX
(i)

τ−0

)

= Ex

(∫

[0,∞)

∫

(−∞,0)
1(Xt−>0)1(Xt−∈dy)1(y+a∈A)N(i)(dt × da)

)

.

(ii) Use Corollary 8.8. (iii) Use that X cannot creep below the origin.
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10.4 (i) Work with

Jt =
∫ ∞

t

e−qSt 1(t<eκ )dt.

(ii) The subordinator S has jumps corresponding to excursion lengths conditional
on the excursion heights being bounded by a. What then is the value of κ?

10.5 (iii) The equation in (i) can be solved explicitly (and hence uniquely). The
equality in (ii) can be used to simplify this expression.

10.6 Repeat the computation in (8.32), taking care to include exponential discount-
ing.

10.7 Use that

Ex

(
e−qκ

−
0 1{κ−0 <κ+a }1{κ−0 <∞}

)

= Ex

(
e−qκ

−
0 1{κ−0 <∞}

)−Ex

(
e−qκ+a 1{κ+a <κ−0 }

)
Ea

(
e−qκ

−
0 1{κ−0 <∞}

)
.

10.8 (i) Every sojourn below the origin must survive exponential killing. (ii) Con-
dition on the behaviour of the process according to its first sojourn below the origin.

10.9 For the first assertion, use (10.41) and note that the running maximum of U ,
up to time t , will be attained at the last time that X−X is zero.

10.10 Appeal to transformations of identities found in this chapter.

10.11 (i) Show that the integral

∫ s∗(x)

x

W ′(γ̄ (s))
W(γ̄ (s))

ds

is comparable with the quantity log(W(x))− log(W(0)). (ii) Use Corollary 10.11.

Chapter 11

11.1 For the process of excursions of X − X, consider the probability that there
have been no excursions with height exceeding a up to local time t , for arbitrary
large t .

11.2 (i) Note that, on the event {τ+a ≤ eq} = {Xeq ≥ a}, we have that Xeq =
Xτ+a + S, where stationary independent increments and the lack-of-memory prop-

erty imply that S is independent of Fτ+a and equal in distribution to Xeq . (ii) Check
the conditions of Lemma 11.1. For the lower bound, show, and then use, that

vx∗(x)=
(
1− e−x

)−E

(

1(Xeq<x∗−x)

(

1− e−x−Xeq

E(e−Xeq )

))

.
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For the supermartingale property, use that, on the event {eq > t}, Xeq = (Xt + S)∨
Xt ≥ Xt + S, where, by stationary and independent increments and the lack-of-
memory property, S is independent of Ft and has the same distribution as Xeq .
(iii) Work with computations in the spirit of the proof of Theorem 11.4.

11.3 (i) Make a change of variables in the integral in the definition of the function
H , using y = u(t + 1)−1/α , and use the fact that exp{yXt − yαt}, t ≥ 0, is a mar-
tingale. (ii) In the expectation, multiply and divide by the martingale from (i). (iii)
Show that the upper bound in (ii) can be attained.

Chapter 12

12.1 (i) Check the integral test in Theorem 12.5. (ii) to deduce that extinction oc-
curs with probability zero. (ii) Show that X has an almost surely finite number of
jumps on the time interval [0, τ−0 ]. Let n∗ be the number of jumps that X has un-
dertaken by time τ−0 , and denote their times, in increasing order, by T1, T2, . . . , Tn∗ ,
with T0 := 0. If {ξi : i = 1,2,3, . . .} are the independent and identically distributed
sequence of jumps of X and, for k = 1,2,3, . . . , we let Sk =∑k

j=1 ξj , show that

Δ= (x + Sn∗ − cTn∗)
n∗∏

k=1

x + Sk−1 − cTk−1

x + Sk−1 − cTk .

12.2 (i) Sample the Kella–Whitt martingale3 at an appropriate sequence of stopping
times. (ii) Consider the formula (12.10).

12.3 (i) When lim inft↑∞Xt =−∞ and ζ =∞, note that
∫∞

0 Ysds <∞. (ii) Con-
sider (12.18) on the event {τ−0 <∞} and its complement. Use the Martingale Con-
vergence Theorem to note that limt↑∞ Yt must exist. In particular, show that

lim
t↑∞ e−Φ(0)Yt = 1(limt↑∞ Yt=0).

(iii) In the light of (12.14), consider a computation in the spirit of (2.11).

12.4 (i) Let E = {lims↑∞ Ys = 0}. From the definition of P ∗x and the Markov prop-
erty, we have

E∗x
(
e−θYt |E)=E∗(e−θYt P ∗Xt (E)

)
.

Show that P ∗x can be written as a martingale change of measure with respect to Px .
(ii) Consider the evolution equation (12.6) with ψ replaced by ψ∗.

3Recall from the discussion following the proof of Theorem 4.7 that the assumption of bounded
variation paths in the underlying spectrally negative Lévy process is not needed.
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12.5 (i) Let eq be an independent and exponentially distributed random variable
with parameter q > 0 and set g(x)= xf (x). Start by showing that

E
↑
x

(∫ ∞

0
e−qtf (Xt )dt

)

= 1

qx
E
(
g(x +Xeq )1(−Xeq <x)

)
.

