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(Proof) System SKS
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» Plus an ‘=" linear rule (associativity, commutativity, units).
» Rules are applied anywhere inside formulae.
» Negation on atoms only.
» Cut is atomic.
» SKS is complete and implicationally complete for

propositional logic.
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» In the calculus of structures (CoS):  act
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Top-down symmetry: so inference steps can be made atomic
(the medial rule, m, is impossible in the sequent calculus).
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» In ‘Formalism A': s




Locality

» Deep inference allows locality,

> i.e., inference steps can be checked in constant time (so,
inference steps are small).
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Example, atomic cocontraction: aha bnb A
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Note: the sequent calculus

» does not allow locality in contraction (counterexample in
[Briinnler(2004)]), and

» does not allow local reduction of cut into atomic form.




Goal of This Talk

To illustrate the slogans:
» Deep inference (i.e., a ‘beyond’) = locality (+ symmetry).
» Locality = linearity + atomicity.

» geometry = syntax independence (& elimination of syntactic
bureaucracy).

» Locality — geometry — semantics of proofs (Lamarche dixit).

This is a path towards solving the problem of proof identity, i.e.,
determining when two proofs are the same (Hilbert’s ‘24th
problem’).



What Do We Need to Solve the Proof Identity Problem?

A finer representation of proofs, achieving locality.

This yields:

>

more proofs to choose representatives from, and especially

» bureaucracy-free proofs;
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more manipulation possibilities, viz., for normalisation;
nice geometric models [Guiraud(2006)];
smaller proofs, but

not as small as proof nets [Lamarche & StraBburger(2005)].



Elimination of Bureaucracy
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Propositional logic.

Proof system = proofs can be checked in polytime.

>
>
» CoS = calculus of structures (fully developed deep inference).
» Normalisation = mainly, but not only!, cut elimination.

>

Objective: eliminate bureaucracy, i.e., find ‘something’ at the
boundary.



What About Proof Complexity?
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Deep inference has as small proofs as the best proof systems
and

it has a normalisation theory

and

its analytic proof systems are more powerful than Gentzen ones
and

cut elimination is quasipolynomial (instead of exponential).

(See [Jefabek(2009), Bruscoli & Guglielmi(2009),

Bruscoli et al.(2009)Bruscoli, Guglielmi, Gundersen, & Parigot]).



(Atomic) Flows
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Below derivations, their (atomic) flows are shown.

Only structural information is retained in flows.

Logical information is lost.
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Flow size is polynomially related to derivation size.




Flow Reductions: (Co)Weakening (1)

Consider these flow reductions:
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Each of them corresponds to a correct derivation reduction.
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Flow Reductions: (Co)Weakening (2)

For example, ail-aw(: (R, specifies that
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We can operate on flow reductions instead than on derivations: it
is much easier and we get natural, syntax-independent induction
measures.



Flow Reductions: (Co)Contraction

Consider these flow reductions:
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» They conserve the number and length of paths.
» Note that they can blow up a derivation exponentially.

» It's a good thing: cocontraction is a new compression
mechanism (sharing?).

» Open problem: does cocontraction provide exponential
compression? Conjecture: yes.
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» None of these methods existed before atomic flows, none of
them requires permutations or other syntactic devices.

» Quasipolynomial procedures are surprising.
» Conjecture: polynomial normalisation is possible.

(1) [Guglielmi & Gundersen(2008)]; (2) work in progress; (3)
[Bruscoli et al.(2009)Bruscoli, Guglielmi, Gundersen, & Parigot].



Cut Elimination (on Proofs) by ‘Experiments’
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Simple, exponential cut elimination; proof generates 2"
experiments.



Generalising the Cut-Free Form

» Normalised proof: W_F\T//l\

» Normalised derivation: I I I

» The symmetric form is called streamlined.

» Cut elimination is a corollary of streamlining.




Removal of a ‘Simple Edge’

Remove identity and cut:

» We can do so on simple edges, like 1 above.
» The procedure requires a strategy, not to loop.
» The chunks to be copied can be small.

» Open: computational interpretation?



Composition of Simple Edge Removal




How to Obtain a Simple Edge?

» By moving away (co)contractions by way of their reductions:
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» But beware of loops:
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» This and more is in [Guglielmi & Gundersen(2008)].




How Do We Break Paths Without ‘Preprocessing’ ?
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Even if there is a path between 1 and 3 on the left, there is none
on the right (and the same for 2 and 4).



We Can Do This on Derivations, of Course
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» We can compose Break as many times as there are paths
between identities and cut.

» We obtain a family of normalisers that only depends on n.

» The construction is exponential.

» Note: finding something like this is unthinkable without flows.



Example for n =2
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Conjecture
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» We think that (*) might make for a proof system (see also
recent work by StraBburger).

» This means that there should exist a polynomial algorithm to
check the correctness of (*).

» If this is true, we have an excellent bureaucracy-free
formalism.

» Note: if such a thing existed for proof nets, then coNP = NP.



Conclusion

(Exponential) normalisation does not depend on logical rules.
It only depends on structural information, i.e., geometry.

>
>
» Normalisation is extremely robust.
» Deep inference's locality is key.

>

Complexity-wise, deep inference is as powerful as the best
formalisms,
» and more powerful if analiticity is requested.

» Deep inference is the continuation of Girard politics with
other means.

In my opinion, much of the future of structural proof theory is in
geometric methods: we have to free ourselves from the tyranny of
syntax (so, war to bureaucracy!).
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