(ii) Use (8.24) and that limq↓0 q/Φ(q) = ψ ′(0+). (iii) With the help of Theo-
rem 12.11, deduce that

P
↑
x

(
τ−y < τ+z ∧ t

)= y
x
Px

(
τ−y < τ+z ∧ t

)
,

and take t ↑∞. Consider what happens as y ↓ 0, then what happens as z ↑∞, and
finally what happens as x ↑∞. Show, and use, that

lim inf
t↑∞ Xt = lim inf

t↑∞ Xτ+z +t

under P↑x .

12.6 (i) Considering (12.26), one needs to show that, for each t > 0,

∂ut

∂θ
(θ)= ψ(ut (θ))

ψ(θ)
.

(ii) Use part (i) to deduce that Yt→∞ in P ↑x -probability. Consider the implications
of this in Lemma 12.15 (ii), taking account of the last part of Exercise 12.5. (iii) The
first part is a straightforward manipulation. It will help to understand the behaviour
of

∫ θx

0

(
e−λ − 1+ λ

λ2

)

dλ,

as x ↓ 0 and as x ↑∞. (iv) Use part (i) of the question and check that, for t suffi-
ciently large,

0≤
∫ θ

ut (θ)

(
1

ρξ
− 1

ψ(ξ)

)

dξ = 1

ρ
log

(
θ

ut (θ)eρt

)

.

12.7 (i) All of the assertions follow from the definition of ut (θ), its semigroup
property (12.5) as well as the fact that it solves (12.8). (ii) See Exercise 12.3. (iii)
Use the Markov branching property and that, for s, t > 0, ut (ηt+s(λ))= ηs(λ). (iv)
The integral

∫ φ(θ)
λ

1/ψ(ξ)dξ can only explode as θ ↓ 0 and θ ↑ ∞ if the upper
delimiter tends to 0, Φ(0) or possibly∞ (depending on whether extinction occurs
or not). The latter of these three eventualities can be excluded, see the footnote in
the question.

12.8 (ii) Use part (i) of Exercise 12.7.
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Chapter 13

13.1 The strong Markov property may be established using piecewise stopping
each time Y crosses the origin (note that there is no creeping which means that
the amount of time spent on each sojourn below the origin has positive Lebsgue
measure; and the same applies to sojourns above the origin). Define the rescaled
process {X̃t : t ≥ 0} by X̃t = cXc−αt , t ≥ 0, and, correspondingly, let γ̃ be the right-
inverse of

∫ ·
0 1
(X̃s>0) ds. Show, and then use, that

cαγ
(
c−αt

)= γ̃ (t).
13.2 Use Exercise 5.8.

13.3 Let (B,P) be a standard Brownian motion. (i) Consider the probability
P1(τ

+
x < τ

−
0 ), for x > 1. If ψ is the Laplace exponent of the underlying Lévy pro-

cess through the second Lamperti transform andΦ is its right inverse, show, and use,
that Φ(0) = 1. (ii) Show that, for 0 < ε < 1, P↑1 (τ−ε <∞) = ε and reason further
as in part (i). To pin down the multiplicative constant, one may consider using Itô’s
formula to match the quadratic variation of Brownian motion against the quadratic
variation of the process in the second Lamperti transform.

13.4 For the second part, note that the descending ladder height process of a stan-
dard Brownian motion is a deterministic unit drift process.

13.5 (i) Use Exercise 5.8, noting that the descending ladder height process of a
stable process is a stable subordinator.

13.6 (i) Use right-continuous paths and finite integral length. (ii) and (iii) Write
ξt = t (ξt /t). (iv) On account of the randomised position ξTn , the time difference
Tn − Sn is longer than the time it takes for ξ to start at 2 and cross below 1.

13.7 Both (i) and (ii) can be recovered from the two-sided exit problem in Exer-
cise 7.7, using (13.11) and a logarithmic change of spatial scale.

13.8 (i) Follow, for example, the reasoning in (13.36), or use Exercise 13.4. Take
Laplace transforms of ξ↑∞ and appeal to the Wiener–Hopf factorisation to derive

ψ↑. Consider the ruin probability for ξ↑ (which involves an expression for W↑),
or use the beta integral to take inverse Laplace transforms of 1/ψ↑. (ii) Follow a
similar programme to (i).

13.9 (i) Note that the required triple law at first-passage for (Y,P↑x ) can be written
in terms of a triple law for (ξ↑,P↑), via a logarithmic change of spatial scale. In
turn, the latter can be written down explicitly, using properties of the ascending and
descending ladder height processes of (ξ↑,P↑). (ii) Use (13.11).

13.10 (i) If we write ψd for the Laplace exponent of a Brownian motion with drift
d/2− 1, then one should check that

ψd+2(λ)= θ

λ+ 2
ψd(λ), λ≥ 0.
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(ii) Using standard notation, note that

(
R
(x)
t

)q = xq exp{qξϕ((xq )−2/q t)}, t ≤ ζ (x).
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